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Abstract 

On 25 December 2016, a Mw 7.6 earthquake broke a portion of the Southern Chilean 

subduction zone south of Chiloé Island, located in the central part of the Mw 9.5 

1960 Valdivia earthquake. This region is characterized by repeated earthquakes in 1960 and 

historical times with very sparse interseismic activity due to the subduction of a young 

(~15 Ma), and therefore hot, oceanic plate. We estimate the co-seismic slip distribution based 

on a kinematic finite fault source model, and through joint inversion of teleseismic body 

waves and strong motion data. The coseismic slip model yields a total seismic moment of 

3.94×10
20

 Nm that occurred over ~30 s, with the rupture propagating mainly downdip, 

reaching a peak-slip of ~4.2 m. Regional moment tensor inversion of stronger aftershocks 

reveals thrust type faulting at depths of the plate interface. The fore- and aftershock seismicity 

is mostly related to the subduction interface with sparse seismicity in the overriding crust. The 
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2016 Chiloé event broke a region with increased locking and most likely broke an asperity of 

the 1960 earthquake. The updip limit of the main event, aftershocks, foreshocks and 

interseismic activity are spatially similar, located ~15 km offshore and parallel to Chiloé 

Islands west coast. The coseismic slip model of the 2016 Chiloé earthquake suggests a peak 

slip of 4.2 m that locally exceeds the 3.38 m slip deficit that has accumulated since 1960. 

Therefore, the 2016 Chiloé earthquake possibly released strain that has built up prior to the 

1960 Valdivia earthquake. 

 

1 Introduction 

 

Subduction of the Nazca plate below the South American plate has resulted in various large 

earthquakes along the Chilean margin (e.g. Lomnitz, 2004). The earthquake activity along the 

Chilean margin is due to the convergence of the Nazca and South American plates, which are 

colliding at a rate of 6.6 cm/yr and an obliquity of 18° in southern Chile (Angermann et al., 

1999). On December 25, 2016 at 14:22 UTC a magnitude 7.6 subduction earthquake occurred 

adjacent to the south of Chiloé Island (Figure 1). In spite of its magnitude and proximity to 

the city of Quellón, little damage was reported and no tsunami occurred. 

 

On the mainland the 1000 km long Liquiñe-Ofqui fault zone (LOFZ, Figure 1) (Cembrano et 

al., 1996) is related to the oblique subduction, and resulting partitioning of deformation along 

the southern Chilean margin. This partitioning is reflected by the northward movement of a 

forearc sliver, with sparse current strike-slip faulting along the magmatic arc (Wang et al., 

2007, Lange et al., 2008). The seismicity rate during the last decades (Figure 2) in Southern 

Chile is low and seismicity was mostly related to crustal faulting along the LOFZ. There were 
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two phases of seismicity and deformation observed on the LOFZ, which is collocated with the 

magmatic arc running along the southern Chilean mainland (e.g. Lavenu and Cembrano, 

1999). The first seismic sequence was related to a Mw 6.2 crustal earthquake in the Aysen 

region 2007 (45.4°S) (e.g. Agurto et al., 2012), and was followed by a second sequence 

related to the eruption of Chaitén volcano in 2008 at 42.5°S (e.g. Watt et al., 2009).  

The low level of interseismic activity is in contrast with the occurrence of large and great 

earthquakes related to the plate interface, with a suggested recurrence period of ~285 years 

deduced from the last two millennia (Cisternas et al., 2005, 2017). In particular, previous 

large ruptures occurred in 1575, 1737, 1837 and 1960. The southern Chilean (Valdivia) 

earthquake of May 22, 1960 is the largest instrumentally recorded earthquake, with a 

mainshock moment magnitude of Mw 9.5 (Cifuentes & Silver, 1989). This earthquake 

initiated at the Arauco peninsula at 38.2°S and progressed ~1000 km southwards until the 

rupture terminated near the edge of the subducting Nazca lithosphere, at the intersection of 

the Chile Rise with the Chilean trench (Figure 1). This north-south trending rupture produced 

remarkable changes in land levels (Plafker & Savage, 1970). The 1960 mainshock was 

preceded by a series of foreshocks aligned in a NW-SE direction, which started on May 21, 

1960 with a Mw 8.1 event (Cifuentes, 1989).  

