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The Chern–Ricci flow on complex surfaces

Valentino Tosatti and Ben Weinkove

Abstract

The Chern–Ricci flow is an evolution equation of Hermitian metrics by their
Chern–Ricci form, first introduced by Gill. Building on our previous work, we investigate
this flow on complex surfaces. We establish new estimates in the case of finite time non-
collapsing, analogous to some known results for the Kähler–Ricci flow. This provides
evidence that the Chern–Ricci flow carries out blow-downs of exceptional curves on
non-minimal surfaces. We also describe explicit solutions to the Chern–Ricci flow for
various non-Kähler surfaces. On Hopf surfaces and Inoue surfaces these solutions,
appropriately normalized, collapse to a circle in the sense of Gromov–Hausdorff. For
non-Kähler properly elliptic surfaces, our explicit solutions collapse to a Riemann
surface. Finally, we define a Mabuchi energy functional for complex surfaces with
vanishing first Bott–Chern class and show that it decreases along the Chern–Ricci flow.

1. Introduction

The Chern–Ricci flow is a flow of Hermitian metrics on a complex manifold by their Chern–Ricci
form. It was introduced by Gill [Gill11] in the setting of manifolds with vanishing first Bott–
Chern class. In [TW12], the authors proved a number of further properties of the Chern–Ricci
flow, several of which are analogous to those of the Kähler–Ricci flow. We continue this study
here, but restrict to complex dimension 2 where some additional structures can be exploited.
Our aim is to provide more evidence that the Chern–Ricci flow is a natural evolution equation
on complex manifolds and that its behavior reflects the underlying geometry. Other flows of
Hermitian metrics have been previously studied by Streets–Tian [ST10, ST11, ST13], motivated
in part by the open problem of classifying Class VII surfaces. Ultimately, our hope is that
the Chern–Ricci flow may be used as a tool in classification problems. However, our goals
in the current paper are more modest: we wish to investigate the behavior of the flow in cases
where the geometry of the manifold is already well understood.

Let M be a compact complex surface, and let g0 be a Gauduchon metric on M . Namely, g0
is a Hermitian metric whose associated (1, 1) form ω0 =

√
−1(g0)ij dzi ∧ dzj satisfies

∂∂ω0 = 0.

A well-known result of Gauduchon states that every Hermitian metric on M is conformal to a
unique Gauduchon metric.

Received 5 November 2012, accepted in final form 13 June 2013, published online 2 December 2013.
2010 Mathematics Subject Classification 53C44 (primary), 53C55, 32W20 (secondary).
Keywords: Chern–Ricci flow, compact complex surface, Hermitian metric.

The first-named author is supported in part by NSF grants DMS-1236969, a Sloan Research Fellowship and
by a Blavatnik Award for Young Scientists. The second-named author is supported in part by NSF grant DMS-
1105373. Part of this work was carried out while the second-named author was on leave from the Mathematics
Department of the University of California, San Diego.
This journal is c© Foundation Compositio Mathematica 2013.

https://doi.org/10.1112/S0010437X13007471 Published online by Cambridge University Press

http://www.compositio.nl
http://www.ams.org/msc/
http://www.compositio.nl
https://doi.org/10.1112/S0010437X13007471


V. Tosatti and B. Weinkove

The Chern–Ricci flow ω = ω(t) starting at ω0 is a flow of Gauduchon metrics

∂

∂t
ω =−Ric(ω), ω|t=0 = ω0, (1.1)

where Ric(ω) is the Chern–Ricci form of ω =
√
−1gij dzi ∧ dzj , defined by

Ric(ω) =−
√
−1∂∂ log det g.

The Chern–Ricci flow makes sense for metrics which are merely Hermitian, and in any dimension
(as do flows proposed in for example [LY12, ST11]). However, for the purposes of this paper, we
will restrict to the case of Gauduchon metrics in complex dimension 2. Note that if ω0 satisfies
the stronger condition of being d-closed (i.e. Kähler) then (1.1) coincides with the Kähler–Ricci
flow.

It was shown in [TW12, Theorem 1.3] that a unique maximal solution to (1.1) exists for
[0, T ) for a number T ∈ (0,∞] determined by ω0. If the volume of M with respect to ω(t) tends
to zero as t→ T , we say that the Chern–Ricci flow is collapsing at time T . Otherwise, we say
that the Chern–Ricci flow is non-collapsing. If T =∞, it is sometimes convenient to normalize
the flow and consider ω(t)/t as t→∞. If the volume of M with respect to ω(t)/t tends to zero
as t→∞ we say that the normalized Chern–Ricci flow is collapsing.

The first part of this paper is concerned with non-collapsing for the flow in finite time, while
in the second part of the paper we give a number of explicit examples of collapsing in both
finite and infinite time. In the last, short, section of the paper we define the Mabuchi energy
functional on surfaces with vanishing first Bott–Chern class and show that it is decreasing along
the Chern–Ricci flow.

Finite time non-collapsing
A natural conjecture [TW12], extending results of Song and the second-named author in the
Kähler case [SW11, SW13a, SW13b], is that if the Chern–Ricci flow is non-collapsing in finite
time, then it blows down finitely many (−1) curves and continues in a unique way on a new
complex surface M . We require global Gromov–Hausdorff convergence of the metrics, and smooth
convergence away from the (−1) curves. For more details see § 3. The goal of the first part of
this paper is to make some steps towards proving this conjecture.

Suppose that the Chern–Ricci flow is non-collapsing at time T <∞. Then it was shown in
[TW12, § 6] that there exist finitely many disjoint (−1) curves E1, . . . , Ek on M giving rise to
a map π :M →N onto a complex surface N blowing down each Ei to a point yi ∈N . Write
M ′ =M\

⋃k
i=1 Ei and N ′ =N\{y1, . . . , yk}. Then the map π gives an isomorphism from M ′

to N ′.
Our first result is as follows.

Theorem 1.1. Suppose that the Chern–Ricci flow (1.1) is non-collapsing at time T <∞. Then
with the notation above, as t→ T−, the metrics g(t) converge to a smooth Gauduchon metric
gT on M ′ in C∞loc(M

′).

Remark 1.2. (1) In the Kähler case, this result is due to Tian–Zhang [TZ06].

(2) In [TW12, Theorem 1.6], we proved this result under additional hypotheses (equivalent
to condition (∗) below).

(3) As described in [TW12, Theorem 1.5], finite time non-collapsing for the Chern–Ricci
flow is a common occurrence. In particular, whenever M is a non-minimal complex surface with
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Kodaira dimension not equal to −∞, there will be finite time non-collapsing for all choices of
initial ω0.

(4) To prove Theorem 1.1 we establish a version of the so-called Tsuji trick [Tsu88] in the
setting of the Chern–Ricci flow and make use of some arguments of [TZ06].

For the next result, we recall some notation from [TW12]. Define a family of ∂∂-closed (1, 1)
forms

αt := ω0 − tRic(ω0) for t ∈ [0, T ]. (1.2)

The non-collapsing condition is equivalent to the condition
∫
M α2

T > 0. The content of our next
result is that we can prove a Gromov–Hausdorff convergence result for (M, g(t)) as t→ T− if αT
is the pullback of a (1, 1) form on N , modulo the image of ∂∂ on M .

Theorem 1.3. Suppose that the Chern–Ricci flow (1.1) is non-collapsing at time T <∞. In
addition, we impose the condition

(∗) there exists f ∈ C∞(M, R) and a smooth real (1, 1) form β on N with

αT +
√
−1∂∂f = π∗β,

using the notation above.

Then there exists a distance function dT on N such that (N, dT ) is a compact metric space
and (M, g(t)) converges in the Gromov–Hausdorff sense to (N, dT ) as t→ T−. In particular, the
diameter of (M, g(t)) is uniformly bounded from above as t→ T−.

Remark 1.4. (1) In the Kähler case, condition (∗) holds automatically, and this result is contained
in the work of Song and the second-named author [SW13a] (see the discussion at the end of § 3).
Our proof of Theorem 1.3 makes use of several arguments from [SW13a].

(2) It is not difficult to construct initial data ω0 so that (∗) holds. See Remark 3.1 below.

(3) Condition (∗) will not hold for general choices of ω0. Indeed we will show in
Proposition 3.6 that it is equivalent to dω0 = π∗(dβ) for some β, which implies that dω0 ≡ 0
on the exceptional divisors of π, and this last condition does not hold in general (see Remark 3.7
below).

(4) On the other hand there is another condition which is weaker than (∗) and always holds,
see Proposition 3.8.

We give the proofs of Theorems 1.1 and 1.3 in §§ 2 and 3 respectively.

Examples of collapsing
In the second part of this paper we give a number of explicit examples of collapsing for the
Chern–Ricci flow on non-Kähler surfaces. First of all recall that as a consequence of the Kodaira–
Enriques classification [BHPV04], all minimal non-Kähler compact complex surfaces fall into the
following classes:

(i) Kodaira surfaces;

(ii) minimal non-Kähler properly elliptic surfaces;

(iii) surfaces of class VII with b2(M) = 0;

(iv) minimal surfaces of class VII with b2(M)> 0,

where a Kodaira surface is a minimal surface with b1(M) odd and Kodaira dimension 0,
a surface of class VII is a surface with b1(M) = 1 and Kodaira dimension −∞, while a
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properly elliptic surface is an elliptic surface with Kodaira dimension 1. Furthermore, thanks
to [Bog82, Kod66, LYZ94, Tel94] we know that the surfaces in (3) are all either Hopf surfaces
(i.e. with universal cover C2\{0}) or Inoue surfaces [Ino74]. Explicit examples of Gauduchon
metrics are known for all surfaces in (1), (2), for all Inoue surfaces and for some Hopf surfaces,
thanks to [GO98, Vai87, Wal86]. Less explicit Hermitian metrics on some surfaces in (4) were
constructed in [Bru11, FP10, LeB91].

Our goal is to construct explicit solutions of the Chern–Ricci flow on surfaces in (2), (3)
(see Remark 1.7(4) for the class (1)), and to determine their Gromov–Hausdorff limits as time
approaches the maximal existence time of the flow. We consider a family of Hopf surfaces, the
Inoue surfaces, and non-Kähler properly elliptic surfaces.

Remark 1.5. We do not address class (4) in this paper. These surfaces are of great interest since,
except for the case b2(M) = 1 [Tel05], they are not yet completely classified. Unfortunately, it
appears to be more difficult to write down explicit metrics on these manifolds and we could not
find solutions to the Chern–Ricci flow along the lines of those we found for (2) and (3). We plan
to investigate class (4) in future work.

First some notation. Let Hα,β be the Hopf surface Hα,β = (C2\{0})/∼, where

(z, w)∼ (αz, βw),

for complex numbers α, β with |α|= |β| 6= 1. We will show that for all Hα,β we can find explicit
solutions of the Chern–Ricci flow which collapse to a circle in the sense of Gromov–Hausdorff in
finite time. In the case of Inoue surfaces we will find examples of the normalized Chern–Ricci flow
collapsing in infinite time to a circle, and for non-Kähler properly elliptic surfaces, collapsing to a
Riemann surface. This is interesting because collapsing to a circle never happens for the Kähler–
Ricci flow on Kähler surfaces, where collapsed limits spaces always have even real dimension. On
the other hand, it is also interesting to compare this to results of Lott, Lott–Sesum for the Ricci
flow in real dimension 3 [Lot10, Lot07, LS11], where the collapsed Gromov–Hausdorff limits
at infinity of the normalized Ricci flow on geometric 3-manifolds (in the sense of Thurston)
are determined [Lot07, Theorem 1.2]. The complex surfaces we consider also have geometric
structures (with compatible complex structures), and in fact they are precisely all the surfaces
in classes (2) and (3) which have complex geometric structures [Wal86], and the behavior of the
Chern–Ricci flow that we discover is very similar to the behavior of the Ricci flow on geometric
3-manifolds.

More precisely we prove the following theorem.

Theorem 1.6. (a) Let H =Hα,β be the Hopf surface as described above. Then there exists an
explicit solution ω(t) of the Chern–Ricci flow on H for t ∈ [0, 1/2) with

(H, ω(t)) GH−−→ (S1, d) as t→ 1/2,

where d is the standard distance function on the unit circle S1 ⊂ R2.

(b) Let S be any Inoue surface. Then there exists an explicit solution ω(t) of the Chern–Ricci
flow on S for t ∈ [0,∞) with (

S,
ω(t)
t

)
GH−−→ (S1, d) as t→∞,

where d is the standard distance function on the unit circle S1 ⊂ R2.
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(c) Let π : S→ C be any non-Kähler minimal properly elliptic surface. Then there exists an
explicit solution ω(t) of the Chern–Ricci flow on S for t ∈ [0,∞) with(

S,
ω(t)
t

)
GH−−→ (C, dKE) as t→∞,

where dKE is the distance function on the Riemann surface C induced by an orbifold Kähler–
Einstein metric ωKE on C which satisfies Ric(ωKE) =−ωKE away from the images of the multiple
fibers of π. We also have that π∗ωKE is a smooth form on S and ω(t)/t→ π∗ωKE smoothly on S.

Remark 1.7. (1) It was shown in [TW12, Theorem 1.5] that for any initial ω0, the Chern–Ricci
flow collapses in finite time for all Hopf surfaces (e.g. Hα,β as above) and the normalized Chern–
Ricci flow collapses in infinite time for all Inoue surfaces and properly elliptic surfaces.

(2) The example in (a) above was given already in [TW12, Proposition 1.8]. What is new
here is that we prove the Gromov–Hausdorff convergence to a circle. In fact, we will prove the
same result for a family of higher-dimensional Hopf manifolds.

