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Abstract 

A computational  algorithm  for numerically evaluating the  z-transform 
of a sequence of N samples  is discussed. This  algorithm  has been 
named  the  chirp  z-transform  (CZT)  algorithm.  Using  the CZT al- 
gorithm one can efficiently evaluate  the  z-transform at M points in  the 
z-plane which lie on circular  or  spiral  contours beginning at any  arbi- 
trary point in  the z-plane. The  angular  spacing of the points is  an  arbi- 
trary  constant,  and M and N are  arbitrary  integers. 

The  algorithm  is based on the  fact  that  the values of the  z-trans- 
form on a  circular  or  spiral  contour  can be expressed as a discrete 
convolution. Thus  one  can use well-known high-speed convolution 
techniques to  evaluate  the  transform efficiently. For M and N moder- 
ately  large,  the  computation  time  is roughly proportional  to (N+M)  
log(N+M) as opposed to being proportional  to N , M  for  direct 
evaluation of the  z-transform at M points. 
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1, Introduction 

In dealing with sampled data  the z-transform  plays  the 
role which is played by the  Laplace  transform in contin- 
uous  time systems. One example of its  application is 
spectrum analysis. We shall see that the  computation of 
sampled z-transforms, which has been greatly facilitated 
by the  fast  Fourier transform (FFT)  [l], [2] algorithm, 
is still further  facilitated by the  chirp  z-transform (CZT) 
algorithm to be described in  this  paper. 

The  z-transform of a sequence of numbers xn is de- 
fined as 

00 

X ( 2 )  = X n P ,  (1 ) 
n=--f: 

a  function of the complex variable z. In general, both xn 
and X(z)  could be complex. It is assumed that  the sum on 
the right side of (1) converges for at least some values of 
z. We restrict ourselves to the z-transform of sequences 
with only a finite number N of nonzero  points.  In  this 
case, we can rewrite (1) without loss of generality as 

N-I 

X ( 2 )  = ( 2 )  
n=O 

where the  sum in (2) converges for all  z except z=  0. 
Equations (1) and (2) are  like  the defining expressions 

for  the  Laplace  transform of a  train of equally spaced 
impulses of magnitudes xn. Let the spacing of the impulses 
be T and let the  train of impulses be xxnS(t-nr). Then 
the  Laplace  transform is cxne-SnT which is the  same  as 
X(z )  if  we let 

x = e s T ,  (3) 

If we are dealing with sampled waveforms the  relation 
between the  original waveform and  the  train of impulses 
is well understood  in  terms of the  phenomenon of aliasing. 
Thus  the  z-transform of the sequence of samples of a time 
waveform is representative of the  Laplace  transform of 
the  original waveform in  a way which is well understood. 
The  Laplace  transform of a  train of impulses repeats its 
values taken  in  a  horizontal  strip of the  s-plane of width 
2r/T in every other  strip  parallel to it.  The  z-transform 
maps each such strip  into  the  entire z-plane, or conversely, 
the  entire  z-plane  corresponds to any  horizontal  strip of 
the s-plane, e.g., the region - w < c < cc , - r / T I  w < r/T,  
where s= u+jw. In  the same  correspondence,  the j w  axis 
of the s-plane,  along which we generally equate  the 
Laplace  transform with the  Fourier  transform,  is  the  unit 
circle in  the z-plane, and  the origin of the  s-plane  cor- 
responds to z=  1. The interior of the  z-plane  unit circle 
corresponds  to  the left half of the x-plane, and  the exterior 
corresponds to  the right half plane.  Straight lines in  the 
s-plane  correspond to  circles or spirals  in  the z-plane. 
Fig. 1 shows the  correspondence of a contour in the s- 
plane to a  contour  in  the  z-plane. To evaluate the Laplace 
transform of the impulse train  along  the  linear  contour is 
to evaluate  the  z-transform of the sequence along  the 
spiral  contour. 
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Fig. 1. The  correspondence of (A) a  z-plane contour 
to (B) an  s-plane  contour through the  relation z=esT .  