The age (and therefore temperature and density) of the subducting Nazca plate 

decreases drastically from 20 Ma at latitudes of Chiloé Island, to virtually 0 Ma at 46°S where 

the Chile Rise is currently subducting. The frequency of interseismic activity also decreases 

substantially toward the Chile Triple Junction (CTJ) (Figure 2). Estimates for the width of the 

rupture plane of the 1960 earthquake, which is inclined at an angle of ~30° below the Chilean 

mainland (Haberland et al., 2009; Lange et al., 2007), range between 125 and 150 km 

(Barrientos & Ward, 1990). Thermal models from Völker et al. (2011) show a decreasing 

width (180 km at 38°S and 80 km at 42°S) of the seismogenic zone (defined here by the 
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150°C and 350°C isotherms) with increasing latitudes due to the young age (and high 

temperature) of the subducting oceanic plate. 

Plafker & Savage (1970) measured vertical land-level changes at 166 sites along the 

extent of the 1960 earthquake rupture zone in 1968. Because the vertical displacements were 

measured eight years after the 1960 earthquake, the dataset likely includes postseismic 

deformation. Slip models for the 1960 earthquake, inverted from the land-level changes, 

indicate rupture of the subduction interface along an 850 km long fault, with the majority of 

slip offshore (Barrientos & Ward, 1990). Moreno et al. (2009) inverted the slip of the 1960 

earthquake based on a finite element model using a curved slab geometry, resulting in a 

smaller amount of slip at larger depths (>80 km), which has previously been interpreted as 

aseismic slip. Their slip model is characterised by 4 slip patches with more than 20 m of slip 

(Figure 1). One of these slip maxima is located offshore and south of Chiloé Island in the 

region of the 2016 Chiloé earthquake, midway along the 1960 Valdivia earthquake rupture. In 

this study we process seismological data in order to investigate the setting of the 2016 Chiloé 

earthquake and its relation to the forearc structure, and the 1960 Valdivia earthquake. Based 

on data from local, regional and teleseismic distances, we locate and determine properties of 

the main event, fore- and aftershocks of the 2016 Chiloé earthquake.  

 

2 Methods and data 

2.1 Coseismic rupture based on teleseismic observations and local strong motion 

stations 

 

We used records from 8 strong motion stations (three components) located at local and 

regional distances that were downloaded from the database maintained by the Centro 

Sismológico Nacional (CSN, www.sismologia.cl) (Figure 3A). The ground-acceleration 
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records were double integrated to obtain displacement, filtered between 0.015-0.035 Hz, and 

resampled to 0.25 s. Broadband teleseismic waveforms of the FDSN (Federation of Digital 

Seismograph Networks) (Figure 3B) were retrieved from the IRIS Data Management Centre 

(www.iris.edu). Teleseismic stations cover an epicentral distance from 30º to 90º. In total 80 

P-waves (vertical) and 40 SH-waves (horizontal transverse) were used. Processing of the 

teleseismic records included deconvolution of the instrument response, integration to obtain 

displacement, and windowing 80 s around the body wave arrivals, starting 10 s before the 

respective P- or SH-wave arrival time. The data were bandpass filtered between 1 s and 200 s, 

and resampled to a 0.25 s sampling rate. The 1D regional velocity model used by the CSN for 

Central Chile (Massone, personal communication, 2016), was used to compute Green's 

Functions of near-field waveforms and teleseismic body waves. The kinematic finite-source 

inversion adopted in this study follows the method of Ide & Takeo (1997). Ide & Takeo 

(1997) expand the slip distribution using 2-D spatial and temporal basis functions, with the 

expansion coefficients being unknown parameters. Then, the spatiotemporal distribution of 

slip-rate is expanded as a linear combination of basis functions, each one defined by an 

isosceles triangle in strike, dip and time directions. To stabilize the inversion, temporal and 

spatial smoothing constraints were used as a priori information. The weighting parameters of 

smoothing constraints are determined by minimizing the Akaike’s Bayesian Information 

Criterion (ABIC) (Akaike 1980). The non-negative least squares method of Lawson & 

Hanson (1974) is used to solve the damped least square problem, which ensures positivity of 

the model parameters. The assumed fault plane strikes at N2ºE and follows the slab geometry 

along dip (Slab 1.0, Hayes et al. 2012). This was achieved by subdivision of the fault into four 

rectangular segments along dip, with widths of 25 km each, dipping with 13º, 15º, 17º, and 

19º, from top to bottom, respectively. We set a total of 9, 10 and 12 basis functions along 
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strike, dip, and time directions, respectively, to represent the slip in one direction. The basis 

source-time function is an isosceles triangle with a duration of 3 s.  

