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The nature of modern astronomy means that a number of interesting problems exhibit a substantial computational bound and
this situation is gradually worsening. Scientists, increasingly fighting for valuable resources on conventional high-performance
computing (HPC) facilities—often with a limited customizable user environment—are increasingly looking to hardware accelera-
tion solutions. We describe here a heterogeneous CPU/GPGPU/FPGA desktop computing system (the “Chimera”), built with
commercial-off-the-shelf components. We show that this platform may be a viable alternative solution to many common com-
putationally bound problems found in astronomy, however, not without significant challenges. The most significant bottleneck
in pipelines involving real data is most likely to be the interconnect (in this case the PCI Express bus residing on the CPU
motherboard). Finally, we speculate on the merits of our Chimera system on the entire landscape of parallel computing, through
the analysis of representative problems from UC Berkeley’s “Thirteen Dwarves.”

1. Computationally Bound Problems in
Astronomical Data Analysis

Many of the great discoveries in astronomy from the last two
decades resulted directly from breakthroughs in the process-
ing of data from observatories. For example, the revelation
that the Universe is expanding relied directly upon a newly
automated supernova detection pipeline [1], and similar
cases apply to the homogeneity of the microwave background
[2] and strong evidence for the existence of dark matter and
dark energy [3]. Most of these discoveries had a significant
computational bound and would not have been possible
without a breakthrough in data analysis techniques and/or
technology. One is led to wonder the astounding discoveries
that could be made without such a computational bound.

Many observatories currently have “underanalyzed”
datasets that await reduction but languish with a prohibitive
computational bound. One solution to this issue is to make
use of distributed computing, that is, the idle CPUs of net-
worked participants, such as the SETI@HOME project [4].
It is clear that a number of common data analysis tech-
niques are common across disciplines. For example, LIGO’s

Einstein@HOME distributed computing project, designed to
search gravitational wave data for spinning neutron stars,
recently discovered three very unusual binary pulsar systems
in Arecibo radio telescope data [5].

These are far from the only “underanalyzed” datasets
from existing observatories, and this situation is expected
to only compound as we look forward to an ever increasing
deluge of data. For example, the Square Kilometer Array is
expected to produce about an exa-byte a day [6] (to put this
into perspective, it is estimated that all the stored informa-
tion created by humanity is roughly 300 EB [7]); just for
fairly basic operation, this alone will require to be close to the
projected computing power of the world’s single most pow-
erful computing system [8] at the expected 2020 date of “first
light.” There are a number of robotic survey telescopes either
already, or scheduled soon to be, on-line to detect transient
events, from near-Earth objects such as asteroids [9] to dis-
tant GRBs [10].

It should be obvious that many other sectors have expo-
nentially growing appetites for computation, from milit-
ary [11] through financial [12], even cinematic applications
require the most powerful HPC systems [13]. Considering
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the common computational requirements of these systems,
it is clear that a revolution in HPC technology is required in
order to keep pace with projected needs.

2. Problems with Conventional
Cluster-Based HPC Systems

Until very recently, the most powerful HPC systems (the
“Top 500”) were purely CPU based [8], although there is a
very recent but significant shift towards the use of general-
purpose graphical processor unit (GPU) coprocessing. How-
ever, many critics point out that the “Top 500” may not be
representative of the true compute power of a cluster [14].
The negative corollary of the efficient compliance of CPUs
with LINPACK is that the resulting rigid instruction set can
compromise performance when performing operations not
heavily dependent on dense linear algebra. As we show in
Section 6 below, this is, only one feature of many that are vital
to problems involving parallel computation.

Because power consumption, and hence heat generation,
is proportional to clock speed, processors have begun to hit
the so-called “speed wall” (e.g., Intel cancelled their 4 GHz
processor line because of heat dissipation issues [15]). Fur-
thermore, there is a growing awareness of the monetary cost
of powering traditional HPC systems: over half the lifetime
cost of a modern supercomputer is spent on electrical power
[16]. Indeed, many computing clusters are sited near large
generation plants in order to save on power transport costs
[17].

It is also easy to forget that the concept of a “general pur-
pose” microprocessor is a relatively recent idea—for exam-
ple, only since the introduction of the 486 processor have
Intel not used a dedicated floating point coprocessor. Mean-
while, hardware accelerators have occupied specialized
niches, such as video processing and high-speed DSP appli-
cations. The most commonly available of these accelerators
are the (general-purpose) graphical processor unit (GPU)
and the FPGA. Easing or circumventing many of the issues
with CPU-based HPC is becoming an attractive prospect to a
growing cadre of consumers. Currently promising teraflop/s
performance with a low initial capital outlay and without
need of a specialized power supply or cooling facility, both
the GPU and the FPGA are viable alternatives to purchasing
many CPU-based units. Until recently, the development time
associated with these platforms was considered rather high,
especially for the FPGA. However, the programming inter-
faces for both have become more user-friendly. Finally, the
future appears bright for both accelerator classes, as both
have performance growth well exceeding Moore’s Law, and
consequently, that of CPUs [18].

