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Preface

Successful cell division requires the precise and timely coordination of chromosomal, cytoskeletal

and membrane trafficking events. These processes are regulated by the competing actions of

protein kinases and phosphatases. Aurora B is one of the most intensively studied kinases. In

conjunction with the proteins INCENP, Borealin (also known as Dasra) and Survivin, it forms the

Chromosomal Passenger Complex (CPC). This complex targets to different locations at differing

times during mitosis,, where it regulates key mitotic events: correction of chromosome-

microtubule attachment errors, activation of the spindle assembly checkpoint, and construction

and regulation of the contractile apparatus that drives cytokinesis. Our growing understanding of

the CPC has seen it develop from a mere passenger riding on chromosomes to one of the main

controllers of mitosis.

Introduction

The chromosomal passenger hypothesis proposed that diverse mitotic events, including

chromosome segregation and cytokinesis, could be coordinated by a set of proteins that

localized to chromosomes during early mitosis, before transferring to the spindle midzone

during late mitosis1. Interest in these proteins took off when it was realized that INCENP

(Inner Centromere Protein), the first passenger protein identified2, formed a complex with

Aurora B kinase, a protein essential for accurate cell division3, 4. It is now known that the

chromosomal passenger complex (CPC) is composed of four subunits: the enzymatic

component Aurora B and the three regulatory and targeting components INCENP, Survivin

and Borealin (also known as Dasra)5–7 (Figure 1A).

Dynamic changes in CPC localisation throughout mitosis ensure the effective and spatially

restricted phosphorylation of substrates involved in chromosome condensation, correction of

erroneous kinetochore-microtubule attachments, activation of the spindle assembly

checkpoint (SAC), and cytokinesis. When INCENP, Survivin or Borealin localisation and/or

function are perturbed, the others do not localize properly, Aurora B activity is diminished

and proper cell division is compromised8–12. A fifth putative passenger protein, the GEF

(Guanine Exchange Factor) TD-60/Rcc213 does not stably associate with the CPC and its

function in mitosis is not yet understood.

Here we discuss current knowledge concerning the structure, activation, localisation and

targets of the CPC in mitosis, focusing on the regulation of the complex by other cellular
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activities and revealing how this regulation changes as mitosis progresses. Due to space

constraints, we will not cover the functions of the CPC in meiosis. Our aim is to show how

this critical signaling module is integrated structurally and mechanistically with the global

cell cycle machinery, and with the intricate structures at kinetochores and the central

spindle.

Composition and Structure of the CPC

Biochemical and structural studies reveal that the CPC is composed of a localisation

module and a kinase module linked together by the central region of INCENP (Figure

1A)5, 14, 15. The localisation module is composed of the INCENP N-terminus, Survivin and

Borealin associated with each other in a three-helix bundle15, 16. This bundle links the

baculovirus IAP repeat (BIR) domain of Survivin17, 18 and the C-terminus of Borealin, both

of which are required for localisation to the centromere of chromosomes16, 19–22. This

module is also required for localisation of the complex to the mitotic spindle and anaphase

midbody, though the mechanism is poorly understood. The kinase module is composed of

Aurora B bound to the highly conserved IN-BOX at the INCENP C-terminus3.

AURORA B KINASE

Aurora B belongs to a highly conserved family of Serine-Threonine kinases first discovered

in Drosophila melanogaster23. This family has three members: Aurora A, which functions at

the mitotic spindle poles; Aurora B, which functions at the centromere, anaphase spindle and

cell cortex; and Aurora C, which resembles Aurora B, but regulates meiosis and mitosis

during early development24. Together with Cyclin-dependent kinases (Cdks) and Polo-like

kinases (Plks) the Aurora kinases are master controllers that coordinate individual processes

during cell division with the checkpoints that determine the overall progression of mitosis

and meiosis24, 25.

Aurora B activity is tightly regulated at multiple levels, including INCENP-binding,

localisation, posttranslational modification and degradation. INCENP acts analogous to a

cyclin in binding and activating Aurora B. It also contributes to the localisation and spatial

regulation of the kinase. Aurora B activation is discussed in detail in the following section.

INCENP

INCENP, the platform on which the CPC assembles, was discovered in a monoclonal

antibody screen for novel components of the mitotic chromosome scaffold2. The INCENP

N-terminus is required for CPC localisation to centromeres26. INCENP residues 1–58 form

a triple-helix bundle with Borealin and Survivin that is required for localisation to the

centromere, anaphase spindle midzone and telophase midbody12, 16, 26, 27. INCENP also

binds heterochromatin protein 1 (HP1)26, 28, 29. This is important for CPC localisation

during interphase (see below).

