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THE CHORD LENGTH DISTRIBUTION
FUNCTION FOR REGULAR POLYGONS
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Abstract

In this paper we obtain an elementary expression for the chord length distribution function
of a regular polygon. The formula is derived using δ-formalism in Pleijel identity. In the
particular cases of a regular triangle, a square, a regular pentagon, and a regular hexagon,
our formula coincides with the results of Sulanke (1961), Gille (1988), Aharonyan and
Ohanyan (2005), and Harutyunyan (2007), respectively.
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1. Introduction

Let G be the space of all lines g in the Euclidean plane R
2, and let (p, ϕ), the polar coordinates

of the foot of the perpendicular to g from the origin O, be the standard coordinates for a
line g ∈ G.

Let µ(·) be the locally finite measure on G, invariant with respect to the group of all Euclidean
motions (translations and rotations). It is well known that the element of the measure up to a
constant factor has the following form (see [1, p. XIII]):

µ(dg) = dg = dp dϕ,

where dp is the one-dimensional Lebesgue measure and dϕ is the uniform measure on the unit
circle.

For each bounded convex domain D, we denote the set of lines that intersect D by

[D] = {g ∈ G : g ∩ D �= ∅},
and we have (see [1, p. 195] and [2, p. 130])

µ([D]) = |∂D|,
where ∂D is the boundary of D and |∂D| stands for the length of ∂D.

A random line in [D] is one with distribution proportional to the restriction of µ to [D].
Therefore,

P(A) = µ(A)

|∂D| for any Borel set A ⊂ [D].
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Furthermore, let A
y

D
be the set of lines that intersect D, producing a chord χ(g) = g ∩ D of

length less than y, i.e.

A
y

D
= {g ∈ [D] : |χ(g)| ≤ y}, y ∈ R.

The distribution function for the length of a random chord χ of D is usually defined as

F(y) = 1

|∂D|µ(A
y

D
) = 1

|∂D|
∫∫

A
y

D

dϕ dp. (1.1)

Therefore, to obtain the chord length distribution function for a bounded convex domain D, we
have to calculate the integral on the right-hand side of (1.1). Explicit formulae for the chord
length distribution functions are known only for the cases of a disc, a regular triangle [11], a
rectangle [6], a regular pentagon [3], and a regular hexagon [9].

The main result of this paper is an elementary expression for the chord length distribution
function of a regular polygon. The formula is derived using δ-formalism in Pleijel identity. In
the cases of regular triangles, squares, regular pentagons, and regular hexagons, our formula
coincides with formulae available in the literature (see [3], [6], [9], and [11]).

The determination of the chord length distribution function has a long tradition of application
to collections of bounded convex bodies forming structures in metals and ceramics. The series of
formulae for chord length distribution functions may be of use in finding suitable models when
empirical distribution functions are given (see [12, p. 116]). They also have an independent
interest (see [4] and [5]). The results concerning certain infinite cylinders in which the bases
of cylinders are a regular triangle or a rectangle (see [7] and [13]). Gille et al. [8] considered
infinite cylinders with regular pentagonal and regular hexagonal bases.

2. The case of a convex polygon

Let D be a convex bounded polygon in the plane, and let a1, a2, . . . , an be the sides of D.
Then

[D] =
⋃
i<j

([ai] ∩ [aj ]),

where [ai] ∩ [aj ] is the set of lines hitting both sides ai and aj of D.
We write

F(y) = 1

|∂D|
∑
i<j

∫∫
{g∈[ai ]∩[aj ] : |χ(g)|≤y}

dϕ dp

= 1

|∂D|
(∑

i<j

I
∫∫

{g∈[ai ]∩[aj ] : |χ(g)|≤y}
dϕ dp +

∑
i<j

II
∫∫

{g∈[ai ]∩[aj ] : |χ(g)|≤y}
dϕ dp

)
,

where the sum ‘
∑I ’ is over all nonparallel pairs of segments ai, aj ⊂ ∂D and the sum ‘

∑II ’
is over all parallel pairs of segments ai, aj ⊂ ∂D.

