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S

We consider the choice of explanatory variables in multivariate linear regression. Our
approach balances prediction accuracy against costs attached to variables in a multivariate
version of a decision theory approach pioneered by Lindley (1968). We also employ a
non-conjugate proper prior distribution for the parameters of the regression model,
extending the standard normal-inverse Wishart by adding a component of error which is
unexplainable by any number of predictor variables, thus avoiding the determinism ident-
ified by Dawid (1988). Simulated annealing and fast updating algorithms are used to
search for good subsets when there are very many regressors. The technique is illustrated
on a near infrared spectroscopy example involving 39 observations and 300 explanatory
variables. This demonstrates the effectiveness of multivariate regression as opposed to
separate univariate regressions. It also emphasises that within a Bayesian framework more
variables than observations can be utilised.

Some key words: Bayesian decision theory; Determinism; Multivariate regression; Near infrared spectroscopy;
Non-conjugate distribution; Prediction; Quadratic loss; Simulated annealing; Utility.

1. I

Choice of regressor variables in linear regression has attracted considerable attention
in the literature, from forward, backward and stepwise regression, model choice criteria
such as Akaike’s information criterion, to Bayesian techniques. We will focus on the
Bayesian decision theory framework, first given by Lindley (1968) for univariate multiple
regression, where costs attach to the inclusion of regressor variables. Here it is required
to predict a future vector observation Y f comprising r components. Predictions are judged
by quadratic loss to which is added a cost penalty on the regressor variables,
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. This cost typically increases

as variables are added.
There is a large Bayesian literature on model choice and variable selection in the multiple

regression model. Most approaches focus on probabilistic fit, see for example George &
McCulloch (1997), with multivariate extensions in Brown, Vannucci & Fearn (1998a, b), and
earlier work by Mitchell & Beauchamp (1988) following on Lempers (1971). Raftery,
Madigan & Hoeting (1997) use model averaging over a subset of models restricted by
‘Occam’s Window’. Model averaging is also used by Clyde, Desimone & Parmigiani (1996)
but after first orthogonalising the design space. Bernardo & Smith (1994, Ch. 6) have sug-
gested a utility formulation that is approximated by crossvalidatory fit; see also a Nottingham
Trent University technical report by J. M. Marriott, N. M. Spencer and A. N. Pettitt. Our
approach contrasts to that of George & McCulloch in that we do not use a mixture prior
distribution. We omit variables not because we believe their coefficients are zero, but because
they cost too much relative to their predictive benefit.

The formulation we adopt assumes a joint normal distribution of the r-variate response
Y (r×1) and the full set of q regressor variables, the (1×q) row vector X

q
=

(x1 , x2 , . . . , xq ). The formulation assumes random regressors, with a joint distribution the
same in both training and prediction data. By focusing on the joint distribution of the
response and regressor variables rather than the regression parameters in the conditional
distribution of Y given X

q
, we may straightforwardly assign prior distributions which

cohere over different p-variate submodels.
Dawid (1988) defined determinism in the infinite regress (q�2 ) as a feature of those

models in which the parameter values are such that the conditional variance of Y |X
q

tends to zero. Essentially it is possible to predict the response perfectly by adding enough
variables, always with the proviso of knowing the regression parameters. He showed that
the normal-inverse Wishart natural conjugate prior distribution embodies an implicit
determinism. Mäkeläinen & Brown (1988) suggested a simple device to remedy this per-
ceived fault. They included a component in Y which is unexplainable by X even when
q�2. More recently Fang & Dawid (2000) have used this idea to develop a non-conjugate
approach to multiple regression on many variables, and we use elements of their develop-
ment. Even though we will not be directly concerned with allowing an infinite set of
regressors but rather with comparing different subsets of p∏q of the regressor variables,
we prefer to avoid the conjugate prior and its limitations.

Our development has a number of features including the following: a multivariate
response, a proper non-conjugate prior distribution avoiding determinism, and compu-
tational techniques for coping with very many variables. None of these items is new, but
their joint use in variable selection is.

Section 2 describes the model and develops the predictive mean and covariance matrix
for the non-conjugate Gaussian model. This is sufficient for subsequent utility and decision
theoretic formulations in § 3. Computational aspects utilising  decompositions and
simulated annealing to maximise the expected utility are described in § 4. Section 5
describes an application to choosing wavelengths from a near infrared spectrum to predict
various ingredients of biscuit dough pieces for eventual on-line production control.