We use 12 basis functions in the time domain, with each one having a duration of 3 s and 50% 

overlap, resulting in the total rise-time allowed being 19.5 s. As the focal mechanism is 

mainly a reverse fault, the slip direction at each grid point is allowed to vary between 90º+/-

45º. We set the maximum rupture velocity at 92% of the shear-wave velocity around the 

hypocentre depth. This value controls the propagation of a rupture front that expands radially 

from the hypocentre and defines the onset rupture time of the first knot of the slip-rate for 

each point on the fault when the rupture front reaches it. A slower rupture velocity than the 

maximum value is allowed using an appropriate choice for the expansion coefficients. In the 

joint inversion of strong motion and teleseismic data the relative weighting factors of 1 and 

0.02 and were chosen in order to maintain a balance between the error fitting of the 

teleseismic data in comparison to the measured error of the strong motion data. Note, that this 

relative weighting factors between the datasets was chosen dependent on the number of 

available seismograms, effectively upweighting the strong motion stations which are located 

in the near-field (Figure 3, panel a and b). The measured error is defined as the L2 norm of 

the difference between data and synthetics, and normalized by the L2 norm of the data. The 

relative weighting of datasets is determined prior to including temporal and spatial smoothing 

constraints. The near-field Green’s functions were computed using the numerical code 

AXITRA (Coutant, 1990), which is based on the discrete wavenumber method of 

Bouchon (1981). Teleseismic body wave Green's functions were computed using the 

approach of Kikuchi & Kanamori (1991). Synthetic Green's functions were computed with a 

time-step of 0.25 s, and filtered in the same frequency band as the respective observed 

datasets.  
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2.2 Fore- and aftershocks 

 

Foreshocks and aftershocks are based on data from networks C and C1 run by the CSN, and 

TC and VC networks from Sernageomin (Servicio Nacional de Geología y Minería, 

www.sernageomin.cl). Seismicity was located using NonLinLoc (Lomax, et al., 2000) and 

SeisComP3 (www.seiscomp3.org) using a local minimum 1D velocity model based on 

amphibious data and optimized for the region of Chiloé Island (Lange et al., 2007). 

Continuous data from up to 54 days prior to the 2016 Chiloé mainshock were manually 

reviewed, and 43 foreshocks based on 872 onset times were located. We reviewed 91 days 

after the mainshock until (26 March 2017) and found 222 locatable aftershocks with 3987 P 

and S-arrival times (Figure 5). The mean hypocentral uncertainties are 4.1 km, 2.7 km and 5.6 

km for the west-east, north-south directions and depths, respectively (Figure S1).  

 

2.3 Regional moment tensor inversion 

 

We inverted regional moment tensors of 17 stronger aftershocks from P and S body waves. 

For the inversion stations from networks C and C1 from the CSN, TC and VC (Sernageomin), 

events with epicentral distances of up to 4º, good signal-to-noise ratio (SNR), and local 

magnitudes larger than Ml 3.8 were included. We used between 6 and 27 stations, and an 

average of 14 stations. Green’s functions were computed using discrete frequency-

wavenumber integration (Bouchon, 1981), based on a local 1-D velocity (Lange et al., 2007), 

using double-couple point sources.  

Before inversion, we deconvolved the instrument response, decimated, rotated, and then 

applied a bandpass Butterworth filter to the observed seismograms in a magnitude-dependent 

frequency range, predominantly 0.02–0.06 Hz, slightly modified from ranges proposed by 

other authors (e.g. Kubo et al., 2002; Asano et al., 2011). Components with low SNR and 
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poor fit were not used for the inversion. Based on the epicentre from the location routine 

using a local 1D velocity model (Lange et al., 2007) we searched for the centroid depth in 

depth intervals of 2 km. The moment tensor was estimated through a grid search of the best 

double couple component in the time domain (Herrmann et al., 2011; Herrmann 2013). A grid 

search over all possible focal mechanisms was performed in increments of 5 degrees in strike, 

dip, and rake. Synthetic seismograms were filtered in the same frequency band as the 

observed seismograms. First, the waveform fits were evaluated with variance reduction (VR), 

and then the best solution was chosen based on the largest variance reduction. Figure S2 

shows the moment tensor solution and fitting of synthetic and observed waveforms for the 

largest aftershock. 

 

3 Results 

3.1 Coseismic rupture  

 

Figure 3 shows the final coseismic slip model obtained from joint inversion of teleseismic and 

strong motion data. The slip distribution is dominated by a large slip patch that covers a 

region of ~40×30 km
2
. The peak-slip reaches ~4.2 m, located to the north and downdip of the 

hypocentre, with some slip of about 2 m retrieved to the north and updip of the hypocentre. 