INCENP is regulated by Aurora B and Cdk1, the cyclin-CDK complex that controls entry

and exit from mitosis (Figure 1B). In budding yeast, phosphorylation of the INCENP

homolog Sli15 by CDK and the Aurora B homolog Ipl-1 prevents the CPC from associating

with the spindle midzone before anaphase30, 31. Yeast CDK also phosphorylates 6 sites on

Sli15 that are required to activate the SAC, a signaling cascade that monitors chromosome

attachment to the mitotic spindle and delays anaphase onset in response to unattached or

tensionless kinetochores thus preventing chromosome segregation until proper kinetochore-

microtubule attachments are formed32. Dephosphorylation of these sites at the onset of

anaphase is necessary to prevent reactivation of the SAC when sister chromatids separate at

anaphase onset and their kinetochores are no longer under tension32, 33.

Carmena et al. Page 2

Nat Rev Mol Cell Biol. Author manuscript; available in PMC 2013 December 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Phosphorylation of INCENP by CDK1 is required for PLK1 localisation to the inner

centromere in mice34, though this mechanism is not conserved in D. melanogaster35.

However, INCENP and Aurora B are required for the activation of PLK1 at the inner

centromere via phosphorylation of a residue on the T-loop of PLK1 in both Drosophila

(Thr182) and humans (Thr210)35.

Survivin

Survivin is composed of an N-terminal Zn2+-coordinated BIR domain and a C-terminal

helical extension. In vertebrates, mutations within the BIR domain prevent recruitment of

the CPC to the centromere but do not perturb its localisation from anaphase onward19, 36. In

D. melanogaster, a different mutation within the BIR domain prevents CPC localisation to

the anaphase spindle midzone without affecting its centromeric localisation37, indicating a

potential contribution of the BIR domain to CPC localisation during anaphase.

Survivin was originally described as an inhibitor of apoptosis protein (IAP) that

accumulated in G2 cells and was proposed to negatively regulate cell death in mitosis38.

There is a vast literature on the involvement of Survivin in cell death regulation, however

analysis of Survivin-null mutants in yeasts and vertebrates19, 39, 40 has failed to identify

significant abnormalities in cell death responses. Survivin has a nuclear export signal41, and

it has been suggested that Survivin in the cytoplasm may inhibit cell death while Survivin in

the nucleus or associated with the CPC regulates mitosis42.

Purified Survivin forms a “butterfly-shape” homodimer in solution43–45. Within the CPC

however, the Survivin dimerization surface is contacted by Borealin15, 16, blocking Survivin

homodimer formation. A small molecule inhibitor, S12, disrupts CPC function during

mitosis by binding a pocket near this dimerization interface and is being explored as an anti-

cancer drug46.

Survivin is phosphorylated in vitro by Aurora B47, 48, CDK149, 50, PLK151, 52 and Casein

Kinase II (CK2)53 (Figure 1B). CDK phosphorylation of Thr34 was reported to be essential

to prevent spontaneous apoptosis54, 55, however DT40 cells expressing a survivin mutant in

which this residue is substituted by an Alanine grow normally19. CK2 phosphorylation of

Survivin appears to regulate interactions between Survivin and Borealin53, and merits

further study.

Survivin ubiquitylation regulates the binding dynamics of the CPC at the centromere. Lys

63-linked ubiquitylation mediated by Ufd1 promotes the association of Survivin with

centromeres, whereas de-ubiquitylation mediated by hFAM is required for its dissociation56.

In addition, the budding yeast homologue of Survivin, Bir1 is regulated by SUMOylation57

BOREALIN

Borealin (also known as Dasra) was discovered in two independent studies of proteins that

associate with mitotic chromosomes and chromosome scaffolds11, 58.