Values of the  z-transform  are  usually  computed  along 
the  path corresponding to the j w  axis,  namely the unit 
circle. This gives the discrete  equivalent of the  Fourier 
transform  and  has many  applications  including  the  esti- 
mation of spectra,  filtering,  interpolation, and  correla- 
tion.  The  applications of computing  z-transforms off the 
unit circle are fewer, but  one  is  presented elsewhere [ 6 ] ,  
namely the enhancement of spectral  resonances  in  systems 
for which  one  has  some  foreknowledge of the  locations 
of poles and zeroes. 

Just  as we can  only  compute  (2)  for  a  finite  set of 
samples, so we can  only  compute  (2) at a  finite  number of 
points, say zk. 

N -  1 

xk = x(2,) = Xn2k-n. (4) 
n=O 

The  special  case  which has received the most  attention 
is the set of points  equally  spaced around  the  unit circle, 

values of k merely repeat  the  same N values of 4 ,  which 
are  the  Nth  roots of unity. The discrete Fourier  transform 
has assumed  considerable  importance,  partly  because of 
its nice  properties, but mainly  because  since 1965 it  has 
become widely known  that  the  computation of (6) can  be 
achieved, not in the N2 complex  multiplications and  addi- 
tions called for by direct  application of (6), but  in some- 
thing of the  order of N log2N operations if N is  a power 
of two, or N x m i  operations if the  integers mi are  the 
prime  factors of N .  Any  algorithm which accomplishes 
this  is  called  an FFT. Much of the  importance of the FFT 
is that  DFT may be  used as a  stepping  stone to computing 
lagged products  such as convolutions,  autocorrelations, 
and cross  convolutions  more  rapidly than before [3], [4]. 
The  DFT has,  however,  some  limitations which can  be 
eliminated  using the  CZT algorithm  which we  will de- 
scribe.  We  shall  investigate the  computation of the z- 
transform  on  a  more general  contour, of the  form 

z k  = AW-k, k = 0, 1, . , M - 1 (7a) 

where M is an  arbitrary  integer  and  both A and W are 
arbitrary  complex  numbers of the  form 

A = AOei2r80 (7b) 

and 
W = Woej2r40. (7c) 

(See Fig. 2.) The case A = 1, M =  N ,  and W= exp( -j2n/N) 
corresponds to  the  DFT.  The general  z-plane contour 
begins  with the  point z = A and, depending on  the value 
of W, spirals  in or out with  respect to  the origin. If Wo = 1, 
the  contour is an arc of a  circle.  The  angular  spacing of 
the samples is 2 ~ 9 ~ .  The equivalent  s-plane  contour  begins 
with the  point 

1 

T 
so = uo + jwo = - In A (8) 

and  the general point  on  the  s-plane  contour is 

1 
Sk = SO + k(Au +jaw) = - (In A - k In W ) ,  

T (9 ) 

k = 0,  1, * * , M  - 1. 

Since A and W are  arbitrary  complex  numbers we  see 
that  the  points sk lie on an arbitrary  straight  line  segment 
of  arbitrary  length  and  sampling  density.  Clearly  the 
contour  indicated  in  (7a)  is not  the  most general  contour 
but  it is  considerably  more  general than  that  for which 
the DFT applies. In Fig. 2, an example of this more gen- 
eral  contour  is  shown  in  both  the  z-plane  and  the  s-plane. 

To  compute  the  z-transform along  this more general 
zk = exp ( j z n k / ~ ) ,  k = 0,  1, . . I , N - 1 (5 )  contour would seem to require N M  multiplications and 

additions  as  the special  symmetries of exp(j2aklN) which 
are exploited  in  the  derivation of the FFT are  absent  in 

xk = x n  exP ( - j2nk /N)  , k = 0,1, * * 9 N - 1. (6) the sequence Wn2l2 in  various  roles we can  apply the FFT 
to the  computation of the  z-transform  along  the  contour 