3. Comparisons between CPUs and
Hardware Accelerators

The long-standing workhorse of the vast majority of data
analysts is the general-purpose CPU. Because it is expected
to perform a range of different tasks, CPU processor designs
cannot afford to specialize. Although the processor clock

speeds are fairly high, it can take many cycles to perform an
intensive computation, because it will be scanning for inter-
rupts, and so forth. CPUs are generally very good at per-
forming a multitude of separate tasks at a moderate speed
and are efficient at moderating/coordinating a range of slave
devices. The performance and merits of these devices should
be fairly familiar to the reader.

Because GPU platforms were designed to efficiently per-
form linear operations on vectors and matrices, a general rule
of thumb is that any operations that require intensive linear
calculations are best made on a GPU. Many embarrassingly
parallel computations rely on linear algebraic operations
that are a perfect match for a GPU. This, in addition to the
amount of high level support, such as C for CUDA, means
they have become adopted as the hardware accelerator of
choice by many data analysts. For example, a comparison of
the GPU-based CUDA-FFT against the CPU-based FFTW3
on gravitational wave data analysis showed a 4X speedup for
one million, and 8X for four million, points; this exact ap-
proach can also be used to detect radio transients with syn-
thetic aperture array radio telescopes [19]. An excellent anal-
ysis of a range of algorithms heavily used in astronomy with
applications including imaging, gravitational lensing, and
pulsar characterization, implemented on GPUs, is given in
[20].

FPGAs, on the other hand, of course, represent an en-
tirely different approach to computing altogether. Because of
their unrivalled computing flexibility, it can be difficult for
the data analyst, used to a rigid instruction set-based proces-
sor, to be entirely comfortable with the low level required to
construct an analysis pipeline. The majority of the applica-
tions in astronomy have been in instrumentation and data
capture, such as the FPGA-based digital cross-correlator for
synthetic aperture array radio telescopes [21, 22] or spec-
trometers [23]. However, there is a small but growing base
of analysts willing to adopt an FPGA-based hardware ac-
celeration solution, with applications including detection of
gamma-ray pulsars [24]. There are a number of FPGA-based
HPC facilities such as Janus [25] and Maxwell [26], and
companies such as Starbridge, Inc. and Pico Computing, Inc.
[11] offering FPGA computing solutions. A good survey of
the state of FPGA-based HPC is given in [27].

Determining the relative strengths of each hardware ac-
celeration class is highly algorithm (and data-type) depen-
dent. There are many comparisons in the literature between
FPGA, GPU and CPU, implementations of the same algo-
rithms, ranging from random number generation [28]
(where at 260 Gsample/s, FPGAs were found to be faster by a
factor of 15 and 60 over a contemporaneous GPU and CPU
resp.), video processing [29] (where FPGAs may have a signi-
ficant advantage over GPUs when multiplying arrays of rank
four or higher), convolution [30] (FPGAs are advantageous
because of their pipelining and streaming abilities) to
MapReduce [26, 31] (where the former show that GPUs con-
siderably out-perform FPGAs and the latter show that an
FPGA implementation of Quasi-Random Monte Carlo out-
performs a CPU version by two orders of magnitude and
beats a contemporaneous GPU by a factor of three), and
least squares applications [32] (an FPGA implementation is
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slightly worse than that for a GPU, which is in turn slightly
worse than a CPU, for large matrices). Some more general
overviews are given in [33, 34]. However, one must be careful
not to generalize performance without consideration of the
detailed technical specifications of the components. Both
FPGA and GPU platform designs are in a state of unprece-
dented flux, and hence relative performance benchmarks are
likely to change also. This caveat notwithstanding there are
a number of distinctions amongst each hardware platform
intrinsic to the underlying design features.

With the above considerations in mind, we present here
a system that attempts to exploit the innate advantages of all
three hardware platforms, in order to attack problems with
a computational bound that would benefit from a mixed
hardware subsystem “heterogeneous” approach.

4. The “Chimera” Heterogeneous
CPU/GPU/FPGA Computing Platform

We originally conceived a platform that would exploit the
advantages of both FPGA and GPU accelerations via a high-
speed backplane interconnect system [35]. A schematic is
shown in Figure 1.