2. T B 

2·1. Matrix-variate distributions

We first review a general matrix-variate notation for Gaussian and related distributions,
i.e. inverse Wishart and matrix-variate T , which greatly simplifies calculations, avoiding
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the need to string matrices as vectors and consequent Kronecker product covariance
structures.

We shall follow the notation introduced by Dawid (1981) for matrix-variate distri-
butions. This has the advantage of preserving the matrix structures. It redefines the degrees
of freedom as shape parameters for both inverse Wishart and matrix-variate T , to allow
notational invariance under marginalisation and very easy symbolic Bayesian
manipulations.

We use calligraphic lettering to distinguish the notation from more standard ones.
Corresponding probability density functions for the random matrices symbolically intro-
duced are given in Brown (1993, Appendix A).

In the case of the matrix-normal N ( . , . ) both arguments relate to covariances; the first
does not relate to the mean as in the standard N(., .) multivariate normal notation. The
mean in the case of the matrix-normal notation is specified separately as an additional
term. With U a matrix having independent standard normal entries, M+N (C, S ) will
stand for a matrix-normal distribution of V =M+A∞UB, where M, A, B are fixed matrices
satisfying A∞A=C and B∞B=S. Thus M is the matrix mean of V, and c

ii
S and s

jj
C are

the covariance matrices of the ith row and jth column, respectively, of V. If V is a column
vector then the matrix normal and multivariate normal equivalent notations are N (C, 1)
and N(0, C ); if V is a row vector then the matrix normal notation is N (1, C ).

If U is of order n×p with n�p, the notation IW (d; S ), with d=n−p+1, will stand
for the distribution of W=B∞(U∞U)−1B, an inverse Wishart distribution. This random
matrix has expectation S/(d−2). The shape parameter d differs from the more conven-
tional degrees of freedom, and may be generalised, using the density function, to take on
any positive real value. Note that with W~IW (d; S ) and W11 a principal submatrix of
W then W11~IW (d; S11), and the shape parameter d is unchanged; this would not be
the case with more standard inverse Wishart notations (Press, 1982, Ch. 5).

The matrix-variate T distribution M+T (d; S, Q) is the distribution of T where T
follows the M+N(C, S ) distribution conditional on S and S~IW (d; Q). Marginal and
conditional distributions of the matrix-T are also matrix-T . Marginalisation does not
affect the shape parameter. For example, if T (p×q), distributed as T(d; P, Q), is par-
titioned into T ∞= (T ∞

1
, T ∞

2
) where T

i
is ( p

i
×q), for i=1, 2, then

T2~T(d; P22 , Q) (1)

and, conditional on T2=t2 ,

T1−P12P−122 t2~T(d+p2 ; P11.2 , Q+t∞
2
P−1
22

t2 ), (2)

with P11.2=P11−P12P−122 P21 . Also note that T ∞~T (d; Q, P), so that conditioning on a
set of columns follows similarly.

2·2. T he model

We suppose the response Y (1×r) is the sum of an unobservable variable g and an
unobservable error component a, independent of each other; the joint distribution of g
and the explanatory variables X

q
(1×q) is normal; a has an independent normal distri-

bution. Thus the model is

Y=g+a, (3)

(g, X
q
)~N(1, S

r+q ), a~N(1, W), (4)

with (g, X
q
) and a conditionally independent, given (r+q)× (r+q) and r×r covariance
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matrices S
r+q and W, respectively. The means of all these variables are taken to be zero.

In practice we centre both X and Y ; see § 2·5.
If c is a binary q-vector that identifies subsets,

c
i
=1<x

i
included, (5)

then the number of variables included in a submodel is p=|c |, the number of ones in c.
A particular submodel c involving p of the explanatory variables has the distribution

in (3), (4) with X
q

and S
r+q replaced by X

c
, the row vector of p variables, and S

r+c , the
appropriate (r+p)× (r+p) submatrix of S

r+q . The joint normality of Y and X
q

implies
that

Y |X
c
~X

c
B
c
+N(1, D

c
), (6)

X
c
~N(1, S

cc
), (7)

where the joint covariance matrix S
r+c is partitioned as the (r+p)× (r+p) matrix

S
r+c=AS00 S

0c
S
c0

S
cc
B ,

B
c
=S−1

cc
S
c0

( p×r), and, with S
00.c

=S00−S
0c
S−1
cc

S
c0

, then D
c
=S

00.c
+W (r×r).