Equation (6) is  called the discrete  Fourier  transform of (7a). Since  for Wo= 1 , the sequence W7*2/2 is a  complex 
(DFT).  The reader  may easily verify that,  in (5 ) ,  other  sinusoid of linearly  increasing  frequency, and since  a 

for which 
N -  1 the  more  general  case.  However, we shall see that by using 

n=O 
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Fig. 2. An  illustration o f  the  independent  parameters  of  the CZT 
algorithm.  (A) How the  z-transform is evaluated on  a  spiral  contour 
starting a t  the  point z=A.  (B) The corresponding  straight  line  con- 
tour  and  independent  parameters  in the  s-plane. 

similar waveform used in  some  radar systems has  the 
picturesque  name "chirp," we call the  algorithm we are 
about  to present  the  chirp  z-transform  (CZT). Since the 
CZT permits  computing  the  z-transform  on a more gen- 
eral tour  than  the FFT permits it is more flexible than 
the FFT, although  it is also considerably slower. The  addi- 
tional  freedoms offered by the CZT include  the  following: 

1) The  number of time samples does not have to equal 

2) Neither M nor N need be a composite  integer. 
3) The  angular  spacing of the zk is  arbitrary. 
4) The  contour need not be  a circle but can  spiral in or 

out with respect to  the origin. In addition,  the  point zo 
is arbitrary,  but this is also the case with the FFT if the 
samples xn are multiplied by zg-" before transforming. 

the  number of samples of the  z-transform. 

II ,  Derivation of the CZT 

Along  the  contour of (7a), (4) becomes 
x- 1 

X k  = X n A - f ~ W n k ,  1; = 0, 1: . . . , Jl - 1 (10) 
n-0 

which, at first appearance, seems to require NM complex 
multiplications  and  additions, as we have  already ob- 

Fig. 3. An  illustration of the steps involved  in computing  values of the 
z-transform using the CZT algorithm. 

served. But, let us use the  ingenious  substitution,  due to 
Bluestein [ 5 ] ,  

722 4- k2 - ( k  - n)Z nk ~ __ - 
2 (1 1 )  

for  the exponent of W i n  (10). This produces  an ap- 
parently  more unwieldly expression 

AT- I x - I L . 1 , A - n ~ ~ ~ ( n 2 / e ) ~ t ; ( k ~ , . 2 ) ~ - ( b - - n ) 2 ! 2  
IC- 

n=O , (12) 
k -I 0 , I , .  . . , 39 - I ;  

but, in fact, (12) can be thought of as a three-step process 
consisting of: 

1) forming a new sequence yn by weighting the x, 
according to the  equation 

y n  = , Z . ~ A - - ~ F V ~ ' ; ~ ,  n. = 0, 1, * . * , .X - 1 ; (13) 

2) convolving yn with the sequence v, defined as 

t'n = W - - n 2 / 2  (1 3 )  
to give a sequence gk, 

n=O 

3) multiplying g k  by Wk2/2  to give  XIc, 

XI, = gI,TV~"Z, 1; = 0, 1, ' . . , 31 - 1. (16) 

The  three-step process is illustrated in Fig. 3. Steps 1 
and 3 require N and M multiplications, respectively, 
and  step  2 is a convolution which may be computed by 
the high-speed technique disclosed by Stockham [ 3 ] ,  
based on the use of the FFT. Step 2 is the  major part of 
the  computational effort and  requires  a time roughly pro- 
portional  to (N+M) log (N+M). 

Bluestein employed the  substitution of (1 I) to convert 
a DFT to a  convolution  as  in  Fig. 3. The linear system to 
which the  convolution is equivalent can be called a  chirp 
filter which is, in fact, also sometimes used to resolve a 
spectrum. Bluestein [ 5 ]  showed that  for N a perfect 
square,  the chirp filter could  be synthesized recursively 
with z /W multipliers and  the  computation of a DFT could 
then be proportional to N 3 / 2 .  