In each of the integrals in the sum ‘
∑I

i<j ’, one integration can be performed by passing to
(|χ |, ϕ) coordinates. We have (see [2, p. 157])

dg = sin α1 sin α2

|sin(α1 + α2)| d|χ | dϕ, (2.1)

where α1 is the angle between ai and χ(g) = g ∩ D, and α2 is the angle between aj and χ(g)

(g ∈ [ai] ∩ [aj ]), with α1 and α2 lying in one half-plane with respect to χ , inside of D.
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3. Pleijel’s identity

Let D be a convex bounded polygon in the plane, and let a1, . . . , an be the sides of D. The
so-called Pleijel identity for D is as follows (see [2, p. 156]):

∫
[D]

f (|χ(g)|) dg =
∫

G

f ′(|χ |)|χ | cot α1 cot α2 dg +
n∑

i=1

∫ |ai |

0
f (u) du, (3.1)

where f (x) is a function with continuous first derivative f ′(x), α1 and α2 are the angles between
∂D and g at the endpoints of χ(g) = g ∩D which lie in one half-plane with respect to χ , inside
of D, and |ai | is the length of ai, i = 1, . . . , n.

It was shown in [2, p. 156] that identity (3.1) is useful in calculating the chord length
distribution function for the case of bounded convex polygons. If in (3.1) we formally set

fy(u) =
{

0 if u ≤ y,

1 if u > y,

then the left-hand side integral in (3.1) will equal

µ{g ∈ [D] : |χ(g)| > y},
i.e. the invariant measure of the set of chords of D whose length exceeds y. The derivative of
fy(u) should be replaced by Dirac’s δ-function concentrated at y (see [2, p. 156]). Therefore,
we obtain

[1 − F(y)]|∂D| =
∑
i<j

I
∫∫

[ai ]∩[aj ]
δ(|χ | − y)|χ | cot α1 cot α2 dg

+
∑
i<j

II
∫∫

[ai ]∩[aj ]
δ(|χ | − y)|χ | cot α1 cot α2 dg +

n∑
i=1

(|ai | − y)+,

where x+ = x if x > 0 and 0 otherwise.
For any continuous function f , we have (see [10])∫

Rn

δ(x − y)f (x) dx = f (y). (3.2)

For each nonparallel pair ai and aj , we make the change of variables (p, ϕ) → (|χ |, ϕ), and
using (2.1) and (3.2), we obtain∫∫

[ai ]∩[aj ]
δ(|χ | − y)|χ | cot α1 cot α2 dg = y

sin γij

∫
�ij (y)

sin ϕ sin(γij − ϕ) dϕ,

where γij is the angle between nonparallel sides ai and aj (or their continuations), ϕ is the
angle between direction ϕ and the ai direction, i < j , and

�ij (y) = {ϕ : a chord joining ai and aj exists with direction ϕ and length y}.
Note that �ij (y) is a subset in the space of directions in the plane; moreover, in the right-hand
side integral, �ij (y) corresponds to the set of angles, where the reference direction coincides
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with the direction of segment ai, i < j , and the reference origin coincides with the intersection
of the lines containing ai and aj .

Moreover, for parallel sides ai and aj (i.e. ai , aj ∈ ∑II
i<j ), we have

∑
i<j

II
∫∫

[ai ]∩[aj ]
δ(|χ | − y)|χ | cot α1 cot α2 dg

= −
∑
i<j

II
Iij (y)