(3) The example in (c) should be compared with Song–Tian’s results on the behavior of the
Kähler–Ricci flow on a Kähler elliptic surface π : S→ C over a curve C of genus at least 2 [ST07]
(see also [FZ12, GTZ13]).

(4) It is also not difficult to write down explicit, but less interesting, solutions of the
Chern–Ricci flow on the Kodaira surfaces. Indeed, there are explicit Chern–Ricci flat Gauduchon
metrics on all these manifolds [Vai87, (1.3)] and these give trivial solutions to the flow. In general,
it was shown by Gill [Gill11] that, in any dimension, whenever the first Bott–Chern class vanishes
the Chern–Ricci flow converges to a Chern–Ricci flat metric. Gill’s result makes use of the
C0 estimate of the authors [TW10] for the Hermitian complex Monge–Ampère equation (see
also [Blo11, Che87, DK12, GL10]).

The proof of Theorem 1.6 occupies §§ 4–8.

The Mabuchi energy
Finally, in § 9, we give a definition of the Mabuchi energy functional for complex surfaces with
vanishing first Bott–Chern class. The Mabuchi energy is a well-known object in Kähler geometry.
We show that this functional decreases along the Chern–Ricci flow. This result can be used to
give an alternative proof of the convergence part of a theorem of Gill [Gill11], in the case of
Gauduchon surfaces.

2. Proof of Theorem 1.1

Suppose we are in the setting of Theorem 1.1. Let ω(t) be the solution of the Chern–Ricci
flow (1.1), which by assumption exists for t ∈ [0, T ) with 0< T <∞. As stated in the
introduction, the non-collapsing condition implies that there is a surjective holomorphic map
π :M →N blowing down disjoint (−1) curves E1, . . . , Ek. Indeed the exceptional curves
Ei are precisely the irreducible curves on M satisfying

∫
Ei
αT = 0 for αT = ω0 − TRic(ω0)

(see [TW12, § 6]). For simplicity we assume that there is just one (−1) curve E which gets
mapped by π to the point y0 ∈N (the general case follows from the same proof).

We will first pick some good reference metrics ω̂t. To do so, we need the following lemma,
which is an essential ingredient in establishing a version of Tsuji’s trick [Tsu88] for the
Chern–Ricci flow (see Lemma 2.2, part (ii) and Lemmas 2.3 and 2.4 below).
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Lemma 2.1. There exists a smooth Hermitian metric h on the line bundle [E] such that for any
sufficiently small ε > 0 we can find a smooth function f on M such that

αT − εRh +
√
−1∂∂f > 0, (2.3)

where Rh is the curvature of h and αt is given by (1.2).

Proof. The non-collapsing condition together with the results of [TW12, § 6] imply that αT =
ω0 − TRic(ω0) satisfies ∫

M
α2
T > 0,

∫
E
αT = 0,

∫
C
αT > 0,

for all irreducible curves C ⊂M different from E. We also have that∫
M
αT ∧ ω′ > 0,

for any Gauduchon metric ω′ on M . Indeed,∫
M
αT ∧ ω′ = lim

t→T−

∫
M
ω(t) ∧ ω′ > 0,

and the case
∫
M αT ∧ ω′ = 0 cannot happen since Buchdahl’s ‘Hodge Index Theorem’ [Buc99,

Lemma 4] would imply that
∫
M ω′2 6 0.

Let h be a smooth Hermitian metric on the line bundle [E]. Since [E] has self-intersection −1,
its curvature Rh satisfies

∫
E Rh =−1. If we pick ε > 0 small enough and we put αT,ε = αT − εRh

then ∫
M
α2
T,ε > 0,

∫
M
αT,ε ∧ ω′ > 0.

We claim that, after possibly changing the Hermitian metric h and choosing ε slightly smaller,∫
C
αT,ε > 0 for all irreducible curves C with C2 < 0. (2.4)

Given the claim, it follows from Buchdahl’s Nakai–Moishezon criterion [Buc00] that there exists
a smooth function f (depending on ε) such that αT,ε +

√
−1∂∂f > 0, as required. We separate

the proof of the claim into two cases.
(i) M is non-Kähler. In this case M has only finitely many curves of negative self-intersection

(see [Tel06, Remark 3.3]). Let C be any such curve. Then either C = E or else
∫
C αT > 0,

because we know that E is the only curve whose intersection with αT is zero. We have that∫
E αT,ε =−εE · E = ε > 0, and if C is different from E then∫

C
αT,ε =

∫
C
αT − εC · E.

Since there are only finitely many such curves C, it follows that we can choose ε > 0 small so
that ∫

C
αT,ε > 0,

for all such C. This completes the proof of the claim (2.4) in the non-Kähler case.
(ii) M is Kähler. We assume now that M is a Kähler surface, which implies also that N is

Kähler, and fix Kähler metrics ωM , ωN on M, N respectively. We apply Buchdahl’s Corollary 9
in [Buc99] to the ∂∂-closed (1, 1) form αT which shows that there exists a (0, 1) form γ and a
d-closed (1, 1) form a such that

αT + ∂γ + ∂γ = a.

2106

https://doi.org/10.1112/S0010437X13007471 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X13007471


The Chern–Ricci flow on complex surfaces

By the definition of the blow-down map π, we may write the deRham class [a] as [a] = [π∗β] + c[E]
for a d-closed (1, 1) form β on N and some c ∈ R (see for example [BHPV04, Theorem I.9.1]).
Intersecting with E we see that c= 0 and hence

αT + ∂γ + ∂γ = π∗β, (2.5)

for a possibly different form γ.
We wish to show that [β] is a Kähler class on N , and we will use the Nakai–Moiszhezon

criterion in the Kähler case due to Buchdahl [Buc99] and Lamari [Lam99]. From (2.5) we infer
that

∂αT + ∂∂γ = 0, ∂αT + ∂∂γ = 0. (2.6)

For any irreducible curve C ⊂N with C2 < 0 we have∫
C
β =

∫
π∗C

(αT + ∂γ + ∂γ) =
∫
π∗C

αT > 0, (2.7)

using Stokes’ theorem.
Next calculate∫

N
β2 =

∫
M
π∗β2 =

∫
M
α2
T + 2

∫
M
αT ∧ (∂γ + ∂γ) + 2

∫
M
∂γ ∧ ∂γ.

Using (2.6) we have

2
∫
M
αT ∧ ∂γ =−2

∫
M
∂αT ∧ γ = 2

∫
M
∂∂γ ∧ γ =−2

∫
M
∂γ ∧ ∂γ =−2

∫
M
∂γ ∧ ∂γ,

and

2
∫
M
αT ∧ ∂γ =−2

∫
M
∂αT ∧ γ = 2

∫
M
∂∂γ ∧ γ =−2

∫
M
∂γ ∧ ∂γ,

and so ∫
N
β2 =

∫
M
α2
T − 2

∫
M
∂γ ∧ ∂γ.

But because
∫
M ω2

M > 0 and
∫
M ωM ∧ (∂γ + ∂γ) = 0 we can apply [Buc99, Lemma 4] and

conclude that ∫
M

(∂γ + ∂γ)2 = 2
∫
M
∂γ ∧ ∂γ 6 0,

and so ∫
N
β2 >

∫
M
α2
T > 0. (2.8)

Next, ∫
N
β ∧ ωN =

∫
M
π∗β ∧ π∗ωN =

∫
M
αT ∧ π∗ωN = lim

t→T−

∫
M
ω(t) ∧ π∗ωN > 0,

since dωN = 0. For δ > 0 sufficiently small ωN + δβ is Kähler and∫
N
β ∧ (ωN + δβ) > δ

∫
N
β2 > 0. (2.9)

Therefore, combining (2.7)–(2.9) we can apply the Nakai–Moishezon criterion of Buchdahl and
Lamari to conclude that there exists a function f on N such that β̃ = β +

√
−1∂∂f is Kähler

on N . It follows from the construction of the blow-down map (see for example [GH78, p. 187])
that we may pick a Hermitian metric h on [E] such that π∗β̃ − εRh is Kähler on M for all ε > 0
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small. Then with this choice of h, for any irreducible curve C ⊂M with C2 < 0, we have∫
C
αT,ε =

∫
C

(αT − εRh) =
∫
C

(π∗β̃ − εRh)> 0,

because
∫
C ∂γ = 0 by Stokes’ theorem. This finishes the proof of the claim (2.4) and the lemma. 2

Define ω̂T = αT +
√
−1∂∂f with f given by the lemma. Note that in general ω̂T is not a

metric, but by the lemma ω̂T − εRh is a metric. Define reference forms ω̂t = (1/T )((T − t)ω0 +
tω̂T ). By shrinking ε > 0 if necessary we may assume without loss of generality that ω0 − εRh >
1
2ω0. Hence,

ω̂t − εRh =
1
T

((T − t)(ω0 − εRh) + t(ω̂T − εRh)) > c0ω0 > 0, (2.10)

for some c0 > 0. Note that from now on we assume that ε > 0 is fixed.
This argument above crucially uses the fact that we are in complex dimension 2. However,

since the calculations that follow do not require this restriction on dimension, we write n instead
of 2.

If we let ϕ solve
∂

∂t
ϕ= log

ω(t)n

Ω
, ϕ|t=0 = 0,

with Ω = ωn0 e
f/T then we can write the solution of the Chern–Ricci flow ω(t) as ω(t) =

ω̂t +
√
−1∂∂ϕ (see [TW12, § 4]). Fix a holomorphic section s of [E] vanishing to order 1 along E,

so that on M ′ =M\E we have that Rh =−
√
−1∂∂ log |s|2h. Given what we have proved, the

following result can now be established using the arguments of [TZ06] for the Kähler–Ricci flow.

Lemma 2.2. There exists a uniform C such that:

(i) ϕ6 C;

(ii) if we let ϕ̃= ϕ− ε log |s|2h, then ϕ̃>−C;

(iii) ϕ̇6 C.

Proof. For (i), note that ω̂t is bounded from above for t ∈ [0, T ]. Then the upper bound of ϕ
follows from the maximum principle applied to the equation

∂

∂t
ϕ= log

(ω̂t +
√
−1∂∂ϕ)n

Ω
,

as in [TW12, Lemma 4.1].
For (ii), first note that ϕ̃→∞ along E and hence for each fixed time t, the function x 7→ ϕ̃(x, t)

attains a minimum at some point in M ′. Then compute at the minimum of ϕ̃,

∂

∂t
ϕ̃ = log

(ω̂t − εRh +
√
−1∂∂ϕ̃)n

Ω

> log
(c0ω0)n

Ω
>−C,

where we have used the estimate (2.10). The lower bound of ϕ̃ follows from the minimum
principle.

Part (iii) follows from considering the evolution of Q= tϕ̇− ϕ− nt as used in the
Kähler–Ricci flow in [TZ06] (in the case of the Chern–Ricci flow, see the second part of [TW12,
Lemma 4.1]). Indeed, (

∂

∂t
−∆

)
Q=− trω ω0 6 0,
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so that by the maximum principle, Q is uniformly bounded from above. Using (i), ϕ̇ is bounded
from above. 2

One comment about notation. If g and g′ are Hermitian metrics with corresponding (1, 1)
forms ω and ω′, then we will write interchangeably

trg g′ = trω ω′,

for the trace of the metric g′ with respect to g. Next, we have the following lemma.

Lemma 2.3. There exist uniform positive constants C, A such that

ωn >
1
C
|s|2Aεh ωn0 .

Proof. We apply the maximum principle to

Q= log
ωn0
ωn
−Aϕ̃,

for A a constant to be determined. Note that Q→−∞ on E. Compute at a point of M\E,(
∂

∂t
−∆

)
Q = trω Ric(ω0)−Aϕ̇+A trω (ω − (ω̂t − εRh))

= −trω ((A− 1)(ω̂t − εRh)− Ric(ω0))−A log
ωn

Ω
−trω (ω̂t − εRh) +An.

From (2.10) we may choose A sufficiently large so that for all t ∈ [0, T ],

(A− 1)(ω̂t − εRh)− Ric(ω0) > ω0.

Note that by the arithmetic-geometric means inequality,

trω (ω̂t − εRh) > c0 trω ω0 > c

(
Ω
ωn

)1/n

,

for a uniform c > 0. Then(
∂

∂t
−∆

)
Q 6 −trω ω0 +A log

Ω
ωn
− c
(

Ω
ωn

)1/n

+An

6 −trω ω0 + C,

using the fact that x 7→A log x− cx1/n is bounded from above for x > 0. It follows that trω ω0 6 C
at the maximum of Q and hence ωn0 /ω

n is uniformly bounded from above at this point. But note
that −ϕ̃ is uniformly bounded from above and hence Q is uniformly bounded from above, and
the result follows. 2

In the next lemma we make use of a trick of Phong–Sturm [PS10], which we employed in our
previous paper [TW12].

Lemma 2.4. There exist uniform positive constants C, A such that

trg0 g 6
C

|s|2Aεh

.

Proof. Choose a constant C0 so that ϕ̃+ C0 > 1. We compute the evolution of

Q= log trg0 g −Aϕ̃+
1

ϕ̃+ C0
,
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for A to be determined (assume at least that Aε > 1). The idea of Phong–Sturm [PS10], used in
their study of the complex Monge–Ampère equation, is to make use of the quantity 1/(ϕ̃+ C0).
Note that 1/(ϕ̃+ C0) is bounded between 0 and 1.

From Lemma 2.2(i) it is sufficient to show that Q is bounded from above. Observe that Q
tends to negative infinity on E. From [TW12, Proposition 3.1] (see also [TW12, (4.2)]) we have(

∂

∂t
−∆

)
log trg0 g 6

2
(trg0 g)2

Re(g`k(T0)pkp∂` trg0 g) + C trg g0, (2.11)

assuming, without loss of generality, that we are calculating at a point with trg0 g > 1. To bound
the first term on the right-hand side, we note that at a maximum point of Q we have ∂iQ= 0
and hence

1
trg0 g

∂i trg0 g −A∂iϕ̃−
1

(ϕ̃+ C0)2
∂iϕ̃= 0.

