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The ChinaMAP analytics of deep whole genome sequences in

10,588 individuals
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Lixin Shi4, Xulei Tang5, Li Yan6, Zhengnan Gao7, Gang Chen8, Yinfei Zhang9, Lulu Chen10, Guang Ning1, Yufang Bi1,

Weiqing Wang1 and The ChinaMAP Consortium

Metabolic diseases are the most common and rapidly growing health issues worldwide. The massive population-based human

genetics is crucial for the precise prevention and intervention of metabolic disorders. The China Metabolic Analytics Project

(ChinaMAP) is based on cohort studies across diverse regions and ethnic groups with metabolic phenotypic data in China.

Here, we describe the centralized analysis of the deep whole genome sequencing data and the genetic bases of metabolic

traits in 10,588 individuals from the ChinaMAP. The frequency spectrum of variants, population structure, pathogenic variants

and novel genomic characteristics were analyzed. The individual genetic evaluations of Mendelian diseases, nutrition and drug

metabolism, and traits of blood glucose and BMI were integrated. Our study establishes a large-scale and deep resource for the

genetics of East Asians and provides opportunities for novel genetic discoveries of metabolic characteristics and disorders.

Cell Research (2020) 30:717–731; https://doi.org/10.1038/s41422-020-0322-9

INTRODUCTION
Metabolic diseases are becoming a major growing public health
challenge and causes of morbidity and mortality in the world.
The most common and important metabolic diseases, type 2
diabetes and obesity, are comprised of different subtypes
requiring specific diagnosis and treatments. Understanding
the genetic architecture of metabolic traits is crucial for
individual risk assessment, prevention, and treatment of
metabolic diseases. Applying a comprehensive genetic analysis
of massive cohorts can provide a systematic approach and
effective strategy for the discovery of novel markers and targets.
The variant spectrum of coding and non-coding regions
from population genomics promotes a further understanding
of the genetic basis of complex metabolic traits and
diseases. The findings from the genome-wide association
studies (GWAS) and population genome sequencing projects
construct the knowledge of variants associated with metabolic
traits.1,2

Large-scale reference datasets of population-specific genomics
are fundamental for drug development and precision medicine
of Mendelian and common diseases. Importantly, common
metabolic traits and diseases are characterized by genetic
heterogeneity in population groups.1,3 The populations in the

Europe and USA have magnificent databases of human genomics
and bioinformatics, including the UKbiobank,4 The Genome
Aggregation Database (gnomAD),5 1000 Genomes Project
(1KGP),6 deCODE genetics,7 the UK10K project,8 the DiscovEHR9

and Trans-Omics for Precision Medicine (TOPMed) Program.10

Recently, two studies reported population genomic dataset from
Chinese non-invasive prenatal testing and Singapore Chinese
population.11,12 However, the low-depth sequencing data in
these datasets limit the quantity of high-quality variants and
accuracy of individual variants, especially rare variants. Consider-
ing the huge differences of genetic background and population
characteristics between East Asians and Europeans,13 and the
lack of high-depth Chinese cohort genomic study, representative
database from Chinese cohorts is a critical part for the missing
diversity.
Here, we describe the genomic dataset and analysis of 10,588

deep whole genome sequencing (WGS) data from The China
Metabolic Analytics Project (ChinaMAP). The ChinaMAP was
designed to comprehensively characterize the diverse genetic
architectures of Chinese Han and major ethnic minorities across
different geographical areas, and investigate their contribution to
metabolic diseases and a broad spectrum of biomedically relevant
quantitative traits.
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RESULTS
High-depth WGS dataset of the ChinaMAP
The ChinaMAP is based on three large-scale cohorts: The China
Noncommunicable Disease Surveillance 2010, a nationally repre-
sentative study with 150,000 participants;14 the Risk Evaluation of
cAncers in Chinese diabeTic Individuals: a lONgitudinal (REAC-
TION) study with 250,000 participants15 and the Community-
based Cardiovascular Risk During Urbanization in Shanghai with
50,000 participants.16 A wide variety of phenotypic information, as
well as biological samples, has been collected for each of
~450,000 participants. These cohorts are followed periodically
for new cases of diseases and disease complications. In the first
phase of the ChinaMAP, we have randomly selected participants
from 8 ethnic populations (Han, Hui, Manchu, Miao, Mongolian, Yi,
Tibetan and Zhuang) across 27 provinces of China without biased
selection or filtration, and completed the analysis of deep WGS
data (40.80×) from 10,588 participants. The mean baseline age
was 54 years and 64.8% were women (Supplementary informa-
tion, Fig. S1a and Table S1).
High-depth WGS data (> 30×) is necessary for accurate

detection of extremely rare variants.17 The ChinaMAP obtained a
more massive Chinese genomic dataset compared to the low-
depth genome data from non-invasive prenatal testing and SG10K
study.11,12 The final database contained 136.75 M single nucleo-
tide polymorphisms (SNPs) and 10.70 M insertion-deletion poly-
morphisms (INDELs) after stringent quality control filtering (Fig. 1a,
b; Supplementary information, Table S2). The C:G > T:A (38.82%)
transitions are the majority in the mutation spectrum, followed by
the T:A > C:G (27.32%) transitions (Supplementary information, Fig.
S1b). 2.61% of high-quality SNPs are multiallelic. Consistent with
previous databases,5,6,8,10 the ChinaMAP data revealed that the
rare variants (allele frequency (AF) < 1%) are dominant (94.16%)
and 54.41% of the total are singletons (variants in only one
individual). The ChinaMAP dataset has a total of 1.78 M protein-
coding variants (1.21%), including 980,726 nonsynonymous,
532,701 synonymous, 27,967 stop gain/stop lost, 2851 start lost,
187,758 splice, 31,585 frameshift and 15,733 in-frame variants
(Supplementary information, Table S3). The remaining 98.79% of
variants are noncoding variants, for which there is still a lack of
functional analysis and annotation. The quantity distribution and
density of autosomal SNPs were analyzed (Supplementary
information, Fig. S1c).
To ensure the information from the ChinaMAP are available to

