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We consider the thermal response of a (3 + 1)-dimensional theory with a chiral anomaly
on a curved space motivated by the chiral magnetic effect. We find a new phenomenon, called
the chiral heat effect, such that the thermal current is induced transverse to a gradient of
the temperature even on a flat space. We study a similar topological effect on the spacetime
with a torsion.

Subject Index: 131, 168

§1. Introduction

Anomalies in quantum field theories have played a crucial role since its discovery
in the computation of a fermion triangle diagram. A classical symmetry is violated
quantum mechanically due to an anomaly that can be captured by the non-invariance
of the path integral measure of fermions. When a theory is classically conformal
invariant, there could be the conformal (Weyl) anomaly in even dimensions which
gives the central charges of the theory. In two-dimensions, the c-theorem1) states that
the central charge monotonically decreases along the renormalization group (RG)
flow. In four-dimensions, there are two central charges, and one of them, named
a, related to the A-type anomaly is conjectured to be a monotonically decreasing
function under the RG flow,2) and it was recently proved by Ref. 3). The c- (or a-)
function is an important measure of the number of degrees of freedom of quantum
field theories that is supposed to monotonically decrease.

A coupling of fermions with the chiral symmetry to a gauge field leads to the
chiral anomaly, while the fermions give rise to the mixed gauge-gravitational anomaly
on a curved space. Then, one cannot keep both the chiral symmetry and the gauge
invariance (general covariance) at the same time. One can add a counter term to let
the chiral anomaly vanish, but it makes the axial current gauge dependent or general
non-covariant.4)

Recent studies of the chiral anomaly reveal that new types of conductivities
are induced in the presence of background fields.5)–10) The chiral magnetic effect
(CME) is the phenomenon such that an electric current can be parallel to the ap-
plied magnetic field provided the asymmetry of the chirality between left- and right-
handed fermions.8) The chiral magnetic conductivity does not receive perturbative
corrections because the axial anomaly is one-loop exact. Therefore, the CME is
not renormalized even at strongly coupled region, as is implied by the holographic
calculations.11)–18)
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Quite similar phenomena are investigated in condensed-matter physics, i.e. the
topological insulator/superconductor.19),20) In particular the time reversal, namely
CP symmetric (3 + 1)-dimensional topological insulator is based on the θ-term as
an effective action that is also considered in the CME. In this case, to preserve the
time reversal symmetry, the θ-angle has to be fixed to either θ = 0 or θ = π, while
it is generic for the CME. At the boundary of the topological insulator, the domain-
wall of the θ-angle emerges naturally, and thus a massless chiral fermion is localized
there. This is just a condensed-matter realization of the domain-wall fermion, which
is well studied in lattice gauge theory.21),22) Such an interesting phenomenon is
investigated not only theoretically, but also experimentally.

In this paper, we consider a (3+1)-dimensional fermionic theory with the chiral
symmetry on a curved space.∗) We let the axial current conserved, but general non-
covariant to introduce the chiral chemical potential. The calculation of the stress
tensor shows that the heat current flows transverse to a gradient of the temperature
which can be encoded to the off-diagonal components of the background metric. We
call this new phenomenon a “Chiral Heat Effect” (CHE) that can happen even on a
flat space with a thermal gradient. This is a natural counterpart of the CME and a
generalization of the surface thermal Hall effect in (2+1) dimensions.24),25) We also
discuss similar topological effect in the presence of torsion and a possible framework
to investigate the CHE in strongly coupling theories in holographic setups.

§2. Chiral heat effect

Consider a (3+1)-dimensional fermionic theory such as QCD on a curved space-
time. Suppose the Lagrangian enjoys the chiral symmetry

ψ → eiαγ5/2ψ , ψ̄ → ψ̄eiαγ5/2 , (2.1)

at the classical level, but it is broken at the quantum level due to the chiral anomaly.
If the theory consists of a massless Dirac fermion, the axial current j5μ obeys

∇μj
5μ = − 1

768π2
εμνρσRκ

λμνR
λ
κρσ . (2.2)

Now we would like to define a conserved axial current to introduce the chiral chem-
ical potential μ5 even on a curved space. This is achieved by adding the following
functional to the original action:∗∗)

S = S0[ψ, ψ̄, μ5]

+
1

3 · 28π2

∫
d4x

√−g θ(t, �x) εμνρσRκ
λμνR

λ
κρσ , (2.3)

where S0[ψ, ψ̄, μ5] is the action for the fermions with the chiral chemical potential,
and the total action is invariant under the chiral transformation with θ(t, �x) →

∗) The mixed gauge-gravitational anomaly is also known to lead to the chiral vortical effect in

the presence of a magnetic field.10), 23)