Thus at this maximum point for Q,∣∣∣∣ 2
(trg0 g)2

Re(g`k(T0)pkp∂` trg0 g)
∣∣∣∣

6

∣∣∣∣ 2
trg0 g

Re
((

A+
1

(ϕ̃+ C0)2

)
g`k(T0)pkp(∂`ϕ̃)

)∣∣∣∣
6

|∂ϕ̃|2g
(ϕ̃+ C0)3

+ CA2(ϕ̃+ C0)3
trg g0

(trg0 g)2
,

for a uniform constant C. If at the maximum of Q we have (trg0 g)2 6A2(ϕ̃+ C0)3 then at the
same point we have

Q6 log A+
3
2

log(ϕ̃+ C0)−Aϕ̃+
1

ϕ̃+ C0
6 CA,

for a constant CA depending on A, and we are done. If on the other hand at the maximum of Q
we have A2(ϕ̃+ C0)3 6 (trg0 g)2 then∣∣∣∣ 2

(trg0 g)2
Re(g`k(T0)pkp∂` trg0 g)

∣∣∣∣6 |∂ϕ̃|2g
(ϕ̃+ C0)3

+ C trg g0.

Now compute at the maximum of Q, using (2.11) and part (iii) of Lemma 2.2,

0 6

(
∂

∂t
−∆

)
Q

6
|∂ϕ̃|2g

(ϕ̃+ C0)3
+ C trg g0 −

(
A+

1
(ϕ̃+ C0)2

)
ϕ̇

+
(
A+

1
(ϕ̃+ C0)2

)
trω (ω − (ω̂t − εRh))

− 2
(ϕ̃+ C0)3

|∂ϕ̃|2g

6 C trg g0 + (A+ 1) log
Ω
ωn

+ (A+ 1)n−A trω (ω̂t − εRh) + C. (2.12)

But recall that we have that ω̂t − εRh > c0ω0, and so we may choose A sufficiently large so that
at that point

trg g0 6 C log
Ω
ωn

+ C.
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Hence at the maximum of Q,

trg0 g 6
1

(n− 1)!
(trg g0)n−1 det g

det g0
6 C

ωn

Ω

(
log

Ω
ωn

)n−1

+ C 6 C ′,

because we know that ωn/Ω 6 C (Lemma 2.2(iii)) and x 7→ x|log x|n−1 is bounded above for x
close to zero. From part (ii) of Lemma 2.2, this implies that Q is bounded from above at its
maximum, hence everywhere. This completes the proof of the lemma. 2

Combining Lemmas 2.3 and 2.4 gives uniform bounds above and below away from zero for
ω(t) on compact subsets of M ′. To obtain C∞loc(M

′) estimates, we apply the local estimates of
Gill [Gill11, § 4]. Convergence follows immediately from this, as in the proof of Theorem 1.6
of [TW12]. This completes the proof of Theorem 1.1.

3. Proof of Theorem 1.3

Assume the hypotheses of Theorem 1.3. As discussed above, we know that there exist finitely
many disjoint (−1) curves E1, . . . , Ek such that

∫
Ei
αT = 0, where we recall that αt is given by

(1.2). As in the previous section we assume for simplicity that k = 1 and write E for the (−1)
curve. By assumption (∗), there exists a function f on M and a smooth real (1, 1) form β on N
such that

αT +
√
−1∂∂f = π∗β. (3.13)

Remark 3.1. It is straightforward to construct initial data ω0 on M so that (∗) holds. Indeed,
let ωM and ωN be any Gauduchon metrics on M and N respectively, and fix T > 0. Then we
claim that for C > 0 sufficiently large, there exists a smooth function f̃ on M so that

ω0 := Cπ∗ωN + T Ric(ωM ) +
√
−1∂∂f̃

is Gauduchon, and the flow starting at ω0 will be non-collapsing at T , satisfying (∗) with
β = CωN . Indeed, as the reader can verify, it is enough to check that ω0 is positive definite.
If π :M →N is the blow up map, then the canonical bundles on M and N are related by
KM = π∗KN + [E]. It follows that we can define a smooth Hermitian metric h on [E]
by hωnM = π∗ωnN . Then

Cπ∗ωN + T Ric(ωM ) = Cπ∗ωN + Tπ∗ Ric(ωN )− TRh,

and for C > 0 sufficiently large, we have 1
2Cπ

∗ωN + Tπ∗ Ric(ωN ) > 0 and (see for example
[GH78, p. 187]) 1

2Cπ
∗ωN − TRh +

√
−1∂∂f̃ > 0 for some smooth function f̃ on M . Thus with

these choices of C and f̃ , ω0 is positive definite.

We first show that, after replacing f by another smooth function, we may assume that β is
a Gauduchon metric on N .

Lemma 3.2. There exists a smooth function f ′ and a Gauduchon metric ωN on N such that

αT +
√
−1∂∂f ′ = π∗ωN . (3.14)

Proof. From (3.13) it immediately follows that ∂∂β = 0. Furthermore, we obviously have
∫
N β2 >

0 and
∫
C β =

∫
π∗C αT > 0 for all curves C in N . Let γ be any Gauduchon metric on N . Then∫
N
β ∧ γ =

∫
M
π∗β ∧ π∗γ =

∫
M
αT ∧ π∗γ = lim

t→T−

∫
M
ω(t) ∧ π∗γ > 0.
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For δ > 0 sufficiently small γ + δβ is positive definite and∫
N
β ∧ (γ + δβ) > δ

∫
N
β2 > 0.

Therefore Buchdahl’s Nakai–Moishezon criterion [Buc00] gives us a function h on N such that
β +
√
−1∂∂h > 0. Defining f ′ = f − π∗h and ωN = β +

√
−1∂∂h we then obtain (3.14). 2

As a consequence of this, we have that π∗ωN − ω0 is a d-closed form, so that dω0 = π∗(dωN ).
This implies that the torsion tensors of ω0 and π∗ωN are related by

(T0)pj`(g0)pk = (∂ω0)jk` = (π∗∂ωN )jk` = (π∗TN )pj`(π
∗gN )pk. (3.15)

This equality is crucial in the arguments that follow. We may choose a smooth metric h on the
fibers of [E] with curvature Rh, and ε0 > 0 small such that

π∗ωN − ε0Rh > 0. (3.16)

Indeed this follows again from the argument in for example [GH78, p. 187].
As in the previous section, we write s for a defining section of E, and since the calculations that

follow do not require the dimension to be 2, we write n instead of 2. From [SW13a, Lemma 2.4]
we have that

ω0 6
C

|s|2h
π∗ωN . (3.17)

Furthermore, if we define ω̂t = (1/T )((T − t)ω0 + tπ∗ωN ) then from (3.16), we have

ω̂t − ε0Rh > c0ω0, for all 0 6 t6 T, (3.18)

for a uniform c0 > 0. Moreover, ω(t) = ω̂t +
√
−1∂∂ϕ(t) for t < T where ϕ solves

∂

∂t
ϕ= log

ω(t)n

Ω
, ϕ|t=0 = 0,

with Ω = ωn0 e
f/T . Since ω̂T = π∗ωN > 0, we can apply [TW12, Proposition 5.1] to obtain the

following lemma.

Lemma 3.3. There exists a uniform constant C such that:

(i) |ϕ|6 C;

(ii) ϕ̇6 C.

Note that we already have (ii) from Lemma 2.2. The point of Lemma 3.3 is that the condition
ω̂T > 0 gives us a lower bound for ϕ. The following two lemmas give analogs of the estimates
of [SW13a, Lemma 2.5(i)]. There are significant additional technical difficulties arising from the
torsion terms, and we need to employ again the Phong–Sturm trick [PS10]. First see the following
lemma.

Lemma 3.4. There exists a uniform constant C > 0 such that

ω 6
C

|s|2h
π∗ωN .
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Proof. For notational simplicity denote by ω̂ = π∗ωN , which is a metric on M ′ =M\E. First,
we apply the calculation of [TW12, Proposition 3.1] to obtain, on M ′,(

∂

∂t
−∆

)
log trĝ g 6

2
(trĝ g)2

Re(ĝ`igqk(T0)pki(g0)p`∂q trĝ g) + C trg ĝ

− 1
trĝ g

[gjiĝ`k(∇̂i((T0)pj`(g0)kp) + ∇̂`((T0)pik(g0)pj))

− gjiĝ`kT̂ qj`(T0)pik(g0)pq],

where C depends only on the curvature and torsion of ωN , and where ∇̂ denotes the pullback
of the Chern connection of ωN . We now use the identity (3.15) four times in the last equation
to get (

∂

∂t
−∆

)
log trĝ g 6

2
(trĝ g)2

Re(gqkT̂ iki∂q trĝ g) + C trg ĝ

− 1
trĝ g

[gji∇̂iT̂ `j` + gjiĝ`kĝpj∇̂`T̂
p
ik − g

jiĝ`kĝpqT̂
q
j`T̂

p
ik]

6
2

(trĝ g)2
Re(gqkT̂ iki∂q trĝ g) + C trg ĝ +

C trg ĝ
trĝ g

. (3.19)

Now take δ > 0 and consider

Qδ = log trĝ g + log |s|2(1+δ)
h −Aϕ+

1
ϕ̃+ C0

,

where ϕ̃= ϕ− ((1 + δ)/A) log |s|2h and ϕ̃+ C0 > 1, so Qδ goes to negative infinity as x tends
to E. Our goal is to prove that Qδ 6 C independent of δ, since we can then let δ go to zero and
we are done. It is obvious that at the maximum of Q we can assume that trĝ g > 1.

At this point the proof proceeds in exactly the same way as in Lemma 2.4. Indeed, at a
maximum point of Qδ we have

1
trĝ g

∂i trĝ g −A∂iϕ̃−
1

(ϕ̃+ C0)2
∂iϕ̃= 0,

for all i. Thus at this point,∣∣∣∣ 2
(trĝ g)2

Re(gqkT̂ iki∂q trĝ g)
∣∣∣∣

6

∣∣∣∣ 2
trĝ g

Re
((

A+
1

(ϕ̃+ C0)2

)
gqkT̂ iki(∂qϕ̃)

)∣∣∣∣
6

|∂ϕ̃|2g
(ϕ̃+ C0)3

+ CA2(ϕ̃+ C0)3
trg ĝ

(trĝ g)2
,

for a uniform constant C. If at the maximum of Qδ we have (trĝ g)2 6A2(ϕ̃+ C0)3 then at the
same point we have

Qδ 6 log A+
3
2

log(ϕ̃+ C0)−Aϕ̃+
1

ϕ̃+ C0
6 CA,

for a constant CA depending on A, and we are done. If on the other hand at the maximum of
Qδ we have A2(ϕ̃+ C0)3 6 (trĝ g)2 then∣∣∣∣ 2

(trĝ g)2
Re(gqkT̂ iki∂q trĝ g)

∣∣∣∣6 |∂ϕ̃|2g
(ϕ̃+ C0)3

+ C trg ĝ.
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Now compute at the maximum of Qδ, using (3.19) and part (ii) of Lemma 3.3,

0 6

(
∂

∂t
−∆

)
Qδ

6
|∂ϕ̃|2g

(ϕ̃+ C0)3
+ C trg ĝ −

(
A+

1
(ϕ̃+ C0)2

)
ϕ̇

+
(
A+

1
(ϕ̃+ C0)2

)
trω

(
ω − ω̂t +

(1 + δ)Rh
A

)
− 2

(ϕ̃+ C0)3
|∂ϕ̃|2g

6 C trg ĝ + (A+ 1) log
Ω
ωn

+ (A+ 1)n−A trω

(
ω̂t −

(1 + δ)Rh
A

)
+ C.

For A sufficiently large, we have from (3.18),

ω̂t −
(1 + δ)Rh

A
> c0ω0.

Hence, recalling that trg ĝ 6 C trg g0, we see that we may choose A sufficiently large (and
independent of δ) so that at that point

trg g0 6 C log
Ω
ωn

+ C.

Hence at the maximum of Qδ,

trg0 g 6
1

(n− 1)!
(trg g0)n−1 det g

det g0
6 C

ωn

Ω

(
log

Ω
ωn

)n−1

+ C 6 C ′,

because we know that ωn/Ω 6 C (Lemma 3.3(ii)) and x 7→ x|log x|n−1 is bounded above for x
close to zero. On the other hand from (3.17) and part (i) of Lemma 3.3, this implies that Qδ
is bounded from above at its maximum, hence everywhere, uniformly in δ. Using Lemma 3.3(i)
again completes the proof of the lemma. 2

We will make use of Lemma 3.4 to prove the following.

Lemma 3.5. There exists a uniform η > 0 and C > 0 such that

ω 6
C

|s|2(1−η)
h

ω0. (3.20)

Proof. As in the previous lemma, we write ω̂ = π∗ωN . Define on M ′,

Qδ = log trg0 g +A log((trĝ g)|s|2(1+δ)
h )−A2ϕ+

1
ψ̃ + C̃

+
1

ϕ̃+ C̃
, (3.21)

where ψ̃ and ϕ̃ are defined by

ψ̃ :=− log((trĝ g)|s|2(1+δ)
h ) +Aϕ, ϕ̃ := ϕ− 1 + δ

A
log |s|2h

so that in particular
ψ̃ =−log(trĝ g) +Aϕ̃, (3.22)

and we may write

Qδ = log trg0 g −Aψ̃ +
1

ψ̃ + C̃
+

1
ϕ̃+ C̃

. (3.23)

The constant C̃ is chosen so that ψ̃ + C̃ > 1 and ϕ̃+ C̃ > 1 (we can find such a constant C̃ because
|ϕ| is bounded, and (trĝ g)|s|2h is bounded from above by Lemma 3.4). The constant A> 0 is to
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be determined. Observe that Qδ is the quantity used in [SW13a, Lemma 2.5] with the addition of
two ‘Phong–Sturm terms’ 1/(ψ̃ + C̃) and 1/(ϕ̃+ C̃). We have that Qδ tends to negative infinity
along E.