There are a number of platforms that implement a
heterogeneous FPGA/GPU/CPU system. The “Quadro-Plex
Cluster” [36] is a sophisticated sixteen node cluster with two
2.4 GHz AMD Opteron CPUs, four nVidia Quadro FX5600
GPUs, and one Nallatech H101-PCIX FPGA in each node,
with a thread management design matching that of the
GPUs. However, it does not yet appear to implement a com-
bination of FPGAs and GPGPUs within an algorithmic
pipeline, which is essential for our applications. Also, the
FPGA architecture was designed to mirror that of the micro-
processor, including full double precision support, which in
general will not optimize the potential performance of the
FPGA. The “Axel” [37] system is a configuration of sixteen
nodes in a Nonuniform Node Uniform System (NNUS) clus-
ter, each node comprising an AMD Phenom Quad-core CPU,
an nVidia Tesla C1060, and a Xilinx Virtex-5 LX330 FPGA.
From the perspective of Axel, our proposed platform would
conform to the Uniform Node Nonuniform System (UNNS)
configuration, or perhaps an optimized version of each node
within an Axel-type cluster. There is a “desktop supercom-
puter” comprising a single CPU, GPU, and FPGA [38], used
to model coupled resonator optical waveguides, although
unfortunately the architecture and configuration of this sys-
tem is unclear. Finally, there is a fledgling system that pro-
poses to use a combination of GPUs and FPGAs for cryp-
toanalytic problems [39], although to date the applications
have only been tested on GPUs.

We also would like the system to be scalable if possible,
although the focus of this paper is the combined hetero-
geneity of the hardware accelerators in a single-node archi-
tecture. The main problems we are concerned with here fea-
ture embarrassingly parallel analysis pipelines, and so extra-
polation to a cluster system ought to be relatively straight
forward. The granularity of this system is dictated by the
particular algorithm being used; the most coarse-grained

x = 0 : 100;
y = fpga (x);
z = fft gpu (x);
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Figure 1: A schematic of our original concept for a heterogeneous
CPU/GPGPU/FPGA system.

Table 1: Description of subsystem hardware configuration for the
“Chimera” heterogeneous CPU/GPGPU/FPGA computing plat-
form used here.

Subsystem Vendor Model

CPU Intel i7 Hexacore

GPGPU nVidia Tesla C2070

FPGA Altera Stratix-IV

pipelines will be those with a large reliance on GPU-based
resources.

Finally, a significant constraint was an inexpensive initial
outlay, which immediately restricted us to commercial-off-
the-shelf (COTS) components. Table 1 lists the components
of the heterogeneous system we describe here, which we call
“Chimera,” after the mythical Greek beast with a head of a
goat, a snake, and a lion on the same body.

Aside from the actual CPU, FPGA, and GPU compo-
nents, perhaps the most important element in this system is
the high-speed backplane or interconnect. Because of COTS
constraints, we eventually settled on the simplest solution,
that is, that already residing as the northbridge system on the
CPU motherboard. In this case, the interconnect protocol is
Peripheral Component Interconnect express (PCIe) Gen 2.0,
on an Intel DX58SO2 motherboard. Although the board has
2X PCIe 2.0 × 16 ports, only one 16 lane port is dedicated,
the other is multiplexed with a third 8 lane slot. The maxi-
mum theoretical PCIe throughput, is therefore, 2 × 16 lane
devices or 32 GB/s. These 32 PCIe lanes are routed to the I/O
hub processor (the 82X58IOH, which we loosely term here
a “northbridge”) which implements Intel’s Quick Peripheral
Interconnect (QPI) protocol to the CPU. The QPI has a
25.6 GB/s point-to-point link to the CPU. In spite of the
impressive performance of the motherboard we found, as
expected, the PCIe bottleneck presented the most significant
limitation to our computing model. We choose to ignore this
limitation in what follows for several reasons.
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(1) The limitation is algorithm dependant, in some cases
(e.g., generation of pseudorandom numbers) large-
data sets are developed and processed solely on-chip.
In other cases, processing pipelines may be organized
to avoid this bottleneck.

(2) FPGA devices, in particular, are provided with very
high speed I/O connections allowing multiple FPGAs
to process and reduce data-sets before passing them
to the final, PCIe limited device.

(3) The purpose of the Chimera is to prove the concept
of the hybrid computing model using low-cost COTS
devices. Having established that a hybrid design is
limited only by interconnect speed the way is open
for faster and more expensive interconnect solutions.