We will now assign an inverse Wishart prior distribution for S
r+q , and by implication

for S
r+c . Let

S
r+q~IW(d; Q

r+q) (8)

with shape parameter d>0 and Q
r+q an (r+q)× (r+q) positive definite scale matrix.

Assigning the obvious inverse Wishart prior distribution to W would lead to intractable
posterior distributions. In the interests of deriving an analytical solution we make the
following simplifying assumption.

Assumption 1. The unexplainable error covariance matrix W is proportional to the
residual explainable covariance matrix S

00.q
. Specifically, let

w
q
I
r
=S

00.q
(S

00.q
+W)−1

for some scalar w
q
.

In the absence of information to the contrary this offers considerable simplification. In
the case of univariate Y it is non-restrictive, amounting merely to a reparameterisation.
In the multivariate case contrary or confirmatory information would have to be supplied
externally. Our training data cannot supply such evidence as the sufficient statistics for
the Gaussian distribution can estimate S

00.q
+W but not either component separately. All

the arguments below are made conditional on the scalar parameter w
q
. In our application

we will prespecify w
q
from external knowledge of the application area. Note that w

q
does

depend on q. In particular if we are to avoid determinism, w
q
must tend to zero as q�2.

The training or learning data consist of n independent realisations from (3) and (4)
leading to Y l (n×r) and Xl

q
(n×q). Here and elsewhere, the superfix l is used to note

explicitly that n observations of the learning data are involved, whereas f as a superfix
denotes a future observation. Interest focuses on prediction of Y f for a future case with
Y f=gf+af, and (gf, Xf

q
) and af independent realisations of model (3) and (4) conditional

on the covariance matrices (S
r+q , W). From the characterisation of the matrix-T , we have
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that

Agf Xf
q

gl Xl
q
B (9)

is distributed as T (d; I
n+1 , Qr+q).

2·3. Bayes prediction

Our development here follows in outline that of Fang & Dawid (2000). Suppose we
wish to use a p-variate subset c of the q regressor variables for prediction. Consider the
quadratic prediction loss

L(Y f, YC f)=(Y f−YC f)∞L (Y f−YC f ) (10)

=tr{L (Y f−YC f) (Y f−YC f )∞}, (11)

with L any r×r positive definite matrix of weight constants. The residual sum of products
matrix in (11) may be termed the matrix quadratic loss. The Bayes predictor YC f is the
predictor of Y f assuming all variables have been measured in the learning data Y l, Xl

q
but that only the selection c of the Xf

q
is available for prediction, and is given as

YC f=E(Y f |Xf
c
, Xl

q
, Y l)=E(gf |Xf

c
, Xl

q
, Y l ), (12)

since Y f=gf+af and

E(af |Xf
c
, Xl

q
, Y l)=0.

This latter fact follows from the joint distribution of af and Xf
c

being independent with
means zero conditional on Xl

c
, Y l. This turns on the distribution first conditional on S

r+q ,
when

af~N(0, w
q
S
00.q

), Xf
q
~N(0, S

qq
),

which in turn implies

Xf
c
~N(0, S

cc
).

Finally S
qq

and S
00.q

are a priori and a posteriori conditionally independent, given
Xl
q
, Y l, a characteristic Bartlett decomposition property of the inverse-Wishart; see (28)

and for example Brown, Le & Zidek (1994).
Now we condition the right-hand side of (12) on the unobserved ‘error-free’ variables

gl (n×r), so that

E(Y f |Xf
c
, Xl

q
, Y l)=E{E(gf |Xf

c
, gl, Xl

q
, Y l)}. (13)

The inner conditional expectation can be simplified to

E(gf |Xf
c
, gl, Xl

q
), (14)

since Y l is redundant when gl is known in this conditional expectation. It reappears though
in the outer conditional expectation in (13).