We wish to show that Qδ is bounded from above. From Lemmas 3.3 and 3.4, it suffices to
show that we have a uniform upper bound for trg0 g, independent of δ at a point where Qδ
achieves a maximum. Recall from (2.11) and (3.19), there exists a uniform constant C0 such that(

∂

∂t
−∆

)
log trg0 g 6 C0 trg g0 +

2
(trg0 g)2

Re(gqk(T0)iki∂q trg0 g), (3.24)

and (
∂

∂t
−∆

)
log trĝ g 6 C0 trg ĝ +

2
(trĝ g)2

Re(gqkT̂ iki∂q trĝ g), (3.25)

where we are assuming, without loss of generality, that we are working at a point with trg0 g > 1
and trĝ g > 1 (note that trg0 g 6 C trĝ g). Observe that the inequality (3.25) makes use of
condition (∗).

Compute using (3.23), (3.24),(
∂

∂t
−∆

)
Qδ 6 C0 trg g0 +

2
(trg0 g)2

Re(gqk(T0)iki∂q trg0 g)

−
(
A+

1
(ψ̃ + C̃)2

)(
∂

∂t
−∆

)
ψ̃

− 1
(ϕ̃+ C̃)2

(
∂

∂t
−∆

)
ϕ̃

− 2
(ψ̃ + C̃)3

|∂ψ̃|2g −
2

(ϕ̃+ C̃)3
|∂ϕ̃|2g.

Hence, using (3.25),(
∂

∂t
−∆

)
Qδ 6 C0 trg g0 +

2
(trg0 g)2

Re(gqk(T0)iki∂q trg0 g) + C0(A+ 1) trg ĝ

+
(
A+

1
(ψ̃ + C̃)2

)
· 2

(trĝ g)2
Re(gqkT̂ iki∂q trĝ g)

−
(
A

(
A+

1
(ψ̃ + C̃)2

)
+

1
(ϕ̃+ C̃)2

)
ϕ̇

+
(
A

(
A+

1
(ψ̃ + C̃)2

)
+

1
(ϕ̃+ C̃)2

)
trω

(
ω − ω̂t +

(1 + δ)Rh
A

)
− 2

(ψ̃ + C̃)3
|∂ψ̃|2g −

2
(ϕ̃+ C̃)3

|∂ϕ̃|2g.

For all A sufficiently large, we have from (3.18),

1
2Aω̂t − (1 + δ)Rh > c0ω0.

Hence, we may choose A sufficiently large (and independent of δ) so that

A2ω̂t −A(1 + δ)Rh = 1
2A

2ω̂t +A(1
2Aω̂t − (1 + δ)Rh)

> C0(A+ 1)ω̂ + (C0 + 1)ω0,
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for C0 as above. Hence for this choice of A,(
∂

∂t
−∆

)
Qδ 6 −trg g0 +

2
(trg0 g)2

Re(gqk(T0)iki∂q trg0 g)

+
(
A+

1
(ψ̃ + C̃)2

)
· 2

(trĝ g)2
Re(gqkT̂ iki∂q trĝ g)

−Bϕ̇− 2
(ψ̃ + C̃)3

|∂ψ̃|2g −
2

(ϕ̃+ C̃)3
|∂ϕ̃|2g + C ′,

for B =A2 +A+ 1, where we are making use of Lemma 3.3(ii). At a point where Qδ achieves
its maximum, we have

1
trg0 g

∂q trg0 g =
(
A+

1
(ψ̃ + C̃)2

)
∂qψ̃ +

1
(ϕ̃+ C̃)2

∂qϕ̃.

Observe also that from (3.22)
1

trĝ g
∂q trĝ g =−∂qψ̃ +A∂qϕ̃.

Hence (
∂

∂t
−∆

)
Qδ 6 −trg g0 +

C ′′(A+ 1)2(ψ̃ + C̃)3

(trg0 g)2
trg g0 +

1
(ψ̃ + C̃)3

|∂ψ̃|2g

+
C ′′

(trg0 g)2
trg g0 +

1
(ϕ̃+ C̃)3

|∂ϕ̃|2g

+
C ′′(A+ 1)2(ψ̃ + C̃)3

(trĝ g)2
trg ĝ +

1
(ψ̃ + C̃)3

|∂ψ̃|2g

+
C ′′(A+ 1)4(ϕ̃+ C̃)3

(trĝ g)2
trg ĝ +

1
(ϕ̃+ C̃)3

|∂ϕ̃|2g

−Bϕ̇− 2
(ψ̃ + C̃)3

|∂ψ̃|2g −
2

(ϕ̃+ C̃)3
|∂ϕ̃|2g + C ′.

But we may assume without loss of generality that at the maximum of Qδ, we have
(trg0 g)2 > 4C ′′(A+ 1)2(ψ̃ + C̃)3 otherwise Qδ is bounded from above and we’re done. Similarly,
since trg0 g 6 C trĝ g, we may assume that (trĝ g)2 > 4C ′′(A+ 1)2(ψ̃ + C̃)3 and (trĝ g)2 >
4C ′′(A+ 1)4(ϕ̃+ C̃)3. Hence(

∂

∂t
−∆

)
Qδ 6−1

4
trg g0 −B log

ωn

ωn0
+ C ′,

and we can conclude as in the proof of Lemma 2.4 that trg0 g is bounded from above at the
maximum of Qδ. It follows, using Lemma 3.4 and the uniform bound on ϕ that Qδ is bounded
from above uniformly in δ. Letting δ→ 0, we obtain

log trg0 g +A log(trĝ g)|s|2h 6 C.

The lemma then follows from the same argument as in [SW13a, Lemma 2.5]. Indeed, since
trg0 g 6 C trĝ g, we have

log(trg0 g)A+1|s|2Ah 6 C,

and the estimate (3.20) follows with η = 1/(A+ 1)> 0. 2

We can now easily finish the proof of Theorem 1.3 following the arguments of [SW13a].
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Proof of Theorem 1.3. Identify a small neighborhood of y0 ∈N with a small ball B centered at
the origin in C2, and consider ω(t) as a metric on B\{0}. Then we have the following estimates.

(i) Let Sr be a small sphere of radius r > 0 centered at the origin in B. Then the diameter of
Sr with respect to the metric induced from ω(t) is uniformly bounded from above, independent
of r.

(ii) For any x ∈B\{0}, the length of a radial path γ(λ) = λx for λ ∈ (0, 1] with respect to
the metric ω(t) is uniformly bounded from above by C|x|η for a uniform constant C.

Indeed, (i) follows from Lemma 3.4 and the argument of [SW13a, Lemma 2.7(i)]. For part
(ii), note that from Lemma 3.5 we have

|V |2ω(t) 6 C|s|−2(1−η)
h |V |2ω0

6 C ′|s|2ηh ,

for V the vector field V = zi∂/∂zi on B. This is because |V |2ω0
6 C|s|2h, as can be seen by writing

down an explicit metric on B which is uniformly equivalent to ω0 (see e.g. [SW13a, Lemma 2.6]).
Then (ii) follows from the argument of [SW13a, Lemma 2.7(ii)].

Given (i) and (ii), the proof of Theorem 1.3 follows exactly as in [SW13a, § 3]. 2

Let us now discuss condition (∗) in more detail. As before let π :M →N be the blowup of
finitely many points yi ∈N with exceptional divisors Ei.

Proposition 3.6. The following are equivalent.

(∗) There exist a function f ∈ C∞(M) and a smooth real (1, 1) form β on N such that

αT +
√
−1∂∂f = π∗β. (3.26)

(∗∗) There exists a smooth real (1, 1) form β on N such that

dω0 = π∗(dβ). (3.27)

Furthermore, either of these implies that for any i and for every point x ∈ Ei we have that

(dω0)x ≡ 0. (3.28)

Proof. It is obvious that (∗) implies (∗∗). As before, for simplicity we can assume that π is the
blowup of N at one single point y0, with exceptional divisor E. To see that (∗∗) implies (3.28), fix
x ∈ E and write TxM = TxE ⊕H for some complementary real 2-dimensional subspace H. For
any vector X ∈ TxM while X =X ′ +X ′′ with X ′ ∈ TxE and X ′′ ∈H. Note that by definition
we have π∗X ′ = 0. Then for any three vectors X, Y, Z ∈ TxM we have

(dω0)x(X, Y, Z) = (dβ)π(x)(π∗X, π∗Y, π∗Z)

= (dβ)π(x)(π∗X
′′, π∗Y

′′, π∗Z
′′) = 0,

since π∗X ′′, π∗Y ′′, π∗Z ′′ belong to a real 2-dimensional plane, while dβ is a 3 form.
Now we show that (∗∗) implies (∗). Consider the metrics along the Chern–Ricci flow

ω(t) = ω0 − t Ric(ω0) +
√
−1∂∂ϕ(t). Viewing ω(t) as currents, their mass is bounded by∫
M
ω(t) ∧ ω0 =

∫
M

(ω0 − t Ric(ω0)) ∧ ω0 6 C

independent of t, so by weak compactness there is a sequence ti→ T and an L1 function ϕT such
that ϕ(ti) converges to ϕT in L1. Furthermore, we know from Theorem 1.1 that ϕT is smooth
away from E. Call

ωT = ω0 − T Ric(ω0) +
√
−1∂∂ϕT ,
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which is a ∂∂-closed positive real (1, 1) current on M , smooth away from E. Furthermore we
have that dωT = dω0 is a smooth form. Consider the pushforward current π∗ωT . It is a ∂∂-closed
positive real (1, 1) current on N , smooth away from y0, and it satisfies

dπ∗ωT = π∗dω0 = π∗π
∗(dβ).

Now, for any smooth 2 form γ on N , if we first pull it back as a form π∗γ and then push it
forward as a current π∗π∗γ, we get back the same current γ. Indeed, for any test 2 form ψ on N
we have ∫

N
ψ ∧ π∗π∗γ =

∫
M
π∗ψ ∧ π∗γ =

∫
N
ψ ∧ γ, (3.29)

where the last equality holds because π is bimeromorphic. It follows that dπ∗ωT = dβ, or in other
words the (1, 1) current π∗ωT − β is d-closed. Therefore it is locally ∂∂-exact, i.e. there exists an
L1 function F defined on a neighborhood V of y0 such that

π∗ωT = β +
√
−1∂∂F

holds as currents on V . Furthermore, F is smooth away from y0 (by regularity of the complex
Laplacian ∆0 = trω0 (

√
−1∂∂)). Fix a smooth cutoff function ρ which is identically zero outside

V and identically 1 on a smaller neighborhood U ⊂ V of y0. Then the function ρF is defined
on the whole of N and smooth away from y0. Now consider ρF ◦ π, which is an L1 function on
M , smooth away from E, so we can define π∗β +

√
−1∂∂(ρF ◦ π), which is a real (1, 1) current

on M , positive on π−1(U). We have that

γ = ωT − π∗β −
√
−1∂∂(ρF ◦ π)

is a real (1, 1) current on M which is d-closed and smooth away from E. Furthermore its
restriction γ|π−1(U) is supported on E, and it is written as the difference of two positive currents.
This last condition implies that its coefficients are measures, and so γ|π−1(U) is a flat current
(in the terminology of [Fed69]), and Federer’s support theorem [Fed69, 4.1.15] implies that
γ|π−1(U) = λ[E] for some real constant λ. However, integrating γ over E we see that λ= 0 and
so γ|π−1(U) = 0. Therefore we have that γ = π∗η for a smooth d-closed real (1, 1) form η on N .
Therefore,

√
−1∂∂(ρF ◦ π − ϕT ) = ωT − π∗(β + η)−

√
−1∂∂ϕT

= ω0 − T Ric(ω0)− π∗(β + η),

which is smooth, so by regularity of ∆0, we have that ρF ◦ π − ϕT =−f a smooth function on
M , which satisfies (3.26) with β replaced by β + η. 2

Remark 3.7. It is easy to see that the condition dω0|E ≡ 0 does not hold for all choices of ω0.
Indeed, fix a point x in E and suppose that (dω0)x = 0. Define a (0, 1) form on C2 by γ = z1z2dz1
and, by identifying a neighborhood of x in E with a ball centered at the origin of C2, and
extending γ in an arbitrary way outside of a neighborhood of x, we may consider γ as a (0, 1)
form on M . Consider ω̃0 = ω0 + ε(∂γ + ∂γ) for ε > 0. As long as ε is sufficiently small, ω̃0 is a
Gauduchon metric. But one can check that (dω̃0)x 6= 0.

Let us now remark that a weaker version of condition (∗) always holds.
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Proposition 3.8. There exist a smooth (0, 1) form γ on M and a smooth real (1, 1) form β on
N such that

αT + ∂γ + ∂γ = π∗β. (3.30)

Proof. We can again assume that there is only one exceptional divisor E. Recall that the
Bott–Chern cohomology group of a compact complex manifold M is

H1,1
BC(M, R) =

{d-closed real (1, 1) forms}
{
√
−1∂∂ψ | ψ ∈ C∞(M, R)}

,

while the Aeppli cohomology group is

H1,1
A (M, R) =

{∂∂-closed real (1, 1) forms}
{∂γ + ∂γ | γ ∈ Λ0,1(M)}

.

