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Arveson (Acta Math 1969)
The next four decades

Our approach

This is dedicated to the memory of William B. Arveson

Two recent surveys of Bill’s work in JOT:

K.R. Davidson, The mathematical legacy of William Arveson,
J. Operator Theory 68 (2012), 307–334.

M. Izumi, E0-semigroups: around and beyond Arveson’s work,
J. Operator Theory 68 (2012), 335–363.
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Arveson (Acta Math 1969)
The next four decades

Our approach

B. Sz.Nagy began an extensive development of dilation theory.
With Foiaş it became a key tool for studying a single operator.

Theorem (Sz.Nagy (1953))

If T ∈ B(H) and ‖T‖ ≤ 1, there is a unitary operator of form

U =

∗ 0 0
∗ T 0
∗ ∗ ∗


Corollary (Generalized von Neumann inequality)

If [pij ] is a matrix of polynomials, and ‖T‖ ≤ 1, then∥∥[pij(T )
]∥∥ ≤ sup

|z|≤1

∥∥[pij(z)
]∥∥.

Hence this can be considered as a study of representations of the
disk algebra A(D).
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Arveson (Acta Math 1969)
The next four decades

Our approach

W.B. Arveson laid foundations for non-commutative dilation theory
Subalgebras of C*-algebras, Acta Math. 123 (1969), 141–224.

The main themes of his approach were:

Operator algebra A: unital subalgebra of a C*-algebra C∗(A).
Hence: a norm structure on matrices Mn(A) ⊂Mn(C∗(A)).

The role of completely positive and completely bounded maps.

ϕ : A → B(H) induces

ϕn :Mn(A)→Mn(B(H)) ' B(H(n))

by
ϕn

([
aij
])

=
[
ϕ(aij)

]
.

Say ϕ is completely bounded (c.b.) if

‖ϕ‖cb = sup
n≥1
‖ϕn‖ <∞.

Say ϕ is completely contractive (c.c.) if ‖ϕ‖cb ≤ 1.
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Operator system S: unital s.a. subspace 1 ∈ S = S∗ ⊂ C∗(S).

If ϕ : S → B(H), then ϕ is completely positive (c.p.) if
ϕn is positive for all n ≥ 1. Say ϕ is u.c.p. if also ϕ(1) = I .

If ρ : A → B(H) is c.c., then S = A+A∗ and

ρ̃(a + b∗) = ρ(a) + ρ(b)∗

is a c.p. extension to S.

Theorem (Arveson’s Extension Theorem)

If ϕ : S → B(H) is c.p. and S ⊂ T , then there is a c.p. map
ψ : T → B(H) s.t. ψ|S = ϕ. i.e. B(H) is injective.

S ϕ //
_�

��

B(H)

T
∃ψ

<<
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A dilation of a c.c. representation ρ : A → B(H) is a c.c.
representation σ : A → B(K) where K = K− ⊕H⊕K+, and

σ(a) =

∗ 0 0
∗ ρ(a) 0
∗ ∗ ∗

 .

A dilation of a u.c.p. map ϕ : S → B(H) is a u.c.p. map
ψ : S → B(K) where K = H⊕K′ and PHψ(a)|H = ϕ(a):

ψ(a) =

[
ϕ(a) ∗
∗ ∗

]
.

Note that if σ � ρ, then σ̃ � ρ̃.
But ψ � ρ̃ may not be multiplicative on A.
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Theorem (Arveson’s Dilation Theorem)

Let ρ : A → B(H) be a representation. TFAE

1 ρ is c.c.

2 ρ̃ is c.p.

3 ρ dilates to a ∗-representation of C∗(A)

Now we turn to two central ideas in Arveson’s paper which he was
not able to verify in general:

boundary representations

the C*-envelope

Bill was able to verify this in many concrete examples. See also
Subalgebras of C*-algebras II, Acta Math. 128 (1972), 271–308.
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A u.c.p. map ϕ : S → B(H) or a c.c. repn. ϕ : A → B(H)
has the unique extension property (u.e.p) if

1 ϕ has a unique u.c.p. extension to C∗(S) (or C∗(A))
2 this extension is a ∗-homomorphism

It is a boundary representation if it has u.e.p. and

3 the ∗-homomorphism is irreducible.