Our first task then is to evaluate (14). We can obtain the conditional distribution of gf
conditional on Xf

c
, gl, Xl

q
by two applications of conditioning through result (2) applied

to the array (9), first directly to the array and then to its transpose.
The first application of (2) gives

(gf, Xf
q
) |gl, Xl

q
~T{d+n; 1, Q

r+q+ (gl, Xl
q
)∞(gl, Xl

q
)}. (15)
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Marginalising this distribution to the subset c containing p of q variables, we have the
predictive distribution

(gf, Xf
c
) |gl, Xl

q
~T(d+n; 1, P

r+c), (16)

with the (r+p)× (r+p) scale matrix P
r+c given as

P
r+c=Q

r+c+(gl, Xl
c
)∞(gl, Xl

c
), (17)

with Q
r+c the appropriate (r+p)× (r+p) submatrix of the (r+q)× (r+q) matrix Q

r+q
in definition (8). If we partition the matrices P

r+c and Q
r+c into blocks corresponding to

the r responses and p variables, a second application of (2) to the transpose of (16) gives

gf |Xf
c
, gl, Xl

q
~Xf

c
P−1
cc

P
0c
+T(d+n+p; 1+Xf

c
P−1
cc

(Xf
c
)∞, P

00.c
), (18)

where

P
00
=Q

00
+(gl )∞gl, (19)

P
0c
=Q

0c
+ (gl)∞Xl

c
, (20)

P
cc
=Q

cc
+ (Xl

c
)∞Xl

c
, (21)

and P
00.c

=P
00
−P

0c
P−1
cc

P
c0

. Thus the conditional mean of gf as given in (14) is

E(gf |Xf
c
, gl, Xl

q
)=Xf

c
P−1
cc

P
0c

,

and, averaging this over the distribution of gl given Xl
q
, Y l, since it is independent of

Xf
c
, according to the outer expectation of the right-hand side of (13), we have

YC f=E(Y f |Xf
c
, Xl

q
, Y l )=Xf

c
P−1
cc

P
0c

(q), (22)

where

P
0c

(q)=Q
0c
+E(gl |Xl

q
, Y l )∞Xl

c
. (23)

The Bayes predictor for quadratic loss is given by (22) and is completely specified up to
the calculation of E(gl |Xl

q
, Y l ), the expectation of the latent ‘true’ Y l matrix given the full

training data. This will be the focus of § 2·4. This conditional expectation also turns out
to be the only important missing ingredient in calculating the minimised value of the
quadratic loss.

2·4. L atent response

We wish to calculate E(gl |Xl
q
, Y l). Conditional on W and S

r+q we have

Y l |gl~gl+N(I
n
, W), (24)

gl |Xl
q
~Xl

q
B
q
+N(I

n
, S

00.q
), (25)

where B
q
=S−1

qq
S
q0

and S
00.q

=S
00
−S

0q
S−1
qq

S
q0

. For given W and S
r+q , (25) acts as a

prior distribution for gl, with (24) providing the likelihood. Thus,

gl |Y l, Xl
q
, S

r+q , W~g*+N(I
n
, V *), (26)

where

g*=(Y lW−1+Xl
q
B
q
S−1
00.q

) (W−1+S−1
00.q

)−1, (27)

V *= (W−1+S−1
00.q

)−1.
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This distribution depends on S
r+q only through B

q
and S

00.q
. The next step is to find the

posterior distribution of B
q

given Y l, Xl
q
, S

00.q
, W, and then marginalise over this

distribution.
The inverse Wishart prior distribution for S

r+q factorises into

p(B
q
, S

00.q
)p(S

qq
), (28)

with

B
q
|S

00.q
~Q−1

qq
Q
q0
+N(Q−1

qq
, S

00.q
) (29)

(Dawid, 1988, Lemma 2), and

S
00.q

~IW(d+q; Q
00.q

), (30)

with Q
00.q

=Q
00
−Q

0q
Q−1
qq

Q
q0

obtained from partitioning Q
r+q in (8). The likelihood for

S
r+q factors in a corresponding way, with the relevant part being

Y l |Xl
q
~Xl

q
B
q
+N(I

n
, S

00.q
+W). (31)

The aim now is to combine (29) and (31) to give a posterior distribution for B
q
.

With Assumption 1 and remembering that w
q
is a scalar, we can rewrite (29) as

B
q
|S

00.q
~Q−1

qq
Q
q0
+N(w

q
Q−1
qq

, S
00.q

+W), (32)

with the same row covariance matrix as in (31). Hence, using for example Appendix B of
Brown (1993) we get a posteriori, given w

q
, S

00.q
, Y l, Xl

q
,

B
q
−B*

q
~N({Q

qq
+w

q
(Xl

q
)∞Xl

q
}−1, S

00.q
), (33)

where

B*
q
={Q

qq
+w

q
(Xl

q
)∞Xl

q
}−1{Q

q0
+w

q
(Xl

q
)∞Y l}. (34)