The total seismic moment computed is 3.94×10
20

 Nm, and gives a moment magnitude of 7.67. 

The peak-moment-rate is ~3×10
19

 Nm/s, and occurs 12 s after rupture nucleation, with most 

of the moment occurring over the first 30 s (Figure 3D). Figures S3 and S4 show the slip 

models and checkerboard tests when datasets are analysed separately and jointly, respectively. 

The final slip model obtained from joint inversion of strong motion and teleseismic data 

explains (1) the deeper slip patch seen when analyzing both datasets separately, and (2) the 
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shallow slip (located to the north and updip of the hypocentre) retrieved when only using 

strong motion data. 

The synthetic seismograms (Figure 3E) fit well with the observed near-field ground 

displacements, and the waveform misfit in terms of variance reduction (VR) is 89%. We 

observe that the southernmost strong motion stations (stations A10Y and AY01, Figure 3A) 

show a poor fit in comparison to the nearest stations, which we relate to the locally 

heterogeneous velocity structure. The fit between observed and synthetic teleseismic 

waveforms is good for both P- and SH-waves (Figure 3F). Overall, amplitudes, polarities, and 

the main characteristics of the observed waveforms are well modelled by synthetics. The 

waveform misfit in terms of VR is 80%. The total VR estimated from the joint inversion of 

datasets is 84%. Figure S5 shows snapshots of the slip-rate taken every 1 s after the rupture 

nucleation. The rupture propagates rapidly during the first 10 s (reaching the maximum 

rupture speed), moving mainly to the north and downdip direction. We also observe rupture 

towards the updip and downdip directions during the first 10 s, but at much less pronounced 

slip amplitudes. The rupture propagating to the north and in the updip direction slows down 

after 12 s, and gradually stops. From 12 s onwards, the rupture continues breaking the north 

and downdip portion of the fault, suggesting a second re-rupturing episode. The overall peak-

slip rate retrieved is approximately 1.5 m/s.  

 

3.2 Hypocentral parameters of seismicity  

 

Interseismic microseismicity from the CSN catalogue (2.1<Ml<5.4, 01/2008 until 12/2016) 

and foreshocks (1.3<Ml<3.6) (Figure 6) occur predominantly in a cluster parallel to the coast 

of Chiloé Island, suggesting consistent spatial patterns of seismic moment release. Similarly, 

during the deployment of an amphibious seismic network in 2005 (Lange et al., 2007), 

seismicity along the plate interface was observed in predominantly thrust type events (Ml 4.0–
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4.4), with associated aftershock sequences at depths of 12 to 30 km (Figure 7). We observe an 

epicentral shift of 38 km between the NEIC catalogue (73.951°W, 43.416°S and 35.1 km 

depth) and our mainshock epicentre (74.391°W, 43.517°S, 30 km depth) (Figure 5, yellow 

symbols). S minus P arrival time difference of the closest station G007 (Figure 5) is 9.6 s, 

which is in agreement with a 73 km distance to our hypocentre location. Because NEIC's 

hypocentre is located at only 40 km distance to the closest station, we think that it is 

mislocated, presumably due to stronger weighting of stations at regional distances, one-sided 

station geometry and the use of a global velocity model.  

 

3.3 Moment tensors  

 

Regional moment tensors for aftershocks reveal thrust type mechanisms and centroid depths 

inline with the geometry of the downgoing slab (Figure 5 and 6). The double couple 

mechanisms of the moment tensors indicate faulting at depths of the plate interface. The fault 

plane of the mainshock from the Global Centroid Moment Tensor Catalogue (gCMT) dips 

21° with a strike of 7° inline with an easterly dipping plate interface. 

 

4 Discussion 

 

4.1 Coseismic rupture  

 

The total accumulated slip deficit since 1960, based on a plate convergence rate of 

66 mm/year (Angermann et al., 1999), is 3.66 m for full interplate locking. Taking into 

account a coupling estimate for the plate interface of ~90% (Figure 5 and Moreno et al., 2011) 

the slip deficit is ~3.3 m. The coseismic peak-slip of the 2016 Chiloé event, with 4.2 m, 
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locally exceeds the 3.3 m slip deficit. Undoubtedly, the 2016 Chiloé event locally released 

slip that has accumulated since 1960. The region where the 2016 coseismic peak-slip exceeds 

the slip deficit is based on two grid points in the inversion, and the amplitude of peak slip 

contains some uncertainties, as indicated by the checkerboard tests (Figure S4). If the 

coseismic slip did indeed exceed the slip deficit that has accumulated since 1960, this implies 

that the 2016 Chiloé event released slip that accumulated prior to the 1960 Valdivia 

earthquake (i.e. the 1960 event did not fully release its strain to the same level as the 2016 

event). The uncertainties of this slip consideration are inherited from the uncertainty of the 