The Altera Stratix-IV FPGAs reside on DE-530 develop-
ment boards, with an 8-lane PCIe interface, while the Tesla
C2070 has a 16-lane PCIe interface. The development envi-
ronment for the FPGAs was Verilog and ModelSim, while
that for the GPUs was C/C++ for CUDA and nVidia’s SDK
libraries. Because there is not yet a widely available commu-
nication protocol that allows FPGA-GPU communication
without the mediation of a CPU, we are currently developing
kernel modules for the PCIe bus. A primary goal of the
Chimera system is to provide access to high-performance
computing hardware for novice users. This inherently means
providing an operating system (OS) with familiar signal
processing tools (e.g., MATLAB). Running the OS is natu-
rally a task exclusively handled by the CPU, but it presents
some difficulties because the security layers of the OS will
usually deny direct access to the FPGA and GPU hardware.
In the case of the GPU, this problem is solved by the vendor
(nVidia) provided drivers, but, for the FPGA, an alternative
approach is necessary: custom driver development is neces-
sary. We opted for a Linux-based OS because we feel it is
much simpler to develop drivers than for proprietary OSs.
Like all modern OSs, GNU/Linux implements a virtual
memory environment that prevents “user” code from direct-
ly accessing memory and memory-mapped peripherals. In
order to directly control system hardware, such as a PCIe
device, it is necessary to write code that runs in “kernel”
mode. Linux permits these “kernel modules” to be loaded
and unloaded into the running kernel via the insmod and
rmmod commands. This provides a straightforward means to
share data between the FPGA and GPU devices on the PCIe
bus, as well as the system memory. A schematic of this stack
design is given in Figure 2.

It is also possible to rebuild the Linux kernel, thus incor-
porating the module into a custom Linux kernel. The kernel
code then provides a bridge between the user code space
and the FPGA hardware. As these kernel modules are still
under development, and the bottleneck from the PCIe trans-
fer is simple to calculate for the simple examples below, we
consider here the subsystem performance only. Hence, the
run-time and data-transfer systems are currently fairly pri-
mitive. In order to optimize performance, the parallel prog-
ramming models are algorithm dependent, including the
number of threads and how data is shared. Data transfer be-
tween the subsystem components currently has only limited

CPU

User code

Kernel modules

Kernel space

PCIe drivers

PCIe backplane

GPGPU FPGA1 FPGA2

User space

Figure 2: The software stack hierarchy of the Chimera system. The
Linux kernel modules provide an interface between user-generated
code and the PCIe bus and hardware components.

automation, and pipelines are mediated by the CPU, which is
highly undesirable. However, we are in the process of build-
ing data transfer protocols (via the kernel modules) that
depend upon the particular application but are implemented
using a coherent level of abstraction.

Finally, this system was conceived with the explicit con-
sideration of the significant trade-off between development
time (especially associated with development of the FPGA
related pipeline and PCIe modules) and performance. Hence,
we consider only computing solutions that are likely to have
a high reuse within the data analysis community.

5. Appropriate Algorithms for
a Heterogeneous Computing System

As with most compute intensive problems, the implemen-
tation is extremely dependent on the underlying hardware
and the most significant bottlenecks. Much consideration is
required in the “technology mapping” from one system to
another. For example, an important consideration for FPGA
HPC applications is whether fixed or floating point calcula-
tions are required. Data analysts have become accustomed to
assume that their pipeline requires single precision or more,
without considering that this may actually decrease the ab-
solute error of the calculation. It is also not entirely true
that FPGAs perform poorly on floating point performance
[40] (note that this is not necessarily the same as conforming
exactly to the IEEE-754 single or double precision definition
[41]; GPUs do not natively support denormals but now
perform linear operations very well with most double pre-
cision calculations). Considering around 50% of FPGA logic
can be consumed by tracking denormals, there are recent
ingenious developments, optimizing floating point pipelines
on FPGAs, such as Altera’s “fused datapath” approach [42].
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We consider here three important algorithms to attempt to
illustrate the considerations required, and relative benefits of,
mapping common problems to our heterogeneous comput-
ing system.

5.1. Monte Carlo Integration. The simplest illustration of the
advantages of this system is the well-known Monte Carlo
calculation of π (the ratio of the circumference of a circle
to its diameter) [43]. This proceeds as follows. A large set
of points (x, y) are created from pairs of random numbers,
uniformly distributed between −1 and +1, such that they fall
within a square of area 2 × 2 = 4 units2. Each point is then
checked to see if it lies within a circle of unit radius (equiv-
alently solving the inequality x2 + y2 < 1). The ratio of the
number of points satisfying this inequality to the total num-
ber of points then determines the ratio of the total area to the
area of the circle. Yet the area of a circle of unit radius is π, so
the ratio will yield a numerical estimate of π/4.