If 1 ∈ A ⊂ C(X ), then irreducible repns. are point evaluations δx .
A u.c.p. extension is given by a measure µ on X such that

f (x) =

∫
x

f dµ for all f ∈ A.

Thus δx is a boundary representation
⇐⇒ x has a unique representing measure
⇐⇒ x is in the Choquet boundary of A.

The boundary representations form the Choquet boundary of S.
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The C*-envelope of A is a pair (C∗env(A), ι) where
ι : A → C∗env(A) is comp. isom. iso., C∗env(A) = C∗(ι(A)),
with universal property: if j : A → B = C∗(j(A)) comp. isom. iso.
then ∃q : B→ C∗env(A) ∗-homomorphism s.t. q j = ι.

A ι //

j
##

C∗(ι(A))

C∗(j(A))

q

OO

If there are sufficiently many boundary representations {πλ}
to completely norm S, let π =

⊕
πλ. Then

C∗env(S) = C∗(π(S)).
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Choi-Effros (1977) An injective operator system is (completely
order isomorphic to) a C*-algebra.

Theorem (Hamana (1979))

Every operator system is contained in a unique minimal injective
operator system.

Corollary (Hamana)

Every operator system has a C*-envelope.

Provides little info about structure of C*-envelope;
and nothing about boundary repns.

Muhly-Solel (1998) gave a homological characterization of
boundary representations.
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Dritschel-McCullough (2005) important new proof of C*-envelope.

ρ : A → B(H) is maximal if σ � ρ implies σ = ρ⊕ σ′.
every representation dilates to a maximal repn.

maximal repns. have u.e.p.

if ρ is a c.i.i., and σ � ρ is maximal, then

C∗env(A) = C∗(σ(A)).

This dilation proof yields important information about C∗env(A).
It does not yield boundary representations.

Proof based on ideas of Agler (1988): notion of extremal extension.

Muhly-Solel result says: a repn. has u.e.p. ⇐⇒
it is an extremal extension and an extremal coextension.
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Arveson (Acta Math 1969)
The next four decades

Our approach

Arveson (2008) back in the game:

reworks Dritschel-McCullough for operator systems

if ρ : A → B(H), ρ̃ : A+A∗ → B(H), and ψ � ρ̃ is maximal,
then ψ extends to a ∗-repn. of C∗(A). Hence ψ = σ̃ where
σ � ρ is maximal.

Assuming separable S, he uses disintegration of measures and
Borel structure to decompose a direct integral; and deduce
that a maximal repn. is an integral of boundary repns. a.e.

Theorem (Arveson (JAMS 2008))

If S is separable, then there are sufficiently many boundary
representations.
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The next four decades

Our approach

Our approach

We give a dilation theory proof of the existence of boundary
representations.

It works in complete generality.

The argument is conceptual and natural.
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Arveson (Acta Math 1969)
The next four decades

Our approach

Arveson (1969) A c.p. map ϕ is pure if 0 ≤ ψ ≤ ϕ implies ψ = tϕ.

If ϕ is pure and maximal, then it extends to ∗-repn. π.
If π reducible, then ∃P = P2 = P∗ ∈ π(S)′.
Then ψ(a) = Pϕ(a) satisfies 0 ≤ ψ ≤ ϕ but

ψ(1) = P 6= tI = ϕ(1).

So π is a boundary repn.

Arveson (2008) Say ϕ is maximal at (s, x) if

ψ � ϕ =⇒ ‖ψ(s)x‖ = ‖ϕ(s)x‖.