2016 Chiloé coseismic slip model and the coupling model. The effect of slip exceeding the 

slip deficit becomes even larger when assuming lower coupling values. A coupling of 75% 

results in a slip deficit of 2.75 m since 1960, of which 1.45 m would have to have 

accumulated prior to the 1960 Valdivia earthquake. Therefore, the main uncertainties are 

related to the coseismic slip model and the spatial resolution of the slip and coupling 

inversions. The peak-slip of 4.2 m from our seismological model agrees well with the peak 

slip inverted from static displacements using GPS receivers, of ~4.5 m (Ruiz et al., 2017) and 

to the maximum slip of 4.7 m (coseismic and 14 days postseismic deformation) inverted from 

InSAR data (Xu, 2017). We therefore conclude that the coseismic slip in 2016 may have 

exceeded the deficit accumulated since the 1960 Valdivia earthquake and the strain release for 

a given region is larger than expected for slip predictable earthquake recurrence models 

(which state that the slip of an earthquake is proportional to the time since the prior event 

(Shimazaki and Nakata, 1980). Furthermore, the initial and final stresses of faulting would not 

be constant over a sequence of earthquakes cycles. In contrast, a peak slip on the order of slip 

deficit accumulated since 2016 earthquake would be in line with the slip predictable 

earthquake recurrence models.  
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The 1960 Valdivia earthquake released an average slip of 17 m along an 850 km long and 130 

km wide rupture (Barrientos & Ward, 1990), accounting for 250-350 years of plate 

convergence (assuming a constant convergence rate) (e.g., Plafker & Savage 1970). Cisternas 

et al. (2005) suggest that the 1960 event released the slip that has accumulated since the 1575 

event, while two later earthquakes, in 1737 and 1837, left the fault partly loaded with slip 

deficit that the 1960 earthquake then expended. A similar exceedance of slip compared to the 

slip deficit since the last large event was described by Nocquet et al. (2017) for the 

Ecuadorian subduction zone.  

 

The region of the Chiloé 2016 event is characterized by a patch of increased locking 

(Figure 1). The almost fully locked zone (>90%) is located slightly updip and south of the 

coseismic rupture patch (Figure 5), although the precise location of locking and the shift 

between peak slip and the locking patch is presumably not well resolved (Moreno et al., 2010, 

supplementary material). Moreno et al. (2010) suggest a spatial correlation of interseismic 

locking with coseismic slip for the Mw 8.8 Maule earthquake in Central Chile. Similar to the 

Chiloé earthquake, the Mw 8.2 Illapel 2015 earthquake ruptured a region of high locking 

(Tilmann et al., 2016). Our observations from the Chiloé event support the suggestion from 

Moreno et al. (2010) that interseismic locking might possibly be used to anticipate future 

ruptures in seismic gaps, given the fundamental assumption that locking and slip are similar. 

Although the Chiloé 2016 event is spatially located in the rupture zone of the 1960 earthquake 

we do not regard this event as an aftershock, due to the 56 years time difference between 

these events. The sparse background seismicity (between 41° and 45°S, Figure 2), and the 

coupling model (Figure 1), indicate new strain and stress accumulation during the last decades 

which were locally released during the 2016 Chiloé event. We cannot completely rule out that 

the Chiloé 2016 event may have been triggered by relaxation processes within the lower crust 
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and the upper mantle as observed in the 1960 Chile earthquake region south of 38°S (Klotz et 

al., 2001, Moreno et al., 2011). For example, using offshore geodetic observations Sun et al. 

(2014) observe significant viscoelastic relaxation effects in the aftermath of the 2011 Tohoku 

earthquake. For the 1960 Valdivia rupture zone westward moving GPS sites south of 38°S, 

located 300–400 km landward of the 1960 rupture region, suggest a post-seismic mantle stress 

relaxation or silent slip events on the plate interface at large depths (Khazaradze et al., 2002).  