researchers, we established the ChinaMAP browser (www.
mBiobank.com) for investigations as other large-scale human
genomic sequencing projects, such as the DiscovEHR browser
(http://www.discovehrshare.com)6 and the Bravo browser (https://
bravo.sph.umich.edu).10 The summary information from the
databases, including the position, reference allele, mutated allele
and allele frequencies of all variants could be accessed through
the ChinaMAP browser. All variants could be inquired by gene
symbol, rs ID, genomic region or position. The exact number of
alleles, allele frequency data in different ethnic groups and data
quality for each variant from the ChinaMAP could be searched on
the mBiobank website.
To analyze the novel genetic characteristics and information of

the Chinese population, we compared the ChinaMAP dataset to
the TOPMed (freeze 5, 463 M variants), gnomAD (v2.0.2, 125,748
exomes and 15,708 genomes), dbSNP (v149) and 1KGP. The
ChinaMAP dataset exhibited great differences compared to the
combination of TOPMed, gnomAD, dbSNP and 1KGP (Fig. 1c, d;
Supplementary information, Fig. S2a–d). Although the sequence
of East Asian population had been included in these reference
databases, a large number of novel common variants (9,033 SNPs
and 16,470 INDELs, AF > 5%) and low-frequency variants (15,615
SNPs and 14,581 INDELs, AF= 1%–5%) were identified in the
ChinaMAP (Supplementary information, Table S4). A total of 68.3
M SNPs and 5.6 M INDELs are novel variants, the majority of which

are singletons (75.3%). Furthermore, the distribution of individual
variant numbers showed significant geographical and ethnic
characteristics (Fig. 1e; Supplementary information, Fig. S2e, f).
China has seven large geographical areas, including North,
Northeast, East, Central, South, Southwest and Northwest China.
The 8 ethnic groups in the ChinaMAP (Han, Zhuang, Hui, Manchu,
Miao, Yi, Tibetan and Mongolian) are top-ranked by the
population of Chinese ethnics. Our data showed that the Han
populations from the Hexi-Corridor Area in Northwest China
(Gansu province), which is a key region for the Silk Road and
migration of ancient ethnic groups in history,18 have noticeably
more individual variants (Fig. 1e). Ethnic minorities, Tibetan,
Mongolian and Hui populations, have a higher level of mean
individual variants than the average, whereas the Miao individuals
showed an overall decreased level of variants (Supplementary
information, Fig. S2f). For each individual, the median variants
contained 3.37 M SNPs and 0.35 M INDELs, and the transition/
transversion ratio (Ti/Tv) is 2.11 (Supplementary information, Fig.
S3a, e, and Table S3). The heterozygous/homozygous ratio in Hui
and Mongolian people is higher than the average (Supplementary
information, Fig. S3b, e). The number of individual singletons is
characterized by the geographic divisions (Supplementary infor-
mation, Fig. S3c, d) and ethnic groups (Supplementary informa-
tion, Fig. S3e) and distinctly divided by related and unrelated
individuals (Supplementary information, Fig. S3f). The singleton
variants in Miao people are less than the average (Supplementary
information, Fig. S3e). Taken together, these genomic analyses
revealed the genetic characteristics, diversity and complexity of
the multi-ethnic Chinese population in large geographical areas.
To analyze the conservation of noncoding genome sequence

and variants, we calculated the difference of observed variation
from expected variation by the context-dependent tolerance
score (CDTS) and ranked every 550 bp sliding window regions to
study the context-dependent constrained regulatory regions
using 16,384 unique heptamers (7-nt motifs) in the human
genome.19 Our results showed the strong functional enrichment
for non-coding variants in regulatory regions such as promoter
and enhancer, similarly as reported (Fig. 2a, b).

Loss-of-function and pathogenic variants
The identification and frequency spectrum of deleterious patho-
genic and predicted loss-of-function (pLOF) variants contribute to
the crucial reference for Mendelian disorders. The ChinaMAP
dataset contains 82,969 pLOF variants, including 48,163 SNPs and
34,806 INDELs (Supplementary information, Table S2). More than
half of the pLOF variants are novel rare variants (7631) and
singletons (38,490). The total of 792 common and 424 low-
frequency (AF > 1%) pLOF variants included 21 novel variants. The
majority of protein-coding genes (15,048 in 18,502 known genes,
81.3%) have rare pLOF variants (AF < 1%) in at least one
participant (Supplementary information, Table S5). In addition,
the analysis of ‘human gene knockouts’20 revealed that 627 genes
and 29 LOF intolerant genes contained homozygous rare pLOF
variants in at least one participant, which could contribute to
human population-based data of gene functions (Supplementary
information, Fig. S4a and Tables S5 and 6). The count numbers
and spectrum of allele frequencies showed that the pLOF variants
were much fewer than others under the negative selection (Fig. 3a
and Supplementary information, Fig. S4b).9,21 The OP (observed to
potential) ratio of predicted truncating mutations indicated that
the natural selection restrained pLOF variants were less tolerant
with the increase of allele frequency (Supplementary information,
Fig. S4c). The pLOF variants in cancer and autosomal dominant
disease-associated genes were more intolerant than the variants
in olfactory receptor genes, drug target genes and autosomal
recessive disease-associated genes (Fig. 3b). The fractions of LOF,
synonymous and nonsynonymous variants under the selection in
the 1KGP, EAS (East Asian), CHB (Chinese Han in Beijing) & CHD
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(Chinese in Denver, United States) and ChinaMAP database were
similar (Supplementary information, Fig. S4d), and the ratio of
pLOF to synonymous variants in the ChinaMAP was higher
(Supplementary information, Fig. S4e).
To assess the characteristics and distribution of causal variants