∗∗) The Levi-Civita tensor εμνρσ is covariant and is normalized as εtxyz = −1/
√−g.
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θ(t, �x) + α. The chiral chemical potential term can be removed by the chiral trans-
formation with α = μ5t. Note that the axial current is no longer covariant after the
modification. This types of the action is considered in the Chern-Simons modifica-
tion of general relativity,26) and it is topological (a first Pontryagin class) when the
function θ is constant, and the stress-energy tensor is zero. It is, however, no longer
topological in general and the stress tensor is given by Tμν = − 1√−g

δS
δgμν

:26)

Tμν = Tμν
0 (μ5) + Tμν

H ,

Tμν
H =

1
3 · 27π2

[2θ;ρ (εμρσκRν
σ;κ + ενρσκRμ

σ;κ)

+ θ;σρ(εμρκλRσν
κλ + ενρκλRσμ

κλ)] , (2.4)

where Tμν
0 (μ5) is the stress tensor derived from S0[ψ, ψ̄, μ5] and “;κ” stands for

the covariant derivative with respect to the index κ. In this case, the stress ten-
sor is not conserved unless the θ is constant or the Pontryagin density is zero
εκλρσRα

βκλR
β
αρσ = 0. In the following discussions, we will consider the situations

where the θ is not constant but the Pontryagin density vanishes, so general covari-
ance is not broken. Our discussion is possible even without breaking its general
covariance.

When the background is flat space, one can show that a thermal gradient leads
to a fluctuation of the metric of the form:27),28)

iωδgtj = −∇jδT

T
, (2.5)

where the fluctuation of the temperature δT is assumed to have a time dependence
e−iωt. This means the time dependence is treated in Fourier basis, and thus (2.5)
shows the temporal derivative of δgtj provides a thermal gradient. This prescription
to introduce the thermal gradient was essentially proposed by Luttinger.29) Note
that we introduce this metric deformation just as a perturbation. Thus we can
neglect the back reaction from the matter field. In other words, we consider that the
system is in a thermal equilibrium state, at least locally.

The thermal current is defined as an operator conjugate the metric, i.e., the
stress-energy tensor unless there are no charged currents, otherwise it is defined by
the difference of the total stress-energy tensor and a charged current:

〈JT
i 〉 ≡ Tti − μ5j

5
i . (2.6)

In our case, the total stress-energy tensor is given by (2.4), and Tμν
0 (μ5) includes

the current contribution, which will be canceled by the second term in (2.6). To
see this, one may introduce the axial background gauge field A5

μ with A5
t = μ5

coupled to the fermions. The fermion action becomes S0[ψ, ψ̄, μ5] → S0[ψ, ψ̄, μ5 =
0]−∫

d4x
√−gA5

μj
μ
5 after gauging the chiral symmetry. Then, the stress tensor gives

rise to the current term

(T0)ti(μ5) = (TT )ti + μ5j
5
i , (2.7)
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where Tμν
T = Tμν

0 (μ5 = 0) + μ5j0
5

2 gμν . Substituting (2.4) and (2.7) into the definition
of the heat current (2.6), one obtains

〈JT
i 〉 = T T

ti + TH
ti . (2.8)

The first term is the heat current from the fermionic action S0[ψ, ψ̄, μ5] which does
not have Hall conductivities. The second term coming from the additional action in
(2.3) can have Hall conductivities as we will see below.

Let us consider an example. Suppose the space coordinates are flat and the
temperature depend on x direction. Using the diffeomorphism, the temperature
can be set to constant, while there appears the off-diagonal component δgtx(x) in
the spatial metric from the relation (2.5). It gives rise to the heat current along x
direction 〈JT

x 〉 = T T
tx and we obtain the usual heat conductivity: κxx = T T

tx/(∂xδT ).
Now our interest is focused on the Hall conductivity. The stress tensor TH

μν (2.4) can
lead the heat current transverse to the x direction if θ depends on z direction

〈JT
y 〉 =

−iω
3 · 27π2

∂zθ ∂
2
xδgtx(x) , (2.9)

where we suppress e−iωt for simplicity. Remark this effect shows a non-linear trans-
port phenomenon, including higher derivative terms. Thus it cannot be characterized
by the usual linear transport coefficient, i.e., the thermal conductivity. Similar situ-
ation occurs in the theory of the topological insulator.30)

Other interesting situation happens in the presence of a time-dependent θ. If
a gradient of the temperature depends on x and y coordinates, one can convert it
into the fluctuation of the metric components δgtx and δgty. Then a heat current is
induced by the thermal distribution in the perpendicular plane:

〈JT
z 〉 = − 1

3 · 28π2
∂tθ [∂3

yδgtx(x, y) − ∂x∂
2
yδgty(x, y)

+ ∂2
x∂yδgtx(x, y) − ∂3

xδgty(x, y)] . (2.10)