 

4.2 Interseismic Activity 

 

Although the background seismicity is very sparse there are two sequences of historical 

seismic activity listed in the ISC-GEM catalogue since 1900 (Figure 2). On 2nd March 1919 

a Mw 7.2 event occurred at 43°S beneath the South American mainland (Figure 1, yellow 

star). This event is listed in the ISC-GEM (Storchak et al., 2013) catalogue with a depth of 

15 km+/-25km and may therefore be related to the LOFZ. This sequence ended one week 

later with a Mw 6.8 earthquake further north (Figure 1). The second phase of pronounced 

activity is related to outer rise aftershocks (between 43°S–44.24°S) starting with the Mw 9.5 

1960 Valdivia earthquake, and ending in 1965 (Figure 2 and events indicated by stars, 

Figure 1). Later, the background seismicity subsequently returned to a very low rate until the 

2016 Chiloé event. Seismicity in the decade before the Chiloé earthquake occurred mostly in 

a coastal parallel band of events offshore Chiloé Island and parallel to the coastline, likely 

related to the plate interface (Figure 8A) (Lange et al., 2007).  

 

4.3 Aftershocks 

 

Coseismic slip and aftershocks of the 2016 Chiloé event occurred in the same depth range 

(Figure 7), but the 2016 mainshock occurred adjacent to, and south of Chiloé Island in a 
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region with very sparse interseismic seismicity. Aftershock magnitudes and locations are not 

evenly distributed. While larger aftershocks are located in the south-western aftershock region 

(Figure 5), smaller magnitude events are located parallel to the northwest–southeast trending 

coastline of Chiloé’s south coast (Figure 5). This uneven distribution of aftershock seismicity 

might be related to the heterogeneous stress distribution along the plate interface. 

Alternatively, the aftershock distribution may be controlled by deep-reaching NW-SE 

trending faults which are known elsewhere along the whole South Chilean forearc 

(e.g. Glodny et al., 2008, Sernageomin, 2003). However, faults related to the Miocene marine 

transgressive sediments of Chiloé’s south coast are unknown so far (Sernageomin, 2003). 

Furthermore, most of the aftershocks activity is located at depths of the plate interface with 

sparse seismicity in the overriding crust (Figure 4). 

 

4.4 Structural setting of the 2016 Chiloé earthquake  

 

The overall crustal structure at latitudes of Chiloé Island (Figure 7) appears to be very similar 

to the structure further north at around 38°S (Haberland et al., 2009), suggesting limited 

lateral change along the South Chilean subduction zone. The vp model of the local earthquake 

tomography study from Lange (2008) reveals features such as the subducting plate 

(labelled Y. Figure 7), a wedge shaped crustal forearc (labelled W, Figure 7), sedimentary 

basins in the marine forearc and beneath the longitudinal valley (W and X, Figure 7). In the 

western part of the model the 7.8 km/s contour line is inclined following the downgoing slab, 

whereas in the eastern part of the model the 7.8 km/s contour shows a bulge (Z in Figure 7). A 

similar, arched 7.8 km/s vp contour line from local earthquake tomography, was found 

500 km further north and interpreted as continental mantle (Haberland et al., 2009).  
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Most of the marine forearc is characterised by very sparse interseismic activity with a sharp 

onset of events ~15 km west of Chiloé Island (Figure 6), at a similar depth to that of the updip 

limit of the aftershock series of the 2016 event (Figure 5). This implies that the 2016 

earthquake ruptured only the deeper part of the 1960 earthquake rupture zone (Figure 1). The 

shallow forearc between the trench and the seismicity band parallel to the coast of Chiloé 

Island is characterized by an almost complete absence of interseismic seismicity (Figure 6), 

but is thought to have ruptured during the 1960 Mw 9.5 Valdivia earthquake (Figure 1). Here, 

the plate interface is located beneath the Chiloé basin (Figure 7B, label W), and the aseismic 

behaviour of the shallowest few kilometres of the plate interface is inline with global 

observations of a shallow aseismic zone attributed to underplating of semi-consolidated and 

unconsolidated sediments (Byrne et al., 1988), or to a conditionally stable regime (Bilek et al., 

2004).  

The seismic behaviour in the downdip direction beneath Chiloé Island and the surrounding 

subduction zone can be classified in the domains suggested by Lay et al. (2012). The Chiloé 

event ruptured the seismogenic zone (domain B), and left the shallow domain A unruptured 

(Figure 8B). Domain A is the region of tsunami earthquakes (Kanamori, 1972), that produce 

large tsunamis relative to their seismic moment (M0), and are usually associated with long 

rupture duration, for both large and small earthquakes (Bilek et al., 2004; Şen et al., 2015). 

