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The Chern—Ricci flow on complex surfaces

Valentino Tosatti and Ben Weinkove

ABSTRACT

The Chern—Ricci flow is an evolution equation of Hermitian metrics by their
Chern—Ricci form, first introduced by Gill. Building on our previous work, we investigate
this flow on complex surfaces. We establish new estimates in the case of finite time non-
collapsing, analogous to some known results for the Kahler—Ricci flow. This provides
evidence that the Chern—Ricci flow carries out blow-downs of exceptional curves on
non-minimal surfaces. We also describe explicit solutions to the Chern—Ricci flow for
various non-Ké&hler surfaces. On Hopf surfaces and Inoue surfaces these solutions,
appropriately normalized, collapse to a circle in the sense of Gromov-Hausdorff. For
non-Kahler properly elliptic surfaces, our explicit solutions collapse to a Riemann
surface. Finally, we define a Mabuchi energy functional for complex surfaces with
vanishing first Bott—Chern class and show that it decreases along the Chern—Ricci flow.

1. Introduction

The Chern—Ricci flow is a flow of Hermitian metrics on a complex manifold by their Chern—Ricci
form. It was introduced by Gill [Gillll] in the setting of manifolds with vanishing first Bott—
Chern class. In [TW12], the authors proved a number of further properties of the Chern-Ricci
flow, several of which are analogous to those of the Kéhler—Ricci flow. We continue this study
here, but restrict to complex dimension 2 where some additional structures can be exploited.
Our aim is to provide more evidence that the Chern—Ricci flow is a natural evolution equation
on complex manifolds and that its behavior reflects the underlying geometry. Other flows of
Hermitian metrics have been previously studied by Streets—Tian [ST10, ST11, ST13], motivated
in part by the open problem of classifying Class VII surfaces. Ultimately, our hope is that
the Chern—Ricci flow may be used as a tool in classification problems. However, our goals
in the current paper are more modest: we wish to investigate the behavior of the flow in cases
where the geometry of the manifold is already well understood.

Let M be a compact complex surface, and let gg be a Gauduchon metric on M. Namely, go
is a Hermitian metric whose associated (1, 1) form wp = /—1 (90);7 dzi A dz; satisfies

85&)0 =0.

A well-known result of Gauduchon states that every Hermitian metric on M is conformal to a
unique Gauduchon metric.
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The Chern—Ricci flow w = w(t) starting at wp is a flow of Gauduchon metrics

3} .
Y= —Ric(w), wlt=0=wo, (1.1)

where Ric(w) is the Chern—Ricci form of w = V—1g;7 dz; \ dz;, defined by
Ric(w) = —v/—100 log det g.

The Chern—Ricci flow makes sense for metrics which are merely Hermitian, and in any dimension
(as do flows proposed in for example [LY12, ST11]). However, for the purposes of this paper, we
will restrict to the case of Gauduchon metrics in complex dimension 2. Note that if wg satisfies
the stronger condition of being d-closed (i.e. Kéhler) then (1.1) coincides with the K&hler-Ricci
flow.

It was shown in [TW12, Theorem 1.3] that a unique maximal solution to (1.1) exists for
[0, T') for a number T € (0, oo] determined by wy. If the volume of M with respect to w(t) tends
to zero as t — T, we say that the Chern—Ricci flow is collapsing at time T. Otherwise, we say
that the Chern—Ricci flow is non-collapsing. If T = oo, it is sometimes convenient to normalize
the flow and consider w(t)/t as t — co. If the volume of M with respect to w(t)/t tends to zero
as t — oo we say that the normalized Chern—Ricci flow is collapsing.

The first part of this paper is concerned with non-collapsing for the flow in finite time, while
in the second part of the paper we give a number of explicit examples of collapsing in both
finite and infinite time. In the last, short, section of the paper we define the Mabuchi energy
functional on surfaces with vanishing first Bott—Chern class and show that it is decreasing along
the Chern—Ricci flow.

Finite time non-collapsing

A natural conjecture [TW12], extending results of Song and the second-named author in the
Kéhler case [SW11, SW13a, SW13b], is that if the Chern—Ricci flow is non-collapsing in finite
time, then it blows down finitely many (—1) curves and continues in a unique way on a new
complex surface M. We require global Gromov-Hausdorff convergence of the metrics, and smooth
convergence away from the (—1) curves. For more details see §3. The goal of the first part of
this paper is to make some steps towards proving this conjecture.

Suppose that the Chern—Ricci flow is non-collapsing at time T < oo. Then it was shown in
[TW12, §6] that there exist finitely many disjoint (—1) curves Ei, ..., Ex on M giving rise to
a map w: M — N onto a complex surface N blowing down each E; to a point y; € N. Write
M' = M\ Ule E; and N'=N\{y1,...,yx}. Then the map 7 gives an isomorphism from M’
to N'.

Our first result is as follows.

THEOREM 1.1. Suppose that the Chern—Ricci flow (1.1) is non-collapsing at time T' < oo. Then
with the notation above, as t — T, the metrics g(t) converge to a smooth Gauduchon metric
gr on M in C.(M').

Remark 1.2. (1) In the Kéhler case, this result is due to Tian—Zhang [TZ06].

(2) In [TW12, Theorem 1.6], we proved this result under additional hypotheses (equivalent
to condition () below).

(3) As described in [TW12, Theorem 1.5], finite time non-collapsing for the Chern—Ricci
flow is a common occurrence. In particular, whenever M is a non-minimal complex surface with
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Kodaira dimension not equal to —oo, there will be finite time non-collapsing for all choices of
initial wy.

(4) To prove Theorem 1.1 we establish a version of the so-called T'suji trick [Tsu88] in the
setting of the Chern—Ricci flow and make use of some arguments of [TZ06].

For the next result, we recall some notation from [TW12]. Define a family of d9-closed (1, 1)
forms

oy :=wp — tRic(wp) for t €0, T7. (1.2)

The non-collapsing condition is equivalent to the condition | M a?p > 0. The content of our next

result is that we can prove a Gromov—Hausdorff convergence result for (M, g(t)) ast — T~ if ar
is the pullback of a (1, 1) form on N, modulo the image of 90 on M.

THEOREM 1.3. Suppose that the Chern—Ricci flow (1.1) is non-collapsing at time T < oo. In
addition, we impose the condition
(%) there exists f € C°°(M,R) and a smooth real (1,1) form [ on N with

ap +V/—190f = n* 3,

using the notation above.

Then there exists a distance function dr on N such that (N, dr) is a compact metric space
and (M, g(t)) converges in the Gromov—-Hausdorff sense to (N, dr) ast — T~ . In particular, the
diameter of (M, g(t)) is uniformly bounded from above ast — T~.

Remark 1.4. (1) In the Kéhler case, condition () holds automatically, and this result is contained
in the work of Song and the second-named author [SW13a] (see the discussion at the end of § 3).
Our proof of Theorem 1.3 makes use of several arguments from [SW13a).

(2) It is not difficult to construct initial data wgy so that (x) holds. See Remark 3.1 below.

(3) Condition (x) will not hold for general choices of wp. Indeed we will show in
Proposition 3.6 that it is equivalent to dwy = 7*(df) for some [, which implies that dwo=0
on the exceptional divisors of m, and this last condition does not hold in general (see Remark 3.7
below).

(4) On the other hand there is another condition which is weaker than (x) and always holds,

see Proposition 3.8.

We give the proofs of Theorems 1.1 and 1.3 in §§2 and 3 respectively.

Examples of collapsing

In the second part of this paper we give a number of explicit examples of collapsing for the
Chern—Ricci flow on non-Kéhler surfaces. First of all recall that as a consequence of the Kodaira—
Enriques classification [BHPV04], all minimal non-Kéhler compact complex surfaces fall into the
following classes:

(i) Kodaira surfaces;

(ii) minimal non-Ké&hler properly elliptic surfaces;
(iii) surfaces of class VII with ba (M) = 0;
(iv) minimal surfaces of class VII with ba(M) > 0,

where a Kodaira surface is a minimal surface with b;(M) odd and Kodaira dimension 0,
a surface of class VII is a surface with b;(M) =1 and Kodaira dimension —oo, while a
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properly elliptic surface is an elliptic surface with Kodaira dimension 1. Furthermore, thanks
to [Bog82, Kod66, LYZ94, Tel94] we know that the surfaces in (3) are all either Hopf surfaces
(i.e. with universal cover C?\{0}) or Inoue surfaces [[no74]. Explicit examples of Gauduchon
metrics are known for all surfaces in (1), (2), for all Inoue surfaces and for some Hopf surfaces,
thanks to [GO98, Vai87, Wal86]. Less explicit Hermitian metrics on some surfaces in (4) were
constructed in [Brull, FP10, LeB91].

Our goal is to construct explicit solutions of the Chern-Ricci flow on surfaces in (2), (3)
(see Remark 1.7(4) for the class (1)), and to determine their Gromov—Hausdorff limits as time
approaches the maximal existence time of the flow. We consider a family of Hopf surfaces, the
Inoue surfaces, and non-Kéhler properly elliptic surfaces.

Remark 1.5. We do not address class (4) in this paper. These surfaces are of great interest since,
except for the case bo(M) =1 [Tel05], they are not yet completely classified. Unfortunately, it
appears to be more difficult to write down explicit metrics on these manifolds and we could not
find solutions to the Chern—Ricci flow along the lines of those we found for (2) and (3). We plan
to investigate class (4) in future work.

First some notation. Let H, 3 be the Hopf surface H, 5= (C*\{0})/ ~, where

(2, w) ~ (az, fw),

for complex numbers «, 8 with |a| = |5| # 1. We will show that for all H, g we can find explicit
solutions of the Chern—Ricci flow which collapse to a circle in the sense of Gromov—Hausdorff in
finite time. In the case of Inoue surfaces we will find examples of the normalized Chern—Ricci flow
collapsing in infinite time to a circle, and for non-Kéhler properly elliptic surfaces, collapsing to a
Riemann surface. This is interesting because collapsing to a circle never happens for the Kéhler—
Ricci flow on Kéhler surfaces, where collapsed limits spaces always have even real dimension. On
the other hand, it is also interesting to compare this to results of Lott, Lott—Sesum for the Ricci
flow in real dimension 3 [Lot10, Lot07, LS11], where the collapsed Gromov-Hausdorff limits
at infinity of the normalized Ricci flow on geometric 3-manifolds (in the sense of Thurston)
are determined [Lot07, Theorem 1.2]. The complex surfaces we consider also have geometric
structures (with compatible complex structures), and in fact they are precisely all the surfaces
in classes (2) and (3) which have complex geometric structures [Wal86], and the behavior of the
Chern—Ricci flow that we discover is very similar to the behavior of the Ricci flow on geometric
3-manifolds.
More precisely we prove the following theorem.

THEOREM 1.6. (a) Let H = H, g be the Hopf surface as described above. Then there exists an
explicit solution w(t) of the Chern—Ricci flow on H for t € [0, 1/2) with

(H,w(t)) ¥ (8Y,d) ast—1/2,
where d is the standard distance function on the unit circle ST C R2.

(b) Let S be any Inoue surface. Then there exists an explicit solution w(t) of the Chern-Ricci
flow on S for t € [0, c0) with
t
<S, wi)> GH, (S, d) ast— oo,

where d is the standard distance function on the unit circle S* C R2.
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(¢) Let m:S — C be any non-Kahler minimal properly elliptic surface. Then there exists an
explicit solution w(t) of the Chern—Ricci flow on S for t € [0, co) with

(S, wit)) S (¢, dxg) ast — oo,

where dkg is the distance function on the Riemann surface C induced by an orbifold Kédhler—
FEinstein metric wgg on C which satisfies Ric(wkg) = —wkg away from the images of the multiple
fibers of m. We also have that m*wkg is a smooth form on S and w(t)/t — m*wkg smoothly on S.