The time-dependence of θ is related as θ = μ5t with the chiral chemical potential μ5

as discussed in the context of the chiral magnetic effect.8) The mechanism of this
thermal Hall effect is analogous to the chiral magnetic effect. The role of the mag-
netic field of the CME is played by the fluctuation of the temperature which turns
out to be a curvature in the spatial directions by using the diffeomorphism. Both
of them are triggered by the chiral anomaly in the presence of the chiral chemical
potential. We would like to call the above phenomenon the “Chiral Heat Effect”
(CHE) with emphasis on the similarity to the CME. The CHE can happen even on a
flat space with a thermal gradient in the presence of the time-dependent theta angle
or the chiral chemical potential. This is also a non-linear effect with respect to the
fluctuation of the background temperature. Note that the right-hand side of (2.10)
has a singular behavior i/ω in the zero-frequency limit ω → 0. This singularity
implies the conductivity includes the δ-function term, e.g. σ(ω) = πDδ(ω)+σreg(ω).
The coefficient D is called the Drude weight, and this kind of singularity is gener-
ally observed in the ballistic system. This behavior is regarded as a result of the
translation symmetry of the system.
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When we assume the time reversal symmetry of the system, the θ-angle is fixed
to either θ = 0 or θ = π, because it is inverted as θ → −θ (mod 2π) under the
time reversal operation. The state with θ = π is topologically non-trivial, while it
is trivial for θ = 0. This means the θ-angle has to jump from θ = π to θ = 0 at
the boundary of the topological state. Therefore we can obtain the gravitational
Chern-Simons term on a domain-wall between topologically non-trivial and trivial
states,

S =
1

384π

∫
d3x det e εμνρ Tr

(
ωμ∂νωρ +

2
3
ωμωνωρ

)
, (2.11)

where ea
μ and ω a

μ b are triad and spin connection, respectively, and the trace is taken
for the frame indices a.∗) This effective action yields the transverse thermal response
at the boundary as shown in (2.9). It is discussed that this action leads to a half-
integer quantization of the thermal Hall conductivity.24),25) A similar anomalous
quantization is observed for the Hall current and spin Hall current at the boundary
of the topological insulators.30)–32)

§3. Topological effect with torsion

Let us comment on another possibility of theoretical generalization: we now
investigate a similar topological effect in the presence of torsion. We consider the
Nieh-Yan topological action,33) which is defined as

S =
1

32π2

2

2

∫
d4xdet e θ(t, �x)

×εμνρσ
(
T a

μνTaρσ −Rabμνe
a
ρe

b
σ

)
, (3.1)

where the torsion and Riemann tensors are given by T a = dea + ωa
b ∧ eb and Ra

b =
dωa

b + ωa
c ∧ ωc

b, respectively. Although the same character stands for the stress
and torsion tensors, one can identify it by the number of suffixes. Note that the
dimensionful constant 
 is required for the action (3.1), which leads to controversy
on the topological origin of this action (see, for example, Refs. 34)–39)).

Here we consider the stress tensor given by 1
det e

δS
δea

μ
, instead of the standard one

−2√−g
δS

δgμν
, for the Nieh-Yan action,

〈T μ
a 〉 =

1
8π2
2

εμνρσ ∂νθ
(
∂ρeaσ + ωabρe

b
σ

)
. (3.2)

We can freely switch between the frame and spacetime coordinates within the linear
elasticity theory. Introducing a displacement field ua(x), the stress tensor can be
written with the strain tensor uμν = (∂μuν + ∂νuμ)/2,

〈Tμν〉 = Λμνρσuρσ + ημνρσu̇ρσ , (3.3)

∗) Here the εμνρ is an anti-symmetric tensor with respect to all indices, and is normalized to

εtxy = −1/ det e.
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where Λ and η are the elasticity and viscosity tensors. The anti-symmetric part
involves a dissipationless viscoelastic response, ημνρσ

H = −ηρσμν
H , which is called the

Hall viscosity,40)–46) while the symmetric part corresponds to the dissipative viscos-
ity. The triad can be written as ea

μ = δa
μ + ∂μu

a, where ∂μu
a is a distortion tensor.

Thus we can observe the dissipationless viscosity from (3.2), when the θ-angle is
dependent on z, 〈

T i
a

〉
=

1
8π2
2

εij ∂zθ u̇aj . (3.4)

Here we omit the contribution from the spin connection. When we consider the
domain-wall between θ = 0 and θ = π, namely the boundary of the topological
insulator, the Hall viscosity is given by

ηH =
�

8π
2
. (3.5)

We then study another configuration, which is analogous to the CME: the t
dependence of the θ-angle yields

〈
T i

a

〉
=

1
8π2
2

εijk ∂tθ ∂jeak . (3.6)

This shows the momentum current is proportional to the Burgers vector in the
transverse plane, ba = εij∂ie

a
j , which can be interpreted as a flux of torsion.