for Mendelian disorders in the ChinaMAP, we filtered the
pathogenic variants with the annotation of ClinVar database
(20180603)22,23 and HGMD (Human Gene Mutation Database,
2016.2),24 and further analyzed the disease-causing variants
following the guidelines from the ACMG (American College of
Medical Genetics and Genomics).25 A total of 2026 variants or
1619 variants in the HGMD DM set were annotated as pathogenic

or likely pathogenic by the ClinVar or ACMG, respectively (Fig. 3c
and Supplementary information, Table S7). The candidate
pathogenic variants should be defined and interpreted by further
clinical and functional investigations. The pathogenic variant with
the highest allele frequency in the ChinaMAP was identified as
SERPINB7 rs142859678 (AF= 0.011). The rs142859678 in SERPINB7
(AF= 5.16 × 10−4, gnomAD) causes the autosomal recessive
disease Nagashima-type palmoplantar keratosis, which is reported
in Chinese and Japanese populations.26 We also identified that
SPINK1 rs148954387 (AF= 5.38 × 10−3), a variant that leads to
chronic pancreatitis,27 had a higher frequency in China (AF=
2.99 × 10−4, gnomAD). Moreover, we noticed that the pathogenic
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variants in 6 genes (DUOX2, DUOXA2, SLC26A4, TG, TRHR, and
TSHR) related to thyroid function were more common in the
ChinaMAP than gnomAD (Fig. 3d and Supplementary information,
Table S8). We found 12 individuals with homozygous or two
heterozygous mutations in these genes (Supplementary informa-
tion, Table S9), which could cause congenital hypothyroidism.28

These genetic epidemiology findings revealed the potential
importance of genetic testing screening for Mendelian disorders
with high incidence. The frequency spectrum of variants in the
ChinaMAP (Supplementary information, Table S7) provides an
additional reference for the studies of variants of uncertain
significance (VUSs).

Genetic diversity and the population structure
The precise analysis of the population structure of the world’s
largest ethnic group Chinese Han and minority ethnic groups is
critical for the discovery of population genetic diversity and
characteristics in East Asia. The comparative analysis of the
Chinese and the world’s other populations might provide novel
insights into ancestral origins and relationships of ethnic groups.
Therefore, we performed principal component analysis (PCA) of
the 10,588 participants in the ChinaMAP with the 1KGP and
HapMap project6,29 as a reference to distinguish the ethnic and
geographic ancestry of Chinese and other populations. The PCA
and pairwise Fst calculation showed great differences between
the Chinese population and European, African, South Asian,
Admixed American and Latino ancestries (Fig. 4a, b). The African
ancestry and Chinese population showed the largest genetic
distance (MSL, Sierra Leone, Fst= 0.15; ESN, Nigeria, Fst= 0.15;
YRI, Nigeria, Fst= 0.149). The genetic structures of Chinese,
Japanese and Kinh Vietnamese populations of East Asian ancestry,
are very similar (JPT, Japan, Fst= 0.007; KHV, Vietnam, Fst= 0.005).
Furthermore, the PCA of geographical and ethnic groups in East

Asian ancestry showed difference and clustering of different
populations. Referring to the SNP references, the CHB and CHS
(Southern Han Chinese) populations are mainly clustered with Han
in North China and South China, respectively, and the majority of
CHD could be migrants from Han population in the east and south
coastal provinces (Zhejiang, Fujian, and Guangdong). The
Japanese individuals (JPT) are overlapped with Chinese Han

populations in North China (Fig. 4c). Chinese ethnic minorities,
Tibetan, Yi, Mongolian, Miao, Zhuang, and CDX (Chinese Dai in
Xishuangbanna) populations, and Kinh Vietnamese (KHV) in East
Asian have unique clusters (Fig. 4c). The Chinese Han population
could be mainly distinguished into 7 population clusters, including
Northwest Han (Gansu, Shaanxi), North Han (Beijing, Tianjin,
Henan, Hebei, Shandong, Liaoning, Jilin, Heilongjiang and Shanxi),
East Han (Jiangsu, Zhejiang, Shanghai and Anhui), Central Han
(Hubei), Southeast Han (Fujian), South Han (Guizhou, Sichuan,
Chongqing, Hunan, Yunnan, Jiangxi) and Lingnan Han (Guang-
dong, Guangxi) (Fig. 4d, e). Manchu and a part of Zhuang
populations are genetically clustered with North Han, which is
consistent with the historical population migration. Hui population
is clustered with Northwest Han in the Hexi-Corridor Area (Fig. 4c,
d). Moreover, we investigated the Chinese population structure
using ADMIXTURE with a model of 8 hypothetical ancestral
components (K= 8) selected by cross-validation (Fig. 5a). The
proportion and distribution of the eight ancestry components in
the individuals from 7 Chinese Han populations and 7 ethnic
minorities in 27 provinces, confirmed the clustering of the Chinese
Han population in different regions and genetic characteristics of
ethnic minorities (Fig. 5b, c; Supplementary information, Fig. S5).
Altogether, our findings provided the precise genetic structure of
Chinese Han and minority ethnic populations, revealing the
genomic diversity and distribution of the Chinese population.