Remark 1.7. (1) It was shown in [TW12, Theorem 1.5] that for any initial wg, the Chern-Ricci
flow collapses in finite time for all Hopf surfaces (e.g. H, g as above) and the normalized Chern—
Ricci flow collapses in infinite time for all Inoue surfaces and properly elliptic surfaces.

(2) The example in (a) above was given already in [TW12, Proposition 1.8]. What is new
here is that we prove the Gromov—Hausdorff convergence to a circle. In fact, we will prove the
same result for a family of higher-dimensional Hopf manifolds.

(3) The example in (c) should be compared with Song-Tian’s results on the behavior of the
Kéhler-Ricci flow on a Kéhler elliptic surface 7 : S — C over a curve C of genus at least 2 [STO07]
(see also [FZ12, GTZ13)).

(4) Tt is also not difficult to write down explicit, but less interesting, solutions of the
Chern—Ricci flow on the Kodaira surfaces. Indeed, there are explicit Chern—Ricci flat Gauduchon
metrics on all these manifolds [Vai87, (1.3)] and these give trivial solutions to the flow. In general,
it was shown by Gill [Gill11] that, in any dimension, whenever the first Bott—Chern class vanishes
the Chern—Ricci flow converges to a Chern—Ricci flat metric. Gill’'s result makes use of the
C° estimate of the authors [TW10] for the Hermitian complex Monge-Ampere equation (see
also [Blol1, Che87, DK12, GL10]).

The proof of Theorem 1.6 occupies §§4-8.

The Mabuchi energy

Finally, in §9, we give a definition of the Mabuchi energy functional for complex surfaces with
vanishing first Bott—Chern class. The Mabuchi energy is a well-known object in Kéhler geometry.
We show that this functional decreases along the Chern—Ricci flow. This result can be used to
give an alternative proof of the convergence part of a theorem of Gill [Gillll], in the case of
Gauduchon surfaces.

2. Proof of Theorem 1.1

Suppose we are in the setting of Theorem 1.1. Let w(t) be the solution of the Chern-Ricci
flow (1.1), which by assumption exists for ¢t€[0,7) with 0<7T <oco. As stated in the
introduction, the non-collapsing condition implies that there is a surjective holomorphic map
m: M — N blowing down disjoint (—1) curves Fji,..., Fy. Indeed the exceptional curves
E; are precisely the irreducible curves on M satisfying | B or=0 for ar =wy — TRic(wy)
(see [TW12, §6]). For simplicity we assume that there is just one (—1) curve E which gets
mapped by 7 to the point yp € N (the general case follows from the same proof).

We will first pick some good reference metrics w;. To do so, we need the following lemma,
which is an essential ingredient in establishing a version of Tsuji’s trick [Tsu88] for the
Chern-Ricci flow (see Lemma 2.2, part (ii) and Lemmas 2.3 and 2.4 below).
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LEMMA 2.1. There exists a smooth Hermitian metric h on the line bundle [E] such that for any
sufficiently small € > 0 we can find a smooth function f on M such that

ar —eRy, +V/—109f >0, (2.3)
where Ry, is the curvature of h and oy is given by (1.2).

Proof. The non-collapsing condition together with the results of [TW12, §6] imply that ar =

wo — TRic(wp) satisfies
/oz%>0, /aT:(), /aT>0,
M E c

for all irreducible curves C' C M different from E. We also have that

/ aT/\w/>0,
M

for any Gauduchon metric w’ on M. Indeed,

/ ar Aw' = lim wt)Aw' >0,
M =T M
and the case [ v T A w’' =0 cannot happen since Buchdahl’s ‘Hodge Index Theorem’ [Buc99,
Lemma 4] would imply that [, w® <0.

Let h be a smooth Hermitian metric on the line bundle [E]. Since [E] has self-intersection —1,
its curvature Ry, satisfies f g B = —1. If we pick € > 0 small enough and we put ar. = ar — Ry,

then
/a%5>0, /aT75/\w’>0.
M M

We claim that, after possibly changing the Hermitian metric h and choosing ¢ slightly smaller,
/ ar.>0 for all irreducible curves C' with C? < 0. (2.4)
C

Given the claim, it follows from Buchdahl’s Nakai—-Moishezon criterion [Buc00] that there exists
a smooth function f (depending on ¢) such that ar . + /—199f > 0, as required. We separate
the proof of the claim into two cases.

(i) M is non-Kdhler. In this case M has only finitely many curves of negative self-intersection
(see [Tel06, Remark 3.3]). Let C' be any such curve. Then either C'=F or else [, ar >0,
because we know that F is the only curve whose intersection with ar is zero. We have that
Jpore=—cE-E=¢>0, and if C is different from E then

/OéTﬁ:/ OéT—EC'E.
C C

Since there are only finitely many such curves C, it follows that we can choose € > 0 small so

that
/ are > 0,
C

for all such C. This completes the proof of the claim (2.4) in the non-Ké&hler case.

(ii) M is Kdhler. We assume now that M is a Kéhler surface, which implies also that N is
Kahler, and fix Kéhler metrics wys, wy on M, N respectively. We apply Buchdahl’s Corollary 9
in [Buc99] to the dd-closed (1, 1) form ar which shows that there exists a (0, 1) form 7 and a
d-closed (1, 1) form a such that

ar + 0y + 0y =a.
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By the definition of the blow-down map 7, we may write the deRham class [a] as [a] = [7*(] + ¢[E]
for a d-closed (1,1) form 5 on N and some c € R (see for example [BHPV04, Theorem 1.9.1]).
Intersecting with E we see that ¢ =0 and hence

ar + 0y + 9y =70, (2.5)

for a possibly different form ~.
We wish to show that [5] is a K&hler class on N, and we will use the Nakai-Moiszhezon
criterion in the Kéhler case due to Buchdahl [Buc99] and Lamari [Lam99]. From (2.5) we infer

that
dar +00y=0, Oar+ 00v=0. (2.6)
For any irreducible curve C' C N with C? < 0 we have
/ﬁ:/ (aT+87+87):/ ar >0, (2.7)
C m=C = C

using Stokes’ theorem.
Next calculate

/ﬂz—/ W*,Bz—/ a%+2/ ozT/\((?’y—i—(?'y)—i-Q/ 0y A 0.
N M M M M
Using (2.6) we have

2/ ozT/\afy:—Z/ 80@/\7:2/ 867/\7:—2/ 87/\87:—2/ oy A 07,
M M M M M

2/ aT/\G"y:—2/ 604T/\fy:2/ 837/\7:—2/ 0y A 07,
M M M M

/52:/ a%—2/ 0y A 0.
N M M

But because [, w3, >0 and [}, war A (87 +97) =0 we can apply [Buc99, Lemma 4] and
conclude that

and

and so

/(8%87)2:2/ &y A0y <0,
M M

and so
/ 52 >/ a3 > 0. (2.8)
N M
Next,
/ B/\wN:/ Tr*ﬁ/\w*wN:/ or ANmfwy = lim w(t) Nm*wn =0,
N M M =T

since dwy = 0. For § > 0 sufficiently small wy + §3 is Kéahler and

/ﬁA(wN+5ﬁ)>5/52>o. (2.9)
N N

Therefore, combining (2.7)—(2.9) we can apply the Nakai-Moishezon criterion of Buchdahl and
Lamari to conclude that there exists a function f on N such that ﬁ~ =3+ +/—100f is Kahler
on N. It follows from the construction of the blow-down map (see for example [GH78, p. 187])
that we may pick a Hermitian metric h on [E] such that 7* 3 — Ry, is Kéhler on M for all € > 0
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small. Then with this choice of h, for any irreducible curve C' C M with C? < 0, we have

/COzT,g = /C(aT —eRy) = /C(W*B —eRy) >0,

because [, 0y = 0 by Stokes’ theorem. This finishes the proof of the claim (2.4) and the lemma. O
Define &r = ar + v/—109f with f given by the lemma. Note that in general &7 is not a

metric, but by the lemma wp — Ry, is a metric. Define reference forms @, = (1/T)((T' — t)wo +
twr). By shrinking € > 0 if necessary we may assume without loss of generality that wy — e Rj, >
fwo. H

swo. Hence,

1
wy —eRy, = T((T —t)(wo — eRyp,) + t(or — eRy)) = cowo > 0, (2.10)

for some ¢y > 0. Note that from now on we assume that € > 0 is fixed.

This argument above crucially uses the fact that we are in complex dimension 2. However,
since the calculations that follow do not require this restriction on dimension, we write n instead
of 2.

If we let ¢ solve

0 w(t)™
Y o=l ol —
ot ®Tq li=0 =0,

with Q= wlef/T then we can write the solution of the Chern-Ricci flow w(t) as w(t) =
O + v/ —100¢ (see [TW12, §4]). Fix a holomorphic section s of [E] vanishing to order 1 along F,
so that on M’ = M\E we have that Rj, = —v/—100 log |s|2. Given what we have proved, the
following result can now be established using the arguments of [TZ06] for the Kahler—Ricci flow.

LEMMA 2.2. There exists a uniform C' such that:
(i) ¢<C;
(i) if we let ¢ = —elog |s|2, then ¢ > —C;
(iii) ¢ < C.
Proof. For (i), note that @ is bounded from above for ¢ € [0, T]. Then the upper bound of ¢
follows from the maximum principle applied to the equation

((fdt + v _18590)71
Q )

g =lo

as in [TW12, Lemma 4.1].
For (ii), first note that ¢ — oo along F and hence for each fixed time ¢, the function x — @(z, t)
attains a minimum at some point in M’. Then compute at the minimum of ¢,

0 . (& — eRp + /—100p)"
o ¢ = log
ot Q
(cowo)"

Q ¢
where we have used the estimate (2.10). The lower bound of ¢ follows from the minimum
principle.

Part (iii) follows from considering the evolution of @Q =t —¢ —nt as used in the
Kéhler—Ricci flow in [TZ06] (in the case of the Chern—Ricci flow, see the second part of [TW12,
Lemma 4.1]). Indeed,

> log

WV

0
(280 mmzo
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so that by the maximum principle, @ is uniformly bounded from above. Using (i), ¢ is bounded
from above. U

One comment about notation. If g and ¢’ are Hermitian metrics with corresponding (1, 1)
forms w and «’, then we will write interchangeably

try g =tr, o,
for the trace of the metric ¢’ with respect to g. Next, we have the following lemma.

LEMMA 2.3. There exist uniform positive constants C, A such that
1
W > s

Proof. We apply the maximum principle to

n

Q=1log 20 — 4,
w

for A a constant to be determined. Note that Q — —oo on E. Compute at a point of M\ E,

<(§t — A)Q = tr, Ric(wg) — Ap + Atry, (w— (& —eRy))

n

= —tr, (A — 1)(& — eRp,) — Ric(wy)) — A log %
—try, (O — eRp) + An.
From (2.10) we may choose A sufficiently large so that for all ¢ € [0, T,
(A —1)(&r — eRp) — Ric(wpy) = wp.
Note that by the arithmetic-geometric means inequality,

try (W — eRp) = ¢o try, wo = c(> ,

wTL
for a uniform ¢ > 0. Then

1/n
(8—A>Q<—trwwo+AlogQ—c<Q> + An
ot wn wn

< —try, wo + C,

using the fact that z — A log z — ca'/™ is bounded from above for z > 0. It follows that tr,, wo < C'
at the maximum of @) and hence wjj /w™ is uniformly bounded from above at this point. But note
that —¢ is uniformly bounded from above and hence () is uniformly bounded from above, and
the result follows. O

In the next lemma we make use of a trick of Phong—Sturm [PS10], which we employed in our
previous paper [TW12].

LEMMA 2.4. There exist uniform positive constants C, A such that

o 9 S e

Proof. Choose a constant Cj so that ¢ + Cy > 1. We compute the evolution of

1
=logtry, g— Ap+ ————,
Q g trg, g @ 51 Co

2109

https://doi.org/10.1112/50010437X13007471 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X13007471

V. TosaTrTi AND B. WEINKOVE

for A to be determined (assume at least that Ae > 1). The idea of Phong-Sturm [PS10], used in
their study of the complex Monge-Ampere equation, is to make use of the quantity 1/(® + Cp).
Note that 1/(¢ + Cp) is bounded between 0 and 1.