∫
δ(|χ | − y)|χ |h(ϕχ) tan2 ϕχ

dϕχ

d|χ | d|χ |

= −
∑
i<j

II
Iij (y)h(ϕy) tan2 ϕy

bij√
y2 − b2

ij

,

where ϕy is either arccos(bij /y) or 2π − arccos(bij /y), bij is the distance between the parallel
segments ai and aj (i.e. the distance between the lines containing ai and aj ), and the indicator
Iij (y) = 1(the length of the shortest chord hitting ai and aj is less than or equal to y which in
turn is less than or equal to the length of the longest chord hitting ai and aj ), where 1(A) is the
indicator function of the event A, i.e. 1(A) = 1 if A has occurred and 0 otherwise. Furthermore,
h(ϕ) �= bij is the height of the maximal parallelogram with two sides equal to χ(ϕ) = g(ϕ)∩D

and g(ϕ) ∈ [ai] ∩ [aj ] (g(ϕ) is a line with ϕ-direction), and the other two sides lying on the
parallel sides ai and aj ,

h(ϕχ) = h

(
arccos

bij

|χ(ϕ)|
)

+ h

(
2π − arccos

bij

|χ(ϕ)|
)

.

Hence, h(·) = 0 if the parallelogram is empty.
For the value of ϕ such that |χ(ϕ)| = y, we have h(ϕy) = h(ϕχ). Therefore, we obtain

F(y) = 1 − 1∑n
i=1 |ai |

(∑
i<j

I y

sin γij

∫
�ij (y)

sin ϕ sin(γij − ϕ) dϕ

−
∑
i<j

II
Iij (y)h(ϕy)

√
y2 − b2

ij

bij

+
n∑

i=1

(|ai | − y)+
)

. (3.3)

In the case where ∂D contains no pairs of parallel sides, (3.3) coincides with the expression
given in [2, p. 158].

It follows from (3.3) that to find the distribution function F(y) we have to calculate integrals
of the form

1

sin γ

∫
�(y)

sin ϕ sin(γ − ϕ) dϕ

for any two nonparallel segments a and b (a ≤ b), where γ is the angle between a and b (or
their continuations), and also calculate the second sum in (3.3) (for pairs of parallel sides). Here
and below,

�(y) = {ϕ : a chord joining a and b exists with direction ϕ and length y}.
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4. The case of a regular polygon

Consider a particular case of (3.3), where D is a regular polygon. We assume that edges of
a regular polygon are ordered in the clockwise direction on ∂D. We denote by γk the angle
between a1 and ak (or their continuations), by dk the length of the segment connecting the end
of side a1 with the beginning of ak , and by hk the distance between the beginning of segment
ak and the line containing the segment a1.

Below we will use the following notation:

N =
{

n + 1
2 for a (2n + 1)-gon,

n for a (2n)-gon,
and 1(N) =

{
0 if N = n + 1

2 ,

1 if N = n.

Consider a regular polygon. It is not difficult to verify that

γk = N − k + 1

N
π, k = 2, . . . , 	N
 + 1, γk = γ2(N+1)−k, k = 	N
 + 2, . . . , 2N,

d2 = 0, d3 = a, dk = dk−2 + 2a sin
γk−2

2
, k = 4, . . . , 	N
 + 2,

dk = d2(N+2)−k, k = 	N
 + 3, . . . , 2N, hk = dk cos
γk

2
,

where a is the length of the side of the polygon and 	N
 is the floor function.
In this particular case, (3.3) can be rewritten as

F(y) = 1 − y

a

�N�∑
k=2

1

sin γk

∫
�1k(y)

sin ϕ sin(γk − ϕ) dϕ − 1

a
(a − y)+

+ 1

a
1(N) 1(dn+1 ≤ y ≤ dn+2)

√
y2 − d2

n+1(a −
√

y2 − d2
n+1)

y
, (4.1)

where �N� is the ceiling function.
It follows from (4.1) that in order to obtain an explicit form for the distribution function F(y)

of a regular polygon, we have to find the domains �1k(y) and then calculate the integrals on
the right-hand side of (4.1).

By definition we have

�1k(y) = {ϕ : a chord joining a1 and ak exists with direction ϕ and length y}.
Below we use the notation

θk = arctan

(
a

hk

+ tan
γk

2

)
.