Now we can marginalise (26) over the posterior distribution of B
q

given by (33). First
note that, under Assumption 1, equation (27) may be written as

g*=w
q
Y l+(1−w

q
)Xl

q
B
q
,

and also V *= (1−w
q
)S
00.q

in (26). Thus, given w
q
, S

00.q
, Y l, Xl

q
the posterior distribution

of gl is given as

g**+N(I
n
+ (1−w

q
)Xl

q
{Q

qq
+w

q
(Xl

q
)∞Xl

q
}−1 (Xl

q
)∞, (1−w

q
)S
00.q

), (35)

with

g**=w
q
Y l+ (1−w

q
)Xl

q
B*
q
. (36)

The posterior mean g** still depends on w
q
, but we choose not to try to average over

the posterior distribution of w
q
. Instead we shall specify w

q
a priori in our application. It

is possible to update genuinely through likelihood (31) the distribution of S
00.q

+W, or
equivalently S

00.q
for given w

q
, but not w

q
itself.

Thus, to recap, we have found in (36) the quantity g**=E(gl |Xl
q
, Y l) needed in (23) to

evaluate YC f, the Bayes predictor of Y f given by (22).

2·5. Prior structures

The hyperparameters that need to be specified for any application are the matrices Q
r+q

in (8) and the scalar w
q

in Assumption 1. Typically we assume Q
q0
=0. Specification of
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Q
00

is not needed to evaluate the Bayes predictor (22) through (36) and (34), nor to
compare different subsets; see § 3. Also the simplest prior structure would take Q

qq
=kI

q
,

where k is a scalar to be specified, so that in particular Q
cc
=kI

p
. The estimator (34) then

gives a ridge regression estimator for each response. In the absence of informative prior
knowledge, this motivates a semi-automatic choice of k as the median of the generalised
crossvalidation estimates as given by Golub, Heath & Wahba (1979).

Other structures for Q
qq

may be appropriate, for example structures embodying corre-
lation, perhaps simply through an autoregressive (1) process. Such relatively simple
structures also allow simple forms of matrix square root; see for example Brown &
Mäkeläinen (1992, § 5).

Throughout we have assumed that both X and Y variables have mean zero. This is an
unnatural but inconsequential assumption in that in reality we have centred all the vari-
ables by their means in the learning data. This implicitly corresponds to independent
vague priors, that is proportional to a constant over the real line for the mean of each
variable.

Thoughts about the indeterminism parameter w
q
should centre on the likely size of the

unexplainable prediction variance.

3. P   

3·1. Prediction covariance and loss

We noted in § 2·3 that our decision rule conditions on the full q-variable learning data
Xl
q

and Y l, but looks at subsets of variables identified by c for prediction. This same
paradigm in univariate regression is formally developed by Lindley (1968) for a random
experiment and later extended by Brooks (1974) to controlled experiments and mixed,
controlled and random experiments. Our analysis assumes the original random paradigm
in which both training X and Xf are generated by the same normal random mechanism.

The matrix P
r+c in (17) is the scale matrix of the multivariate distribution of (gf, Xf

c
)

given gl, Y l, Xl
q
, which does not actually involve Y l because of the conditioning on gl. The

covariance matrix is P
r+c/(d+n−2). Now Y f=gf+af, and, whereas the (1×r) error

vector af does not contribute to the conditional expectation of Y f in (12), it does contrib-
ute to the conditional covariance of Y f. If we include this uncertainty due to af, it is
straightforward to derive the covariance matrix of (Y f, Xf

c
) given Y l, Xl

q
. We assume w

q
is fixed. The independent error af added to gf affects only the (r×r) response covariance
structure and hence only augments P

00
given by (19). The response covariance matrix is

cov(Y f, Xf
c
|Y l, Xl

q
)=P*

r+c ,
where P*

r+c is partitioned as P
r+c given by equations (19), (20) and (21) with

P*
00
=[Q

00
+E{(gl)∞gl |Y l, Xl

q
}]/(d+n−2)+E(W |Y l, Xl

q
), (37)

P*
0c
={Q

0c
+E(gl |Xl

q
, Y l )∞Xl

c
}/(d+n−2), (38)

P*
cc
={Q

cc
+(Xl

c
)∞Xl

c
}/(d+n−2), (39)

with (38) a scaled version of P
0c

(q) in (23). Also (39) is (21) scaled. Such formulae derive
as follows. For example, for (37),

cov(Y f, Y f |Y l, Xl
q
)=E{cov (Y f, Y f |Y l, Xl

q
, S

r+q)}=E(S
00
+W |Y l, Xl

q
).