From Lemma 2.2(i) it is sufficient to show that @ is bounded from above. Observe that @
tends to negative infinity on E. From [TW12, Proposition 3.1] (see also [TW12, (4.2)]) we have

o 2 175
t < e p o5t +C't .
( A) lOg Igo § X ( ) )2 R (g (%)kz 7 g, g) C Iy 9o, (2 11)

assuming, without loss of generality, that we are calculating at a point with try, g > 1. To bound
the first term on the right-hand side, we note that at a maximum point of ) we have 9;Q =0
and hence

1 1
——0itrg, 9 — A0ip — 500 = 0.
trgo g i Wgo 9 i (SO+CO)2 iP

Thus at this maximum point for @,

s (4 G )0

’895’3 2 trg go
<——= +CA% (¢ + C 397,
Gy O PTG

for a uniform constant C. If at the maximum of @ we have (try, g)* < A%(@ + Cp)? then at the
same point we have

mw%nm%wﬂﬂ

<

3 1
<log A+ 2 log(p+ Cp) — AG + — <Oy,
Q < log +20g(<ﬁ+ 0) “0+<p+co A

for a constant C'4 depending on A, and we are done. If on the other hand at the maximum of @
we have A2%(@ + Cp)? < (try, g)? then

2 0|2
—— —= 4+ (Ct .
(trg, 9)° (G+CoB e

Now compute at the maximum of @), using (2.11) and part (iii) of Lemma 2.2,

0
o< (2-a)e

m@W%m@Wwﬂg

0217 < 1 )
S-mr-nvl Ct — A+ ——— )¢
(SOJFCO)?’jL to 90 (¢ + Co)? 4
A+ —— | tr, (w— (0 — R
+< +(¢+Co)2> r, (w— (W —eRy))
2
-2 _195/?
(¢+Co)3| Pl
Q
<Ctrggo+ (A+1)log ot (A+1)n— Atr, (0 —eRp) + C. (2.12)

But recall that we have that w; — e R, > cowp, and so we may choose A sufficiently large so that
at that point

Q
trg go < Clog — + C.
wn
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Hence at the maximum of @,

_1detg w™ 0 \" !
n—1 g - 1 o g /
dot g0 CQ<ngn> +C<C,

1
trg, g < m(m‘g 90)

because we know that w"/Q < C (Lemma 2.2(iii)) and x + xz[log 2|*~! is bounded above for =
close to zero. From part (ii) of Lemma 2.2, this implies that @ is bounded from above at its
maximum, hence everywhere. This completes the proof of the lemma. O

Combining Lemmas 2.3 and 2.4 gives uniform bounds above and below away from zero for
w(t) on compact subsets of M’. To obtain C{X.(M’) estimates, we apply the local estimates of
Gill [Gillll, §4]. Convergence follows immediately from this, as in the proof of Theorem 1.6
of [TW12]. This completes the proof of Theorem 1.1.

3. Proof of Theorem 1.3

Assume the hypotheses of Theorem 1.3. As discussed above, we know that there exist finitely
many disjoint (—1) curves E, . .., B such that [ g, @r =0, where we recall that oy is given by
(1.2). As in the previous section we assume for simplicity that k=1 and write F for the (—1)
curve. By assumption (x), there exists a function f on M and a smooth real (1, 1) form § on N
such that

ar +v—100f = n* 3. (3.13)
Remark 3.1. Tt is straightforward to construct initial data wy on M so that (%) holds. Indeed,

let wy and wy be any Gauduchon metrics on M and N respectively, and fix 7' > 0. Then we
claim that for C' > 0 sufficiently large, there exists a smooth function f on M so that

wo := Cm*wy + T Ric(wpr) + V—=10df

is Gauduchon, and the flow starting at wp will be non-collapsing at 7', satisfying (%) with
8 =Cwy. Indeed, as the reader can verify, it is enough to check that wq is positive definite.
If #: M — N is the blow up map, then the canonical bundles on M and N are related by
Ky =7*Ky + [E]. Tt follows that we can define a smooth Hermitian metric h on [F]
by hwh; = m*wy;. Then
Crn*wy + T Ric(wy) = Cn*wy + T'n* Ric(wy) — TRy,

and for C' >0 sufficiently large, we have %C’W*wN + T'7* Ric(wy) =20 and (see for example
[GHT8, p. 187]) :Cn*wy — TRy, ++/—100f > 0 for some smooth function f on M. Thus with
these choices of C' and f, wg is positive definite.

We first show that, after replacing f by another smooth function, we may assume that [ is
a Gauduchon metric on V.

LEMMA 3.2. There exists a smooth function f’ and a Gauduchon metric wy on N such that
ar +V—=190f = rwy. (3.14)

Proof. From (3.13) it immediately follows that 993 = 0. Furthermore, we obviously have [ N B% >
0 and fC 6= fﬁ* o ar >0 for all curves C' in N. Let v be any Gauduchon metric on N. Then

/5/\7:/ W*BAw*vz/ ap Am'y= lim [ w(t)A7"y>0.
N M M t—T— M
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For 0 > 0 sufficiently small v + 6 is positive definite and

/NﬁAw+5ﬁ>>5/N52>o.

Therefore Buchdahl’s Nakai-Moishezon criterion [Buc00] gives us a function h on N such that
B+ +/—190h > 0. Defining ' = f — 7*h and wy = 3 + /—100h we then obtain (3.14). O

As a consequence of this, we have that 7*wxn — wyp is a d-closed form, so that dwy = 7*(dwy).
This implies that the torsion tensors of wy and 7*wy are related by

(To)5¢(90) 5 = (Owo) g = (7" Own) s = (7T )5, ("GN ) - (3.15)

This equality is crucial in the arguments that follow. We may choose a smooth metric h on the
fibers of [E] with curvature Ry, and €p > 0 small such that

m*wy — Ry, > 0. (3.16)

Indeed this follows again from the argument in for example [GH78, p. 187].

As in the previous section, we write s for a defining section of F, and since the calculations that
follow do not require the dimension to be 2, we write n instead of 2. From [SW13a, Lemma 2.4]
we have that

C
wo < —5 T WN. (3.17)
s h

Furthermore, if we define w; = (1/7)((T — t)wo + t7*wy) then from (3.16), we have
Wy —eoRp, = cowp, forall 0 <t < T, (3.18)
for a uniform ¢y > 0. Moreover, w(t) = & + v/—199p(t) for t < T where ¢ solves

0 w(t)™
agp = lOg (52) ) SD’t:O = 07

with Q :wgef/T. Since wr = wy =0, we can apply [TW12, Proposition 5.1] to obtain the
following lemma.

LEMMA 3.3. There exists a uniform constant C such that:

(1) lel <C;
(i) ¢ <C.

Note that we already have (ii) from Lemma 2.2. The point of Lemma 3.3 is that the condition
wr >0 gives us a lower bound for . The following two lemmas give analogs of the estimates
of [SW13a, Lemma 2.5(i)]. There are significant additional technical difficulties arising from the
torsion terms, and we need to employ again the Phong—Sturm trick [PS10]. First see the following
lemma.

LEMMA 3.4. There exists a uniform constant C' > 0 such that
C

WL 5T WN.
|5|h
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Proof. For notational simplicity denote by & = m*wy, which is a metric on M’ = M\E. First,
we apply the calculation of [TW12, Proposition 3.1] to obtain, on M’,

9 2 ~0i gk
(875 — A) log try g < W Re(g"g? (To)kz(go)pe& trg g) +Ctry g

_ @[gﬁgék(@i(m(%)kﬁ) + @Z((To)fk(go)p;))
B gjiggki;qf(TO)?k(QO)pa],
where C' depends only on the curvature and torsion of wy, and where V denotes the pullback

of the Chern connection of wy. We now use the identity (3.15) four times in the last equation
to get

0 2 o )

1 5o = Tk Tk~
" trs g[gﬂviTjeé + gﬂ Ekgmv Tp a ]Z ekgpqq}quzZ;c]
g
L Ctry g
< ——— Re(¢™*T},05try g) + Ctry § + 22, 3.19
(trg 9)2 ( ki g ) g rgg ( )

Now take § > 0 and consider

Qs =log trg g + log |s|i(1+5) —Ap+ 51y
where ¢ =¢ — ((146)/A)log|s|? and ¢+ Cp > 1, so Qs goes to negative infinity as x tends
to E. Our goal is to prove that Qs < C independent of §, since we can then let d go to zero and
we are done. It is obvious that at the maximum of ) we can assume that try g > 1.

At this point the proof proceeds in exactly the same way as in Lemma 2.4. Indeed, at a
maximum point of ()5 we have

1
——0;jtrg g — A0ip — ————50;0 =0,
trgg 09 T @+ o2
for all 4. Thus at this point,
e R Tt )|
<|-% Re A+——i—— T ()
trg g ( CO) g ki qu
|895|§ 2 3 trg g
<——F=5+CA + Cy g ,
(@ +Co)? o+ ol (trg 9)°

for a uniform constant C. If at the maximum of Q5 we have (tr; g)* < A%(¢ + Cj)® then at the
same point we have

3
Qs <log A+ = log(<p+Cg) A<p+ < Oy,

+Co
for a constant C'4 depending on A, and we are done. If on the other hand at the maximum of
Qs we have A%(p + Cp)? < (try g)* then

Ny 0p|?
Re(g* T} .07 tr; g)| < JLL] + Ctry g.
(trg 9)? S (¢ + Co)? !
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Now compute at the maximum of @5, using (3.19) and part (ii) of Lemma 3.3,

7’8953 + C tr §—<A+1 )gb
(@ +Co)? 7 (@ + Cp)?

1 . (1+5)Rh> 2 ~19
A+ ———— ) tr, — — — 0
+< +(@+Co)2> ' (“" “t Ty G+ G017l
(1+6)Ry,
a1 + C.

Q
<Ctrg§+(A—l—l)log;J—F(A—l—l)n—Atrw <¢Dt—

For A sufficiently large, we have from (3.18),

@_(1+5)Rh i
t A = CQW(Q-

Hence, recalling that try § < Ctrg go, we see that we may choose A sufficiently large (and
independent of 0) so that at that point

Q
try go < C’log—+C’

Hence at the maximum of Qs,

1 det g w" o\
t < —(t n—l <Y (1og == c<c,
Tgo 9 (’I’L — 1)‘( Tg 90) det go Q < 0g > +
because we know that w"/Q < C (Lemma 3.3(ii)) and x +— z|log x|*~! is bounded above for x
close to zero. On the other hand from (3.17) and part (i) of Lemma 3.3, this implies that Qs
is bounded from above at its maximum, hence everywhere, uniformly in ¢. Using Lemma 3.3(i)
again completes the proof of the lemma. O

We will make use of Lemma 3.4 to prove the following.

LEMMA 3.5. There exists a uniform n > 0 and C' > 0 such that

C

w ————
s 2(1-n)

wo. (3.20)
[sl},

Proof. As in the previous lemma, we write & = 7*wy. Define on M’,

2(1+5) 1 n _ (3.21)

Ao+ = .
v+C o+ C

Qs = log try, g + Alog((try g)|s|

where 1/; and ¢ are defined by

) 146
b= = log((tr 9)lsly ) + g, pi=— = loglsl;

so that in particular

Y = —log(try g) + AP, (3.22)
and we may write
~ 1 1
Qs =logtry, g — AY + —— + ——=. 3.23
! b+C  p+C (3.23)

The constant C'is chosen so that 1; +C >land ¢ + C > 1 (we can find such a constant C because
| is bounded, and (tr; g)|s|2 is bounded from above by Lemma 3.4). The constant A > 0 is to
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be determined. Observe that ()5 is the quantity used in [SW13a, Lemma 2.5] with the addition of
two ‘Phong-Sturm terms’ 1/(¢) + C) and 1/(p + C). We have that Qs tends to negative infinity
along FE.