Note that if k = 2, we have h2 = 0 and, therefore, θ2 = arctan(+∞) = π/2.
The line g with parameters (ϕ, p) intersects the sides a1 and ak if ϕ ∈ (γk − θk, θk).

Without loss of generality, we can assume that the reference direction (x-axis) coincides with
the direction of the segment a1 and the origin O coincides with the intersection of the lines
containing a1 and ak . For the intersection point of the line g = (ϕ, p) with the segment a1, we
have

x = p

cos ϕ
and y = 0.
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Therefore,

g ∩ a1 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x = p

cos ϕ
,

y = 0,

dk

2 sin(γk/2)
cos ϕ ≤ p ≤

(
a + dk

2 sin(γk/2)

)
cos ϕ.

For the intersection point of the line g = (ϕ, p) with the segment ak , we have

x cos ϕ + y sin ϕ = p and y = tan γkx

or

x = p cos γk

cos(ϕ − γk)
and y = p sin γk

cos(ϕ − γk)
.

Hence, we obtain

g ∩ ak =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x = p cos γk

cos(ϕ − γk)
,

y = p sin γk

cos(ϕ − γk)
,

dk

2 sin(γk/2)
cos(ϕ − γk) ≤ p ≤

(
a + dk

2 sin(γk/2)

)
cos(ϕ − γk).

The line g which intersects the sides a1 and ak forms a chord χ of length

|χ | = p sin γk

cos ϕ cos(ϕ − γk)
.

Therefore, we obtain the following system of relations:

dk

2 sin(γk/2)
cos ϕ ≤ p ≤

(
a + dk

2 sin(γk/2)

)
cos ϕ, (4.2a)

dk

2 sin(γk/2)
cos(ϕ − γk) ≤ p ≤

(
a + dk

2 sin(γk/2)

)
cos(ϕ − γk), (4.2b)

|χ | = p sin γk

cos ϕ cos(ϕ − γk)
. (4.2c)

If cos ϕ > cos(ϕ − γk) then sin ϕ sin γk < (1 − cos γk) cos ϕ. Hence, tan ϕ ≤ tan γk/2.
Therefore, ϕ ∈ (γk − θk, γk/2).

Since ϕ ∈ (γk − θk, γk/2), then (4.2a)–(4.2c) have the following form:

dk

2 sin(γk/2)
cos ϕ ≤ p ≤

(
a + dk

2 sin(γk/2)

)
cos(ϕ − γk),

|χ | = p sin γk

cos ϕ cos(ϕ − γk)
.

Moreover, we obtain

χmin(ϕ) = hk

cos(ϕ − γk)
, χmax(ϕ) = hk+1

cos ϕ
.
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The function χmin(ϕ) decreases in the domain ϕ ∈ (γk − θk, γk/2), and

ϕmax = γk − θk, ϕmin = γk

2
, χmin(ϕmax) = dk+1, and χmin(ϕmin) = dk.

If γk < θk then the function χmax(ϕ) decreases in the domain ϕ ∈ (γk − θk, 0) and increases in
the domain ϕ ∈ (0, γk/2). Hence, we have

ϕmin = 0, χmax(γk − θk) = dk+1, χmax(ϕmin) = hk+1, and χmax

(
γk

2

)
= dk+2.

If γk ≥ θk then the function χmax(ϕ) increases in the domain ϕ ∈ (γk − θk, γk/2). In this case,

ϕmin = γk − θk, ϕmax = γk

2
, χmax(ϕmin) = dk+1, and χmax(ϕmax) = dk+2.

Now let ϕ ∈ (γk/2, θk). In this case, (4.2a)–(4.2c) can be rewritten in the form

dk

2 sin(γk/2)
cos(ϕ − γk) ≤ p ≤

(
a + dk

2 sin(γk/2)

)
cos ϕ,

|χ | = p sin γk

cos ϕ cos(ϕ − γk)
.