Additionally we note that (37) does not change with the selection of regressors, and
fortuitously we can avoid calculating it.
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The predictor YC f of Y f is linear in Xf
c

and hence from standard results, see for example
Mouchart & Simar (1980), the minimised quadratic loss, (10) with L =I, of the Bayes
predictor is tr{R(c)}, where

R(c)=P*
00
−P*

0c
P*−1
cc

P*
c0

, (40)

the scaled residual sum of products matrix. Only the second term on the right-hand side
varies with the selection of regressors. Thus the relative merit of different subsets can be
assessed without the calculation of P*

00
, as already intimated. This will considerably sim-

plify and speed up calculations in § 4.

3·2. Utility formulation

We wish to predict an r-variate response through the Bayes predictor (22) with conse-
quent prediction generalised quadratic loss of (40). When r is greater than 1 a Bayesian
decision theoretic formulation requires us to use a scalar loss function such as the quadratic
loss (10) and then add a terminal cost, a function of the cost of retaining the selected p
variables.

We first assume that the r dependent variables have been put on scales that reflect their
relative importance, so that the same quantitative inaccuracy on any variable is of equal
loss. This may entail initial scaling of the r variables, and is allowed by our freedom to
choose L in (10). One could of course take a different tack and scale one variable to
dominate the rest, but a balance of losses is more natural in the examples we have con-
sidered. Given that this initial scaling of the variables has been done we wish to predict
all variables accurately. Loss function (10) amounts to an amalgamated loss across the r
components. Intuitively one might have wished to focus on the maximum of the prediction
variances. Strict application of Bayes decision theory would then be less straightforward
as the Bayes predictor would no longer be the mean of the posterior distribution.

We now add the terminal cost of using a particular c subset of the q regressors, with a
general terminal cost g(c). Our overall loss is then

tr{R(c)}+g(c), (41)

assuming that after appropriate scaling L is the r×r identity matrix. The simplest form
of g(c) is additive with a cost c

i
of including variable Xf

i
in prediction. If these costs have

a common value, c, then the criterion reduces to

C(c)=tr{R(c)}+cp. (42)

It is however easy to envisage applications where the more general form (41) would be
required. There may for example be a premium on restricting the number p of regressors
to be at most some small number. It would not add significantly to the computations to
use more general forms for the costs.

4. C 

4·1. Synthesis

Suppose the posterior mean g** of g has been computed. This can be done once and
for all. We will see that we can then address an equivalent minimisation problem by
modifying the first term, not involving c, in (40) used in the overall loss (42). Both these
steps may profitably be implemented by  decompositions of appropriately defined
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matrices. We assume throughout that w
q

in Assumption 1 is prespecified. For simplicity
of exposition we assume that the prior matrix Q

q0
=0, a (q×r) matrix of zeros, so that

in particular Q
c0
=0.

4·2. Computation of latent response

From (36) the (n×r) estimated latent response matrix g** is a simple weighted average.
The only ingredient in this weighted average requiring computation is B*

q
given by (34).

Both these calculations involve all q variables and not the chosen subset c. A little
rearrangement of (34) enables one to see that this regression matrix is the least squares
solution of the new augmented regression problem of Y * on X*, where

Y *=AY l

0 B , X*=A Xl
q

(Q
qq

/w
q
)DB

are (n+q)×r and (n+q)×q matrices, respectively. Thus the B*
q

matrix can be calculated
using the  decomposition, avoiding the need to ‘square’ variables.

4·3. Computation of loss

Let us now define an augmented regression of YB on XB , where

YB =Ag**

0 B , XB =AXl
c

QD
cc
B , (43)

(n+p)×r and (n+p)×p matrices, respectively. This regression matrix gives P
0c

(q)P−1
cc

and hence the Bayes predictor (22). What is more, the residual sum of products matrix
differs only by an additive constant, not depending on c, from R(c) given in (40). Hence
one can use the  decomposition; -delete and -insert algorithms can be used to
remove or add a variable (Seber, 1984, Ch. 10.1.1b), avoiding the need to ‘square’ variables.

4·4. A stochastic search

With q variables there are 2q possible subsets, typically too many for a complete evalu-
ation of expected losses. What we need is a search method that has a good chance of
finding at least some of the best subsets. We employ simulated annealing.