We wish to show that Qs is bounded from above. From Lemmas 3.3 and 3.4, it suffices to
show that we have a uniform upper bound for try, g, independent of § at a point where Qs
achieves a maximum. Recall from (2.11) and (3.19), there exists a uniform constant C such that

(gt R A) 1og trgo 9 < Cotrg go Re(g™ (To) g trg, 9), (3.24)

_ 2
(trgo 9)2
and

T Re(quflﬁi&j try g), (3.25)

where we are assuming, without loss of generality, that we are working at a point with try g >1
and try;g>1 (note that trg, g < Ctrgg). Observe that the inequality (3.25) makes use of
condition (x).

Compute using (3.23), (3.24),

0 ) 2
— —A)logtryg<Cotrg g+ ——5
( ! 77 (trg g)?

Re (97" (Ty) 107 trg, 9)

0
(at—A)Qa < Cp trg go +

(trgo g) 2

(e gren) @)

+
- joaf - 02
G+CpP T Grep
Hence, using (3.25),
d p o A
<at B A) Qs < O trg g0 + =3 Re(g™ (To)ji0 try, 9) + Col(4 + 1) try §
9o
1 P o
+ (A-f— UL T g Re(g?T},07 tr; g)
g
- (A <A n

1 o (14 0)Rn
+<A<A—l—( o) (()5_’_6)2)'51% <w t‘f‘iA >
_# ~2_L ~12

Grop T Grap ™l

For all A sufficiently large, we have from (3.18),
T AL — (14 0) Ry, = cowo.
Hence, we may choose A sufficiently large (and independent of §) so that
A% — AL+ 6)Ry, = A% + A(RAdy — (14 6)Ry,)
> Co(A+ 1w+ (Co + 1w,
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for Cy as above. Hence for this choice of A,

o _ .
( - A) Qs < —trggo + Re(qu(To)Zi% trg, 9)

ot (trg, 9)?
(A + ! > N Re(g™* T}, 85 tr; g)
(W + C) (trg g)? v
By |02~ ———_|0p2 4 C
W+ C) (¢+0C)3

for B= A% + A+ 1, where we are making use of Lemma 3.3(ii). At a point where Qs achieves
its maximum, we have

1 1 ~ 1
—Ogtrg, 9= A+ ———== >& + ——=-070.
trg, g 7Y < o) Grer™”
Observe also that from (3.22)

1 ~ ~
i gaq—trg g=—0g9 + Adgp.

d C"(A+1)2%@+C)3 1 -
_ < —_
(& A>Q“\t%%+ (trg, 9)? mﬂ”+w+0ﬁww9

"

1
+—stry g9 +-——==
(trg, 9)* 777 (p+C)3
C"(A+1)>2*(+C R 1 -
WD g — o
(trg 9) (¢4 O)
C"A+ 1D e +C) . 1
A CP 1
(trg 9) (p+0C)3
2
— B — ———— |02 — ——=—|0¢[2 + C".
(P + C) vl (@ +C)3| L
But we may assume without loss of generality that at the maximum of (s, we have
(trg, 9)* = 4C"(A +1)*(¢ 4+ C)? otherwise Qs is bounded from above and we're done. Similarly,
since trg, g < C'trg g, we may assume that (trg 9)? > 4C"(A+1)*(+ C)3 and (tryg)* >
4C"(A + 1)4(¢ + C)3. Hence

Hence

1031

032

0 1 w™
<at_A>Q6<_4trggo_Blogu)g’+C,’

and we can conclude as in the proof of Lemma 2.4 that try, g is bounded from above at the
maximum of @Js. It follows, using Lemma 3.4 and the uniform bound on ¢ that ()5 is bounded
from above uniformly in §. Letting § — 0, we obtain

log trg, g + Alog(try g)|s|; < C

The lemma then follows from the same argument as in [SW13a, Lemma 2.5]. Indeed, since
trg, g < C'try g, we have

log(trg, 9)* st < C,

and the estimate (3.20) follows with n=1/(A + 1) > 0. O
We can now easily finish the proof of Theorem 1.3 following the arguments of [SW13a].
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Proof of Theorem 1.3. Identify a small neighborhood of yg € N with a small ball B centered at
the origin in C2, and consider w(t) as a metric on B\{0}. Then we have the following estimates.

(i) Let S, be a small sphere of radius > 0 centered at the origin in B. Then the diameter of
S, with respect to the metric induced from w(t) is uniformly bounded from above, independent
of r.

(ii) For any x € B\{0}, the length of a radial path v(\) = Az for A € (0, 1] with respect to
the metric w(t) is uniformly bounded from above by C|z|" for a uniform constant C.

Indeed, (i) follows from Lemma 3.4 and the argument of [SW13a, Lemma 2.7(i)]. For part
(ii), note that from Lemma 3.5 we have

—2(1—
V2 <Ol 2P < sl

for V the vector field V = 2,0/8z; on B. This is because |V|2, < C|s|?, as can be seen by writing
down an explicit metric on B which is uniformly equivalent to wy (see e.g. [SW13a, Lemma 2.6]).
Then (ii) follows from the argument of [SW13a, Lemma 2.7(ii)].

Given (i) and (ii), the proof of Theorem 1.3 follows exactly as in [SW13a, §3]. O

Let us now discuss condition () in more detail. As before let 7 : M — N be the blowup of
finitely many points y; € N with exceptional divisors FE;.

PRrOPOSITION 3.6. The following are equivalent.
(%) There exist a function f € C*°(M) and a smooth real (1,1) form 3 on N such that

ar +v—100f = 7% . (3.26)
(%) There exists a smooth real (1,1) form  on N such that
dwy =7 (dp). (3.27)

Furthermore, either of these implies that for any i and for every point x € F; we have that
(dwo)z = 0. (3.28)

Proof. 1t is obvious that (k) implies (**). As before, for simplicity we can assume that 7 is the
blowup of N at one single point yp, with exceptional divisor E. To see that () implies (3.28), fix
x € E and write T, M =T, E & H for some complementary real 2-dimensional subspace H. For
any vector X € T, M while X = X' + X" with X' € T, F and X" € H. Note that by definition
we have m, X’ = 0. Then for any three vectors X, Y, Z € T, M we have
(dwo)z(X,Y, Z) = (dﬂ),r(x) (m X, .Y, m Z)
= (dﬁ)ﬂ(l‘) (W*X”v W*Yﬂa 71—*Z”) =0,
since m X", 7, Y" m.Z" belong to a real 2-dimensional plane, while d3 is a 3 form.

Now we show that (#*) implies (*). Consider the metrics along the Chern-Ricci flow
w(t) = wg — t Ric(wg) + /—199p(t). Viewing w(t) as currents, their mass is bounded by

/ w(t) Nwo= / (wo — t Ric(wp)) Awo < C
M M

independent of ¢, so by weak compactness there is a sequence t; — T and an L' function ¢ such
that ¢(t;) converges to @7 in L'. Furthermore, we know from Theorem 1.1 that o7 is smooth
away from F. Call

wr =wo — T Ric(wp) + vV —190¢7,
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which is a 90-closed positive real (1, 1) current on M, smooth away from E. Furthermore we
have that dwp = dwg is a smooth form. Consider the pushforward current m,wp. It is a d0-closed
positive real (1, 1) current on N, smooth away from yp, and it satisfies

dmwp = Tyedwy = e (df3).

Now, for any smooth 2 form ~ on N, if we first pull it back as a form 7%y and then push it
forward as a current m,7*y, we get back the same current . Indeed, for any test 2 form ) on N

we have
/ YN Ty = / T N Ty = / A, (3.29)
N M N

where the last equality holds because 7 is bimeromorphic. It follows that dm.wr = df, or in other
words the (1, 1) current muwp — (3 is d-closed. Therefore it is locally dd-exact, i.e. there exists an
L' function F defined on a neighborhood V of 1 such that

Tewr =+ —100F

holds as currents on V. Furthermore, F' is smooth away from yg (by regularity of the complex
Laplacian Ag = try, (v/—1939)). Fix a smooth cutoff function p which is identically zero outside
V' and identically 1 on a smaller neighborhood U C V' of yg. Then the function pF' is defined
on the whole of N and smooth away from yy. Now consider pF o, which is an L' function on
M, smooth away from E, so we can define 7*3 + /—1909(pF o ), which is a real (1, 1) current
on M, positive on 7= 1(U). We have that

y=wr — 7B — V=109(pF o )

is a real (1,1) current on M which is d-closed and smooth away from E. Furthermore its
restriction ’y\ﬂ_l(U) is supported on F, and it is written as the difference of two positive currents.
This last condition implies that its coefficients are measures, and so 7|17y is a flat current
(in the terminology of [Fed69]), and Federer’s support theorem [Fed69, 4.1.15] implies that
Y|z—1(r) = AlE] for some real constant A\. However, integrating v over E we see that A =0 and
80 Y|z-1(rry = 0. Therefore we have that v = 7*n for a smooth d-closed real (1,1) form n on N.

Therefore,
V—=190(pF o — 1) =wr — (B + 1) — V—1000r
=wo — T Ric(wo) — (8 + 1),
which is smooth, so by regularity of Ay, we have that pF om — o = —f a smooth function on
M, which satisfies (3.26) with 3 replaced by 5 + 7. O

Remark 3.7. Tt is easy to see that the condition dwy|p =0 does not hold for all choices of wy.
Indeed, fix a point z in E and suppose that (dwg), = 0. Define a (0, 1) form on C? by vy = 21Z3dz1
and, by identifying a neighborhood of z in E with a ball centered at the origin of C?, and
extending v in an arbitrary way outside of a neighborhood of x, we may consider v as a (0, 1)
form on M. Consider @y = wg + (9 + 07) for € > 0. As long as ¢ is sufficiently small, &g is a
Gauduchon metric. But one can check that (d@y), # 0.

Let us now remark that a weaker version of condition (x) always holds.
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PROPOSITION 3.8. There exist a smooth (0, 1) form v on M and a smooth real (1, 1) form (3 on
N such that

ar + 0y + 0y =7"p. (3.30)
Proof. We can again assume that there is only one exceptional divisor FE. Recall that the
Bott—Chern cohomology group of a compact complex manifold M is
_ {d-closed real (1, 1) forms}
{V=100¢ | ¢ € C>(M,R)}’

Hy (M, R)

while the Aeppli cohomology group is

Hi’l(M, R) = {ag—closeireal (1,1) forms}'
{0y + 07 [y e A® (M)}

These are finite-dimensional real vector spaces, and when n =2 they are isomorphic. In fact,

Hyl (M, R) = Hy' (M, R)* through the pairing Hpy (M, R) x Hy' (M, R) — R given by wedge

and integration (see e.g. [Sch07]).

First of all recall a few facts from [Fuj81, pp. 737-738]: the Bott—Chern cohomology group
Héé (M, R) is isomorphic to the group one obtains by replacing in its definition smooth forms
with currents. Therefore one has not only a pullback map 7*: Hé’é(N ,R) — Hé’é(M , R) but
also a pushforward map m, : Héé (M,R) — Hé’é(N , R) induced by the pushforward of currents.
Whenever 7 is bimeromorphic (such as in our case), then m,m* =1Id (cf. (3.29)), which implies
in particular that 7* : Hllg’é(N, R) — Hé’é(M, R) is injective.

The exact same statements hold for the Aeppli cohomology (see e.g. [Sch07, p. 16]).

Now [Fuj81, Proposition 1.1] gives us the following exact sequence
0— R[B] — Hyh(M, R) ™ Hyl(N, R) —0,
which splits using the map 7*, and so
HEL(M,R) = Hg (N, R) & R.
Therefore we also have
HYY(M,R)= Hy' (N, R) @ R.