Moreover, we obtain

χmin(ϕ) = hk

cos ϕ
, χmax(ϕ) = hk+1

cos(ϕ − γk)
.

The function χmin(ϕ) increases in the domain (γk/2, θk) and

ϕmax = θk, ϕmin = γk

2
, χmin(ϕmax) = dk+1, and χmin(ϕmin) = dk.

If γk < θk then the function χmax(ϕ) decreases in the domain (γk/2, γk) and increases in the
domain (γk, θk). Hence, we obtain

ϕmin = γk, χmax(ϕmin) = hk+1, χmax(θk) = dk+1, and χmax

(
γk

2

)
= dk+2.

If γk ≥ θk then the function χmax(ϕ) decreases in the domain (γk/2, θk) and we have

ϕmax = γk

2
, ϕmin = θk, χmax(ϕmin) = dk+1, and χmax(ϕmax) = dk+2.

Therefore, in the case in which γk < θk we have

�1k(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
γk − arccos

hk

y
, arccos

hk

y

)
if y ∈ [dk, hk+1),(

γk − arccos
hk

y
, − arccos

hk+1

y

)

∪
(

arccos
hk+1

y
, γk − arccos

hk+1

y

)

∪
(

γk + arccos
hk+1

y
, arccos

hk

y

)
if y ∈ [hk+1, dk+1),(

arccos
hk+1

y
, γk − arccos

hk+1

y

)
if y ∈ [dk+1, dk+2],

∅ if y > dk+2 or y < dk ,
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and if γk ≥ θk , we have

�1k(y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
γk − arccos

hk

y
, arccos

hk

y

)
if y ∈ [dk, dk+1),(

arccos
hk+1

y
, γk − arccos

hk+1

y

)
if y ∈ [dk+1, dk+2],

∅ if y > dk+2 or y < dk .

Now we can substitute the values of �1k(y) into the right-hand side of (4.1) and calculate the
corresponding integrals.

Therefore, the distribution function for a regular polygon has the following form:

F(y) = 1 − y

a

�N�∑
k=2

{
1(γk < θk)

[
1(y ∈ [dk, hk+1))

([
hk

y

√
1 − h2

k

y2 − arccos
hk

y
+ γk

2

]
cot γk

+ 1

2
− h2

k

y2

)
+ 1(y ∈ [hk+1, dk+1))

×
([

hk

y

√
1 − h2

k

y2 − 2
hk+1

y

√
1 − h2

k+1

y2 − arccos
hk

y

+ 2 arccos
hk+1

y
+ γk

2

]
cot γk + 1

2
− h2

k

y2

)
+ 1(y ∈ [dk+1, dk+2))

×
([

arccos
hk+1

y
− hk+1

y

√
1 − h2

k+1

y2 − γk

2

]
cot γk

− 1

2
+ h2

k+1

y2

)]

+ 1(γk ≥ θk)

[
1(y ∈ [dk, dk+1))

×
([

hk

y

√
1 − h2

k

y2 − arccos
hk

y
+ γk

2

]
cot γk + 1

2
− h2

k

y2

)
+ 1(y ∈ [dk+1, dk+2))

×
([

arccos
hk+1

y
− hk+1

y

√
1 − h2

k+1

y2 − γk

2

]
cot γk

− 1

2
+ h2

k+1

y2

)]}
− 1

a
(a − y)+

+ 1

a
1(N) 1(dn+1 ≤ y ≤ dn+2)

√
y2 − d2

n+1(a −
√

y2 − d2
n+1)

y
. (4.2)
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It is not difficult to verify that this function is a continuous function, and, for a regular triangle,
a square, a regular pentagon, and a regular hexagon, (4.2) coincides with those of [11], [6], [3],
and [9], respectively.

From the above formulae, it is not difficult to specify a chord length density function f (y) =
F ′(y) for regular polygons.
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