Because FPGAs have the unrivalled capacity to generate
large quantities of uniformly distributed random numbers,
and GPUs are vastly superior at taking squares (or square
roots) over any other commonly available general purpose
platform, it would be sensible if an FPGA were to generate
the randomly placed points (in parallel), which were in turn
directly given to a GPU to determine the placement of each
point (i.e., within the circle or not). This calculation and how
we anticipate performing it using a hybrid approach is
depicted in Figure 3. We could implement a more sophisti-
cated quasirandom version of this algorithm, that is, using a
Halton, Sobol’ or other low-discrepancy sequence [26, 43],
but considering this a rather poor way to calculate π, we
restrict ourselves here to uniform pseudorandom distribu-
tions for illustrative purposes.

The pseudorandom calculation of π was implemented
entirely in the GPU and entirely in the FPGA. In both cases,
two 32 bit unsigned integers ((x, y) pairs) were generated
using a pseudorandom generator. These were squared and
added and the result compared to unity. The limiting factor
in the StratixIV530 FGPA was the available number of mul-
tiplier blocks which were necessary for the square operation.
Our design required 5 DSP18 blocks per sampling module,
allowing a total of ≈200 parallel units. Applying a conser-
vative clock speed of 120 MHz, we achieved 24 giga-samples
per second. Surprisingly, this is approximately an order of
magnitude greater than our results for the GPU, which per-
formed 100,000 trials in 47 μsec, giving ≈2.13 giga-samples
per second. These results agree broadly with those in [26],
in that the FPGA calculation of the entire pipeline is about
an order of magnitude faster than the GPU implementation,
and many many times faster than that by a comparable CPU.

This result ought to be surprising, prima facie, consid-
ering that the multiplication intensive calculations involved
in testing whether the points lie within the unit circle ought
to favor the GPU. However, one must remember that a con-
siderable amount of effort went into an implementation
optimized for the FPGA, including the avoidance of the
costly square root operation. We expect the GPU to perform
a lot better, in relative terms, when the function to be

AC = πR2

AT = 4R2

AC/AT = NC/NT = π/4

FPGA FPGA

GPU GPU

CPU

1: Create NT (uniformly distributed) random positions within
unit square:

x = RND (−1, 1) y = RND (−1, 1)

2: Count number of points NC satisfying:
x2 + y2 < 1

3: Calculate 4NC/NT and display

R

Figure 3: A schematic of Monte Carlo calculation of π, and how we
expect to perform this calculation on a hybrid GPU/FPGA system.

integrated is more complicated than this extremely simple
model. This argument, of course, ignores the fact that copy-
ing memory to devices takes far longer than these simple cal-
culations (e.g., in the case of the GPU, about 42 times as long,
at 2,118 μsec).

5.2. Normalized Cross-Correlation. Template matching is one
of the most important tasks in signal processing and is often
achieved by computing the cross-correlation (or “sliding-
dot product”) between the template and a search signal. For
example, cross-correlation is a crucial operation for resolving
images in synthetic aperture array-based observatories such
as the Very Long Baseline Array or the proposed Square
Kilometre Array (SKA) [44].

The point in the search signal with maximum correlation
is considered the best match to the template. For discrete
one-dimensional signals, we seek to find max(A × B[t]),
where A × B[t] = ∑

T A[T] ∗ B[T + t]. Essentially, we are
treating the template, and a template-sized window of the
search signal, as vectors in N-dimensional space (where N is
the length of the template) and computing their dot-product.
The Pythagorean relationship shows that, for vectors of equal
length, this is simply a measure of the angular relationship
between them, since A · B = |A| · |B| cos θ.

Normalized cross-correlation (NCC) is so called because
it divides the cross-correlation by the product of the mag-
nitude of the vectors, thus calculating cos θ, regardless of the
length of the vectors. NCC is widely applied in image pro-
cessing, such as video compression, pattern recognition, and
motion estimation where the signals are, of course, two-
dimensional, real, and nonnegative. For image processing
applications, the 2DNCC is given by (1):

∑

X

∑

Y

A
[
x, y

] · B[x + X , y + Y
]

√

A2B[X ,Y]2
. (1)
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Assuming the pixel data in question is always an integer
and, since

√
A2B2 ≤ A2B2, we can equally express (1) as (2):

∑

X

∑

Y

A
[
x, y

] · B[x + X , y + Y
]

A2B[X ,Y]2 , (2)

provided we are only interested in finding the peak of the
NCC surface.

Computationally, there are many options to accelerate
(2) [45]. For most real-world datasets, calculation of the
numerator is faster if the Fourier shift theorem is applied
and the (unnormalized) cross-correlation computed via the
usual transform multiply and inverse transform approach
(although it is important to remember that in order to pre-
vent wrap-around pollution it is necessary to zero-pad both
images to be size(A) + size(B) – 1). The multiply-intensive
nature of this approach, combined with the all-but-essential
use of floating-point data types, leads us to conclude that the
numerator will be best computed with the GPU.