Polygenic risk score and WGS association analyses
The advance of deep WGS data and the diversity of Chinese
population empower the ChinaMAP for the discovery of novel
functional rare and population-specific variants in East Asian
ancestry.30 Therefore, we performed the polygenic risk score (PRS)
profiling for individual genetic risk estimation,31,32 single variant
association analysis and sequence kernel association test (SKAT)
for rare variant association analysis.
We investigated the PRSs for the most common metabolic

traits, fasting blood glucose (FBG) and 2-hour postprandial blood
glucose (2h-PBG). The recent large-scale meta-analysis data of
GWASs from East Asian populations33 and European populations34

were used separately as base datasets for the PRS calculation of
the target data from the ChinaMAP. The combination ranking of
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PRSs, ages and values of blood glucose showed the three-
dimensional position of each individual in the whole population
(Fig. 6a, d). The individuals with the top 10% of PRSs showed more
severe phenotypes with aging. There were significant phenotypic
differences between the top 10% and tail 10% individuals in the
PRS ranking of FBG (P= 6.8 × 10−54; Fig. 6b) and 2h-PBG (P=
1.5 × 10−77; Fig. 6e). The populations from Northwest, Central,
South and Lingnan Han exhibited a higher proportion of top PRS
ranking compared to ethnic minorities Miao, Yi and Zhuang,
indicating the diverse genetic predisposition of metabolic
characteristics in Chinese Han and ethnic minorities (Fig. 6c, f).
Comparison of the data from base datasets of East Asian (Fig. 6a–f)
and European populations (Supplementary information, Fig.
S6a–f) revealed that the PRS results based on East Asian
populations were more significant and accurate. In addition,
individuals with the top 10% of PRSs had significantly increased
risk of type 2 diabetes (odds ratio [95% CI]= 2.82 [2.46, 3.24], P=
7.4 × 10−50). The odds ratio calculated by European base dataset
was less significant (Fig. 6g). The area under the receiver-operator
curve (AUC) analysis indicated that the risk prediction of type 2
diabetes was feasible (Fig. 6h, i). These findings supported the
value of PRS and the importance of base datasets from East Asian
cohorts for the precise individual genetic risk estimation of
metabolic diseases.
The large proportion of novel variants from the ChinaMAP data

could facilitate the discovery of novel variants and genes in the
WGS association analyses of metabolic traits.35,36 We performed

single variant association analysis and SKAT analysis of BMI, FBG
and 2h-PBG by the EPACTS software (Fig. 7a, b). Our results from
the blood glucose analysis validated well-established gene loci
associated with type 2 diabetes with common SNPs in CDKAL1,
SLC30A8, SND1-PAX4, IDE-KIF11-HHEX, CDKN2A-CDKN2B, KCNQ1
and CDC123,33,37,38 and identified a novel locus associated with
FBG in DENND5B (Fig. 7a; Supplementary information, Table S10).
We also identified novel Asian-specific SNPs associated with BMI
(rs369036035, P= 1.72 × 10−25 and rs372115169, P= 1.55 × 10−16)
in CADM2 (Fig. 7a; Supplementary information, Table S11), which
mediates synaptic signaling in the brain and regulates body
weight and energy homeostasis.39 In the SKAT analysis, rare
functional variants including pLOF variants and missense variants
predicted to be deleterious by MetaSVM, SIFT and PolyPhen2 were
analyzed (Fig. 7b, c; Supplementary information, Table S12).
Interestingly, we identified that the gene TBX21, which encodes
the immune cell transcription factor T-bet, was significantly
associated with BMI (P= 3.5 × 10−10) (Fig. 7b). Consistently, the
deficiency of T-bet in mice increased body weight and insulin
sensitivity.40 We also detected a significant signal of PLCB3 in the
BMI analysis (P= 4.39 × 10−8). Novel association between the
coding variant (rs35169799) of PLCB3 and type 2 diabetes and
body-fat distribution were reported recently.41,42 Furthermore, we
identified the MAFA (P= 1.34 × 10−11), MTMR9 (P= 4.45 × 10−7)
and PAX6 (P= 3.39 × 10−15), ANGPTL4 (P= 1.26 × 10−6), and SOX4
(P= 9.46 × 10−7) in the analysis of FBG and 2h-PBG (Fig. 7b, c).
MafA, Pax6 and Sox4 are all critical transcription factors controlling
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insulin production and secretion in pancreatic β-cells.43–45

Missense mutations of MAFA gene were found in familial
hypoglycemia or diabetes.46 The association between ANGPTL4
variants and type 2 diabetes and the underlying mechanism, and
the association between MTMR9 and obesity were reported.47,48 In
addition, ORM1, which encodes the key acute phase plasma
protein orosomucoid 1, was markedly associated with FBG (P=
2.52 × 10−14). The circulating orosomucoid could decrease food
intake and regulate energy homeostasis via leptin receptor
signaling in obese and diabetic mouse models.49 Taken together,
our findings provided novel variants and genes for candidate
association of metabolic traits.

Genetic evaluation of individual metabolic characteristics
Genetic evaluation and interpretation of metabolic features based
on deep WGS data is a potential utility for individual health
management. We explored the epidemiology and geographical
characteristics of nutrition and drug metabolism in the ChinaMAP
participants. Drinking alcohol and coffee are the most common
dietary habits associated with health status.50,51 We analyzed the
frequency and distribution of several critical SNPs in ALDH2 (rs671)

and ADH1B (rs1229984 and rs2066702) for alcohol metabolism
and dependence (Fig. 8a). The data revealed that the Chinese
population generally had a markedly lower clearance rate of
alcohol compared to European and African ancestries (Fig. 8a;
Supplementary information, Table S13). The individuals with
homozygous (4.50%) and heterozygous (34.27%) ALDH2 rs671,
which is associated with the ‘Asian Blush’, have a higher risk of
acetaldehyde accumulation and esophageal cancer.50 Geographi-
cally, the populations from the North have a stronger ability of
alcohol metabolism than those from the South in China;
individuals from ethnic minorities Tibetan, Mongolian and Yi are
top-ranked, whereas those from Lingnan Han and Southeast Han
ranked bottom (Supplementary information, Fig. S7a–c). The
ability of caffeine metabolism is similar in different regions. The
allele frequency of CYP1A2 rs762551 for caffeine metabolism was
comparable between the Chinese populations and other ances-
tries (Fig. 8a; Supplementary information, Fig. S7d).
The genetic tests for the use of anticoagulant and antiplatelet

drugs are the common clinical applications of pharmacogenomics.
We performed the therapeutic classification and calculated the
dosage of warfarin and clopidogrel in all individuals according to

Fig. 5 Population structure analysis by the admixture program. a Estimation of the number of groups (ranging from 2 to 12) for K values in
ADMIXTURE. b Distribution of the 8 ancestry components in 7 Chinese Han populations and 7 ethnic minorities as inferred using the
admixture program for K= 8. c Geographic distribution of the 8 ancestry components using the admixture program for K= 8. Each bar plot
represents the average ancestry proportions across individuals from the indicated province.