These are finite-dimensional real vector spaces, and when n= 2 they are isomorphic. In fact,
H1,1

BC(M, R)∼=H1,1
A (M, R)∗ through the pairing H1,1

BC(M, R)×H1,1
A (M, R)→ R given by wedge

and integration (see e.g. [Sch07]).
First of all recall a few facts from [Fuj81, pp. 737–738]: the Bott–Chern cohomology group

H1,1
BC(M, R) is isomorphic to the group one obtains by replacing in its definition smooth forms

with currents. Therefore one has not only a pullback map π∗ :H1,1
BC(N, R)→H1,1

BC(M, R) but
also a pushforward map π∗ :H1,1

BC(M, R)→H1,1
BC(N, R) induced by the pushforward of currents.

Whenever π is bimeromorphic (such as in our case), then π∗π
∗ = Id (cf. (3.29)), which implies

in particular that π∗ :H1,1
BC(N, R)→H1,1

BC(M, R) is injective.
The exact same statements hold for the Aeppli cohomology (see e.g. [Sch07, p. 16]).
Now [Fuj81, Proposition 1.1] gives us the following exact sequence

0→ R[E]→H1,1
BC(M, R) π∗→H1,1

BC(N, R)→ 0,

which splits using the map π∗, and so

H1,1
BC(M, R)∼=H1,1

BC(N, R)⊕ R.

Therefore we also have

H1,1
A (M, R)∼=H1,1

A (N, R)⊕ R.

We wish to identify the image π∗H1,1
A (N, R)⊂H1,1

A (M, R). We have just proved that
dimR coker π∗ = 1. We have the Poincaré–Lelong formula

2π[E] = ηE +
√
−1∂∂ log |s|2h, (3.31)

where ηE is a d-closed smooth real (1, 1) form cohomologous to 2πc1([E]), and so it defines a
Bott–Chern cohomology class [ηE ]BC with the property that for any Aeppli class [ψ]A on M we
have ∫

M
ηE ∧ ψ = 2π

∫
E
ψ.

Therefore we can define a linear functional

F :H1,1
A (M, R)→ R, F ([ψ]A) =

∫
M
ηE ∧ ψ

which is obviously surjective, so codimR ker F = 1. But we also have that π∗H1,1
A (N, R)⊂ ker F

and since we have just proved that these two spaces have the same dimension, it follows
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that π∗H1,1
A (N, R) = ker F . In other words, the sequence

0→H1,1
A (N, R) π

∗

→H1,1
A (M, R) F→ R→ 0,

is exact.
In our case we have F ([αT ]A) = 2π

∫
E αT = 0, and so [αT ]A = π∗[β]A for some ∂∂-closed

smooth real (1, 1) form β on N . By definition of Aeppli class, this is precisely (3.30). 2

We end this section by describing more precisely the conjecture mentioned in the introduction.
Assume we are in the setup of Theorem 1.1, and continuing with the same notation, we expect
that the following results hold.

(i) As t→ T−, the metrics g(t) converge to a smooth Gauduchon metric gT onM ′ in C∞loc(M
′)

(i.e. the result of Theorem 1.1). Using π, we may regard gT as a Gauduchon metric on N ′.

(ii) Let dgT
be the distance function on N ′ given by gT . Then there exists a unique metric

dT on N extending dgT
such that (N, dT ) is a compact metric space homeomorphic to N and

(N, dT ) is the metric completion of (N ′, dgT
).

(iii) The metric space (M, g(t))→ (N, dT ) as t→ T− in the Gromov–Hausdorff sense.

(iv) There exists a smooth maximal solution g(t) of the Chern–Ricci flow on N for t ∈ (T, TN )
with T < TN 6∞ such that g(t) converges to gT as t→ T+ in C∞loc(N

′). Furthermore, g(t) is
uniquely determined by g0.

(v) The metric space (N, g(t))→ (N, dT ) as t→ T+ in the Gromov–Hausdorff sense.

These results were proved for the case of the Kähler–Ricci flow by Song and the second-named
author [SW13a, SW11]. With the terminology of [SW13a, SW11], we say that g(t) performs a
canonical surgical contraction if this occurs.

If the condition (∗) is imposed, Theorem 1.3 shows that we obtain (ii) and (iii), except for the
statement about identifying (N, dT ) as the metric completion of (N ′, dgT

). We do not expect that
there is any fundamental obstacle to establishing (iv) and (v) under the condition (∗), since the
methods used (estimates obtained via the maximum principle, the weak solution constructed by
Song–Tian [ST09], the results of Ko lodziej [Kol03]) can most likely be generalized to this setting
(see e.g. [DK12]). Nevertheless, there are considerable technical challenges here.

We expect there are more difficulties in proving the full statement of (iii) (including the
identification of the metric completion of (N ′, dgT

) as in [SW11]) or removing the assumption
(∗). These problems may require new techniques.

4. The Hopf surfaces

In this section we give a proof of the first part of Theorem 1.6. In fact, we consider more general
Hopf manifolds, of complex dimension n. Define H = (Cn\{0})/∼, where

(z1, . . . , zn)∼ (α1z1, . . . , αnzn),

where |α1|= · · ·= |αn| 6= 1. Following [TW12, § 8] we consider the metric

ωH =
δij
r2
√
−1 dzi ∧ dzj ,

where r2 = |z1|2 + · · ·+ |zn|2. We know from [TW12] that the metric

ω(t) = ωH − t Ric(ωH) =
1
r2

(
(1− nt)δij + nt

zizj
r2

)√
−1 dzi ∧ dzj
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gives an explicit solution of the Chern–Ricci flow on H defined on [0, 1/n), and as t approaches
1/n the metrics ω(t) converge smoothly to the nonnegative (1, 1)-form

ω

(
1
n

)
=
zizj
r4
√
−1 dzi ∧ dzj .

Theorem 4.1. As t approaches 1/n we have that (H, ω(t)) GH→ (S1, d), where d is the distance
function on the circle S1 ⊂ R2 with radius (log |α1|)/

√
2π.

This proves part (a) of Theorem 1.6, since we can always scale ω0 by a constant to obtain as
limit the unit circle.

We recall here that Gromov–Hausdorff convergence of metric spaces can be defined as
follows [Ron10]. The Gromov–Hausdorff distance dGH((X, dX), (Y, dY )) between two metric
spaces (X, dX) and (Y, dY ) is the infimum of all ε > 0 such that there exist F :X → Y and
G : Y →X with

|dX(x1, x2)− dY (F (x1), F (x2))|6 ε ∀x1, x2 ∈X,
and

dX(x, G(F (x))) 6 ε ∀x ∈X,
together with the two symmetric properties for Y . Note that F, G are not required to
be continuous maps. If dt are metrics on X, we say that (X, dt)

GH→ (Y, dY ) as t→ T if
dGH((X, dt), (Y, dY ))→ 0 as t→ T .

If furthermore we have finite groups H and K acting isometrically on (X, dX) and (Y, dY )
respectively, we can define the equivariant Gromov–Hausdorff distance between these spaces as
the infimum of all ε > 0 such that there exist maps F, G as above and maps φ :H →K and
ψ :K→H such that in addition we have

dX(F (h · x), φ(h) · F (x)) 6 ε, dX(F (ψ(k) · x), k · F (x)) 6 ε,

for all x ∈X, h ∈H, k ∈K, together with the two symmetric properties for Y (see [Fuk86],
[Ron10, Definition 1.5.2]).

Proof. On Cn\{0} write zi = xi +
√
−1yi. A short calculation shows that the (1, 1) form ω(1/n)

defines a nonnegative symmetric tensor h on Cn\{0} by

h(X, Y ) =
2
r4

((Z ·X)(Z · Y ) + (JZ ·X)(JZ · Y )),

for

Z =
∑
i

(xi∂xi
+ yi∂yi

), JZ =
∑
i

(xi∂yi
− yi∂xi

),

where J is the standard complex structure on Cn. Define a real distribution D on Cn\{0} by

D = {X | h(X, Y ) = 0 ∀Y }.

Note that the condition X ∈ D is equivalent to Z ·X = 0 = JZ ·X. In particular, since Z is the
radial vector field on Cn\{0}, the distribution D is tangent to every sphere S2n−1 centered at
the origin.

Fix a sphere S2n−1 ⊂ Cn\{0}. Denote by DS the distribution D restricted to this sphere.
We claim that DS is bracket generating, namely that DS together with its iterated Lie brackets
generate the tangent space to TS2n−1. To see this, note that DS is given by vectors X ∈ TS2n−1
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with JZ ·X = 0 and hence we may write

DS = {X ∈ TS2n−1 | α(X) = 0},

for α=
∑
yjdxj − xjdyj . But this is the well-known standard contact structure on S2n−1. Indeed

the reader can verify that α ∧ (dα)n−1 is a nowhere vanishing volume form on S2n−1. A theorem
of Carathéodory (see for example [Mon02]) shows then that DS is bracket generating. Note also
that since DS is orthogonal to JZ ∈ TS2n−1, it follows that TS2n−1 is spanned by the distribution
DS together with the vector field JZ.

Calculate gt(Z, Z) = 2 and

gt(X, Y ) = 2(1− nt)(X · Y )/r2 for X ∈ D.

In particular, gt(X, Z) = 0 for X ∈ D. It follows that Z is gt-orthogonal to TS2n−1 since
gt(Z, JZ) = 0 by the Hermitian property of gt, and DS , JZ span the tangent space to S2n−1.

Consider the map F :H → S1 which maps the equivalence class of (z1, . . . , zn) in H to
the equivalence class of r =

√∑
i |zi|2 in R+/(r ∼ |α1|r)∼= S1, and also the map G : S1→H ∼=

S1 × S2n−1 which maps a point x to (x, y) for some fixed element y ∈ S2n−1 (identified with the
unit sphere in Cn). Note that the diffeomorphism H ∼= S1 × S2n−1 can be realized explicitly by
sending a point z = (z1, . . . , zn) to (r, z/r). We clearly have that F ◦G= Id.

Remark 4.2. The metric ωH coincides (up to a universal constant factor) with the pullback of the
standard product metric on S1 × S2n−1 via the isomorphism H ∼= S1 × S2n−1 described above.

On the circle S1 put the metric 2(d log r)2 = 2(dr)2/r2, and denote by d its distance function.
It is isometric to the standard metric on S1 ⊂ R2 with total length

√
2
∫ |α1|
1 dr/r =

√
2 log |α1|,

and therefore radius (log|α1|)/
√

2π. Now the kernel of F∗ : TH → TS1 is TS2n−1, and the gt-
orthogonal complement of ker F∗ is spanned by the radial vector field Z = r∂/∂r. But we also
have that

gt(Z, Z) = 2 = gt

(
r
∂

∂r
, r

∂

∂r

)
= F ∗(2(d log r)2)

(
r
∂

∂r
, r

∂

∂r

)
.

Hence F : (H, gt)→ (S1, 2(d log r)2) is a Riemannian submersion, i.e. F∗ is an isometry when
restricted to the gt-orthogonal complement of ker F∗. Since every Riemannian submersion is
distance-nonincreasing,

d(F (x), F (y)) 6 dt(x, y), (4.32)
for all x, y ∈H and all 0 6 t < 1/n, where dt denotes the distance function on H induced by gt.
This also shows that

d(p, q) 6 dt(G(p), G(q)), (4.33)
for all p, q ∈ S1 and all 0 6 t < 1/n, because F ◦G= Id. Furthermore, it is clear that

dt(G(p), G(q)) 6 d(p, q), (4.34)

since we can connect the points G(p) and G(q) by the radial path whose gt-length equals d(p, q).
Finally, given two points x, y ∈H, choose representatives x, y ∈ Cn\{0} with 1 6 |x|, |y|6

|α1|, and call S2n−1
ρ the sphere with center the origin and radius ρ= |y|. Call z the radial

projection of x onto S2n−1
ρ . Since DS is bracket generating, Carathéodory’s theorem [Mon02]

implies that we can join the points y and z in S2n−1
ρ by a path in S2n−1

ρ with tangent vectors inDS .
Furthermore, the length of this path with respect to the Euclidean metric δij can be bounded
by a constant C independent of x, y (this is because the sub-Riemannian distance induced on
S2n−1 by D and δij has finite diameter since S2n−1

ρ is compact, see [Mon02, Theorem 2.3]). But
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the restriction of gt on D equals (2(1− nt)/|y|2)δij and so the gt-length of this path is bounded
above by C(1− nt). We then join x to z by the radial path whose gt-length equals d(F (x), F (y)),
by the previous discussion. Altogether we get

dt(x, y) 6 dt(x, z) + dt(z, y) 6 d(F (x), F (y)) + C(1− nt). (4.35)

We obviously have

d(p, F (G(p))) = 0, (4.36)

for every p ∈ S1. Finally pick a point x ∈H and consider the point G(F (x)). They lie in the
same fiber S2n−1 of F , and so we can connect them with a path on S2n−1 tangent to D which
has gt-length less than C(1− nt), as before. Therefore,

dt(x, G(F (x))) 6 C(1− nt). (4.37)

Combining (4.32)–(4.37) gives the desired Gromov–Hausdorff convergence. 2

Remark 4.3. One can also realize these Hopf manifolds and the metric ωH as a special case of a
construction of Calabi–Eckmann [CE53, BV68, Tit62]. Indeed consider the holomorphic C-action
on (Cp\{0})× (Cq\{0}) given by

t · (z, w) = (etz1, . . . , etzp, eβ1tw1, . . . , e
βqtwq),

where t ∈ C, z ∈ Cp\{0}, w ∈ Cq\{0} (0< p6 q), and β1, . . . , βq are complex numbers with
Im β1 = · · ·= Im βq 6= 0. The quotient Mp,q is a complex manifold diffeomorphic to S2p−1 ×
S2q−1.