The continental crust above the plate interface in the shallow domain A is characterised by a 

sedimentary basin (Figure 7 and Scherwath et al., 2009), and extends from the trench close to 

the transition from aseismic to seismic behaviour ~20 km west of Chiloé Island. A similar 

seismic band parallel to the coastline, updip of the coseismic rupture and separating the 

rupture domains in the downdip direction, is observed for some subduction zones such as for 

the region of the Sumatra Mw 8.7 2005 earthquake (Tilmann et al., 2010). Beneath Chiloé 

Island, both domain A and B broke during the 1960 earthquake, while the 2016 earthquake 
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ruptured only domain B (Figure 8B). Domain C, located deeper than ~35 km depth (Figure 8) 

did not contain any recorded aftershocks, but is characterized by sparse seismicity during the 

interseismic period. The location of the 350°C isotherm (based on a shallow inclined slab) at 

the latitude of Chiloé Island (Oleskevich et al., 1999) is close (20 km east) to the intersection 

of the slab with the continental mantle inferred from the tomography. In general most of the 

aftershocks, foreshocks and interseismic activity correlate with temperatures between 150°C 

and 350°C (Figure 8A), as expected for the seismogenic zone (Oleskevich et al., 1999). For 

the updip end, Oleskevich et al. (1999) estimate that the plate interface exceeds 100°C 25 km 

east of the trench. The resulting width of the thermal seismogenic zone at a latitude of 42°S is 

100 km. This value is in agreement with the width of the seismogenic zone based on a recent 

thermal model by Völker et al. (2011), which shows a seismogenic zone based on the 100°C 

and 350°C isotherms that widens from south to north along the South Chilean margin (from 

80 km at 42°S to 180 km at 38°S), due to the older and therefore colder subducting oceanic 

plate in the north.  

 

5 Conclusions 

 

The 2016 Chiloé event is the first significant event within the central and southern segment of 

the great Mw 9.5 Valdivia earthquake. The 2016 Chiloé event broke a region with locally 

increased coupling and a large slip of 30 m from the 1960 Valdivia earthquake. The 2016 

rupture occurred in a deeper part of the 1960 earthquake, at depths of ~10–30 km, and in 

temperature domains inline with the seismogenic zone (150-350°C). The updip limit of 

coseismic slip and aftershocks of the 2016 Chiloé event is spatially related to interseismic and 

foreshock activity occurring in a band of seismicity parallel to the coast of Chiloé Island. The 

faulting style determined using moment tensor inversion of larger aftershocks indicates thrust 
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faulting. Hypocentral depths of foreshock and aftershocks are mostly at depths of the plate 

interface and the overriding crust is characterized by sparse seismicity. Comparison of the 

locking model with the coseismic peak slip of the 2016 Chiloé earthquake indicates that strain 

released in 2016 has accumulated at least since the 1960 Valdivia earthquake. Taking into 

account the uncertainties of the slip and locking models, we cannot rule out the possibility 

that some strain released in 2016 might have accumulated prior to the 1960 earthquake. If 

true, this would imply that the final stress after earthquakes may include stress accumulated 

over more than one seismic cycle and stress levels reached after the coseismic phase would 

not be constant over many earthquakes cycles. For the Ecuadorian subduction zone, a similar 

exceedance of slip in comparison to the slip deficit since the previous earthquake was 

described by Nocquet et al. (2017). The release of strain that has accumulated at least since 

1960 indicates that the 2016 Chiloé earthquake should not be regarded as aftershock of the 

1960 event.  
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Figures 

 

Figure 1: Tectonic setting of the 2016 Chiloé earthquake. The slip distribution of the 1960 

earthquake (Moreno et al., 2009) is indicated with green lines (5 m slip contours) and plate 

coupling from Moreno et al. (2011) is shown colour coded. The hypocentre of the 2016 

Chiloé earthquake is indicated by a red star. Seismicity is shown colour coded with depth 

(ISC-GEM catalogue, 01/01/1900-31/12/1975 with stars, gCMT (01/01/1976-01/02/2017 with 

circles). Two earthquakes from March 1919 are indicated with yellow stars. Oceanic plate 

ages from Müller et al. (2008). LOFZ after Cembrano et al. (2000), velocity of the Nazca 

plate relative to South America after Angermann et al. (1999), volcanoes are indicated by red 

triangles.   
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Figure 2: Temporal and trench lateral distribution of aftershocks. Top: Events from 1920 until 