Article

723

Cell Research (2020) 30:717 – 731



the Clinical Pharmacogenetics Implementation Consortium (CPIC)
Guidelines.52,53 The analysis of SNPs in CYP4F2, VKORC1 and
CYP2C9 indicated that almost all Chinese should reduce the
dosage of warfarin (Fig. 8a). The majority of individuals should
have a dose reduction of ~2–3mg/day (Supplementary informa-
tion, Fig. S7e) on the basis of warfarin dosing algorithms (average
5mg/day). The analysis of CYP2C19 genotypes revealed that more
than half of the Chinese individuals (59.08%) were intermediate
(IMs, 46.02%) and poor metabolizers (PMs, 13.06%) of clopidogrel,
who should consider therapies with alternative antiplatelet agents
(Fig. 8a; Supplementary information, Fig. S7f and Table S14).
Moreover, we examined the SLCO1B1 variants to estimate the
genetic risk of simvastatin-induced myopathy54 in the ChinaMAP.
The results indicated that 21.20% of individuals should use a
lower dose of simvastatin to control the risk of simvastatin-
associated myopathies, such as rhabdomyolysis. The Tibetans and
Miao individuals show a relatively lower risk (Fig. 8a; Supplemen-
tary information, Fig. S7g and Table S15). In summary, these
data reminded the necessity of individual genetic testing for

reducing the side-effects of common drugs in China. All of the
genetic characteristics and geographical distribution of 10,588
individuals in the ChinaMAP were integrated into a circus for an
overview of the genetic diversity in the Chinese population
(Fig. 8b).

DISCUSSION
The genetic architecture of metabolic traits and variant associa-
tions for metabolic diseases are mainly from GWASs and exome
sequencing studies of largely European ancestry cohorts.1,13

Human genomics from diverse ancestry populations are required
for further understanding of the etiology of common metabolic
diseases. The large-scale investigations on genetic characteristics
of East Asian ancestry could promote the discovery and
development of innovative risk assessment, prevention, and
therapeutic strategies for metabolic diseases and complications.
The population genomics of East Asian also could provide insights
into the evolution and epidemiology of metabolic diseases.3
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The ChinaMAP is based on established large cohorts across China,
which represents the well-powered natural population for the
investigations of factors associated with metabolic traits. The
ChinaMAP has constructed a large and high-quality genomic
dataset for the discovery of novel functional variants and high-
impact genes and pathways in metabolic diseases. The ChinaMAP
dataset exhibits great differences and contributes a large proportion

of novel variants (68.3M variants, 49.9%) compared to the
combination of TOPMed, gnomAD, dbSNP and 1KGP datasets
(Fig. 1), which is promising for the discovery of population-specific
functional variants associated with diseases. The successful strate-
gies in the genetic studies of specific populations had identified key
genes in participants with type 2 diabetes55 or low plasma LDL
cholesterol level.56 The ChinaMAP dataset could be a unique
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Fig. 7 WGS association analysis of BMI and blood glucose. a Manhattan plots for common and low-frequency single variant association
analysis of BMI, FBG and 2h-PBG. Redline is P = 5 × 10−8. b Manhattan plots for the gene-based association analysis of BMI, FBG and 2h-PBG.
Redline is P= 2.5 × 10−6. c The significant signals identified in the SKAT analysis are shown in genes TBX21, MAFA, ANGPTL4, PAX6, MTMR9,
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resource and reference for the investigation and identification of
candidate disease-causing and disease-associated variants. Impor-
tantly, the frequency spectrum of VUSs in the ChinaMAP (Fig. 3;
Supplementary information, Table S7) is also a valuable reference for

the determination of causal variants of Mendelian diseases.57,58 The
population-specific deleterious variants in the ChinaMAP might
contribute to the discovery of rare high-impact variants in common
metabolic diseases.
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In the ChinaMAP, the population structure analysis demon-
strated the complexity and features of genetic background in
Chinese Han and minority ethnic groups across geographic
regions (Figs. 4 and 5). The ethnic groups of East Asian ancestry
in the ChinaMAP showed unique population genomic char-
acteristics and large difference compared to other populations,
as described before.11,12 Importantly, the ChinaMAP dataset
revealed the genomic characteristics and relationships of
Chinese Han and major ethnic minorities. Our data demonstrate
that the Chinese Han population could be mainly distinguished
into 7 population clusters, including Northwest Han, North Han,
East Han, Central Han, Southeast Han, South Han and Lingnan
Han (Fig. 4d). The previous classification of North and South Han
(CHB and CHS) populations mainly represent a part of the
Chinese Han, including North Han, Southeast Han and Lingnan
Han. The PCA analysis from previous report12 demonstrated that
the Singapore Chinese population was mainly overlapped with
CHS, and our results showed that CHD was close to Chinese Han
populations in east and south coastal provinces. These findings
indicated the complexity and diversity of Chinese genomic
characteristics, and that the current genomic dataset from
Chinese populations abroad only represent the historical
Chinese Han migrations from South and East China populations.
Furthermore, the genetic diversity and population structures
suggest that further construction of Chinese imputation
reference panel would contribute to the genotype imputation
quality in East Asian ancestry.
Currently, the established knowledge and guidelines related to