The N-terminus of human Borealin participates in the three-helix bundle that makes up the

CPC localisation module16. The yeast homologs of Borealin (Nbl1 in budding and fission

yeast) are very small compared to their vertebrate counterparts but retain the region involved

in three-helix bundle formation, suggesting this is an evolutionarily conserved function of

Borealin59, 60. Sequence alignments performed after identification of the yeast proteins

revealed that C. elegans CSC-161 is also a Borealin homolog. Thus, the four-member CPC is

widely conserved across animalia and fungi59. In addition, many species contain paralogues

of CPC components which may regulate the CPC in certain developmental

contexts11, 58, 62–65.
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Essentially all Survivin in mitotic cells is associated with Borealin11. Borealin-Survivin

forms a soluble 1:1 complex, however, in the presence of an INCENP N-terminal peptide, a

1:1:1 complex forms16, 66. The central region of Borealin (aa110–207) interacts with the

ESCRT-III subunit Shrb/CHMP4C in Drosophila and humans67, 68. This conserved

interaction is involved in regulating abscission, as discussed below.

Like other members of the CPC, Borealin is regulated by phosphorylation at multiple

sites69–73 (Figure 1B). Phosphorylation of Borealin by Cdk1 is required for interactions with

Shugoshin 1 and 2 that are important for targeting the CPC to centromeres73. The Borealin

C-terminus contains a dimerization interface that has been implicated in regulating its

stability72. Phosphorylation of Thr230 on this interface by Mps1 kinase modulates Borealin

dimerization and also Aurora B activity66. It was suggested that this modification is required

for the CPC to function efficiently in error correction and chromosome alignment70. It is

important to note, however, that Mps1 has a role in those processes which is independent of

regulating Aurora B activity74.

Borealin is SUMOylated in a RanBP2-dependent manner early in mitosis75, and a

reconstituted RanBP2/RanGAP1*SUMO1/Ubc9 complex has E3 ligase activity on the

Borealin/Survivin/INCENP complex76. At anaphase onset the SUMO isopeptidase SENP3

catalyzes the removal of SUMO2/3 from Borealin. The function of this Borealin

SUMOylation is unknown.

Mechanisms of Aurora B activation

Aurora B activation is a complex, multi-step process. Aurora B initially binds the IN-BOX

of INCENP, which activates low levels of kinase activity. This enables Aurora B to

phosphorylate a C-terminal TSS (threonine – serine –serine) motif on INCENP10, 77 as well

as Thr232 in the T-loop of its kinase domain, resulting in full activation of Aurora B (Figure

2A). Both of these phosphorylations likely occur in trans78. This explains why Aurora B

activity is stimulated by increasing the local density of the CPC by adding chromatin to

Xenopus laevis egg extracts79 or targeting INCENP to an ectopic locus on chromosomes in

vivo80. Microtubules can also activate Aurora B79, 81–83 possibly through local enrichment

of the CPC. This activation is stimulated by TD-6082. The density-dependent activation of

Aurora B partially explains how kinase activation is coupled to CPC localisation at the

inner-centromere and spindle midzone (Figure 2B).

Other kinases also regulate Aurora B activity. Full activation of human Aurora B requires

phosphorylation of Ser311 by Chk1 kinase, best known for its role in the DNA damage

checkpoint84 (Figure 1B). Interestingly, Chk1 is localized to kinetochores during

prometaphase85 and Ser311-phosphorylated Aurora B is only detectable adjacent to the

kinetochore. The kinetochore-proximal pool of Aurora B could function in Plk1 activation35

and/or regulate microtubule binding at the kinetochore. Interactions between the CPC and

Plk1 are complex, and full Aurora B activation is also promoted by Survivin

phosphorylation by Plk152.

In C. elegans, Tousled-like kinase (TLK-1) is reportedly phosphorylated by Aurora B, which

in turn triggers TLK-1 to further activate Aurora B kinase activity in an INCENP-dependent

manner86. TLK-1 is also required for Aurora B localisation to the spindle midzone

microtubules during late mitosis87.

Ubiquitylation and SUMOylation of Aurora B also modulate its localisation and

activity88–90. Mono-ubiquitylation of Aurora B by Cullin 3 (Cul3) E3 ubiquitin ligases

regulates its removal from chromatin and promotes relocalisation of the CPC in anaphase88.

SUMOylation of Aurora B within the kinase domain is required for correct mitotic
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progression89, 90. Aurora B activity during mitotic exit is ultimately terminated when the

kinase is degraded by the proteasome91, 92.

Regulation of Aurora B activity

Phosphorylation of Aurora B substrates must be regulated for proper cell division. This

requirement is best understood during early mitosis when Aurora B phosphorylates multiple

substrates at the kinetochore to destabilize and correct erroneous kinetochore-microtubule

attachments. Replacing the Aurora B phosphorylation sites on one such protein with

phosphomimetic residues prevents the formation of stable kinetochore-microtubule

attachments93, indicating Aurora B phosphorylation must be coordinated with microtubule

attachment status to balance error correction and chromosome segregation. Indeed,

phosphorylation of kinetochore substrates is most prominent when kinetochores are not

attached to microtubules and is reduced upon microtubule attachment94–97. How this

regulation is achieved is the subject of intensive research.