The flexibility and speed of the  CZT algorithm are 
related to  the flexibility and speed of the  method of high- 
speed convolution using the FFT.  The reader should re- 
call that  the  product of the DFT's of two sequences is 
the DFT of the circular convolution of the two sequences 
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and, therefore,  a  circular  convolution is computable as 
two DFT's, the multiplication of two  arrays of complex 
numbers, and  an inverse discrete Fourier  transform 
(IDFT), which can also be  computed by the FFT. Ordi- 
nary  convolutions  can  be  computed  as  circular  convolu- 
tions by appending zeroes to  the end of one  or  both se- 
quences so that  the correct  numerical  answers  for  the 
ordinary  convolution  can  result  from  a circular convolu- 
tion. 

We  shall now summarize the details of the  CZT al- 
gorithm on  the assumption that  an already existing FFT (B )  1;M. 
program (or special-purpose  machine)  is available to 
compute  DFT's  and  IDFT's. 

Begin with  a waveform in the  form of N samples x, and t y, 

seek M samples of Xk where A and W have also been (c) 
chosen. 

1) Choose L, the smallest integer greater  than  or  equal L-l r 

to N+M- 1 which is also compatible with our high- 
speed FFT program. For most users this will mean L is a 
power of two. Note  that while many FFT programs will 
work  for  arbitrary L, they are  not equally efficient for (D) 

all L. At  the very least, L should be highly composite. 
2 )  Form  an L point sequence y, from x, by n 

Y n -  { A-nWnz /Z~ ,  n = 0, 1, 2, . . e , N -  1 

0 n=N, N+1, * * , L-1. 

3) Compute  the L point DFT of y, by the FFT. Call 

4) Define an L point sequence v, by the relation 

(17) (E) 4 
this Y,, r=O, 1, , L-1. 

arbltrary 

L-N+I  L-l n 

(F) 

L-l r 

(GI 

c 
1.1 . 

V ,  = W-(L-n)2/z L - N + 1 5 n < L (18) I arbitrary other n, if any. 

Of course, if L is exactly equal to  M+N- 1, the region 
in which v, is  arbitrary will not exist. If the region does 
exist an obvious possibility is to  increase M ,  the desired 
number of points of the  z-transform we compute,  until 
the region does not exist. 

Note  that v, could be  cut  into two with a cut between 
n = M -  1 and n = L- N+ 1 and if the  two pieces  were abut- 
ted  together differently, the resulting sequence would be a 
slice out of the indefinite length sequence W--n2/Z. This is 
illustrated in Fig. 4. The sequence v, is defined the way (i-l) 

it is in order to force  the  circular  convolution to give us 
the desired numerical results of an ordinary  convolution. 

5) Compute  the DFT of v, and call it V,, Y = 0, 1, . , 
L- 1. 

6) Multiply V, and Y,. point by point, giving G,: 

e---- -------___---- 

G, = V,.Y,, r = 0, 1, . . . , L - 1. (1) 

7) Compute  the L point  IDFT g k ,  of G,.. 
8) Multiply g k  by Wk2IZ to give the desired Xk: 

X k  = W k 2 / * y i C ,  12 = 0, I., 2,  ' ' ' , nf - 1. 

The gk  for k > M  are  discarded. 

Fig. 4 represents  typical waveforms (magnitudes  shown, 
phase  omitted) involved in each  step of the  process. 

I- not d- 
M-l L-l h 

IXk 
hn 
I I I I  * 

Y-l h 

Fig. 4. Schematic  representation  of  the  various  sequences  involved 
in  the  CZT  algorithm. (A) The  input  sequence xn with N values. 
(B) The  weighted  input  sequence Y ~ = A - ~ W " ' / ~ X ~ .  (C) The DFT of yft. 
(D) The  values  of  the  indefinite  sequence W-"2'2. (E) The  sequence 
vn formed  appropriately  from segments o f  W-n2/z. (F) The  DFT o f  vn. 
( G )  The  product G,=Y7.V,.  (H) The  IDFT  of G,.. (!) The  desired M 
va!ues of the  r-transform. 
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111. Fine Points of the Computation 

Operation Count and Timing Considerations 

An  operation  count  can be made,  roughly,  from the 
eight steps just presented. We will  give it  step by step 
because there  are, of course,  many possible variations to 
be considered. 