We wish to identify the image W*Hllgl(N, R) C Hi’l(M, R). We have just proved that
dimp coker 7* = 1. We have the Poincaré-Lelong formula

27[E] = ng + V—199 log |s|, (3.31)

where ng is a d-closed smooth real (1, 1) form cohomologous to 2mci([E]), and so it defines a
Bott—Chern cohomology class [ng|pc with the property that for any Aeppli class [)]a on M we

have
/ 77E/\¢:27T/ .
M E

Therefore we can define a linear functional

F:H ' (M,R) —R, F([¢]a)= /M ng A

which is obviously surjective, so codimpg ker ' = 1. But we also have that W*H/i’l(N ,R) Cker F
and since we have just proved that these two spaces have the same dimension, it follows
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that W*Hi’l(N, R) = ker F. In other words, the sequence
0— HY (N, R) D HY (M, R) LR — 0,

is exact.
In our case we have F([ar]a) =27 [, ar =0, and so [ar]s =7*[F]s for some 90-closed
smooth real (1, 1) form 5 on N. By definition of Aeppli class, this is precisely (3.30). O

We end this section by describing more precisely the conjecture mentioned in the introduction.
Assume we are in the setup of Theorem 1.1, and continuing with the same notation, we expect
that the following results hold.

(i) Ast — T, the metrics g(t) converge to a smooth Gauduchon metric gr on M’ in C2° (M)

loc
(i.e. the result of Theorem 1.1). Using 7, we may regard gr as a Gauduchon metric on N'.

(ii) Let dg,. be the distance function on N’ given by gr. Then there exists a unique metric
dr on N extending dg, such that (N, dr) is a compact metric space homeomorphic to N and
(N, dr) is the metric completion of (N’, dg,.).

(iii) The metric space (M, g(t)) — (N, dr) as t — T~ in the Gromov-Hausdorff sense.

(iv) There exists a smooth maximal solution g(¢) of the Chern-Ricci flow on N for ¢t € (T, T)
with 7' < Ty < oo such that g(t) converges to gr as t — T in CP2(N’). Furthermore, g(t) is
uniquely determined by go.

(v) The metric space (N, g(t)) — (N, dr) as t — T in the Gromov-Hausdorff sense.

These results were proved for the case of the Kéahler—Ricci flow by Song and the second-named
author [SW13a, SW11]. With the terminology of [SW13a, SW11], we say that g(t) performs a
canonical surgical contraction if this occurs.

If the condition (%) is imposed, Theorem 1.3 shows that we obtain (ii) and (iii), except for the
statement about identifying (N, dr) as the metric completion of (N', d4,.). We do not expect that
there is any fundamental obstacle to establishing (iv) and (v) under the condition (%), since the
methods used (estimates obtained via the maximum principle, the weak solution constructed by
Song—Tian [ST09], the results of Kolodziej [Kol03]) can most likely be generalized to this setting
(see e.g. [DK12]). Nevertheless, there are considerable technical challenges here.

We expect there are more difficulties in proving the full statement of (iii) (including the
identification of the metric completion of (N’,dy,) as in [SW11]) or removing the assumption
(*). These problems may require new techniques.

4. The Hopf surfaces

In this section we give a proof of the first part of Theorem 1.6. In fact, we consider more general
Hopf manifolds, of complex dimension n. Define H = (C™"\{0})/ ~, where

(215 oy 2n) ~ (@121, - -+, O Zn),
where || =+ - = |ay| # 1. Following [TW12, § 8] we consider the metric
i
wg = %\/ —1dz; N d?j,
r
where 12 = |22 + - - - + |2,|%. We know from [TW12] that the metric

)\/ —1dz A dgj

1 ZiZj
w(t) =wy — t Ric(wy) = 3 ((1 —nt)d;; + ntzr?
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gives an explicit solution of the Chern—Ricci flow on H defined on [0, 1/n), and as ¢ approaches
1/n the metrics w(t) converge smoothly to the nonnegative (1, 1)-form

1 ZiZi
w() — 25 T dz A dz
T

n

THEOREM 4.1. Ast approaches 1/n we have that (H,w(t)) L (S, d), where d is the distance

function on the circle S* C R? with radius (log |a1])/v/27.

This proves part (a) of Theorem 1.6, since we can always scale wy by a constant to obtain as
limit the unit circle.

We recall here that Gromov—Hausdorff convergence of metric spaces can be defined as
follows [Ronl0]. The Gromov-Hausdorff distance dgu((X,dx), (Y, dy)) between two metric
spaces (X, dx) and (Y, dy) is the infimum of all € >0 such that there exist F': X —Y and
G:Y — X with

|dx (1, 22) — dy (F(z1), F(x2))| <& Vi, z9 € X,
and
dx(z,G(F(r))) <e VrelX,
together with the two symmetric properties for Y. Note that F,G are not required to

be continuous maps. If d; are metrics on X, we say that (X, d;) e (Y,dy) as t =T if
deu((X, dy), (Y,dy)) —0ast—T.

If furthermore we have finite groups H and K acting isometrically on (X, dx) and (Y, dy)
respectively, we can define the equivariant Gromov—Hausdorff distance between these spaces as
the infimum of all € >0 such that there exist maps F, G as above and maps ¢: H — K and
1 : K — H such that in addition we have

dx(F(h-z),¢(h) - F(z))<e, dx(F(p(k)-2), k- F(z)) <e,

for all z€ X, he€ H, k€ K, together with the two symmetric properties for Y (see [Fuk86],
[Ron10, Definition 1.5.2]).

Proof. On C™"\{0} write z; = x; + v/—1y;. A short calculation shows that the (1, 1) form w(1/n)
defines a nonnegative symmetric tensor h on C"\{0} by

hX,Y) = %((z X)Z-Y) 4 (JZ - X)JZ-Y)),

for

where J is the standard complex structure on C™. Define a real distribution D on C™\{0} by
D={X|h(X,Y)=0VY}.

Note that the condition X € D is equivalent to Z - X =0=JZ - X. In particular, since Z is the
radial vector field on C™\{0}, the distribution D is tangent to every sphere S?"~! centered at
the origin.

Fix a sphere $?"~! ¢ C"\{0}. Denote by Dg the distribution D restricted to this sphere.
We claim that Dg is bracket generating, namely that Dg together with its iterated Lie brackets
generate the tangent space to T'S?"~!. To see this, note that Dg is given by vectors X € T.§?"1

2121

https://doi.org/10.1112/50010437X13007471 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X13007471

V. TosaTrTi AND B. WEINKOVE

with JZ - X =0 and hence we may write
Ds={X TS5 ! a(X)=0},

for o =) yjdz; — xjdy;. But this is the well-known standard contact structure on S n=1 Indeed
the reader can verify that a A (da)"~! is a nowhere vanishing volume form on $?"~1. A theorem
of Carathéodory (see for example [Mon02]) shows then that Dg is bracket generating. Note also
that since Dy is orthogonal to JZ € T'S?"~1 it follows that 7'S?"~! is spanned by the distribution
Dg together with the vector field JZ.

Calculate g.(Z, Z) =2 and
g(X,Y)=2(1 —nt)(X-Y)/r? for X €D.

In particular, ¢;(X,Z)=0 for X € D. It follows that Z is gi-orthogonal to T'S?"~! since
g¢(Z, JZ) = 0 by the Hermitian property of g;, and Dg, JZ span the tangent space to S?"~ 1.

Consider the map F: H — S' which maps the equivalence class of (z1,...,2,) in H to
the equivalence class of 7 = />, |22 in RY/(r ~ |ay|r) = S1, and also the map G: S' — H =
St x $2=! which maps a point z to (x, y) for some fixed element y € S?*~! (identified with the
unit sphere in C"). Note that the diffeomorphism H = S' x §2"~! can be realized explicitly by
sending a point z = (21, ..., z,) to (r,z/r). We clearly have that F' o G =1d.

Remark 4.2. The metric wy coincides (up to a universal constant factor) with the pullback of the
standard product metric on S' x $2"~! via the isomorphism H =2 S' x $?"~! described above.

On the circle S* put the metric 2(d log r)? = 2(dr)?/r2, and denote by d its distance function.
It is isometric to the standard metric on S* C R? with total length /2 fllo“‘ dr/r =+/21log |y,
and therefore radius (log|ai|)/v/2m. Now the kernel of F,: TH — T'S' is TS?"~1  and the g;-

orthogonal complement of ker F is spanned by the radial vector field Z =rd/0r. But we also
have that

o 0 O N
gt(Z,Z)—Q—gt(rar,r(%) = F*(2(dlogr) )<r6r’Tar>'

Hence F': (H, g;) — (S, 2(d1logr)?) is a Riemannian submersion, i.e. Fj is an isometry when
restricted to the gi-orthogonal complement of ker Fy. Since every Riemannian submersion is
distance-nonincreasing,

d(F(z), F(y)) < di(z, y), (4.32)

for all x,y € H and all 0 <t < 1/n, where d; denotes the distance function on H induced by g;.
This also shows that

d(p, q) < de(G(p), G(q)), (4.33)
for all p, g € S* and all 0 <t < 1/n, because F o G = Id. Furthermore, it is clear that
d(G(p), G(q)) < d(p, q), (4.34)

since we can connect the points G(p) and G(q) by the radial path whose ¢;-length equals d(p, q).

Finally, given two points z,y € H, choose representatives x,y € C"\{0} with 1 <|z|, Jy| <
laa, and call S2"~! the sphere with center the origin and radius p=|y|. Call z the radial
projection of z onto Sg"_l. Since Dg is bracket generating, Carathéodory’s theorem [Mon02]
implies that we can join the points y and z in Sg”fl by a path in Sg”fl with tangent vectors in Dg.
Furthermore, the length of this path with respect to the Euclidean metric d;; can be bounded
by a constant C' independent of z,y (this is because the sub-Riemannian distance induced on
5?1 by D and 8;; has finite diameter since S2"~! is compact, see [Mon02, Theorem 2.3]). But
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the restriction of g; on D equals (2(1 — nt)/|y|?)d;; and so the g;-length of this path is bounded
above by C(1 — nt). We then join x to z by the radial path whose g;-length equals d(F(x), F(y)),
by the previous discussion. Altogether we get

di(z,y) < dg(z, 2) + di(z,y) < d(F(x), F(y)) + C(1 — nt). (4.35)

We obviously have

d(p, F(G(p))) =0, (4.36)
for every p € S1. Finally pick a point 2 € H and consider the point G(F(x)). They lie in the
same fiber S?"~! of F, and so we can connect them with a path on S?"~! tangent to D which
has g;-length less than C(1 — nt), as before. Therefore,

di(z, G(F(z))) < C(1 —nt). (4.37)
Combining (4.32)—(4.37) gives the desired Gromov—Hausdorff convergence. |

Remark 4.3. One can also realize these Hopf manifolds and the metric wy as a special case of a
construction of Calabi-Eckmann [CE53, BV68, Tit62]. Indeed consider the holomorphic C-action

on (CP\{0}) x (C?\{0}) given by
t-(z,w)=(e'z1,..., ez, My, .., eﬁthq),

where t € C, z € CP\{0},w e CI\{0} (0<p<gq), and fBi,..., [, are complex numbers with
ImpB; =---=ImpjB,#0. The quotient M,, is a complex manifold diffeomorphic to S?~1 x
S2a-1,

In the special case when (1 =---= [, we recover exactly the Calabi-Eckmann manifolds,
which are elliptic bundles over CPP~! x CP4~!,

If p=1 we have that M, is biholomorphic to the Hopf manifold H = (C?\{0})/ ~ where

(Wi, ..., wg) ~ (qwi, ..., 0qwg), and o = 2™ =10, (note that [e2™V=10| =... = |e2"V 10|
#1). Indeed every point (z,w) € C* x (C?\{0}) is in the same C-orbit as (1,w’) (just pick
t = —log z, for any branch of the complex log), which we can view as a point in C?\{0}. Now

note that ¢ - (1, w’) = (1, w") if and only if t € 27v/~1Z, if and only if w} = wg-e%ﬁﬁjz for some
¢ € Z and for all 1 < j < g. Therefore we have constructed a holomorphic bijection from M; 4 to
the Hopf manifold H . The inverse biholomorphism ¥ : H — M; 4 is simply induced by the map
w— (1, w).