medical genomics are mainly from Eurocentric resources, which
are accepted and applied worldwide. The definition and
interpretation of candidate pathogenic variants identified by
databases with Eurocentric biases would require specific dataset,
clinical and functional studies for East Asians. However, East Asian-
specific studies are still limited due to lack of in-depth and well-
phenotyped genomic database from cohort studies. The China-
MAP provides a large and high-quality database for East Asian
populations, which is beneficial for clinical investigation, validation
and follow-up studies in the future. The East Asian-specific and
novel variants from known disease-related genes in the ChinaMAP
could be systematically investigated by future studies for genomic
applications in East Asians, including clinical pharmacogenomics
and genetic counseling.
The personal health management and disease risk assessment

are core features for precision medicine. For the prevention and
intervention of metabolic diseases, the individual-level genetic risk
estimation by PRSs is a practical approach based on comprehen-
sive genotype and phenotype database.32 For example, a recent
study used PRS approach for precise, early risk detection of
obesity based on a large cohort GWAS study.59 In this work, we
showed that the PRS analysis was effective for individual risk
evaluation of type 2 diabetes in the Chinese population. Notably,
our findings showed that the PRS of Chinese population should be
calculated according to East Asian-specific data by comparison of
results based on GWAS studies from East Asian and European
populations (Fig. 6; Supplementary information, Fig. S6). In
addition, we identified and validated reported and novel gene
loci associated with BMI and blood glucose through WGS
association analysis (Fig. 7). The expansion of sample size and
establishment of the base dataset of East Asians in the future
would promote the precise clinical utility of PRS in the prevention
of metabolic diseases. Furthermore, the personal and population
scale genetic analysis of nutrition and drug metabolism for the
ChinaMAP participants provided the individual and epidemiolo-
gical information for metabolic characteristics (Fig. 8).
Collectively, the comprehensive database and genetic char-

acterization of individuals from large well-phenotyped cohorts in
the ChinaMAP could contribute to the molecular typing, preven-
tion and individual management of metabolic diseases.

MATERIALS AND METHODS
Sample collection and DNA extraction
Genomic DNA was obtained from the metabolic biobank of the
National Clinical Research Centre for Metabolic Diseases, Shanghai
Clinical Center for Endocrine and Metabolic Diseases in Ruijin
Hospital, Shanghai Jiao Tong University School of Medicine. DNA
was prepared with QIAGEN DNeasy Blood & Tissue Kit. Informed
consent was obtained from all study participants. All the protocols
were approved by the Ruijin Hospital Ethics Committee, Shanghai
Jiao Tong University School of Medicine.

Library construction and WGS
Library construction and WGS were performed at BGI-Genomics.
Sequence libraries for the BGISEQ-500 platform were prepared
based on the BGISeq-500 library construction protocol. The
qualified genomic DNA sample was randomly fragmented by
Covaris technology and the DNA fragments were selected by size.
The end-repair of DNA fragments was added an ‘A’ base at the 3′-
end of each strand. BGISEQ-500 adapters were ligated to both
ends of the A-tailed fragments, followed by amplification by
ligation-mediated PCR (LM-PCR), single strand separation and
cyclization. The rolling circle amplification (RCA) was performed to
produce DNA Nanoballs (DNBs). The qualified DNBs were loaded
into the patterned nanoarrays and processed for 100 bp pair-end
sequencing on the BGISEQ-500 platform. Sequencing-derived raw
image files were processed by the BGISEQ-500 base calling
software with default parameters.

DNA sequencing quality check
The SOAPnuke (v1.5.6, -n 0.05 -q 0.2 -l 12 -M 2)60 was used to filter
dirty reads with adapter contamination, low-quality or unknown
base. All the remaining reads were aligned to a human reference
(GRCh38 build, from GENCODE) using BWA-MEM (Burrows–Wheeler
Aligner, v0.7.16a, -k 49 -B 10 -L 10 -M -Y),61 and the producing result
in BAM format was sorted by coordinate using Picard SortSam
(v2.13.2). Finally, we used GATK (v4.beta.4)62 to mark duplicated
reads and recalibrated the base quality scores.
All sequencing data were subjected to a series of quality control

before further analysis with criteria: (1) base quality (Q30) > 80%;
(2) mean sequence depth > 30×; (3) mapping rate ≥ 95%; (4)
mismatch rate < 1%; (5) duplicate rate < 10%; (6) 20× coverage >
80%. In addition, mass spectrometric fingerprint genotyping of 21
common SNPs was used to verify that DNA sample and the
sequencing data were from the same individual. The gender of
every sample was inferred based on sequencing data by GATK
TargetCoverageSexGenotyper (v4.beta.4). The inferred gender of
sequencing data should be consistent with the clinical informa-
tion. In total, 10,588 WGS data passed the quality control.