1) We assume that step 1, choosing L,  is  a negligible 
operation. 

2) Forming yn from xn requires N complex multiplica- 
tions, not counting the generation of the  constants 
A-nWn2/2. The  constants may be  prestored,  computed as 
needed, or generated recursively as needed. The recursive 
computation would require  two complex multiplications 
per  point. 

3) An L point DFT requires  a time kFFTL logz L for L 
a  power of two, and a very simple FFT program.  More 
complicated (but faster)  programs  have  more  complicated 
computing  time  formulas. 
4), 5) vn is computed  for  either M or N points, which- 

ever is greater. The symmetry in W-n2/2 permits  the  other 
values of v, to be  obtained  without  computation.  Again, 
v, can  be  computed recursively. The FFT takes  the  same 
time as  that in  step 3. If the  same  contour is used for 
many sets of data, V, need only be  computed once, and 
stored. 

6) This  step  requires L complex multiplications. 
7) This is another FFT and requires  the  same  time as 

8) This step requires M complex multiplications. 

As  the number of samples of xn or X k  grow large, the 
computation  time  for  the  CZT  grows asymptotically as 
something  proportional  to L logn L. This is the same sort 
of asymptotic dependence of the FFT,  but the  constant 
of proportionality is bigger for  the  CZT because two or 
three FFT’s  are required  instead of one,  and because L 
is greater  than N or M .  Still, the  CZT is faster than  the 
direct  computation of (10) even for relatively modest 
values of M and N ,  of the order of 50. 

step 3. 

Reduction in Storage 

The  CZT  can be put  into a  more useful form  for  com- 
putation by redefining the substitution of (11) to read 

(n - AVO)2 + k 2  - ( k  - ‘n + LvO) + 2LVOk 
nk = _____ ____ __-- . 

Equation (12) can now be  rewritten  as 

XI, ~ T Y k z / / 2 J J 7 N o k  Z,A-nTTr(a-No)Y/21V-(k-n+,vo)Yi2, 
X-1 

7L= 0 

The  form of the new equation is similar to (12) in that 
the  input  data xn are pre-weighted by a complex sequence 
(A-” W+*’o) ’ /2) ,  convolved with a second sequence 
(W--(n-h’~)2/2), and post-weighted by a  third sequence 
( u r r C 2 ~ z J V ~ k )  to  compute  the  output sequence Xk. How- 
ever, there are differences in  the  detailed  procedures for 
realizing the  CZT.  The  input  data xn can  be  thought of as 

having been shifted by No samples to the  left; e.g., .xo is 
weighted by WNo2/2 instead of Wo. The region over which 
W-n’lz must be formed, in order to obtain  correct results 
from  the  convolution, is 

By choosing No = (N-M)/2  i t  can  be seen that  the limits 
over which W-nz12 i s  evaluated  are  symmetric; Le., 
W-n2/2 is a symmetric function  in both  its  real  and 
imaginary  parts. (It follows thus  that  the transform of 
W-n2/2 is also symmetric in  both its real and  imaginary 
parts.) It can  be  shown that using this special value of No, 
only (L/2+1)  points of W-n2/2 need be calculated and 
stored and these (L/2+ 1 )  complex points  can  be  trans- 
formed using an L/2 point  transform.2 Hence  the  total 
storage  required  for the  transform of W--n2/2 is L+2 
locations. 

The only other modifications to  the detailed procedures 
for  evaluating  the CZT presented  in Section I1 of this 
paper  are: 1) following the L point IDFT of step 7 ,  the 
data of array yk must  be  rotated to the left by No locations; 
and 2)  the weighting factor of the gk  is Wk2/2WNok rather 
than Wk2/2.  The  additional  factor W7’ok represents  a data 
shift of No samples to  the right,  thus  compensating  the 
initial shift and keeping the effective positions of the data 
invariant  to  the value of No used. 