There is a natural Hermitian metric on M, , given by

p q
8ij _ Okt~ —
wo = E |;|]2\/j1dZiA dz; + E W —1dw, N dwy,
i,j=1 k=1

and in the case when p =1 we have V*wy = wg.

5. The Inoue surfaces Sps

Inoue surfaces were discovered in [Ino74], and can be characterized as surfaces of class VII with
second Betti number zero and with no holomorphic curves [Bog82, LYZ94, Tel94]. They form
three families, Sy, S]J\rﬂn Gt and SR,@ ar which we will treat separately in the following three
sections.

From [TW12, Theorem 1.5] we know that on any Inoue surface the Chern—Ricci flow starting

at any Gauduchon metric wy has a solution w(t) for all ¢ > 0, with volume that grows linearly in ¢.
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We will consider explicit metrics wy and determine the Gromov-Hausdorff limit of the rescaled
metrics w(t)/t.

In this section we study the Inoue surfaces Sps, whose construction from [Ino74] we now
recall. Let H = {z € C|Im z > 0} be the upper half plane, and consider the product H x C. Let
M € SL(3,Z) be a matrix with one real eigenvalue o > 1 and two complex conjugate eigenvalues
B# B (so that a|B|? =1). The real number « is necessarily irrational. Let (a1, a2, as) be a
real eigenvector for M with eigenvalue o and (b, ba, b3) be an eigenvector with eigenvalue (3.
Note that since (a1, az, ag), (b1, be, b3) and (b, b, bg) are C-linearly independent, it follows that
(a1, Re by, Im by), (az, Re by, Im by) and (a3, Re b3, Im b3) are R-linearly independent. Let I" be
the group of automorphisms of H x C generated by

fo(z, w) = (az, fw),
fi(z,w)=(z +aj,w+b;), 1<j<3.

Then Sy = (H x C)/T is an Inoue surface. Consider the Tricerri metric [Tri82]
1
wp = P\/—l dz N dz+yv—1dw A dw,

where z = x 4+ v/ —1y. It is easy to check that w is I'-invariant and descends to a Hermitian metric
on Sy which is Gauduchon (because y is a harmonic function). Now let w(t) = wp — t Ric(wp).
We calculate

— — 1
Ric(wp) = —v =190 log det((g0),;7) = vV —190 log y = —4—y2\/—1 dz N dz,
and so
t\ 1
w(t) = <1—|—4>y2\/—1 dz N\ dZ+yvV—1dw A dw, (5.38)

which is a Gauduchon metric for all ¢ > 0. It satisfies the Chern—Ricci flow, because
B t\1 ) 4
det(g;;(t)) = {1+ 1)y~ 1+ 7 et((90):7),

and so Ric(w(t)) = Ric(wp) = —(9/0t)w(t).
If we renormalize the metrics by dividing by ¢ and we let ¢ go to infinity we get
t 1
WE‘) — Weo = —5V—1dz A dz,
Yy
smoothly on H x C (and on Sys). The limit degenerate metric we, is simply the pullback of one
half of the Poincaré metric from H, wkg = (dz? + dy?)/y?, so in particular it is closed (unlike
in the case of the Hopf surface). This degenerate metric has appeared for the first time in this
context in [HL83].

THEOREM 5.1. As t approaches +oo we have that (Syr,w(t)/t) GH, (S1,d), where d is the
distance function on the circle S' C R? with radius (log ) /2v/27.

To calculate the Gromov—Hausdorff limit of (Sys, w(t)/t) we need to understand the topology
of Syr a bit better. The key observation, due to Inoue, is that Sy is a T3-bundle over S'. Indeed,
if we consider the subgroup I'" C I' generated by fi1, fo, f3, then I' is isomorphic to Z3 (because
of the linear independence property mentioned above) and it acts properly discontinuously and
freely on H x C, with quotient the product X = T3 x R* (since the numbers a; are real). The
projection m: X — R™ is induced by (z, w) — Im z.
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Since aaj =), mjrar and fb; =3, mj;b, where M = (mj;) and mj, € Z, we see that
fo descends to a map X — X. We have that Sy, = X/(fo), and since a € R we see that fy
maps the torus fiber T, = 77 1(y) to the torus fiber T,, = 7! (ay). In particular, f; induces a
diffeomorphism of the 3-torus ¢ : Ty — T, and we have that Sj; is diffeomorphic to the quotient
space ([1,a] x T3)/ ~, where (1, p) ~ (c, 1 (p)), which is a T3-bundle over S* (recall that @ > 1).
We will still call 7 : Sp; — S! the projection map.

The kernel of wy, on H x C is the integrable distribution D = Span(9/0w), whose leaves are
of the form £, = {(20, w) | we C} C H x C. We wish to determine the images of these leaves
when projected to Syy.

LEMMA 5.2. If we call P: H x C — Sy the projection, then for any zy € H the image P(L.,)
is dense inside the T° fiber To = 7~ (Im 29) C Ss.

Proof. 1t is clear that P(L,,) C Tp. Obviously P(L;,) is just a leaf of the foliation D on Sy;. If
P(L,,) were closed in Sys then it would be a complex curve in Sy, but Inoue [Ino74] has shown
that there are no such curves. Therefore P(L,,) cannot be closed, and since it is contained in
the 3-torus Tp, it must be dense in T (the closure of any leaf of a linear foliation of a torus is
always a torus itself). O

An alternative direct proof of this lemma can be given along the lines of [BHPV04,
Proposition V.19.1].

Proof of Theorem 5.1. For t > 0 call d; the distance function on Sj; induced by the metric w(t)/t,
and let Li(y) denote the length of a curve v with respect to w(t)/t. Similarly, dy and Lo(y) are
defined using wp, and we will denote by Lo () the length of v computed using the degenerate
metric weo.

On the circle S! we put the metric 3(dlogr)? = (dr)?/2r?, and denote by d its distance
function. It is isometric to the standard metric on S' C R? with radius (log o) /2v/27.

For any ¢ > 0 fixed, we will show that for ¢ sufficiently large the Gromov—Hausdorff distance
between (Syr, d¢) and (S%, d) is less than 3e.

We regard S! as [1, a]/(1 ~ «) and Sy as ([1, a] x T3)/ ~, where (1, p) ~ (a, ¥(p)), as before.
Call F: Sy — S! the projection of the T3-bundle, and let G :S' — Sj; be the discontinuous
map induced by the map ¢:[1,a] —[1,a] x T® given by é(x) = (x,po) for x€[l,a) and
#(a) = (1, po), where py € T3 is a fixed basepoint.

Clearly we have F o G =1d, while G o F' is a fiber-preserving discontinuous map of Sj;. In
particular for any a € S* we have trivially

d(a, F(G(a))) = 0. (5.39)

First of all observe that from (5.38) there is a constant Cp so that for all ¢ > 1 and for any curve
v in Spr we have Li(y) < CoLo(7).

Second, recall that D = ker ws, so from (5.38) again we see that if v is a curve in Sy with
tangent vector always in D, then L(v) < (Co/Vt)Lo(7).

Third, let p, ¢ be any two points in Sy; on a same T3-fiber, i.e. F(p) = F(q), and pick any
(20, wg) € H x C such that P(zg, wp) = p, so that the image of the leaf P(L,,) passes through p.
Thanks to Lemma 5.2 we know that P(L,,) is dense in the T3-fiber, and so there is a connected
compact set K C L, such that every point in this T3-fiber has dy-distance less than e/2Cy to
P(K). On the other hand, every point in P(K) can be joined to p with a curve + in the T°-fiber
with tangent vector in D. Therefore, for any such v we have L;(y) < C/v/t, with a uniform
constant C' independent of v (it depends only on K).
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It follows that there is a point in P(K) which can be joined to p by a curve 7, tangent to D
and to ¢ by a curve o with Lg(7v2) < £/2C)y. Concatenating v and 7, we see that

C C €
dy(p, q) < Le(n) + Li(72) < —= + CoLo(2) < — + © <&, 5.40
+(p, q) < Li(1) + Li(72) TG 0(72) Gitase (5.40)

if ¢ is large enough.

Now let p, ¢ be any two points in Sy, with F(p) =a, F(q) =b where 1< a,b< «, and we
can assume that a < b. Then p and the point (a, pg) (rather its equivalence class in Sys) belong
to the same T fiber, as do ¢ and (b, pg), so from (5.40) we get

dt(p7 (a7 pO)) <e, dt(Q> (b7 pO)) <e. (541)

We then join (a, pg) to (b, po) via the image in Sy of the curve v(s) = (s, po), a < s <b. The
point ~y(s) has a lift to H x C with imaginary part equal to s, so the tangent vector to ~y(s) is
0/0y =—+/—1(0/0z — 0/0=z) so from (5.38) we have

C
2 2
1V oy = 1 o] < -

and so |L(y) — Loo(7)| < C/+/t. But for this curve v we have

b b S
L) = [ WO er ds= 5[5 = tog(t/a) = dF o). F0)

and so combining this with (5.41) we have proved that

di(p, 4) < 25 + Lu(7) < Ct + 95+ d(F(p), F(q)),

7

for a constant C independent of p, ¢, so if ¢ is large we get

dt(pa Q) < d(F(p), F(Q)) + 357 (5'42)
and so also
di(G(a), G(b)) < d(a, b) + 3¢, (5.43)

for all a, b e S*.
Note that from (5.40) we also have that for any p € Sy and for all ¢ large

di(p, G(F(p))) <e. (5.44)

Now take any two points p, g € Sys and let v be a curve joining p to ¢ with L.(y) = d¢(p, q).
Then F(v) is a path in S! between F(p) and F(q). Write Ly(F (7)) for the length of this
curve with respect to the metric g = %(d log y)?, where we are using the coordinate y on S*.
We claim that Ly(F(v)) = Loo(7y). Indeed, if V' is a tangent vector on Sy we can write locally
V =V10/0x + Vo0/0y + V30/0u + V40/dv where w = u + /—1v. But F,V = 129/0y and from
the definition of ws, and g we see that |F*V]§ = V32 /2y = |V|f)oo. Applying this with V =+/
proves the claim.

Noting that we < w(t)/t we have:

d(F(p), F(q)) < Ly(F(7)) = Loo(v) < Lt(7) = di(p; 9)- (5.45)
For a, b € S', we can apply (5.45) to p= G(a) and ¢ = G(b) to obtain
d(a,b) < di(G(a), G(b)). (5.46)
Combining (5.39), (5.42)—(5.46) shows that the Gromov-Hausdorff distance between (Sys, d¢)
and (51, d) can be made less than 3¢ if ¢ is large, as required. a
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+
6. The Inoue surfaces S N.,p,q,rit

In this section we study the Inoue surfaces Sy .t Starting from their construction from [Ino74].
Let N = (n;;) € SL(2,Z) be a matrix with two real eigenvalues o >1 and 1/a. Let (ai, ag)

and (b1, by) be two real eigenvectors for N with eigenvalues a and 1/« respectively (again we
automatically have that « is irrational).

Fix integers p, ¢, r, with r # 0, and a complex number t. Using N, a;, b;, p, ¢, r one gets two
real numbers (¢, ¢2) as solutions of the linear equation

bras — baay

(c1,c2) = (c1,¢2) - N* + (e, e2) + (p, 9),

T
where
e; = %nil (nil — 1)a161 + %niz(niz — 1)a2b2 + njingebias, 1=1,2.

Let I" be the group of automorphisms of H x C generated by

fo(Z,’UJ) = (OZZ, w +t)a
fj(Z,lU):(Z+aj,w+ij+Cj), J=12,

b —b
fa(z,w) = (z, w + M).

r
Then S} part = (H x C)/T is an Inoue surface.