Computing environment, variant calling and annotation
Three analysis platforms were used for the ChinaMAP data
analysis. The same analysis pipeline was deployed on the SGE of
Alibaba Cloud, the BGI HPC Cluster and BGI Online. The testing
sequencing data of 50 samples were reanalyzed for 10 times on
each analysis platform for consistency and stability. Discovery of
germline short variants (SNPs and INDELs) was implemented
according to the GATK Best Practice recommendations. We used
the GATK HaplotypeCaller (v4.0.4.0) to call variants per sample
and produced an intermediate file in GVCF format and
consolidated GVCF files from 10,588 samples into one GVCF
file using the GATK CombineGVCFs (v4.0.4.0). When we combined
the GVCF files, the low-complexity regions (LCRs, covering 2% of
the genome and identified by the mDust program)63 were
ignored. Based on the combined GVCF file, the joint call was
performed using the GATK GenotypeGVCFs (v4.0.4.0) with filter of
the GATK Variant Filtration (v4.0.4.0). To improve the calling of
INDELs, we only reserved the variants with the length ≤ 10 bp.
The maximum number of alternate alleles should be ≤ 10. All
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high-confident variants, including splitting multiple alleles, were
annotated with the SnpEff (v4.3)64. The dataset of variants was
compared to the databases of dbSNP, 1KGP, gnomAD (WGS and
WES data were combined, and the coordinates were converted to
hg38 using GATK LiftoverVcf (v4.0.4.0)) and TOPMed to distinguish
known and novel variants. The pathogenic classification of
variants was annotated by the ClinVar22 (updated Jun 20180603)
and HGMD24 (Human Gene Mutation Database, 2016.02). The
probability of being LOF intolerant (pLI) for each gene was
annotated by ExAC database (release 0.3). The genes with pLI ≥ 0.9
were defined as LOF intolerant genes.

LOF variant definition and OP ratio calculation
Variants predicted to be stop codons, essential splice site-
disrupting, initiator codon, start lost, transcript ablation and
frameshift variants are defined as LOF variants. The OP ratio is a
gene-based metric to quantify LOF variation while accounting for
transcript size and is a useful tool for comparing the rate of LOF
variation in different gene groups. It is designed to measure a
gene’s tolerance to damaging amino-acid changes. The OP ratio
was calculated by comparing the observed and the potential
numbers of LOF sites based on dbNSFP database.65,66

Estimation of natural selection
The site frequency spectrum (SFS) was calculated by counting the
number of variants that exist in i for i= 1, 2,…, n–1, in a sample of
size n. The fraction of variants under purifying selection was
calculated by the python scripts67 using LOF, non-synonymous and
synonymous SFS, respectively. Intron and intergenic sites were used
as a reference. Variant frequency data of other populations were
obtained from IKGP (n= 2504 for all races, n= 504 for East Asian
and n= 208 for CHB and CHS), TOPMed and gnomAD.

Population structure analysis
PCA was performed using a subset of autosomal bi-allelic SNPs.
Several restrictions were employed to select the final 1,409,151
SNPs for PCA analysis, including minor allele frequency (MAF) ≥
1% (common and low-frequency variants), genotyping rate ≥ 90%,
Hardy-Weinberg-Equilibrium (HWE) P > 0.000001, and removing
one SNP from each pair with r2 ≥ 0.5 (in windows of 50 SNPs with
steps of 5 SNPs). The PCA was performed with the final SNPs using
PLINK68 (v1.9) and EIGENSOFT69,70 (v7.2.1). When compared to
1KGP and CHD population in HapMap, the overlapping 124,900
SNPs between the ChinaMAP, 1KGP and CHD in HapMap Project
were used for PCA analysis. Restricting PCA of CHD in HapMap,
EAS populations in 1KGP and ChinaMAP was based on the
overlapping 124,900 SNPs.
We also used the ADMIXTURE71 (v1.3.0) to estimate the

individual ancestries, with the number of ancestral component
K values ranging from 2 to 12. To obtain the optimal K value, we
divided our data into 5 roughly equal parts. For each k= 1, 2,…5,
we fitted the model with parameter λ to the other 4 parts, giving
β̂�kðλÞ, and computed its error in predicting the kth part:
Ek λð Þ ¼

P
i2kthpart ðyi � xiβ̂

�kðλÞÞ2. The five-fold cross-validation
error was computed: CV λð Þ ¼ 1

5

P5
k¼1 EkðλÞ. Using the above

formulas, we chosen the optimal K value that makes CV(λ)
smallest. We calculated the mean pairwise Fst differences
between different population groups in the HapMap and
ChinaMAP cohorts by using EIGENSOFT (v7.2.1).

Familial relationship of individuals
The relatedness of individuals was analyzed by the genotypes for
1,409,151 SNPs of each sample. SNPs were the same as in the
ChinaMAP PCA analysis. Relatedness of the samples were measured
by IBD (Identical by Descent) using PLINK68 (v1.9). Unrelated
participants were identified using the proportion of relatives of
PI_HAT < 0.1875. A total of 9847 unrelated participants without
family relationships were determined in the ChinaMAP.

PRS analysis
We performed PRS calculations on individual blood glucose using
the PRSice software.72 Two independent GWAS datasets were
used for PRS calculation: (1) results from a GWAS study for type 2
diabetes including 433,540 East Asian individuals;33 (2) results
from a GWAS study34 for type 2 diabetes (898,130 individuals of
European ancestry), and we only used the comparable variants in
a GWAS study from Japanese population.73 We evaluated 5 main
approaches to generate weighted PRSs: (1) converting genome
coordinates from hg19 to hg38 for GWAS datasets; (2) only
inclusion of genome-wide significant variants (P < 5 × 10−8); (3)
removing linkage disequilibrium (LD); (4) exclusion of A/T and C/G
SNPs to minimize errors from strand flips; (5) adjusting by age,
age2, gender and the first two principal components of ancestry.
We labeled the top 10% PRS of individuals as the top group, the
last 10% PRS of individuals as the tail group, and the remaining
intermediate PRS of individuals as the median group. We used the
two-tailed t-test to compare the differences between the top,
median and tail groups. The relationship of the top group with
type 2 diabetes was determined using logistic regression. The AUC
was calculated to assess the performance of the binary trait.