In the special case when β1 = · · ·= βq we recover exactly the Calabi–Eckmann manifolds,
which are elliptic bundles over CPp−1 × CPq−1.

If p= 1 we have that M1,q is biholomorphic to the Hopf manifold H = (Cq\{0})/∼ where
(w1, . . . , wq)∼ (α1w1, . . . , αqwq), and αj = e2π

√
−1βj (note that |e2π

√
−1β1 |= · · ·= |e2π

√
−1βq |

6= 1). Indeed every point (z, w) ∈ C∗ × (Cq\{0}) is in the same C-orbit as (1, w′) (just pick
t=−log z, for any branch of the complex log), which we can view as a point in Cq\{0}. Now
note that t · (1, w′) = (1, w′′) if and only if t ∈ 2π

√
−1Z, if and only if w′′j = w′je

2π
√
−1βj` for some

` ∈ Z and for all 1 6 j 6 q. Therefore we have constructed a holomorphic bijection from M1,q to
the Hopf manifold H . The inverse biholomorphism Ψ :H →M1,q is simply induced by the map
w 7→ (1, w).

There is a natural Hermitian metric on Mp,q given by

ω0 =
p∑

i,j=1

δij
|z|2
√
−1 dzi ∧ dzj +

q∑
k,`=1

δk`
|w|2
√
−1 dwk ∧ dw`,

and in the case when p= 1 we have Ψ∗ω0 = ωH .

5. The Inoue surfaces SM

Inoue surfaces were discovered in [Ino74], and can be characterized as surfaces of class VII with
second Betti number zero and with no holomorphic curves [Bog82, LYZ94, Tel94]. They form
three families, SM , S+

N,p,q,r;t and S−N,p,q,r, which we will treat separately in the following three
sections.

From [TW12, Theorem 1.5] we know that on any Inoue surface the Chern–Ricci flow starting
at any Gauduchon metric ω0 has a solution ω(t) for all t> 0, with volume that grows linearly in t.
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We will consider explicit metrics ω0 and determine the Gromov–Hausdorff limit of the rescaled
metrics ω(t)/t.

In this section we study the Inoue surfaces SM , whose construction from [Ino74] we now
recall. Let H = {z ∈ C | Im z > 0} be the upper half plane, and consider the product H × C. Let
M ∈ SL(3, Z) be a matrix with one real eigenvalue α > 1 and two complex conjugate eigenvalues
β 6= β (so that α|β|2 = 1). The real number α is necessarily irrational. Let (a1, a2, a3) be a
real eigenvector for M with eigenvalue α and (b1, b2, b3) be an eigenvector with eigenvalue β.
Note that since (a1, a2, a3), (b1, b2, b3) and (b1, b2, b3) are C-linearly independent, it follows that
(a1, Re b1, Im b1), (a2, Re b2, Im b2) and (a3, Re b3, Im b3) are R-linearly independent. Let Γ be
the group of automorphisms of H × C generated by

f0(z, w) = (αz, βw),
fj(z, w) = (z + aj , w + bj), 1 6 j 6 3.

Then SM = (H × C)/Γ is an Inoue surface. Consider the Tricerri metric [Tri82]

ω0 =
1
y2

√
−1 dz ∧ dz + y

√
−1 dw ∧ dw,

where z = x+
√
−1y. It is easy to check that ω0 is Γ-invariant and descends to a Hermitian metric

on SM which is Gauduchon (because y is a harmonic function). Now let ω(t) = ω0 − t Ric(ω0).
We calculate

Ric(ω0) =−
√
−1∂∂ log det((g0)ij) =

√
−1∂∂ log y =− 1

4y2

√
−1 dz ∧ dz,

and so

ω(t) =
(

1 +
t

4

)
1
y2

√
−1 dz ∧ dz + y

√
−1 dw ∧ dw, (5.38)

which is a Gauduchon metric for all t > 0. It satisfies the Chern–Ricci flow, because

det(gij(t)) =
(

1 +
t

4

)
1
y

=
(

1 +
t

4

)
det((g0)ij),

and so Ric(ω(t)) = Ric(ω0) =−(∂/∂t)ω(t).
If we renormalize the metrics by dividing by t and we let t go to infinity we get

ω(t)
t
→ ω∞ =

1
4y2

√
−1 dz ∧ dz,

smoothly on H × C (and on SM ). The limit degenerate metric ω∞ is simply the pullback of one
half of the Poincaré metric from H, ωKE = (dx2 + dy2)/y2, so in particular it is closed (unlike
in the case of the Hopf surface). This degenerate metric has appeared for the first time in this
context in [HL83].

Theorem 5.1. As t approaches +∞ we have that (SM , ω(t)/t) GH−−→ (S1, d), where d is the
distance function on the circle S1 ⊂ R2 with radius (log α)/2

√
2π.

To calculate the Gromov–Hausdorff limit of (SM , ω(t)/t) we need to understand the topology
of SM a bit better. The key observation, due to Inoue, is that SM is a T 3-bundle over S1. Indeed,
if we consider the subgroup Γ′ ⊂ Γ generated by f1, f2, f3, then Γ′ is isomorphic to Z3 (because
of the linear independence property mentioned above) and it acts properly discontinuously and
freely on H × C, with quotient the product X = T 3 × R+ (since the numbers aj are real). The
projection π :X → R+ is induced by (z, w) 7→ Im z.
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Since αaj =
∑

k mjkak and βbj =
∑

k mjkbk where M = (mjk) and mjk ∈ Z, we see that
f0 descends to a map X →X. We have that SM =X/〈f0〉, and since α ∈ R we see that f0

maps the torus fiber Ty = π−1(y) to the torus fiber Tαy = π−1(αy). In particular, f0 induces a
diffeomorphism of the 3-torus ψ : T1→ Tα and we have that SM is diffeomorphic to the quotient
space ([1, α]× T 3)/∼, where (1, p)∼ (α, ψ(p)), which is a T 3-bundle over S1 (recall that α > 1).
We will still call π : SM → S1 the projection map.

The kernel of ω∞ on H × C is the integrable distribution D = SpanC(∂/∂w), whose leaves are
of the form Lz0 = {(z0, w) | w ∈ C} ⊂H × C. We wish to determine the images of these leaves
when projected to SM .

Lemma 5.2. If we call P :H × C→ SM the projection, then for any z0 ∈H the image P (Lz0)
is dense inside the T 3 fiber T0 = π−1(Im z0)⊂ SM .

Proof. It is clear that P (Lz0)⊂ T0. Obviously P (Lz0) is just a leaf of the foliation D on SM . If
P (Lz0) were closed in SM then it would be a complex curve in SM , but Inoue [Ino74] has shown
that there are no such curves. Therefore P (Lz0) cannot be closed, and since it is contained in
the 3-torus T0, it must be dense in T0 (the closure of any leaf of a linear foliation of a torus is
always a torus itself). 2

An alternative direct proof of this lemma can be given along the lines of [BHPV04,
Proposition V.19.1].

Proof of Theorem 5.1. For t > 0 call dt the distance function on SM induced by the metric ω(t)/t,
and let Lt(γ) denote the length of a curve γ with respect to ω(t)/t. Similarly, d0 and L0(γ) are
defined using ω0, and we will denote by L∞(γ) the length of γ computed using the degenerate
metric ω∞.

On the circle S1 we put the metric 1
2(d log r)2 = (dr)2/2r2, and denote by d its distance

function. It is isometric to the standard metric on S1 ⊂ R2 with radius (log α)/2
√

2π.
For any ε > 0 fixed, we will show that for t sufficiently large the Gromov–Hausdorff distance

between (SM , dt) and (S1, d) is less than 3ε.
We regard S1 as [1, α]/(1∼ α) and SM as ([1, α]× T 3)/∼, where (1, p)∼ (α, ψ(p)), as before.

Call F : SM → S1 the projection of the T 3-bundle, and let G : S1→ SM be the discontinuous
map induced by the map φ : [1, α]→ [1, α]× T 3 given by φ(x) = (x, p0) for x ∈ [1, α) and
φ(α) = (1, p0), where p0 ∈ T 3 is a fixed basepoint.

Clearly we have F ◦G= Id, while G ◦ F is a fiber-preserving discontinuous map of SM . In
particular for any a ∈ S1 we have trivially

d(a, F (G(a))) = 0. (5.39)

First of all observe that from (5.38) there is a constant C0 so that for all t> 1 and for any curve
γ in SM we have Lt(γ) 6 C0L0(γ).

Second, recall that D = ker ω∞, so from (5.38) again we see that if γ is a curve in SM with
tangent vector always in D, then Lt(γ) 6 (C0/

√
t)L0(γ).

Third, let p, q be any two points in SM on a same T 3-fiber, i.e. F (p) = F (q), and pick any
(z0, w0) ∈H × C such that P (z0, w0) = p, so that the image of the leaf P (Lz0) passes through p.
Thanks to Lemma 5.2 we know that P (Lz0) is dense in the T 3-fiber, and so there is a connected
compact set K ⊂ Lz0 such that every point in this T 3-fiber has d0-distance less than ε/2C0 to
P (K). On the other hand, every point in P (K) can be joined to p with a curve γ in the T 3-fiber
with tangent vector in D. Therefore, for any such γ we have Lt(γ) 6 C/

√
t, with a uniform

constant C independent of γ (it depends only on K).
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It follows that there is a point in P (K) which can be joined to p by a curve γ1 tangent to D
and to q by a curve γ2 with L0(γ2) 6 ε/2C0. Concatenating γ1 and γ2 we see that

dt(p, q) 6 Lt(γ1) + Lt(γ2) 6
C√
t

+ C0L0(γ2) 6
C√
t

+
ε

2
6 ε, (5.40)

if t is large enough.
Now let p, q be any two points in SM , with F (p) = a, F (q) = b where 1 6 a, b < α, and we

can assume that a6 b. Then p and the point (a, p0) (rather its equivalence class in SM ) belong
to the same T 3 fiber, as do q and (b, p0), so from (5.40) we get

dt(p, (a, p0)) 6 ε, dt(q, (b, p0)) 6 ε. (5.41)

We then join (a, p0) to (b, p0) via the image in SM of the curve γ(s) = (s, p0), a6 s6 b. The
point γ(s) has a lift to H × C with imaginary part equal to s, so the tangent vector to γ(s) is
∂/∂y =−

√
−1(∂/∂z − ∂/∂z) so from (5.38) we have

||γ′|2ω(t)/t − |γ
′|2ω∞ |6

C

t
,

and so |Lt(γ)− L∞(γ)|6 C/
√
t. But for this curve γ we have

L∞(γ) =
∫ b

a
|γ′(s)|ω∞ ds=

1√
2

∫ b

a

ds

s
=

1√
2

log(b/a) = d(F (p), F (q)),

and so combining this with (5.41) we have proved that

dt(p, q) 6 2ε+ Lt(γ) 6
C√
t

+ 2ε+ d(F (p), F (q)),

for a constant C independent of p, q, so if t is large we get

dt(p, q) 6 d(F (p), F (q)) + 3ε, (5.42)

and so also
dt(G(a), G(b)) 6 d(a, b) + 3ε, (5.43)

for all a, b ∈ S1.
Note that from (5.40) we also have that for any p ∈ SM and for all t large

dt(p, G(F (p))) 6 ε. (5.44)

Now take any two points p, q ∈ SM and let γ be a curve joining p to q with Lt(γ) = dt(p, q).
Then F (γ) is a path in S1 between F (p) and F (q). Write Lg(F (γ)) for the length of this
curve with respect to the metric g = 1

2(d log y)2, where we are using the coordinate y on S1.
We claim that Lg(F (γ)) = L∞(γ). Indeed, if V is a tangent vector on SM we can write locally
V = V1∂/∂x+ V2∂/∂y + V3∂/∂u+ V4∂/∂v where w = u+

√
−1v. But F∗V = V2∂/∂y and from

the definition of ω∞ and g we see that |F∗V |2g = V 2
2 /2y

2 = |V |2ω∞ . Applying this with V = γ′

proves the claim.
Noting that ω∞ 6 ω(t)/t we have:

d(F (p), F (q)) 6 Lg(F (γ)) = L∞(γ) 6 Lt(γ) = dt(p, q). (5.45)

For a, b ∈ S1, we can apply (5.45) to p=G(a) and q =G(b) to obtain

d(a, b) 6 dt(G(a), G(b)). (5.46)

Combining (5.39), (5.42)–(5.46) shows that the Gromov–Hausdorff distance between (SM , dt)
and (S1, d) can be made less than 3ε if t is large, as required. 2
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6. The Inoue surfaces S+
N,p,q,r;t

In this section we study the Inoue surfaces S+
N,p,q,r;t, starting from their construction from [Ino74].

Let N = (nij) ∈ SL(2, Z) be a matrix with two real eigenvalues α > 1 and 1/α. Let (a1, a2)
and (b1, b2) be two real eigenvectors for N with eigenvalues α and 1/α respectively (again we
automatically have that α is irrational).

Fix integers p, q, r, with r 6= 0, and a complex number t. Using N, aj , bj , p, q, r one gets two
real numbers (c1, c2) as solutions of the linear equation

(c1, c2) = (c1, c2) ·N t + (e1, e2) +
b1a2 − b2a1

r
(p, q),

where

ei = 1
2ni1(ni1 − 1)a1b1 + 1

2ni2(ni2 − 1)a2b2 + ni1ni2b1a2, i= 1, 2.

Let Γ be the group of automorphisms of H × C generated by

f0(z, w) = (αz, w + t),
fj(z, w) = (z + aj , w + bjz + cj), j = 1, 2,

f3(z, w) =
(
z, w +

b1a2 − b2a1

r

)
.