An estimate of the  storage  required to perform  the 
CZT can now be made. Assuming that  the entire process 
is  to  take place in  core,  storage is required for V, which 
takes L+2 locations;  for y., which takes 2L locations; 
and  perhaps  for some  other  quantities which we wish to 
save, e.g.,  the  input, or values of W+n2!2 or k n W n 2 I 2 .  

Additional Considerations 

Since the CZT permits M # N ,  it  is possible that occa- 
sions will arise where M>>N or N>>M. In these cases, if 
the smaller number is small  enough,  the  direct  method of 
(IO) is called for. However, if even the smaller number is 
large it may be  appropriate to use the methods of section- 
ing described by Stockham 131. Either the lap-save or 
lap-add  methods may be used. Sectioning may also be 
used when problems too big to be handled  in  core  memory 
arise. We have not actually encountered  any of these 
problems and have not programmed the  CZT with pro- 
vision for sectioning. 

Since the  contour for the  CZT is  a  straight  line segment 
in the s-plane, it is  apparent  that repeated application of 
the CZT can  compute  the  z-transform  along  a  contour 
which is piecewise spiral in the  z-plane or piecewise linear 
in  the  s-plane. 

Let us briefly consider the  CZT algorithm for the case 
of zk all  on  the  unit circle. This  means that  the z-transform 
is  like a Fourier  transform.  Unlike  the DFT, which by 
definition gives N points of transform  for N points of 

2 The  technique for transforming  two  real  symmetric L point se- 
quences using one L / 2  point FFT was demonstrated by J. Cooley 
at  the FFT Workshop,  Arden House, October 1968. A summary of 
this  technique i s  presented in the  Appendix. 
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data,  the  CZT does not require M = N .  Furthermore,  the 
zk need not stretch  over  the  entire  unit  circle  but  can  be 
equally  spaced  along an  arc.  Let us assume,  however, 
that we are really interested  in  computing the N point 
DFT of N data  points. Still  the CZT permits us to choose 
any  value of N ,  highly composite,  somewhat  composite, 
or even prime,  without  strongly affecting the  computation 
time. An  important application of the  CZT may  be  com- 
puting  DFT's when N is not  a power of two  and when 
the  program  or  special-purpose device available  for 
computing DFT's by FFT is  limited to  the case of N a 
power of two. 

There  is  also no reason why the  CZT  cannot  be ex- 

We  need  one FFT  and 2L storage  locations  for  the  trans- 
form of X, ,A-"W"~/~;  one FFT and  L+2 storage  locations 
for  the  transform W-nz12; and  one FFT for  the  inverse 
transform of the  product of these  two  transforms. We 
do not know  a way  of computing  the  transform of W--n2/2 
either recursively or by a specific formula (except in  some 
trivial cases). Thus we must  compute  this  transform and 
store  it  in  an  extra L+2 storage  locations. Of course, if 
many  transforms  are to be done with the same  value of L, 
we need not  compute  the  transform of W--n2/2 each  time. 

We can  compute  the  quantities A-" Wn2/z  recursively as 
they are needed to save computation  and  storage.  This is 
easily seen from  the  fact  that 

tended to  the case of transforms  in  two  or  more  dimen- 
sions  with  similar  considerations.  The  two-dimensional A - ( n f l ) T / T ' ( ~ ~ + 1 ) ~ / 2  = (A--nlvn2/2), W n W I / Z A - l .  ('9) 

DFT becomes  a  two-dimensional  convolution  which  is 
computable by FFT techniques. 

We  caution  the  reader to  note  that  for  the ordinary 
FFT the  starting  point of the  contour is  still arbitrary; 
merely multiply  the  waveform x,, by A-" before using the 
FFT, and  the first  point on  the  contour is effectively 
moved  from z=  1 to  z= A .  However, the  contour is still 
restricted to  a circle  concentric  with the origin.  The  angu- 
lar spacing of zk for  the FFT can  also  be  controlled to 
some  extent by appending  zeroes to  the end of x,, before 
computing  the DFT (to decrease the angular  spacing of 
the  zk) or by choosing only P of the  Npoints x,, and  adding 
together  all  the x,, for  which  the n are  congruent  modulo 
P ;  i.e.,  wrapping the waveform around  a cylinder and 
adding  together the pieces  which  overlap  (to  increase the 
angular  spacing). 