The ideal platform to calculate the denominator, how-
ever, is not so easily assured. As the image data is integral and
the only operators are the sum and square, which are both
closed under the set of integers, this would seem an ideal
candidate for an FPGA. However, because B2 ≡ B · B, it is
also a task which might be well handled by a second GPU.

We evaluated the 2D NCC using a common image
matching task. We exhaustively searched a 1024 × 768 pixel
search image for an 8 × 8 template. In both cases, the pixels
used were 16 bit unsigned greyscale integers. The numerator
of (2) was calculated in the Fourier domain on the C2070
GPU and found to take 6.343 ms (≈158 frame/s). We then
investigated two approaches to calculating the denominator:
FPGA based, or using a second GPU. The FPGA implemen-
tation of the dot-product relied on the multiply-accumulate
pipeline built into the DSP18 blocks in the StratixIV FPGA.
Four DSP18s were required for each 8× 8 dot-product block
and, because very few of the FPGA’s other resources were
required, this was the limiting factor in determining the
number of parallel units. For the StratixIV530 device, this
allowed 256 dot-product modules to operate in parallel.
As the DSP18 is a hard silicon block, the maximum clock
speed was relatively high, at slightly over 400 MHz, giving a
total value of roughly 10 giga-ops. For the search image size
quoted, this would achieve ≈12.5 kframes/s. The GPU dot-
product was profiled at one operation in about 1.4 nsec, or
715 Mop/s, corresponding to a frame rate of ≈894 frames/s.

Thus, in this implementation, ignoring the impact of the
PCIe bottleneck, a hybrid system comprising a GPU working
in tandem with an FPGA was found to achieve a better result
than a system consisting of two GPUs. We would like to apply
a similarly optimized algorithm to the correlation problem
required by a synthetic aperture array observatory such as
the VLBA or SKA [44].

5.3. Continuous Gravitational Wave Data Analysis. A much
more complicated, and consequently useful, example is that
related to the computationally bound problems found in
gravitational wave data analysis. A number of mechanisms
may cause rotating neutron stars to emit periodic distortions

of space time (gravitational waves), which may be detected
by ground-based gravitational wave observatories such as
LIGO [46] or Virgo [47]. The data analysis pipeline is as fol-
lows: the data coming from the gravitational wave observa-
tories is filtered, then template matching is applied. If no
candidate is found, in order to determine the statistical upper
limits, intensive Monte Carlo calculation of injections is
required. This stage is so computationally intensive that it is
often not fully implemented because of the prohibitive com-
putational cost [48]. We estimate the Chimera platform will
be able to provide these limits for approximately a dozen
potential neutron star targets, including central objects in
supernova remnants of unknown pulsation frequency. There
are already GPU-based acceleration of similar pipelines used
in gravitational wave data analysis; many FFTW3-based
routines have been replaced with CUDA FFT, to enable low-
latency detection of gravitational waves from coalescing
neutron stars [19]. We see a similar pipeline as a natural
application for the Chimera system we describe here, and we
are in the process of implementing this.

5.4. Other Promising Algorithms. Many promising data anal-
ysis applications that are considered computationally expen-
sive may be implemented rather simply using this type of
heterogeneous hardware acceleration. For example, digital
filter application is efficiently implemented on FPGA devices
[49]. A number of promising analysis techniques based on
compressed sensing [50] are considered computationally ex-
pensive. However, the most compute-intensive component,
namely, the least-squares minimization routine, may be effi-
ciently implemented on an FPGA via Cholesky decomposi-
tion [51–53].

6. Potential for Other Data Analysis
Applications: Analysis via Berkeley’s
“Thirteen Dwarves”

Probably the most labor-intensive process involved in choos-
ing the most appropriate platform weighting between the
hardware accelerators in a heterogeneous system is that
of identifying the most appropriate algorithms—especially
their most efficient implementations—for a given pipeline
and input/output constraints. Although we have identified a
small number of algorithms here, it would be an interesting
and valuable exercise to consider the possible classifications
to determine which hardware acceleration combinations
would be most appropriate.