A key aspect regulating this attachment-sensitive phosphorylation is recruitment of

antagonistic phosphatases. During early mitosis, protein phosphatase I (PP1), the major

counteracting phosphatase for Aurora B, is recruited to the outer kinetochore through

Spc105/Blinkin/KNL195, 98, while its recruitment to bulk chromatin, mediated by the PP1

targeting subunit Repo-Man, is suppressed99, 100. Other proteins implicated in targeting PP1

to the kinetochore include Sds22101, Kinesin-7 (CENP-E in human)102, kinesin-8 (in fission

yeast)103, and Fin1 (in budding yeast)104.

PP1 is not the only phosphatase that opposes Aurora B. The B56 subunit of PP2A, which

stabilizes kinetochore-microtubule attachments by counteracting Aurora B phosphorylation,

is enriched in the inner centromere in the absence of microtubule attachment, but dissociates

from it upon bipolar attachment105.

It has been proposed that tension-mediated stretching of centromeric chromatin shifts

substrates away from Aurora B in the inner centromere towards phosphatases in the

kinetochore106–108. Indeed, substrates at the inner centromere are less readily

dephosphorylated upon microtubule attachment than those at the outer kinetochore94, 109. A

problem for this model, however, is that even after the establishment of bipolar attachment,

the distance between the inner kinetochore and the outer kinetochore rapidly fluctuates

between full extension and relaxation110.

Additional mechanisms control substrate recognition by Aurora B. During spindle assembly

in X. laevis egg extract, the CPC must bind to both chromatin and microtubules83. The

requirement for chromatin-binding, but not microtubule-binding, can be bypassed by

artificially activating Aurora B. This indicates that CPC-microtubule binding promotes

spindle assembly by a mechanism other than Aurora B activation, possibly by facilitating

the recognition of critical substrates83. Substrate recognition can also be controlled by

additional modifications of Aurora B substrates, including acetylation and phosphorylation

of histone H382, 111 and methylation of Dam1112. Similar mechanisms may regulate

phosphorylation of kinetochore substrates.

Phosphorylation of Aurora B substrates may also be regulated on a global scale during

mitosis (Figure 3). Aurora B activity can be measured at a specific cellular location using

Förster resonance energy transfer (FRET) sensors. A FRET sensor targeted to microtubules

reveals that during anaphase, levels of Aurora B phosphorylation form a spatial gradient that

is highest at the spindle midzone80, 81, 109, 113 and decreases over a micron-scale distance

surrounding this location113. Augmenting this gradient perturbs the function of the CPC

during anaphase, suggesting it is functionally significant113. A phosphorylation gradient is
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not obvious during early mitosis, however, treatment of cells with low dose Aurora B

inhibitors reveals a gradient centered on chromosomes that decreases towards the spindle

poles113. Similarly, a gradient along chromosomes can be seen temporarily after transient

exposure to an Aurora B inhibitor 80. While the function of these gradients is still unclear,

these observations suggest that phosphorylation of Aurora B substrates is regulated on

multiple scales.

The CPC in interphase and early mitosis

Few studies have explored the CPC during interphase because disrupting the complex

produces obvious and dramatic defects during mitosis. However, recent work suggests that

transient inhibition of Aurora B in interphase causes chromosome mis-segregation in the

subsequent mitosis114, suggesting that the CPC performs essential functions prior to mitotic

entry.

CPC localisation during interphase

In vertebrate cultured cells, the CPC is first visualised on pericentromeric heterochromatin

during late S phase2, 114–117. CPC targeting to heterochromatin involves HP1 binding to a

PxVxL/I motif on INCENP26, 28, 29 (Figure 4A). An HP1-binding site mutant of INCENP

does not localize to heterochromatin during interphase but causes no mitotic defects in HeLa

cells29. A fraction of HP1 is closely associated with centromeres in interphase due to

interactions with Mis14, a component of the Mis12 kinetochore complex involved in

microtubule binding by the KMN network118. Paradoxically, although the Mis14-HP1

interaction occurs solely during interphase, it is important for centromeric enrichment of the

CPC in HeLa cells during mitosis118. Thus, the Mis14-HP1 interaction may facilitate CPC

recruitment to the inner centromere prior to mitosis.