IV. Limitations 

One  limitation  in  using  the  CZT  algorithm to evaluate 
the  z-transform off the  unit circle  stems  from the fact 
that we may  be  required to compute Wofn2'z for  large n. 
If Wo differs very much  from  1.0, Wo*:nZ/z can  become very 
large or very small when n becomes  large. (We require  a 
large n when either M or N become  large, since we need 
to  evaluate Wna/2 for n in  the range - N <  n< M.)  For 
example, if W 0-e - -.25/1000=0.999749,  and n= 1000, 
Woinai2 = which exceeds the single precision  floating 
point  capability of most  computers by a  large  amount. 
Hence the tails of the functions  can  be  greatly  in 
error,  thus causing the tails of the convolution  (the  high 
frequency  terms) to be grossly inaccurate. The low fre- 
quency  terms of the convolution will also  be slightly in 
error  but these  errors  are negligible in  general. 

The  limitation  on  contour distance  in or  out from the 
unit circle is again  due to computation of W n 2 l z .  As Wo 
deviates significantly from 1.0, the number of points  for 
which W*n2/2 can  be  accurately  computed  decreases. It  is 
of importance  to  stress,  however,  that  for Wo = 1,  there  is 
no limitation of this  type  since W*"'/2 is always of magni- 
tude 1. 

The  other  main  limitation  on  the  CZT  algorithm  stems 
from  the  fact  that two L  point,  and one L/2  point,  FFT's 
must  be evaluated  where L is the smallest  convenient 
integer  greater than N + M -  1 as mentioned  previously. 

If  we define 
C, = A - % H i n 2 / 2  (20) 

and 
D, = WnW1/2A-1 (21) 

then 

Dn+l = We Dn (22) 

and 

Cn+l = Cn. Dm. (23) 

Setting A = 1 in (19) to (23) provides an algorithm  for the 
coefficients required  for  the output sequence. A similar 
recursion  formula  can  be  obtained  for  generating  the se- 
quence A-nW(n-Na)2/2. The user is  cautioned that recursive 
computation of these coefficients may  be  a  major  source 
of numerical error, especially when Wo= 1, or +o=O. 

V. Summary 

A  computational  algorithm  for  numerically  evaluating 
the  z-transform of a  sequence of N time  samples  was  pre- 
sented.  This  algorithm,  entitled  the  chirp  z-transform 
algorithm,  enables  the  evaluation of the  z-transform at M 
equi-angularly  spaced  points  on  contours  which  spiral  in 
or  out (circles being  a  special case) from  an  arbitrary 
starting  point  in  the  z-plane.  In  the  s-plane  the  equivalent 
contour  is  an  arbitrary  straight  line. 

The  CZT algorithm has great flexibility in that neither 
N or M need be  composite numbers;  the  output  point 
spacing  is arbitrary;  the  contour is  fairly  general and N 
need not be  the  same  as M .  The flexibility of the  CZT 
algorithm  is  due to being  able to express  the  z-transform 
on  the above contours as  a  convolution,  permitting  the 
use of well-known  high-speed  convolution  techniques to 
evaluate the convolution. 

Applications of the  CZT algorithm  include  enhance- 
ment of poles for use in  spectral  analysis;  high  resolution, 
narrowband  frequency  analysis;  and  time  interpolation of 
data  from  one sampling rate  to any  other  sampling  rate. 
These  applications  are  explained  in  detail elsewhere [ 6 ] .  
The  CZT algorithm  also  permits use of a  radix-2 FFT 
program  or device to compute  the DFT of an  arbitrary 
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number of samples. Examples illustrating  how  the  CZT ~ i ;  = i { I m  [ ~ k ]  + Im [ ~ L , p - k ] }  

algorithm is  used  in  specific cases are included elsewhere 
[6]. It is anticipated that  other applications of the  CZT - ____ { Im [G,] - Im [ c L / ~ - ~ I  1 
algorithm will be found. 