Since a > 1, we can write Im t = m log « for some m € R, so that t is real if and only if m = 0.
Note that the (1, 0)-forms on H x C

1 —ml
Zdz, dw-T"T8Y 4,
Y
(where z=2x ++/—1y,w=u+ +/—1v) are invariant under the I'-action, and so descend to

+ o . . +
Sy so we can define a Hermitian metric Sy ¢

—m1l —ml
wo:,ﬁ_l(dw_vﬂzmdzw(d@_vﬂ;wdg)
1
+?\/—1d2/\ dz

Dq,Tit?

1 —mlog y)?
= VT dw A dﬁ+< Tl yT °8Y) >\/—1dz/\d3

—ml —ml
_ VT MY ST dwA dz— L "%Y ST da A dw. (6.47)
y y

This was discovered by Tricerri [Tri82] when m =0 and by Vaisman [Vai87] in general. The
key difference between the cases when t is real or not is that when m =0 the metric wq
is locally conformally Kéhler, while when m # 0 it is not, and in fact a theorem of Belgun
[Bel00, Theorem 7] shows that the surfaces Sltf,p, ot With t not real do not admit any locally
conformally Kéahler metric.

On the other hand, we can easily check that wg is Gauduchon for any value of m:

v—mlogy —m
212

_ 1
OJwp = — dw A dzAdz+2—dEA dw A dz,
Y

V1

_ v—1
00wy = —5dw N dw N dzN dzZ+ — dz N\ dw A\ dw AN dz=0.
4y? 4y?
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Now let w(t) =wp — t Ric(wp). We calculate

det((g0).5) = ;

_ _ 1
Ric(wo) = —v =199 log det((go);;) = 2V —190 log y = —2—y2\/—1 dz A dz,

and so

y2

—ml —ml
SOV T dw A dz - 28Tz A dw, (6.48)
Y Y

which is a Gauduchon metric for all ¢ > 0. It satisfies the Chern—Ricci flow, because
t\ 1 t
det(g;5(t)) =1+ 2) 2= 143 det((g0);7),

and so Ric(w(t)) = Ric(wg) = —(9/0t)w(t).
If we renormalize the metrics by dividing by ¢ and we let ¢ go to infinity we obtain
w(t)

1 _
T—>27y2\/—1d2/\ dZ,

1 —ml 24t/2
w(t) = V=1 dw A dw+< +v-mlogy)” +1/ )\/—1dz/\ dz

smoothly on H x C. The limit degenerate metric is simply the pullback of the Poincaré metric
from H.

Npgrite @()/1) CH, (81, d), where d is

the distance function on the circle S' C R? with radius (log o) /2.

THEOREM 6.1. Ast approaches infinity we have that (S},

gt As remarked by Inoue [Ino74] S?\—f,p,qm;t
is diffeomorphic to a bundle over S! with fiber a compact 3-manifold X. Indeed, if we consider
the subgroup I'" C I" generated by f1, fa, f3, then for each fixed y =Im z the group I/ acts on
{(z,y,w) |z €R,we C}=R3 properly discontinuously and freely with quotient a 3-manifold
X,y. For different values of y they are all diffeomorphic to a fixed manifold X. Then, as in
the case of Sys, we can also consider I acting on the whole of H x C, and the quotient is
diffeomorphic to the product X x RT, with the projection 7 to R induced by (z, w)+ Im z
and with X, = 7~ !(y). Then again f; descends to a map X x RT — X x RT, because fo lies in
the normalizer of I (see [Ino74, p. 276]). We have that S]'\F,%W;t = (X x R")/(fo). Since a € R we
see that fo maps the fiber X; to the fiber X, and so it induces a diffeomorphism v of X such
that S;\L/,p,q,r;t is diffeomorphic to the quotient space ([1, ] x X)/ ~, where (1,p) ~ (a, ¥(p)),
which is an X-bundle over S'. We will still call 7 : S]J{,p’q,r;t — 81 the projection map.

The kernel of ws on H x C is the integrable distribution (i.e. foliation) D = Spang(9/0w),
whose leaves are of the form £, = {(z9, w) |w € C} C H x C. We wish to determine the images
of these leaves when projected to SX, The main idea in the following Lemma comes

from [Brul0].

Again we need to understand the topology of S]J(,

D,q,mit"

LEMMA 6.2. If we call P: H xC— S]J{,pqr.t the projection, then for any zy € H the image

P(L,,) is dense inside the fiber Xog = m!(Im 20) C Sy;.

Proof. The proof is similar to that of Lemma 5.2. It is clear that P(L,,) C Xo. Obviously P(L.,)

is just a leaf of the foliation D on SIJ\F, bt No such leaf can be closed in S]'C gty SINCE otherwise
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it would be a complex curve in S]J{,,n .rt> contradicting the fact that no curves exist [Ino74]. Since
D C T Xy, the same is true for the induced foliation D|x, .

Now consider the 1-form dz, where z = Re z. It is invariant under I", so it descends to a
1-form on X x RT, and since fy maps the fiber Xy to a different fiber, it follows that dx is
a well-defined closed 1-form in an open neighborhood of Xy. When restricted to X, the 1-form
dx defines the foliation D|x,, in the sense that ker dz = D|x,. Since we have just seen that no leaf
of D|x, is closed in Xy, we can apply the general theory of foliations defined by closed 1-forms
[God91, 4.3, p. 46] and conclude that every leaf of D|x, is dense in Xy. In particular this is the

case for P(L,,). O

Proof of Theorem 6.1. With these preliminaries in place, the proof is almost identical to the
proof of Theorem 5.1, and therefore we only indicate the necessary modifications.

For ¢ > 0 call d; the distance function on S7; N.p.qrt iInduced by the metric w(t)/t, and let Ly ()
denote the length of a curve v with respect to w(t) / t. Similarly, dyp and L(7) are defined using
wo, and we will denote by Lo () the length of v computed using the degenerate metric weo.

On the circle S* we put the metric (d log )% = (dr)?/r?, and denote by d its distance function,
which is isometric to the standard metric on S C R? with radius (log «)/27. For any € > 0 fixed,
we will show that for ¢ sufficiently large the Gromov-Hausdorff distance between (S?\_f,p, grts Q)
and (S, d) is less than 3e.

We regard S! as [1, a]/(1 ~a) and S]'f,pq” as ([1, a] x X)/ ~, where (1, p) ~ (a, 1(p)), as
before. Call F': SJJ\rqurt — S' the projection of the X-bundle, and let G :S' — S]J\r,’pﬂ’r;t be
the discontinuous map induced by the map ¢:[1,a] — [1,a] x X given by ¢(z) = (z,po) for
z €[1,a) and ¢(a) = (1, pg), where po € X is a fixed basepoint.

Clearly we have F' o G =1d, while G o F' is a fiber-preserving discontinuous map of Sltf,p, —
In particular for any a € S' we have trivially

d(a, F(G(a))) = 0. (6.49)

Exactly as in Theorem 5.1 we prove that for any two points p, ¢ € St Nop.grit O1 the same X-fiber
we have dy(p, q) < g, if t is large enough. From this we deduce that for any two points p, ¢ and
for all t large we have

de(p, @) < d(F(p), F(q)) + 3e, (6.50)
and so also
di(G(a), G(b)) < d(a, b) + 3¢, (6.51)
for all a, b€ S and
de(p, G(F(p))) <e. (6.52)

Now take any two points p, q € SNpqrt and call v a curve joining p and ¢ with Li(y) =
di(p, q). Arguing as in the proof of Theorem 5.1, using the fact that we < w(t)/t,

d(F(p), F(q)) < Ly(F (7)) = Leo(7) < Li(7) = di(p, q), (6.53)

where we are writing Ly(F (7)) for the length of the path F(v) on S! between F(p) and F(q)
with respect to the metric g = (d log y)?. Hence also

for all a,b€ S'. Combining (6.49)—(6.54) shows that the Gromov-Hausdorff distance between
(S]J{,qut, d;) and (S, d) can be made less than 3e if ¢ is large, as required. O
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7. The Inoue surfaces Sy

N,p,q,r
The last class of Inoue surfaces are Sy ., defined as follows. Let N = (n;;) € GL(2, Z) be a
matrix with det N = —1 and with two real eigenvalues a > 1 and —1/a. Let (a1, az) and (b, b2)

be two real eigenvectors for N with eigenvalues aw and —1/« respectively. Fix integers p, q, r,
with 7 # 0. Define two real numbers (c1, ¢2) as solutions of the linear equation

(p, q),

bias — baa
—(c1,¢2) = (e1, ¢2) - N + (en, e2) + %

where e; are the same as for the surfaces S;pq et

Let I" be the group of automorphisms of H x C generated by

folz,w) = (az, —w),
fj(Z, w) = (z+ aj, w+bjz+¢), j=1,2,

b —b
fa(z,w) = <z,w + M).

r
Then Sy, .. = (H x C)/I" is an Inoue surface.

As noticed by Tricerri [Tri82], the exact same formula as in the case of S} t real,

N,p,q,r;t>
too. The discussion of the smooth

(i.e. (6.47) with m = 0) gives a Gauduchon metric on S
limit of the Chern—Ricci flow is identical.

Every surface S;,% o has as an unramified double cover an Inoue surface S]tz’p,’ &0 (for
suitable integers p’, ¢'), so we can pull back everything upstairs and reduce to the previous
section. Indeed, we have the involution of S]T,Q

N,p,q,r

0'q’ 130
L(Z7 ’UJ) = (OéZ, —W),

. : 2 _ + _ o : .ot -
which satisfies ¢ = Id and SN27p,7q,7T;O/L = SN pagr We will denote by p : SNZ,p',q',r;o — SN’pﬂ,r the

quotient map. The projection F : S3. — ST =R*/(z ~ a’z) satisfies F(i(x)) = F(x) for

all x € S]J(,z

p'5q",m;0

0'5q’ 0

THEOREM 7.1. Ast approaches +oo we have that (Sy, ... w(t)/t) GH, (S',d), where d is the
distance function on the circle S* C R? with radius (log ) /7.

Proof. We pull back the metrics wo, w(t) via p to Sy and obtain the same metrics as

0'5q ;07

in Theorem 6.1, with ¢ acting on Sy, o as an isometry of p*w(t)/t. From Theorem 6.1 we

P5q’5Ts
see that (S]—{_[zyp/7q/”.;0, p*w(t)/t) converges in Gromov-Hausdorff to S =R* /(x ~ o?z) with the
metric (dlog x)? (isometric to the standard metric on S* C R? with radius (log o) /7).

In fact this convergence happens also in the equivariant Gromov—Hausdorff sense, where the
group acting on S' is the trivial group while the group acting on S]'\% o g0 is the group of
order 2 generated by ¢. Indeed it is immediate to check this from the definition of equivariant
Gromov-Hausdorff distance (see §4), using the same maps F': S;{,Z’p,7q,7r;o — St and G: St —
S]J(,27p,7 70 from the proof of Theorem 6.1 (where the maps from between the trivial group and
the group of order 2 are the obvious ones).

Then [Fuk86, Theorem 2.1] or [Ron10, Lemma 1.5.4] imply that (Sy .. w(t)/t) CH, (S, d),

where d is the distance function on the circle S C R? with radius (log o) /7. O

Theorems 5.1, 6.1 and 7.1 together complete the proof of part (b) of Theorem 1.6.
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8. Non-Kahler properly elliptic surfaces

Recall that a non-Kéahler properly elliptic surface is by definition a compact complex surface S
with b1 (S5) odd and with Kodaira dimension x(.S) = 1 which admits an elliptic fibration 7 : S — C
to a smooth compact curve C. Throughout this section we will always assume that S is minimal.
Kodaira [Kod66, Theorem 28] has shown that the universal cover of S is H x C. It is also known
(see for example [Bri94, Lemmas 1, 2] or [Wal86, Theorem 7.4]) that there is always a finite
unramified covering S’ — S which is also a minimal properly elliptic surface 7’ : S’ — C’ and
7' is an elliptic fiber bundle with g(C”) > 2 (the curve C’ is a finite cover of C' ramified at the
images of the multiple fibers of ).