We use the binary q-vector c that identifies subsets. The search algorithm moves sequen-
tially through the space of all possible binary vectors trying to find good ones, i.e. low
cost ones. Our cost function is given by (42), with p being the number of nonzero compo-
nents of c. At each step the algorithm constructs cnew from cold by choosing at random
between 3 types of move, as follows.

Move 1: A. Add a variable by choosing at random a 0 in cold and changing it to a 1.
Move chosen with probability P

A
.

Move 2: D. Delete a variable by choosing at random a 1 in cold and changing it to a
0. Move chosen with probability P

D
.

Move 3: S. Swap two variables by choosing independently at random a 0 and a 1 in
cold and changing both of them. Move chosen with probability 1−P

A
−P

D
.

At the boundaries, with all variables included or no variable present, only deletion or
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addition is possible respectively, and we choose this move with probability 1. At each step
d=C(cnew )−C(cold ) is calculated. If d<0, cnew is accepted. Otherwise it is accepted with
probability exp(−d/T ), where T is a control parameter called temperature. We chose a
cooling schedule of the form T

i
=rT

i−1 (0<r<1), reducing temperature at each iteration
i. Allowing moves to ‘worse’ subsets may help to avoid local minima. The starting con-
figuration described below involves specifying parameter h and a random set of chosen
wavelengths with expected size qh. We stop when the temperature becomes so low that
the system essentially stops moving. Every m steps we calculate an acceptance ratio ,
the proportion of m steps that have been accepted, and stop if ∏t.

Let cA be the vector with minimum cost given by the stochastic search. Good practice
is to ‘re-heat’ by starting a new annealing with c0=cA. This will allow a ‘jump’ from cA in
an attempt to avoid being trapped in a local minimum.

5. A

5·1. T he data

We apply the methodology to data from an experiment designed to investigate the
feasibility of measuring biscuit dough composition on-line using near infrared () spec-
troscopy. The experiment involved 39 biscuit doughs in the calibration set and a further
39 available for prediction or validation. The aim is to predict the four major constituents,
fat, sucrose, dry flour and water, of the dough using 300 equally spaced  reflectance
measurements from 1202 to 2400 nm. Spectral data were centred. Compositional response
data were both centred and standardised, both training and validation data using the
training set mean and standard deviation. The data were first analysed in Osborne et al.
(1984).

For our purposes the reflectances represent the q=300 regressor variables and the
percentages of the four constituents represent the r=4 responses. In future one wants to
predict the true composition from the spectrum or from selected parts of it.

5·2. Hyperparameters

We chose the hyperparameter d=3, for minimally informative prior knowledge; k=
0·00852 was chosen by taking the generalised crossvalidation ridge estimates for each of
the four ingredients and taking the median of these four.

The unpredictable part of Y is made up principally of sampling and measurement errors
in the reference values that are to be predicted. With perfect spectral data we might hope
to get the prediction errors down to this level. Experience of a wide range of applications
suggests that for ‘good’ calibrations with this type of instrumentation the predictions have
a variance about twice this value. Thus, S

00.q
+W is roughly twice as large as W, which

gives a value w
q
=1

2
for the indeterminism parameter.

One of the motivations for finding small subsets of wavelengths in this application was
a desire to implement the measurements on-line using a low-cost instrument that measures
the spectrum only at selected wavelengths using a filter for each wavelength. The cost of
the instrument will increase with the number of filters required. In reality this cost function
will be quite complex, with some standard filters being cheaper than specially made ones
and perhaps with large jumps in cost as certain critical numbers of filters are exceeded.
This cost needs to be balanced against the value of improved measurement accuracy, as
measured by the predictive variance. We have no easy access to the true detailed costs,
but we do have some feel for their rough values. We have tried to use this knowledge to
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specify a value for c in our linear cost function that gives a realistic exchange rate between
variables and variance at the point where this trade-off matters. The four Y ’s have been
scaled to have variance 1. We expect to reduce this to a predictive variance of around 0·1
with a small number of variables. We estimate that it would be worth an additional 2
variables per Y, that is 8 extra variables, to reduce this by 25% for all Y, thus reducing
the sum of the 4 variances by 1

4
×4×0·1. This implies a c of (0·1)/8 or 1/80.