1 

4 sin - k 
2a 

L 
Appendix 

The purpose of this Appendix is to show how  the 
FFT’s of two real, symmetric L point sequences can  be 
obtained using one L/2  point FFT. 

Let x, and yn be  two real, symmetric L point sequences 
with corresponding DFT’s Xk and Yk. By definition, 

and it  is  easily shown that Xk and Yk are real, symmetric 
L point sequences, so that 

Define a complex L/2  point sequence u, whose real and 
imaginary parts  are 

The  L/2  point DFT of u,& is denoted U k  and is calculated 
by the FFT. The values of Xk and Yk may be computed 
from Uk using the  relations 

= +{Re [C.,] + Re [ C T ~ ; l - k l j  I 

for k =  1, 2, s . , L/2- 1. The remaining values  of Xk 
and Yk are obtained from  the  relations 

7,- 1 

x, = 5” 

~~ 

Yo = c y n  

L- 1 

X L j Z  = IC,( - I)“ 
n=O 

L- 1 

n=O 

References 

[ l ]  J. W.  Cooley  and J. W.  Tukey, “An algorithm for the  machine 
calculation of complex  Fourier series,” Marh. Camp., vol.  19, 

[2] G-AE Subcommittee  on  Measurement  Concepts,  “What is the 
fast  Fourier  transform?” IEEE Trans. Audio and Electroacous- 
fics, vol.  AU-15,  pp. 45-55, June 1967. 

131 T. G. Stockham,  Jr.,  “High  speed  convolution  and  correla- 
tion,” 1966 Spring Joint Computer Cor$, AFIPS Proc., vol. 28. 
Washington, D. C. : Spartan, 1966, pp. 229-233. 

[4] H. D. Helms,  “Fast  Fourier  transform  method of computing 
difference equations  and  simulating  filters,” IEEE Trans. 
Audio and Electroacoustics, vol. AU-15,  pp. 85590, June 1967. 

[ 5 ]  L. I. Bluestein, “A linear  filtering approach to the  computation 
of the discrete Fourier  transform,” I968 NEREM Rec., pp. 

[ 6 ]  L. R.  Rabiner, R. W.  Schafer,  and  C. M. Rader,  “The  chirp 
z-transform  algorithm  and its applications,” Bell Sys. Tech. J . ,  
vol. 48, pp. 1249-1292, May 1969. 

pp. 297-301,  1965. 

218-219. 

Lawrence R. Rabiner  (S’62-M’67), for a photograph  and biography, please see page 13  of the  March, 1969,  issue  of 
this  TRANSACTIONS. 

Ronald W. Schafer (S’62-M’67) was born  in Tecumseh,  Neb., on  February 17,  1938. 
He received the B.Sc.E.E. and M.Sc.E.E. degrees from  the University of Nebraska, 
Lincoln, in 1961 and 1962,  respectively, and  the  Ph.D. degree in electrical engineering 
from  the Massachusetts Institute of Technology, Cambridge, in February, 1968. 

From 1962 to 1963 he served as an  Instructor in the  Department of Electrical Engi- 
neering at  the University of Nebraska,  and from 1964 until 1968 he was an  Instructor 
in the  Department of Electrical Engineering at M.I.T., where he received a depart- 
mental  award  for teaching. During 1965 he was with the  M.I.T. Electronic Systems 
Laboratory, where he worked on digital computer simulations of guidance and con- 
trol systems, and  from 1966 to 1968 he was with the M.I.T.  Research Laboratory of 
Electronics. At present he is  engaged in research on digital speech processing tech- 
niques at Bell Telephone  Laboratories, Inc., Murray Hill, N.  J. 

Dr. Schafer is a member of Eta  Kappa  Nu, Sigma Xi, and the Acoustical Society of 
America. 

C. M. Rader (S’59-M’62), for a photograph  and biography, please see this issue, page 76. 

92 IEEE ‘IRANSAC-rIONS ON AUDIO AKD ELECTROACOUSTICS JUNE 1969 