Let us first assume that we are in this situation, so that 7 :.5 — C is an elliptic fiber bundle
with fiber E, with g(C) > 2, with S minimal, non-K&hler and x(S) = 1. It will be more convenient
for us to work with H x C*, so we define

h:HxC— HxC* h(z2)=(z,e7/?),

which is a holomorphic covering map, and we will write (z, w) for the coordinates on H x C*.
A theorem of Maehara [Mae78] (see also [IKO80, Lemma 5.6], [Wal86, Theorem 7.4] and
[Bel00, Proposition 2]) shows that there exists I' C SL(2, R) a discrete subgroup with H/I' = C,
together with a complex number a € C* with |a|# 1 and C*/{a) = F and together with a
character x : I' — C* (i.e. a group homomorphism) such that S is biholomorphic to the quotient
of H x C* by the I' x Z-action defined by

(2 8) ) e (b era (2 4))

and the map 7 :5 — C is induced by the projection H x C* — H.
The reader can check that the forms on H x C*:
—zdw—i—\/jdz, izdz/\ dz,
w Yy Yy
(where z =z + \/—1y) are invariant under the I' x Z-action. Therefore they descend to S and
we can define a Hermitian metric on S by

2 -1 2 —1 1
JNNVEVIE PHE FA DY JRI VO RENE g
w Y w Y Yy

4 2
- W\/—l dw A d@+—2\/?1dzAdE
2y/—1 2\/
e VA T awn az- 2T ds n dw. (8.55)

This metric was discovered by Vaisman [Va187] (he wrote down its pullback h*wg on H x C) and
it is Gauduchon:
V=1
w

gw() = 85&)@ =0.

Now let w(t) =wp — t Ric(wp). We calculate

4
det =)= —

and

Ric(wp) = —v/—100 log det((g0);7) = 2v/—100 log y = —2;2\/—1 dz N\ dz,
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and so

which is a Gauduchon metric for all ¢t > 0. It satisfies the Chern—Ricci flow, because

det(g;5(1)) = (1 +5 ) oo = (14 3) detlaorg),
and so Ric(w(t)) = Ric(wg) = —(9/0t)w(t).

If we renormalize the metrics by dividing by ¢ and we let ¢ go to infinity we get
w(t)

1
== = —V/-1dz A dz,
2y

t

smoothly on S. The limit degenerate metric is simply the pullback m*wkg of the Poincaré metric
from H/T = C, which is the base of the fibration. This metric on C satisfies Ric(wkg) = —wkE,
and we will write dgg for its distance function.

THEOREM 8.1. Let w: S — C be a minimal non-K&hler properly elliptic surface which is an
elliptic bundle, and let wg be the initial Gauduchon metric we just described. As t approaches

+oo we have that w(t)/t converges to m*wkg in C*°(S, wp), and also (S, w(t )/t) (C dKE).

Formally, the behavior is exactly the same as for the Kéhler—Ricci flow on a Kéhler elliptic
surface w: 5 — C, which is a fiber bundle over a curve C of genus at least 2 [ST07] (see
also [FZ12, GTZ13)).

Proof. The fact that w(t)/t converges smoothly to 7*wkg has already been proven. We now show
the Gromov—Hausdorff convergence. For any curve v C S let Li(y) be its length measured in the
metric w(t)/t, and denote by d; the distance function of w(t)/t. Let F =7 : S — C and define a
map G : C — S by sending every point a € C' to some chosen point in S on the fiber 771(a). We
know that the map G is not canonical and usually discontinuous, and it satisfies F' o G =Id so

dxr(a, F(G(a))) =0, (8.56)

for all a € C. Since w(t)/t restricted to every fiber of m converges smoothly to zero, it follows
that for every p € S we have

di(p, G(F(p))) <e, (8.57)

for all ¢t large. Given any two points p, g € S, call a = F(p), b= F(q) and fix a geodesic 7(s) for
the Poincaré metric wkg that joins them. Then choose a lift 4(s) to a curve in H from a point a
(that projects to a) to b (that projects to b). Define a curve &(s) = (5(s), 1) in H x C*, and call
o(s) its projection to S = (H x C*)/T, so that F(o(s)) =~(s). The length of o(s) with respect
to w(t)/t equals the length of &(s) with respect to the pullback of w(t)/t to H x C*. Since the
tangent vector to o (s) is (3/(s), 0), we see from (8.55) that

e (1, 2) 1
‘O- (S)|w(t)/t - (2 + t> y(S)Q’

where y(s) =Im 4(s). On the other hand
1
2y(s)*’

17(8) 2 =
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and so

|Li(0) — dxg(a, b)| < e,
if ¢ is large. On the other hand, the p and the initial point of o lie on the same fiber of 7, so
their d;-distance is less than e for ¢ large, and similarly for ¢ and the end point of o. Therefore

di(p, q) < 2¢ + Li(0) < dxe(F(p), F(q)) + 3e. (8.58)
Since F' o G = 1Id, we also have that
di(G(a), G(b)) < dkg(a, b) + 3¢. (8.59)

Now, given two points p,q € S, let v be a curve joining p and ¢ with L;(v) = d¢(p, ¢). Then
arguing in a similar way to the proof of Theorem 5.1,

dxe(F(p), F(q)) < Lke(F (7)) = Lrewe (7) < Li(7) = di(p, 9), (8.60)

where L+, (7) is the length of v with respect to the degenerate metric 7*wgg. This also implies
that for a, b€ St,

dgg(a, b) < di(G(a), G(D)). (8.61)
Combining (8.56)—(8.61) we get the required Gromov—Hausdorff convergence. O

We now consider the general case, when 7:S — C' is not a fiber bundle. From [Bri94,
Lemma 1] or [Wal86, Lemma 7.2] we see that 7 has no singular fibers, but in general it might have
multiple fibers. Let us call D C S the set of all multiple fibers of 7, so that (D) consists of finitely
many points. Then again from [Mae78] (see also [Bel00, Proposition 2], [Wal86, Theorem 7.4])
we have that S is a quotient of H x C* by a discrete subgroup I'" of SL(2, R) x C*, which acts by

(<Z Z),t)-(z,w):(m,(cz+d)-w~t>,

and the map 7:5 — C is again induced by the projection H x C* — H. The previous case is
obtained by mapping SL(2, R) x Z — SL(2,R) x C* by (A4, n) — (A, a"x(A4)).

If we consider the projection I' of I to SL(2, R), we now have that in general the I'-action on
H is not free, so its quotient C'= H/I" is an orbifold (it is actually a ‘good’ orbifold, i.e. a global
finite quotient of a manifold; see [Wal86, p. 139] where it is shown that if C' was a ‘bad’ orbifold
then we would have that x(S) = —00). The finitely many orbifold points of C' are precisely equal
to w(D).

The (1, 0)-forms on H x C*

—zdw—l—Edz, %dz/\ dz
w Yy Yy

are still invariant under the I-action, and so again they descend to S. We then define wy as
before, and also wkg which is now an orbifold Kéhler—Einstein metric on C. It is easy to see that
it induces a distance function dgg on C (see e.g. [Bor92]). On the other hand the (1,1) form
m*wkE is smooth on all of S.

THEOREM 8.2. Let m:S5 — C be a general minimal non-Kahler properly elliptic surface with
initial Gauduchon metric wy described above. Ast approaches +oo we have that w(t)/t converges

to m*wkg in C*°(S, wy), and also (S, w(t)/t) LR (C, dkg).

Proof. The fact that w(t)/t converges smoothly to 7*wkg follows from the same calculation as
in the previous case. The Gromov—Hausdorff convergence can be proved as follows. We know
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that there is another properly elliptic surface «’:.S” — C’ which is an elliptic bundle over C’
with ¢(C”) > 2, with a finite group I'” acting on S’ and C’ (so that 7’ is I"-equivariant) such
that the I'-action on S’ is free, while the I"’-action on C’ is not, and 7 : S — C is equal to the
I'-quotient of n’ : S — C'. If we call p: S’ — S and ¢: C’ — C the quotient maps then we have
that p*wy equals the same metric wy from the earlier discussion, and similarly p*w(t) equals the
evolved metrics on S, and I acts by isometries of p*w(t). Also, the pullback distance ¢*dkg on
C’ equals the Kahler-Einstein distance function from earlier, and again I’ acts by isometries
of ¢*dkg. From Theorem 8.1 we know that (S', p*w(t)/t) converges in Gromov-Hausdorff to
(C /, q*dKE).

In fact, we claim that this convergence also happens in the I'’-equivariant Gromov—Hausdorff
sense. Indeed, let us consider the same maps F:S" — C’ and G:C" — S’ from the proof of
Theorem 8.1. Then F is I'-equivariant, while in general G is not, but for any element g € I'”
and for any point x € C’ the points g - G(z) and G(g - x) lie in the same fiber of F', and so their
distance with respect to the metric p*w(t)/t goes to zero as t approaches zero (uniformly in z
and g). This shows that the I'-equivariant Gromov-Hausdorff distance between (S, p*w(t)/t)
and (C', ¢*dkg) is less than any € > 0 if ¢ is small enough. Then [Fuk86, Theorem 2.1] or [Ron10,

Lemma 1.5.4] imply that (S, w(t)/t) GH, (C, dxg). O

Theorems 8.1 and 8.2 together complete the proof of part (c) of Theorem 1.6.

9. The Mabuchi energy

In this section, we show that the Mabuchi energy functional from Kéhler geometry can be defined
in the setting of a complex surface with vanishing first Bott—Chern class, and that it is decreasing
along the Chern—Ricci flow.

Let M be a surface with vanishing first Bott—Chern class, and let wy be a Gauduchon metric
on M. By definition of the Bott-Chern class, there exists a unique function F' with

Ric(wp) = vV —100F, / ef'wl = 0.
M

Define H to be the space of all Gauduchon metrics w’ on M of the form w’ = wy + /=199 for
some smooth function . We then define the Mabuchi energy Mab,,, : H — R by

12
Mab,, (w') = / <10g Y- F) w?+ / Fu?.
M wo M

Comparing with the formula given in [Tia00], one can check that this coincides with the Mabuchi
energy in the Kahler setting.
Now let w(t) solve the Chern-Ricci flow starting at wg. Then we may write w(t) =w, :=
wo + v/—100¢ where ¢ = ¢(t) solves
2

0 W,
7Q0:10g7_F7 @’t:ozo-
ot wg

The result of this section is that the Mabuchi energy decreases along the Chern—Ricci flow.

ProrosiTioN 9.1. With the notation as above, we have

%Mabwo (wyp) = —2 / V=199 A 0p A w, < 0.
M
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Proof. Compute
2

QMabw (w ):/ A, @wQ—i—/ log&—F A, o w?
at 0 @ M ¢ ¥ M wg s ®

= / PAL,  wh =2 / V=100 A w,.
M M
Integrating by parts,
ﬁMawa (wy) = —2 / V=109 A 0o A wy + 2 / GV —10¢ A duwy
ot M M
=2 / V=10¢ N0 A wy, + / V=1 9¢* A dwg
M M
=-2 / V—=19¢ N 0¢ A wy,
M

using the fact that v/—100wg = 0. O

Recall that Gill [Gill11] showed, in the setting of vanishing first Bott—Chern class, the Chern—
Ricci flow w(t) starting at any Hermitian metric wg converges in C*° to a Chern—Ricci flat metric
Weo. Proposition 9.1 can be used to give an alternative proof of the convergence part of Gill’s
theorem in the special case when M has complex dimension 2 and wg is Gauduchon. Indeed the
proof follows exactly as in the Kéhler case. It was first noted in unpublished work of H.-D. Cao
that the Mabuchi energy decreases along the Kahler—Ricci flow, and to see how Proposition 9.1
implies convergence, one can follow the arguments of Phong—Sturm [PS06]. Alternatively, see
the exposition in [SW13b, §4].
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