Let us remark a relation to the CME and the chiral vortical effect (CVE). All
these effects are based on the CP-odd topological terms, and thus coming from
rotations of vector fields: the vector potential for the CME, the carrier current for
the CVE and the triad for the torsional effect (3.6). On the other hand, the standard
response is linearly dependent on the triad itself and its temporal derivative, as shown
in the first and second terms in (3.3), respectively, since it can be identified with the
distortion tensor up to higher order corrections.

§4. Discussion

In this paper, we considered the chiral heat effect such that the heat current flows
perpendicular to the direction of the thermal gradient in the presence of the chiral (or
mixed gauge-gravitational) anomaly in a field theory. Since anomaly is supposed to
be independent of the gauge coupling, we may well be able to observe this effect even
in strongly coupled theories. Before concluding this paper, we would like to suggest
a possible framework in this direction by using the AdS/CFT correspondence.

Consider Nf probe D7-branes on the AdS5-Schwarzschild black hole times S5

background.∗) The dual field theory is the N = 2 super Yang-Mills theory with Nf

fundamental hypermultiplets. The Wess-Zumino term gives rise to the following on

∗) We use the convention of Ref. 47) where the Newton constant is chosen such that the dilaton

vanishes asymptotically. The RR-charge density, then, equals to the D-brane tension: μp = Tp =
1

(2π)pα
′ p+1

2 gs

.
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the background with an RR four-form:48),49)

SWZ =
μ7Nf (4π2α′)2

2 · 24 · 8π2

∫
D7
C4 ∧ Tr(RT ∧RT −RN ∧RN ) . (4.1)

The RT and RN denote the Riemann tensors of the tangent and the normal frame
of the D-branes, respectively. We will use the background metric of the form

ds2 =
γ2ρ2

2

(
−f

2(ρ)
H(ρ)

dt2 +H(ρ)d�x2

)

+
1
ρ2

(dr2 + r2ds2S3 + dR2 +R2dφ2) , (4.2)

where we have set the AdS radius to L = 1. Then we can always convert the string
length with the ’t Hooft coupling: α′−2 = λ = 4πgsNc where Nc is the rank of the
gauge group U(Nc) of the dual field theory. The RR four-form C4 is given by

C4 =
ρ4γ4H2(ρ)

4
volR3,1 − r4

ρ4
dφ ∧ volS3 . (4.3)

Let the D7-branes spread over the AdS5 spacetime and wrap on the three-sphere
inside the S5. Then we obtain the Wess-Zumino term of the form

SWZ = − NcNf

3 · 27 · π2

∫
AdS5

r4

ρ4
dφ ∧ Tr(RT ∧RT −RN ∧RN ) . (4.4)

Note that this term comes from higher derivative terms in the WZ action, but it is
the order O(NcNf ) quantity. If the φ depends on the space coordinates, the first
term will describe the chiral heat effect holographically along the lines of Ref. 18)
where the chiral magnetic effect was investigated replacing the curvature with the
worldvolume gauge field in the action (4.4). The φ will be identified with θ in Eq. (2.3)
since it acts on hypermultiplets in the dual N = 2 SYM theory as a U(1)R symmetry:
(q, q̄) → (eiφγ5/2q, q̄eiφγ5/2). Then the holographic computation would reproduce the
CHE (2.10) for Nf fermions in fundamental representation of U(Nc). The second
term including the RN , which is irrelevant to our present discussion, is related with
U(1)RSU(2)2R and U(1)RSU(2)2L anomalies50) where the SU(2)R and the SU(2)L

act on the dual N = 2 theory as the R-symmetry and the global symmetry rotating
the adjoint scalars, respectively.

Another way to construct the CHE holographically would be the use of the
D4/D8 system that contains D8-branes wrapped on S4 like the Sakai-Sugimoto
model.51),52) The essential logic is the same as before, and we consider the WZ
term of D8-branes in the presence of an RR one-form C1 by putting D0-branes:

SWZ =
∫

D8
C1 ∧ F ∧ F ∧ Tr(RT ∧RT −RN ∧RN ) . (4.5)

Given a non-zero instanton number
∫
S4 F ∧ F 	= 0 on D8-branes which represents

the number of D4-branes dissolved on the S4 inside the D8, one obtains a similar
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effective action to (4.4). Here the RR one-form plays a role of the derivative of the
θ in the dual field theory.

Although it seems hard to construct a thermally fluctuating background around
the solution (4.2), it would be interesting to compute the thermal current in the
strongly-coupled theories dual to these holographic models and check that the current
does not depend on the gauge coupling due to the non-renormalizability of the chiral
anomaly. The future work should be devoted to a concrete calculation of the current
with these holographic systems.
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