Then S+
N,p,q,r;t = (H × C)/Γ is an Inoue surface.

Since α > 1, we can write Im t =m log α for some m ∈ R, so that t is real if and only if m= 0.
Note that the (1, 0)-forms on H × C

1
y
dz, dw − v −m log y

y
dz

(where z = x+
√
−1y, w = u+

√
−1v) are invariant under the Γ-action, and so descend to

S+
N,p,q,r;t, so we can define a Hermitian metric S+

N,p,q,r;t

ω0 =
√
−1
(
dw − v −m log y

y
dz

)
∧
(
dw − v −m log y

y
dz

)
+

1
y2

√
−1 dz ∧ dz

=
√
−1 dw ∧ dw +

(
1 + (v −m log y)2

y2

)√
−1 dz ∧ dz

− v −m log y
y

√
−1 dw ∧ dz − v −m log y

y

√
−1 dz ∧ dw. (6.47)

This was discovered by Tricerri [Tri82] when m= 0 and by Vaisman [Vai87] in general. The
key difference between the cases when t is real or not is that when m= 0 the metric ω0

is locally conformally Kähler, while when m 6= 0 it is not, and in fact a theorem of Belgun
[Bel00, Theorem 7] shows that the surfaces S+

N,p,q,r;t with t not real do not admit any locally
conformally Kähler metric.

On the other hand, we can easily check that ω0 is Gauduchon for any value of m:

∂ω0 =−v −m log y −m
2y2

dw ∧ dz ∧ dz +
1
2y

dw ∧ dw ∧ dz,

∂∂ω0 =
√
−1

4y2
dw ∧ dw ∧ dz ∧ dz +

√
−1

4y2
dz ∧ dw ∧ dw ∧ dz = 0.
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Now let ω(t) = ω0 − t Ric(ω0). We calculate

det((g0)ij) =
1
y2
,

Ric(ω0) =−
√
−1∂∂ log det((g0)ij) = 2

√
−1∂∂ log y =− 1

2y2

√
−1 dz ∧ dz,

and so

ω(t) =
√
−1 dw ∧ dw +

(
1 + (v −m log y)2 + t/2

y2

)√
−1 dz ∧ dz

− v −m log y
y

√
−1 dw ∧ dz − v −m log y

y

√
−1 dz ∧ dw, (6.48)

which is a Gauduchon metric for all t > 0. It satisfies the Chern–Ricci flow, because

det(gij(t)) =
(

1 +
t

2

)
1
y2

=
(

1 +
t

2

)
det((g0)ij),

and so Ric(ω(t)) = Ric(ω0) =−(∂/∂t)ω(t).
If we renormalize the metrics by dividing by t and we let t go to infinity we obtain

ω(t)
t
→ 1

2y2

√
−1 dz ∧ dz,

smoothly on H × C. The limit degenerate metric is simply the pullback of the Poincaré metric
from H.

Theorem 6.1. As t approaches infinity we have that (S+
N,p,q,r;t, ω(t)/t) GH−−→ (S1, d), where d is

the distance function on the circle S1 ⊂ R2 with radius (log α)/2π.

Again we need to understand the topology of S+
N,p,q,r;t. As remarked by Inoue [Ino74] S+

N,p,q,r;t

is diffeomorphic to a bundle over S1 with fiber a compact 3-manifold X. Indeed, if we consider
the subgroup Γ′ ⊂ Γ generated by f1, f2, f3, then for each fixed y = Im z the group Γ′ acts on
{(x, y, w) | x ∈ R, w ∈ C} ∼= R3 properly discontinuously and freely with quotient a 3-manifold
Xy. For different values of y they are all diffeomorphic to a fixed manifold X. Then, as in
the case of SM , we can also consider Γ′ acting on the whole of H × C, and the quotient is
diffeomorphic to the product X × R+, with the projection π to R+ induced by (z, w) 7→ Im z
and with Xy = π−1(y). Then again f0 descends to a map X × R+→X × R+, because f0 lies in
the normalizer of Γ′ (see [Ino74, p. 276]). We have that S+

N,p,q,r;t = (X × R+)/〈f0〉. Since α ∈ R we
see that f0 maps the fiber X1 to the fiber Xα, and so it induces a diffeomorphism ψ of X such
that S+

N,p,q,r;t is diffeomorphic to the quotient space ([1, α]×X)/∼, where (1, p)∼ (α, ψ(p)),
which is an X-bundle over S1. We will still call π : S+

N,p,q,r;t→ S1 the projection map.
The kernel of ω∞ on H × C is the integrable distribution (i.e. foliation) D = SpanC(∂/∂w),

whose leaves are of the form Lz0 = {(z0, w) | w ∈ C} ⊂H × C. We wish to determine the images
of these leaves when projected to S+

N,p,q,r;t. The main idea in the following Lemma comes
from [Bru10].

Lemma 6.2. If we call P :H × C→ S+
N,p,q,r;t the projection, then for any z0 ∈H the image

P (Lz0) is dense inside the fiber X0 = π−1(Im z0)⊂ SM .

Proof. The proof is similar to that of Lemma 5.2. It is clear that P (Lz0)⊂X0. Obviously P (Lz0)
is just a leaf of the foliation D on S+

N,p,q,r;t. No such leaf can be closed in S+
N,p,q,r;t, since otherwise
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it would be a complex curve in S+
N,p,q,r;t, contradicting the fact that no curves exist [Ino74]. Since

D ⊂ TX0, the same is true for the induced foliation D|X0 .
Now consider the 1-form dx, where x= Re z. It is invariant under Γ′, so it descends to a

1-form on X × R+, and since f0 maps the fiber X0 to a different fiber, it follows that dx is
a well-defined closed 1-form in an open neighborhood of X0. When restricted to X0, the 1-form
dx defines the foliation D|X0 , in the sense that ker dx=D|X0 . Since we have just seen that no leaf
of D|X0 is closed in X0, we can apply the general theory of foliations defined by closed 1-forms
[God91, 4.3, p. 46] and conclude that every leaf of D|X0 is dense in X0. In particular this is the
case for P (Lz0). 2

Proof of Theorem 6.1. With these preliminaries in place, the proof is almost identical to the
proof of Theorem 5.1, and therefore we only indicate the necessary modifications.

For t > 0 call dt the distance function on S+
N,p,q,r;t induced by the metric ω(t)/t, and let Lt(γ)

denote the length of a curve γ with respect to ω(t)/t. Similarly, d0 and L0(γ) are defined using
ω0, and we will denote by L∞(γ) the length of γ computed using the degenerate metric ω∞.

On the circle S1 we put the metric (d log r)2 = (dr)2/r2, and denote by d its distance function,
which is isometric to the standard metric on S1 ⊂ R2 with radius (log α)/2π. For any ε > 0 fixed,
we will show that for t sufficiently large the Gromov–Hausdorff distance between (S+

N,p,q,r;t, dt)
and (S1, d) is less than 3ε.

We regard S1 as [1, α]/(1∼ α) and S+
N,p,q,r;t as ([1, α]×X)/∼, where (1, p)∼ (α, ψ(p)), as

before. Call F : S+
N,p,q,r;t→ S1 the projection of the X-bundle, and let G : S1→ S+

N,p,q,r;t be
the discontinuous map induced by the map φ : [1, α]→ [1, α]×X given by φ(x) = (x, p0) for
x ∈ [1, α) and φ(α) = (1, p0), where p0 ∈X is a fixed basepoint.

Clearly we have F ◦G= Id, while G ◦ F is a fiber-preserving discontinuous map of S+
N,p,q,r;t.

In particular for any a ∈ S1 we have trivially

d(a, F (G(a))) = 0. (6.49)

Exactly as in Theorem 5.1 we prove that for any two points p, q ∈ S+
N,p,q,r;t on the same X-fiber

we have dt(p, q) 6 ε, if t is large enough. From this we deduce that for any two points p, q and
for all t large we have

dt(p, q) 6 d(F (p), F (q)) + 3ε, (6.50)

and so also

dt(G(a), G(b)) 6 d(a, b) + 3ε, (6.51)

for all a, b ∈ S1 and

dt(p, G(F (p))) 6 ε. (6.52)

Now take any two points p, q ∈ S+
N,p,q,r;t and call γ a curve joining p and q with Lt(γ) =

dt(p, q). Arguing as in the proof of Theorem 5.1, using the fact that ω∞ 6 ω(t)/t,

d(F (p), F (q)) 6 Lg(F (γ)) = L∞(γ) 6 Lt(γ) = dt(p, q), (6.53)

where we are writing Lg(F (γ)) for the length of the path F (γ) on S1 between F (p) and F (q)
with respect to the metric g = (d log y)2. Hence also

d(a, b) 6 dt(G(a), G(b)), (6.54)

for all a, b ∈ S1. Combining (6.49)–(6.54) shows that the Gromov–Hausdorff distance between
(S+
N,p,q,r;t, dt) and (S1, d) can be made less than 3ε if t is large, as required. 2
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7. The Inoue surfaces S−
N,p,q,r

The last class of Inoue surfaces are S−N,p,q,r, defined as follows. Let N = (nij) ∈GL(2, Z) be a
matrix with detN =−1 and with two real eigenvalues α > 1 and −1/α. Let (a1, a2) and (b1, b2)
be two real eigenvectors for N with eigenvalues α and −1/α respectively. Fix integers p, q, r,
with r 6= 0. Define two real numbers (c1, c2) as solutions of the linear equation

−(c1, c2) = (c1, c2) ·N t + (e1, e2) +
b1a2 − b2a1

r
(p, q),

where ei are the same as for the surfaces S+
N,p,q,r;t.

Let Γ be the group of automorphisms of H × C generated by

f0(z, w) = (αz,−w),
fj(z, w) = (z + aj , w + bjz + cj), j = 1, 2,

f3(z, w) =
(
z, w +

b1a2 − b2a1

r

)
.

Then S−N,p,q,r = (H × C)/Γ is an Inoue surface.
As noticed by Tricerri [Tri82], the exact same formula as in the case of S+

N,p,q,r;t, t real,
(i.e. (6.47) with m= 0) gives a Gauduchon metric on S−N,p,q,r too. The discussion of the smooth
limit of the Chern–Ricci flow is identical.

Every surface S−N,p,q,r has as an unramified double cover an Inoue surface S+
N2,p′,q′,r;0 (for

suitable integers p′, q′), so we can pull back everything upstairs and reduce to the previous
section. Indeed, we have the involution of S+

N2,p′,q′,r;0

ι(z, w) = (αz,−w),

which satisfies ι2 = Id and S+
N2,p′,q′,r;0/ι= S−N,p,q,r. We will denote by p : S+

N2,p′,q′,r;0→ S−N,p,q,r the
quotient map. The projection F : S+

N2,p′,q′,r;0→ S1 = R+/(x∼ α2x) satisfies F (ι(x)) = F (x) for
all x ∈ S+

N2,p′,q′,r;0.

Theorem 7.1. As t approaches +∞ we have that (S−N,p,q,r, ω(t)/t) GH−−→ (S1, d), where d is the

distance function on the circle S1 ⊂ R2 with radius (log α)/π.

Proof. We pull back the metrics ω0, ω(t) via p to S+
N2,p′,q′,r;0, and obtain the same metrics as

in Theorem 6.1, with ι acting on S+
N2,p′,q′,r;0 as an isometry of p∗ω(t)/t. From Theorem 6.1 we

see that (S+
N2,p′,q′,r;0, p

∗ω(t)/t) converges in Gromov–Hausdorff to S1 = R+/(x∼ α2x) with the
metric (d log x)2 (isometric to the standard metric on S1 ⊂ R2 with radius (log α)/π).

In fact this convergence happens also in the equivariant Gromov–Hausdorff sense, where the
group acting on S1 is the trivial group while the group acting on S+

N2,p′,q′,r;0 is the group of
order 2 generated by ι. Indeed it is immediate to check this from the definition of equivariant
Gromov–Hausdorff distance (see § 4), using the same maps F : S+

N2,p′,q′,r;0→ S1 and G : S1→
S+
N2,p′,q′,r;0 from the proof of Theorem 6.1 (where the maps from between the trivial group and

the group of order 2 are the obvious ones).

Then [Fuk86, Theorem 2.1] or [Ron10, Lemma 1.5.4] imply that (S−N,p,q,r, ω(t)/t) GH−−→ (S1, d),
where d is the distance function on the circle S1 ⊂ R2 with radius (log α)/π. 2

Theorems 5.1, 6.1 and 7.1 together complete the proof of part (b) of Theorem 1.6.
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8. Non-Kähler properly elliptic surfaces

Recall that a non-Kähler properly elliptic surface is by definition a compact complex surface S
with b1(S) odd and with Kodaira dimension κ(S) = 1 which admits an elliptic fibration π : S→ C
to a smooth compact curve C. Throughout this section we will always assume that S is minimal.
Kodaira [Kod66, Theorem 28] has shown that the universal cover of S is H × C. It is also known
(see for example [Bri94, Lemmas 1, 2] or [Wal86, Theorem 7.4]) that there is always a finite
unramified covering S′→ S which is also a minimal properly elliptic surface π′ : S′→ C ′ and
π′ is an elliptic fiber bundle with g(C ′) > 2 (the curve C ′ is a finite cover of C ramified at the
images of the multiple fibers of π).