1961 from ISC-GEM Global Instrumental Earthquake Catalogue (Storchak et al., 2013) and 

events from January 1961 until 28 January 2017 from the NEIC catalogue.  
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Figure 3: Coseismic slip model of the 2016 Mw 7.6 Chiloé earthquake from joint inversion of 

teleseismic body waves and strong motion data. (A) Map view showing the distribution of 

strong motion stations (grey triangles) and the hypocentre of the mainshock (red star) 

located by the CSN (B) Broadband stations (blue triangles) at teleseismic distance used in 

the inversion. Red star indicates the hypocentre of the 2016 Chiloé earthquake. (C) Map 

view of the final slip distribution. Black arrows correspond to the slip vector scaled to the slip 

amplitude. Red star indicates the location of the rupture nucleation. (D) Moment-rate 

function. (E) Fitting of observed (black line) and calculated (red line) ground displacements at 

the two closest strong motion stations. Station codes and components are indicated on the 

top of each set of traces. Start time of the records corresponds to the origin time. (F) 

Comparison of observed (black line) and synthetic (red line) teleseismic body waves at few 

representative stations. Station code name and the respective P- or SH-wave record is 

shown inside each box. 
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Figure 4: The coseismic slip distribution of the 2016 Chiloé earthquake is shown with a 

coloured grid and 1 m slip contours. Black dashed lines indicate the depth to the plate 

interface as defined by the global SLAB1.0 model (Hayes et al. 2012). The bathymetry was 

taken from the GEBCO (https://www.gebco.net/). The red star indicates the hypocenter of the 

2016 Chiloé earthquake. 
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Figure 5: Fore- and aftershocks of the 2016 Chiloé event together with focal mechanisms 

from moment tensor inversion. Interseismic activity from 2005 based on an amphibious 

seismic network (white circles) (Lange et al., 2007). The coupling model of Moreno et 

al. (2011) is indicated with orange lines. The coseismic slip distribution of the 2016 Chiloé 

earthquake is shown with a coloured grid and 1 m slip contours. High-resolution multibeam 

bathymetry from R/V Sonne cruise SO181 is encircled with a white line. Hypocentre from 

NEIC is indicated as a yellow square, hypocentre using the local stations is indicated with a 

yellow star. Moment tensor for the 2016 Chiloé mainshock from gCMT (www.globalcmt.org).  
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Figure 6: The 2016 Chiloé earthquake and interseismic activity in the region of Chiloé Island. 

Circles indicate interseismic activity (CSN catalogue, 01/01/2008 until 24/12/2016 and 

seismicity from Lange et al., 2007) together with the slip model of the 1960 Valdivia 

earthquake based on the inversion of land-level changes (Moreno et al., 2009) shown with 

green lines (5 m slip contours). Red lines indicate the 1 m slip contours of the 2016 Chiloé 

earthquake. Volcanoes are indicated with red triangles. Black (CSN) and blue (Sernageomin) 

triangles indicate local seismic stations used in this study. Blue box indicates location of 

figure 4. The location of the profiles shown in figures 6 and 7 are shown with a black line and 

labelled with A-A’. 
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Figure 7: Profiles along the 2016 Chiloé rupture. A.) West-east striking topographic profile. 

B.) Section showing the aftershock seismicity superimposed on the 2-D vp velocity model 

from Lange (2008). Red circles indicate aftershocks of the 2016 Chiloé event. Events are 

shown within 120 km of either side for the profile centred at 43.5°S. The land stations from 

CSN and active volcanoes are indicated with boxes and triangles, respectively. Model nodes 

are plotted as crosses. The velocity model is clipped in areas where the resolution of the 

model is low. See section 4.4 for explanation of characters ‘’W’’ to ‘’Z’’. 
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Figure 8: A.) East-west profile showing the distribution of interseismic activity (orange: CSN 

catalogue, 01/01/2008-2016 until 24/12/2016), white: interseismic activity from Lange et al. 

(2007), green: foreshock seismicity of the 2016 Chiloé earthquake, red: aftershock seismicity 

of the 2016 Chiloé earthquake. Interseismic activity of the magmatic arc (orange circles 

~72.8°W) is related to the eruption of Chaitén volcano in 2008. Events are shown within 

120 km of either side for the profile centred at 43.5°S. The orange lines indicate isotherms 

from the thermal model of Völker et al., 2011. B.) Vertical west-east trending profile for 

43.5°S showing the interseismic coupling (Moreno et al., 2011), slip of the 1960 Valdivia 

earthquake (Moreno et al., 2009) together with the co-seismic slip of the 2016 Chiloé 

earthquake. Rupture domains following the classification of Lay et al. 2012 are indicated with 

grey arrows. The land stations and active volcanoes are indicated with boxes and triangles, 

respectively. 

 

 

 