5·3. Optimisation

We ran the simulated annealing sampling first with c0 all ones. The initial temperature
was T0=300. This value was found by reversing the annealing: starting from T (r)

0
small,

we increase the temperature by T
j
=sT

j−1 with s>1 and stop when �b with
0·9<b<1, where  is the acceptance ratio. We chose b=1 here. The final temperature
reached by the reversed annealing will ensure that worse cases are likely to be accepted
and can thus be used as starting temperature T0 . The temperature was updated after each
step as T

i
=rT

i−1 with r=0·999. Adding and deleting steps were chosen with probabilities
P
A
=P

D
=1

3
, and swapping steps with probability 1−P

D
−P

A
=1

3
. The acceptance ratio,

, was calculated every 500 iterations, m=500, and the search stopped when =0,
that is t=0. Our chosen =0 and large m, in combination, enable us to say confidently
that the annealing has frozen. Also  decomposition matrices were recomputed every
500 iterations to avoid the build-up of rounding errors.

The simulated annealing stopped after 13 500 steps, of which 9233 were accepted, involv-
ing 2867 additions, 3162 deletions and 3204 swaps, giving a vector cA with a minimum cost
of 0·1858, and five variables, wavelengths (1626, 1718, 1994, 2066, 2194), selected.
Re-heating was performed, starting a new annealing with c0=cA and temperature T0/3=
100. The re-heating stopped after a further 12 500 steps, including 2659 additions, 2659
deletions and 2740 swaps, giving the same best model. This gave Bayes prediction root
mean squared errors of 0·14 for fat, 0·19 for sucrose, 0·18 for flour and 0·26 for water.

On this response-standardised scale the prediction root mean squares of Osborne et al.
(1984) were 0·11 for fat, 0·28 for sucrose, 0·30 for flour and 0·29 for water. We do just
about as well on fat and water but improve considerably for sugar and flour. They also
used around a dozen regressors with a strategy of amalgamating the regressors selected
for each of the four responses in turn. The combined-response loss has evidently induced
a more selective and accurate predictor.

The five-wavelength predictor explains (98, 96, 96, 90)% of variation in the four constitu-
ents. Figure 1(a) plots the cost function against iteration number, first the original sequence
followed by re-heating. The corresponding number of wavelengths selected is given in
Fig. 1(b). Note that when the temperature is high, both initially and on first re-heating,
there is a good probability of choosing moves that worsen the cost and in fact give more
than 39 wavelengths selected, despite there being only 39 data points. Within the Bayesian
framework with proper prior distributions no numerical problem arises with such overfit-
ting. One does fairly quickly move to more reasonable and parsimonious models.

We also tried some very different starting values: first 20 wavelengths selected; last 20
selected; random selection with each of the 300 wavelengths selected independently with
probability 20

300
. Very similar selections, all of just five wavelengths, resulted with similar

mean squared errors. We do not claim to have found the optimum subset; only an exhaus-
tive search will justify such a claim. We have, however, found some very good ones.
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Fig. 1. Simulated annealing with final re-heating. (a) Cost function by iteration, and (b) number of 1’s of
c vectors by iteration.

From knowledge of the  spectra of the separate ingredients one can say that wave-
length 1718 nm is in a region of the spectrum where fat has a characteristic absorbance,
and that wavelength 2066 nm is in a characteristic region of sucrose. The other three
wavelengths are less easy to assign a priori but evidently provide the discriminatory power
to separate water and flour from the other two ingredients.

The parameter w
q

was prespecified at 1
2
. We examined the sensitivity of results to this

chosen value by trying both w
q
=1 and w

q
=1

4
. Both searches stopped at a five variable

model, and the best models had total mean squared errors of 0·8460 and 0·7966, respect-
ively, whereas that of our chosen w

q
=1

2
is 0·7724. Thus there is no great sensitivity to the

chosen value of w
q
, although it is satisfying that w

q
=0·5 improves on the natural conjugate

case, w
q
=1.

5·4. Discussion

In applying our methodology to this example we have made a number of rather arbitrary
choices of parameters and costs. Some of these could doubtless be challenged as unrealistic.
Realistic or not, the result was to identify a much smaller set of variables than did the
original investigators, without any loss of predictive performance. In the context of on-line
implementation this result has considerable value. Some of the improvement may have
come from our more extensive search of possibilities, stepwise methods being used orig-
inally, but it seems clear that treating this problem as a multivariate one is highly beneficial.

The simulated annealing program for optimisation was written in  and we plan
to make it available on the Web.
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