In practice, there is a natural classification of problems
merely by virtue of the similarity in computation and data
movement through usage of the same software packages.
Take, for example, FFTW/FFTW3 for spectral methods,
or the dense linear algebra LAPACK/ScaLAPACK libraries.
Indeed, the latter forms an important benchmark providing
some measure of CPU performance (and possible entry into
the popular “Top 500” list). However, we would like a more
systematic approach to benchmark performance on parallel
algorithms that are not necessarily strongly dependent on
linear algebra.
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In order to identify the likely future requirements of
software and hardware design, Phil Colella identified seven
parallel numerical methods important for science and engi-
neering [54], known as “dwarves” (a reference to the Snow
White fairy tale). This concept of a dwarf, as an “algorithmic
method encapsulating a pattern of computation and/or
communication,” was further extended by the Department
of Computer Science of UC Berkeley, to thirteen [55]. It
is intended these “dwarves” comprise an algorithm classif-
ication system spanning the entire landscape of parallel com-
puting for the foreseeable future ([55]; see Table 2). We
see this approach as a promising means of determining the
relative (dis)advantages of our Chimera system on other sci-
entific problems. To our knowledge, this is the first attempt
at the analysis of dwarf performance on systems heteroge-
neous at the hardware accelerator level.

The example of the Monte Carlo calculation of π above
falls under the “MapReduce” Dwarf: the Mapper function
is each trial point, while the reducer just aggregates the
counts. From the Chimera perspective, the mapper functions
are either performed on the FPGA (the simple example
above) or split between the FPGAs and the GPU, while the
reducer runs on the CPU. The normalized cross-correlation
would be classified within the “Dense Matrix” dwarf. The
much more complicated case of the full gravitational wave
analysis pipeline largely falls under the “Spectral Methods”
jurisdiction, along with that of “MapReduce.”

It is clear that many dwarves naturally map to each of
the separate hardware accelerators. For example, the “Dense
Matrix” dwarf equivalently relates to LAPACK/ScaLAPACK
performance on a problem such as principal component
analysis of a dense structure. Here, we should expect different
performance for floating and fixed point operations, and
hence we expect the GPU to excel alone on floating point (at
least for matrices of up to rank 4 [29]), while the FPGA will
be extremely competitive for fixed point versions. The same
argument applies for naı̈ve implementations of the “Sparse
Matrix” dwarf, we expect GPUs to have superior perfor-
mance calculating a sparse PCA problem in floating point,
while the FPGA ought to well on fixed point. The “Spec-
tral” dwarf generally comprises an FFT-based computation,
such as wavelet decomposition. It is difficult for any platform
to beat the GPU CUFFT library, and hence the GPU will be
superior in most implementations, although for large num-
bers of FFT points, FPGAs may be more appropriate [40].

On the other hand, “Combinational Logic” problems
(dwarf 8) such as hashing, DES encryption, or simulated
annealing, are extremely well suited for the logic-intensive
FPGA. It is also clear the “Finite State Machine” dwarf (13),
such as control systems, compression (e.g., the bzip2 func-
tion), or cellular automata, can be most easily optimized by
an FPGA. For example, consider a simple implementation of
a 4-bit TTL (Transistor-Transistor Logic) counter, requiring
4 XOR gates, 3 AND gates, and 4 1-bit registers, our Stratix-4
could produce ≈120 k operations per clock cycle, or roughly
36 peta-op/s.

What are not so clear are problems requiring conditional
elements or communication between hardware accelerators
that would require prohibitively costly transfers across the

Table 2: The “Thirteen Dwarves” of Berkeley. Each dwarf repre-
sents an “algorithmic method encapsulating a pattern of compu-
tation and/or communication,” and this intended to be a compre-
hensive list of the major requirements of parallel computational
problems for now into the short term.

Dwarf Examples/Applications

1 Dense Matrix Linear algebra (dense matrices)

2 Sparse Matrix Linear algebra (sparse matrices)

3 Spectral FFT-based methods

4 N-Body Particle-particle interactions

5 Structured Grid Fluid dynamics, meteorology

6 Unstructured Grid Adaptive mesh FEM

7 MapReduce Monte Carlo integration

8 Combinational Logic Logic gates (e.g., Toffoli gates)

9 Graph traversal Searching, selection

10 Dynamic Programming Tower of Hanoi problem

11 Backtrack/ Global optimization

Branch-and-Bound

12 Graphical Models Probabilistic networks

13 Finite State Machine TTL counter

back plane. The “N-Body” dwarf generally consists of calcu-
lations such as particle-particle interactions. A Barnes-Hut-
based particle-particle N-Body model, as used for modelling
astrophysical gravitating systems [56], would be able to
calculate the changes in interaction on a GPU, while the
memory-intensive cell (spatial position) data would be
optimally handled by an FPGA. Although there is an im-
plementation of an Ising “spin-flip” model on the Janus
FPGA cluster [25], an example of a “Structured Grid” dwarf,
a simple Ising model with a limited number of FPGAs would
be better optimized using a GPU in addition.