If ϕ is maximal at every (s, x), then ϕ is maximal.
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Arveson (Acta Math 1969)
The next four decades

Our approach

Key Lemma

If ϕ is pure, and (s0, x0) ∈ S ×H, then there is a pure dilation
ψ : S → B(H⊕ C) s.t. ψ � ϕ and ψ is maximal at (s0, x0).

If ψ : S → B(H⊕K), then compression to span{H, ψ(s0)x0}
has same norm at (s0, x0).

{ψ : S → B(H⊕ C) : ψ � ϕ} is BW-compact.
Hence ∃ψ s.t. ψ(s0)x0 = ϕ(s0)x0 ⊕ η with η maximal.

Take extreme point ψ0 of
{ψ : S → B(H⊕ C) : ψ � ϕ, ψ(s0)x0 = ϕ(s0)x0 ⊕ η}.
Delicate argument to show that ψ0 is pure.
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Our approach

Theorem 1

Every pure u.c.p. map ϕ : S → B(H) dilates to a maximal pure
u.c.p. map, and hence extends to a boundary representation.

routine transfinite induction to obtain dilation maximal at
every pair (s, x)

if S is separable and dimH <∞, then can produce the
maximal dilation as limit of sequence of finite dim. maps.
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Arveson (Acta Math 1969)
The next four decades

Our approach

Theorem 2

There are sufficiently many boundary representations to completely
norm S.

First proof: Thanks to Craig Kleski for suggesting this argument.

Take S ∈Mn(S). Suffices to norm T = S∗S .

Choose pure state ϕ on Mn(S) that norms T .

Dilate it to a boundary repn. σ of Mn(S) by Theorem 1.
Then σ ' π(n), where π is irreducible repn. of C∗(S).

If ϕ is u.c.p. dilation of π|S , then ϕ(n) dilates σ|Mn(S).
Hence ϕ = π. So π is the desired boundary repn.
(This is easy direction of a result of Hopenwasser.)
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Arveson (Acta Math 1969)
The next four decades

Our approach

Second method to get sufficiently many boundary repns.
A matrix state is a u.c.p. map of S into Mn.

Theorem

The pure matrix states completely norm S.

Finite dimensional compressions of a faithful repn. of C∗(S)
completely norm S. So matrix states completely norm S.

The collection of all matrix states (Sn(S))n≥1 is C*-convex:
If γj ∈Mnj ,n,

∑k
j=1 γ

∗
j γj = In and ψj ∈ Snj (S), then

ψ =
k∑

j=1

γ∗j ψjγj ∈ Sn(S).

Can define C*-convex hull.
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Arveson (Acta Math 1969)
The next four decades

Our approach

There is a notion of C*-extreme point of a C*-convex set.

Farenick (2000) shows that the C*-extreme points of (Sn(S))n≥1
coincide with the pure matrix states.

Webster-Winkler (1999) establish a Krein-Milman type theorem for
C*-convex compact sets.

Farenick gives direct, very slick proof independent of these papers.

Theorem (Farenick 2004)

The C*-convex hull of the pure matrix states is BW-dense in the
set of all matrix states.

Hence the pure matrix states completely norm S.
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Our approach

Putting it all together, we obtain:

Theorem 3

Every operator system and every unital operator algebra has
sufficiently many boundary representations.

Corollary

The C*-envelope of every operator system and every unital
operator algebra is obtained from a direct sum of boundary
representations.
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Arveson (Acta Math 1969)
The next four decades

Our approach

Where does this get us?

Over four decades, we developed many techniques to get our
hands on the C*-envelope of an operator algebra without
using boundary representations.

I know of only a few examples where sufficiently many
boundary representations are exhibited
(Arveson, Muhly-Solel, D.-Katsoulis)

The Choquet boundary, peak points and representing
measures play a central role in the study of function algebras.

Perhaps now, we can more diligently pursue the use of
boundary representations in non-commutative dilation theory.
This was central to Arveson’s vision of the subject.
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The end.
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