Genotype-phenotype association analysis
The measurement and collection of phenotype information for all
individuals are described previously.14,16,63 Before genotype-
phenotype association analyses, all variants were subjected to a
series of quality control with criteria: (1) median depth > 8; (2)
within LCRs (< 7 single base repeat units); (3) homozygous variants
(AF ≥ 0.90); (4) homozygous variants (AF ≥ 0.2); (5) genotyping
rate ≥ 90%; (6) HWE > 0.000001. 4,764,593 SNPs passed the quality
control. Genotype-phenotype association analyses were per-
formed using the EPACTS with EMMAX (Efficient Mixed Model
Association eXpedited) model (https://genome.sph.umich.edu/
wiki/EPACTS). Empiric kinship matrix were based on 1,372,394
common and low linkage SNPs (retaining one SNP from each pair
with r2 < 0.5 in windows of 50 SNPs with steps of 5 SNPs) in
autosomal chromosomes. Kinship matrix was performed by
EPACTS default parameters (“make-kin”). The single variant
association analyses with common (MAF > 5%) and low-
frequency (1% <MAF ≤ 5%) variants were performed by adjusting
for age, age2, gender, the first two principal components of
ancestry and an empirically derived kinship matrix for familial and
distant relatedness. The statistical significance threshold for single
variant EMMAX association analysis was 5 × 10−8. The SKAT
analyses with rare variants (MAF < 1%) were performed using
the mixed-model SKAT implementation in EPACTS. The rare
variants in coding regions for analyses were selected using LOF
variants and deleterious missense variants predicted by MetaSVM,
SIFT and PolyPhen2. 120,262 SNPs in 17,156 genes were produced
in the analysis process. The SKAT analyses were performed by
adjusting for age, age2, gender, two principal components of
ancestry and an empirically derived kinship matrix. The gonadal-
specific expression genes were removed. The statistical signifi-
cance threshold for each test was 2.5 × 10−6 (0.05/20,000).

CDTS analysis
We used CDTS analysis, which depends on the difference between
the observed and expected scores, to analyze the whole genome-
wide variants. Because there are 16,384 heptamer (7-nt motifs)
sequences in the genome, every nucleotide was part of a
heptamer, and every single position could be used in the
corresponding genome-wide computed scores. The observed
regional tolerance score was the number of SNPs (AF > 0.0001) in
the studied population in a defined region. In the same region, the
expected regional tolerance score was the sum of the heptamer
tolerance scores. All the autosomal SNPs were used for the CDTS
analysis, except INDELs. Genomic regions were then ranked by
their CDTSs. The lowest context-dependent tolerance to variation
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was the regions with the lowest rank (1st percentile). The highest
context-dependent tolerance to variation was the regions with the
highest rank (100th percentile). The genomic element region file
was provided by the authors of CDTS method.19

Pharmacogenetic analysis
Pharmacogenetic analysis was performed based on the PharmGKB
database and the CPIC guidelines. For the warfarin dosing
calculation, the CYP2C9 and VKORC1 genotypes were analyzed
for the dosing algorithm of warfarin.53 CYP2C9 and VKORC1 allele
definition table was downloaded from CPIC website. Warfarin
pharmacogenetic dosing algorithm is the following formula:
5.6044− 0.2614 × Age+ 0.0087 × Height (cm)+ 0.0128 ×Weight
(kg)− genotype dosing = Square root of weekly warfarin dose,
in which, genotype dosing=−0.8677 × VKORC1 rs9923231 A/G –

1.6974 × VKORC1 rs9923231 A/A – 0.4854 × VKORC1 genotype
unknown – 0.5211 × CYP2C9*1/*2 – 0.9357 × CYP2C9*1/*3 –
1.0616 × CYP2C9*2/*2 – 1.9206 × CYP2C9*2/*3 – 2.3312 ×
CYP2C9*3/*3 – 0.2188 × CYP2C9 genotype unknown.
The phenotypes of Clopidogrel metabolizer were analyzed

based on the CYP2C19 genotypes, and the algorithm for
suggested clinical actions was based on CYP2C19 genotypes with
commonly tested CYP2C19 variant alleles, *1 (“wild-type”), *2
(rs4244285, c.681 G > A), *3 (rs4986893, c.636 G > A), *4
(rs28399504, c.1 A > G), *5 (rs56337013, c.1297 C > T), *6
(rs72552267, c.395 G > A), *7 (rs72558186, c.819+ 2 T > A), *8
(rs41291556, c.358 T > C), *17 (rs12248560, c.−806C > T).52

CYP2C19 phenotype and genotype table was downloaded from
CPIC website. CYP2C19 phenotypes included five metabolic types:
normal metabolizer, intermediate metabolizer, ultrarapid meta-
bolizer, rapid metabolizer and poor metabolizer.
The status of simvastatin metabolism was evaluated by

SLCO1B1 genotypes following the CPIC guideline.54 There are 36
SLCO1B1 alleles of 29 SNPs. *1A and *1B are normal function
alleles. *5, *15, and *17 are identified as decreased function alleles.
The remaining alleles are annotated as possible, unknown or
unclear function alleles.

URLs
LCRs74; gnomAD75, v2.0.2: http://gnomad-old.broadinstitute.org/
downloads; dbsnp (v149): ftp://ftp.ncbi.nih.gov/snp/; TOPMed10

BRAVO browser Freeze5 on GRCh38; GATK Best Practice recom-
mendations76: https://software.broadinstitute.org/gatk/best-
practices/workflow?id=11145; PharmGKB77: http://www.
pharmgkb.org; Cancer Gene Census78: https://cancer.sanger.ac.
uk/census; OMIM64: https://omim.org/; SnpEff68 (v4.3): http://
snpeff.sourceforge.net; Plink69 (v1.9): http://www.cog-genomics.
org/plink/1.9/; EIGENSOFT70,71 (v7.2.1): https://genome.sph.umich.
edu/wiki/EPACTS; ADMIXTURE79 (v1.3.0): http://software.genetics.
ucla.edu/admixture/index.html; EPACTS: https://genome.sph.
umich.edu/wiki/EPACTS
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