The “Unstructured Grid” dwarf involves Adaptive Mesh
Refinement, where calculations may be simplified by consid-
ering that only salient points in a space need be calculated,
such as for adaptive finite element modelling (FEM) or com-
putational fluid dynamics (CFD). The CPU will be useful in
this case to tally changes in the mesh and co-ordinate calcu-
lations on salient mesh points using the FPGA and/or GPU.

Because of its conditional nature, “graph traversal”
(including selection (Section 3.4, [43]), searching (Section
8.5, [43]) or decision trees) requires coordination from a
CPU, and hardware acceleration is dependent on the par-
ticular application. “Dynamic Programming,” such as the
famous “Tower of Hanoi” problem, also requires CPU coor-
dination, and also memory-intensive routines that are likely
to benefit from an FPGA.

“Backtrack/Branch-and-Bound” problems, including
search and global optimization problems, also depend on
coordination from a CPU and again are generally memory
intensive. “Graphical Models,” such as Hidden Markov,
probabilistic, neural, and Bayesian networks are also heavily
dependent on coordination.

In light of these arguments, we summarize the most
promising subsystem combination to apply for each dwarf
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Figure 4: The most appropriate hardware acceleration subsys-
tem combination for representative problems from the “Thirteen
Dwarves” (Table 2). The ∗refers to fixed point, while ̂ represents
floating point calculations.

as a Venn diagram in Figure 4. Of course, this should be
understood that the performance is heavily dependent on the
particular implementation, generation of subsystem (includ-
ing on-board memory, number of LUTs, etc.), and intercon-
nect speed.

To characterize the performance of the Chimera system,
we would like to analyze representative problems in each
dwarf in the future using appropriate benchmark packages
such as, for example, the “DwarfBench” package [57] or
“Rodinia” [58]. Such a benchmark would be of use to re-
searchers considering the benefits of this approach for their
own work.

7. Discussion

We see a heterogeneous CPU/GPU/FPGA solution as a viable
future platform for ameliorating some of the computa-
tionally bound problems in astronomy based on perfor-
mance, initial outlay, and power consumption considera-
tions. Because of the outstanding progress made in micro-
processor technologies, most members of the astronomical
and broader scientific community will not have considered
the possibility of including an FPGA-based accelerator to
their analysis pipelines; indeed the adoption of the GPU is
relatively new within the data analysis community.

However, this solution is not without challenges. There
is a significant investment required in development time.
This begins with the “technology mapping” stage, which
can require many hours for a modest pipeline, such as in
Sections 5.1 and 5.2, each of which required considerable
thought of how to distribute compute resources, including
small-scale trials using MATLAB as a development envi-
ronment, comprising one to two hours each. The GPU
programming for these two examples took a total of about
five hours, largely thanks to nVidia’s comprehensive CUDA
SDK support. However, because the degree of optimization
of the FPGA pipelines meant the total amount of time spent
“programming” was approximately forty to fifty hours, the

majority of which was spent in the synthesis/debugging
phase using ModelSim. Although we have not yet imple-
mented the example in Section 5.3—which requires the
dynamic range given by floating point types—considerable
development time was saved using Altera’s DSP Builder,
which interfaces easily with Mathworks’ Simulink. Another
issue to be aware of is that a high degree of hardware opti-
mization generally means a trade-off in problem-size scal-
ability. For example, in Section 5.1 example, the pairs of
numbers (x, y) are each 32-bit and the cases under-/over-
flow are well known; a naı̈ve scaling to, say, single precision
floating point pairs would quickly reduce the number of
parallel units on the FPGA. In example Section 5.2, if instead
of an 8 × 8 template, we were to use 32 × 32 template, per-
formance would scale very poorly because the limiting factor
in performance is the number of DSP18 blocks on the
StratixIV530 FPGA.

A promising advantage of this platform is the low power
consumption. Taking the peak rated single precision per-
formance of each subsystem gives 1.02 Tflop/s for the Tesla
C2070, drawing a power of 228 W. This gives 4.3 Gflop/s/W,
or 4.3 Gflop/J. Compare to the StratixIV, with 500 Mflop per-
formance, drawing around 20 W at this performance, yield-
ing roughly 25 Mflop/s/W. Perhaps more importantly, the
FPGA draws virtually no power when not performing inten-
sive calculations, unlike both the GPU and CPU systems.

Although we have shown the merits and challenges of
a mixed system, the advantages are obvious for a diverse
range of parallel computing tasks, as shown by analysis of
Berkeley’s “Thirteen Dwarves.” This paper hopefully pro-
vides a blueprint for future researchers intending to perform
computationally intensive investigations and are willing to
embrace a heterogeneous computing platform.
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