Let us first assume that we are in this situation, so that π : S→ C is an elliptic fiber bundle
with fiber E, with g(C) > 2, with S minimal, non-Kähler and κ(S) = 1. It will be more convenient
for us to work with H × C∗, so we define

h :H × C→H × C∗, h(z, z′) = (z, e−z
′/2),

which is a holomorphic covering map, and we will write (z, w) for the coordinates on H × C∗.
A theorem of Maehara [Mae78] (see also [IKO80, Lemma 5.6], [Wal86, Theorem 7.4] and
[Bel00, Proposition 2]) shows that there exists Γ⊂ SL(2, R) a discrete subgroup with H/Γ = C,
together with a complex number α ∈ C∗ with |α| 6= 1 and C∗/〈α〉= E and together with a
character χ : Γ→ C∗ (i.e. a group homomorphism) such that S is biholomorphic to the quotient
of H × C∗ by the Γ× Z-action defined by((

a b
c d

)
, n

)
· (z, w) =

(
az + b

cz + d
, (cz + d) · w · αn · χ

(
a b
c d

))
,

and the map π : S→ C is induced by the projection H × C∗→H.
The reader can check that the forms on H × C∗:

− 2
w
dw +

√
−1
y

dz,
1
y2
dz ∧ dz,

(where z = x+
√
−1y) are invariant under the Γ× Z-action. Therefore they descend to S and

we can define a Hermitian metric on S by

ω0 =
√
−1
(
− 2
w
dw +

√
−1
y

dz

)
∧
(
− 2
w
dw −

√
−1
y

dz

)
+

1
y2

√
−1 dz ∧ dz

=
4
|w|2
√
−1 dw ∧ dw +

2
y2

√
−1 dz ∧ dz

+
2
√
−1

yw

√
−1 dw ∧ dz − 2

√
−1

yw

√
−1 dz ∧ dw. (8.55)

This metric was discovered by Vaisman [Vai87] (he wrote down its pullback h∗ω0 on H × C) and
it is Gauduchon:

∂ω0 =−
√
−1
y2w

dz ∧ dz ∧ dw, ∂∂ω0 = 0.

Now let ω(t) = ω0 − t Ric(ω0). We calculate

det((g0)ij) =
4

y2|w|2
,

and

Ric(ω0) =−
√
−1∂∂ log det((g0)ij) = 2

√
−1∂∂ log y =− 1

2y2

√
−1 dz ∧ dz,
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and so

ω(t) =
4
|w|2
√
−1 dw ∧ dw +

(
2 + t/2
y2

)√
−1 dz ∧ dz

+
2
√
−1

yw

√
−1 dw ∧ dz − 2

√
−1

yw

√
−1 dz ∧ dw,

which is a Gauduchon metric for all t > 0. It satisfies the Chern–Ricci flow, because

det(gij(t)) =
(

1 +
t

2

)
4

y2|w|2
=
(

1 +
t

2

)
det((g0)ij),

and so Ric(ω(t)) = Ric(ω0) =−(∂/∂t)ω(t).
If we renormalize the metrics by dividing by t and we let t go to infinity we get

ω(t)
t
→ 1

2y2

√
−1 dz ∧ dz,

smoothly on S. The limit degenerate metric is simply the pullback π∗ωKE of the Poincaré metric
from H/Γ = C, which is the base of the fibration. This metric on C satisfies Ric(ωKE) =−ωKE,
and we will write dKE for its distance function.

Theorem 8.1. Let π : S→ C be a minimal non-Kähler properly elliptic surface which is an
elliptic bundle, and let ω0 be the initial Gauduchon metric we just described. As t approaches

+∞ we have that ω(t)/t converges to π∗ωKE in C∞(S, ω0), and also (S, ω(t)/t) GH−−→ (C, dKE).

Formally, the behavior is exactly the same as for the Kähler–Ricci flow on a Kähler elliptic
surface π : S→ C, which is a fiber bundle over a curve C of genus at least 2 [ST07] (see
also [FZ12, GTZ13]).

Proof. The fact that ω(t)/t converges smoothly to π∗ωKE has already been proven. We now show
the Gromov–Hausdorff convergence. For any curve γ ⊂ S let Lt(γ) be its length measured in the
metric ω(t)/t, and denote by dt the distance function of ω(t)/t. Let F = π : S→ C and define a
map G : C→ S by sending every point a ∈ C to some chosen point in S on the fiber π−1(a). We
know that the map G is not canonical and usually discontinuous, and it satisfies F ◦G= Id so

dKE(a, F (G(a))) = 0, (8.56)

for all a ∈ C. Since ω(t)/t restricted to every fiber of π converges smoothly to zero, it follows
that for every p ∈ S we have

dt(p, G(F (p))) 6 ε, (8.57)
for all t large. Given any two points p, q ∈ S, call a= F (p), b= F (q) and fix a geodesic γ(s) for
the Poincaré metric ωKE that joins them. Then choose a lift γ̃(s) to a curve in H from a point ã
(that projects to a) to b̃ (that projects to b). Define a curve σ̃(s) = (γ̃(s), 1) in H × C∗, and call
σ(s) its projection to S = (H × C∗)/Γ, so that F (σ(s)) = γ(s). The length of σ(s) with respect
to ω(t)/t equals the length of σ̃(s) with respect to the pullback of ω(t)/t to H × C∗. Since the
tangent vector to σ̃(s) is (γ̃′(s), 0), we see from (8.55) that

|σ̃′(s)|2ω(t)/t =
(

1
2

+
2
t

)
1

y(s)2
,

where y(s) = Im γ̃(s). On the other hand

|γ̃′(s)|2ωKE
=

1
2y(s)2

,
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and so

|Lt(σ)− dKE(a, b)|6 ε,

if t is large. On the other hand, the p and the initial point of σ lie on the same fiber of π, so
their dt-distance is less than ε for t large, and similarly for q and the end point of σ. Therefore

dt(p, q) 6 2ε+ Lt(σ) 6 dKE(F (p), F (q)) + 3ε. (8.58)

Since F ◦G= Id, we also have that

dt(G(a), G(b)) 6 dKE(a, b) + 3ε. (8.59)

Now, given two points p, q ∈ S, let γ be a curve joining p and q with Lt(γ) = dt(p, q). Then
arguing in a similar way to the proof of Theorem 5.1,

dKE(F (p), F (q)) 6 LKE(F (γ)) = Lπ∗ωKE(γ) 6 Lt(γ) = dt(p, q), (8.60)

where Lπ∗ωKE(γ) is the length of γ with respect to the degenerate metric π∗ωKE. This also implies
that for a, b ∈ S1,

dKE(a, b) 6 dt(G(a), G(b)). (8.61)

Combining (8.56)–(8.61) we get the required Gromov–Hausdorff convergence. 2

We now consider the general case, when π : S→ C is not a fiber bundle. From [Bri94,
Lemma 1] or [Wal86, Lemma 7.2] we see that π has no singular fibers, but in general it might have
multiple fibers. Let us call D ⊂ S the set of all multiple fibers of π, so that π(D) consists of finitely
many points. Then again from [Mae78] (see also [Bel00, Proposition 2], [Wal86, Theorem 7.4])
we have that S is a quotient of H × C∗ by a discrete subgroup Γ′ of SL(2, R)× C∗, which acts by((

a b
c d

)
, t

)
· (z, w) =

(
az + b

cz + d
, (cz + d) · w · t

)
,

and the map π : S→ C is again induced by the projection H × C∗→H. The previous case is
obtained by mapping SL(2, R)× Z→ SL(2, R)× C∗ by (A, n) 7→ (A, αnχ(A)).

If we consider the projection Γ of Γ′ to SL(2, R), we now have that in general the Γ-action on
H is not free, so its quotient C =H/Γ is an orbifold (it is actually a ‘good’ orbifold, i.e. a global
finite quotient of a manifold; see [Wal86, p. 139] where it is shown that if C was a ‘bad’ orbifold
then we would have that κ(S) =−∞). The finitely many orbifold points of C are precisely equal
to π(D).

The (1, 0)-forms on H × C∗

− 2
w
dw +

√
−1
y

dz,
1
y2
dz ∧ dz

are still invariant under the Γ′-action, and so again they descend to S. We then define ω0 as
before, and also ωKE which is now an orbifold Kähler–Einstein metric on C. It is easy to see that
it induces a distance function dKE on C (see e.g. [Bor92]). On the other hand the (1, 1) form
π∗ωKE is smooth on all of S.

Theorem 8.2. Let π : S→ C be a general minimal non-Kähler properly elliptic surface with
initial Gauduchon metric ω0 described above. As t approaches +∞ we have that ω(t)/t converges

to π∗ωKE in C∞(S, ω0), and also (S, ω(t)/t) GH−−→ (C, dKE).

Proof. The fact that ω(t)/t converges smoothly to π∗ωKE follows from the same calculation as
in the previous case. The Gromov–Hausdorff convergence can be proved as follows. We know
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that there is another properly elliptic surface π′ : S′→ C ′ which is an elliptic bundle over C ′

with g(C ′) > 2, with a finite group Γ′′ acting on S′ and C ′ (so that π′ is Γ′′-equivariant) such
that the Γ′′-action on S′ is free, while the Γ′′-action on C ′ is not, and π : S→ C is equal to the
Γ′′-quotient of π′ : S′→ C ′. If we call p : S′→ S and q : C ′→ C the quotient maps then we have
that p∗ω0 equals the same metric ω0 from the earlier discussion, and similarly p∗ω(t) equals the
evolved metrics on S′, and Γ′′ acts by isometries of p∗ω(t). Also, the pullback distance q∗dKE on
C ′ equals the Kähler–Einstein distance function from earlier, and again Γ′′ acts by isometries
of q∗dKE. From Theorem 8.1 we know that (S′, p∗ω(t)/t) converges in Gromov–Hausdorff to
(C ′, q∗dKE).

In fact, we claim that this convergence also happens in the Γ′′-equivariant Gromov–Hausdorff
sense. Indeed, let us consider the same maps F : S′→ C ′ and G : C ′→ S′ from the proof of
Theorem 8.1. Then F is Γ′′-equivariant, while in general G is not, but for any element g ∈ Γ′′

and for any point x ∈ C ′ the points g ·G(x) and G(g · x) lie in the same fiber of F , and so their
distance with respect to the metric p∗ω(t)/t goes to zero as t approaches zero (uniformly in x
and g). This shows that the Γ′′-equivariant Gromov–Hausdorff distance between (S′, p∗ω(t)/t)
and (C ′, q∗dKE) is less than any ε > 0 if t is small enough. Then [Fuk86, Theorem 2.1] or [Ron10,
Lemma 1.5.4] imply that (S, ω(t)/t) GH−−→ (C, dKE). 2

Theorems 8.1 and 8.2 together complete the proof of part (c) of Theorem 1.6.

9. The Mabuchi energy

In this section, we show that the Mabuchi energy functional from Kähler geometry can be defined
in the setting of a complex surface with vanishing first Bott–Chern class, and that it is decreasing
along the Chern–Ricci flow.

Let M be a surface with vanishing first Bott–Chern class, and let ω0 be a Gauduchon metric
on M . By definition of the Bott-Chern class, there exists a unique function F with

Ric(ω0) =
√
−1∂∂F,

∫
M
eFωn0 = 0.

Define H to be the space of all Gauduchon metrics ω′ on M of the form ω′ = ω0 +
√
−1∂∂ψ for

some smooth function ψ. We then define the Mabuchi energy Mabω0 :H→ R by

Mabω0(ω′) =
∫
M

(
log

ω′2

ω2
0

− F
)
ω′2 +

∫
M
Fω2

0.

Comparing with the formula given in [Tia00], one can check that this coincides with the Mabuchi
energy in the Kähler setting.

Now let ω(t) solve the Chern–Ricci flow starting at ω0. Then we may write ω(t) = ωϕ :=
ω0 +

√
−1∂∂ϕ where ϕ= ϕ(t) solves

∂

∂t
ϕ= log

ω2
ϕ

ω2
0

− F, ϕ|t=0 = 0.

The result of this section is that the Mabuchi energy decreases along the Chern–Ricci flow.

Proposition 9.1. With the notation as above, we have

∂

∂t
Mabω0(ωϕ) =−2

∫
M

√
−1∂ϕ̇ ∧ ∂ϕ̇ ∧ ωϕ 6 0.
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Proof. Compute

∂

∂t
Mabω0(ωϕ) =

∫
M

∆ωϕ
ϕ̇ ω2

ϕ +
∫
M

(
log

ω2
ϕ

ω2
0

− F
)

∆ωϕ
ϕ̇ ω2

ϕ

=
∫
M
ϕ̇∆ωϕ

ϕ̇ ω2
ϕ = 2

∫
M
ϕ̇
√
−1∂∂ϕ̇ ∧ ωϕ.

Integrating by parts,

∂

∂t
Mabω0(ωϕ) =−2

∫
M

√
−1∂ϕ̇ ∧ ∂ϕ̇ ∧ ωϕ + 2

∫
M
ϕ̇
√
−1 ∂ϕ̇ ∧ ∂ω0

=−2
∫
M

√
−1∂ϕ̇ ∧ ∂ϕ̇ ∧ ωϕ +

∫
M

√
−1 ∂ϕ̇2 ∧ ∂ω0

=−2
∫
M

√
−1∂ϕ̇ ∧ ∂ϕ̇ ∧ ωϕ,

using the fact that
√
−1∂∂ω0 = 0. 2

Recall that Gill [Gill11] showed, in the setting of vanishing first Bott–Chern class, the Chern–
Ricci flow ω(t) starting at any Hermitian metric ω0 converges in C∞ to a Chern–Ricci flat metric
ω∞. Proposition 9.1 can be used to give an alternative proof of the convergence part of Gill’s
theorem in the special case when M has complex dimension 2 and ω0 is Gauduchon. Indeed the
proof follows exactly as in the Kähler case. It was first noted in unpublished work of H.-D. Cao
that the Mabuchi energy decreases along the Kähler–Ricci flow, and to see how Proposition 9.1
implies convergence, one can follow the arguments of Phong–Sturm [PS06]. Alternatively, see
the exposition in [SW13b, § 4].
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