As cells enter mitosis, Aurora B phosphorylates histone H3 at Ser10 (H3S10ph)119, 120. This

reportedly disrupts the HP1 binding to the adjacent trimethylated Lys9 (H3K9me3)121, 122

and may function as a switch to shift from HP1-mediated recruitment of the CPC used

during interphase to the mitotic modes of recruitment discussed below (Figure 4A). H3

Ser10 phsphorylation requires POGZ (pogo transposable element-derived protein with zinc

finger domain), which is also required to remove HP1 and the CPC from chromosome

arms28, promoting their enrichment at the inner centromere.

CPC localisation in early mitosis

Centromeric enrichment of the CPC during mitosis is independent of DNA sequence123, but

instead requires the mitosis-specific phosphorylation of two histone tails: histone H3 Thr3

(H3T3ph) by Haspin kinase124 and histone H2A Thr120 (H2AT120ph) by kinetochore-

associated Bub1 kinase22, 125 (Figure 4). H3T3ph is concentrated along the length of

chromosomes between paired sister chromatids, but is most prominent at the inner

centromere22, 124, 126. Haspin activity in this region depends on the cohesin regulator Pds5

and Swi6/HP1 in fission yeast22. H2AT120ph is enriched in the kinetochore-proximal

region of the centromere, as Bub1 is a kinetochore-associated protein22, 127, recruited by

KNL-1. Maximal concentration of the CPC occurs at the inner centromere where these two

histone modifications overlap22 (Figure 4B).

The CPC binds to H3T3ph through the BIR domain of Survivin, which directly interacts

with the free N-terminus and adjacent three amino acids of the H3 tail. This interaction is

structurally analogous to the recognition of the N-terminus of the pro-apoptotic factor

SMAC/Diablo by the anti-apoptotic factor XIAP15, 128. However, the binding affinity of

Survivin to a hydrophobic SMAC peptide is 25-fold weaker than to a H3T3ph peptide128,

potentially explaining why Survivin knockouts in yeast and vertebrates lack an apoptotic
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phenotype19, 39, 40. The phospho-specificity of Survivin can be regulated by pH65,

suggesting that Survivin-H3 interactions in vivo may be influenced by the local

environment.

Phosphorylation of H2A Thr120 by Bub1 in humans (H2A Ser121 in fission yeast) recruits

Shugoshin-like proteins (Sgo1 and Sgo2), which interact with either Borealin (in humans) or

Survivin (in fission yeast) that has been phosphorylated by CDK173, 125. It had previously

been shown that the D. melanogaster homologue of Shugoshin, MeiS332 is interdependent

with the CPC for localisation to centromeres129. The structural basis for Shugoshin

interactions with H2AT120ph is unknown. Interestingly, it was recently discovered that the

Survivin BIR domain can bind to the N-terminus of human Sgo1 in vitro15. This suggests a

crosstalk between CPC recruitment pathways, the functional significance of this interaction

remains to be tested. In Drosophila, NHK-1/VRK1 was also identified as a kinase for H2A

T119 (corresponding to human H2A T120)130. However NHK-1-mediated phosphorylation

of H2A is suppressed during mitosis by Polo kinase in Drosophila cells131.

Aurora B kinase activity is involved in several feedback loops that facilitate the rapid and

spatially restricted recruitment of the CPC to the centromere. First, Aurora B-dependent

Haspin phosphorylation facilitates H3T3 phosphorylation132, thereby creating the substrate

for Survivin binding. Second, the CPC contributes to centromeric recruitment of Shugoshin

proteins (and also Bub1 in X. laevis)129, 133–136, which in turn are required for CPC

localisation at centromeres73, 125. Third, Aurora B-dependent phosphorylation at H3S10

dissociates HP1 from H3K9me, facilitating the dissociation of the CPC from chromosome

arms and its enrichment at centromeres28. Furthermore, since CPC localisation is dependent

on cohesin and Pds522, 137, 138 likely through localisation of Haspin, Aurora B-mediated

removal of cohesin from chromosome arms during prophase may restrict Haspin localisation

and promote centromeric enrichment of the CPC.

Consistent with these observations, Aurora B inhibition can impair CPC localisation at

centromeres8, 10, 28, 97, 116, 132, 139, though this phenotype is not universal89, 140, 141.

Although localisation to inner centromeres is one of the defining features of the CPC,

paradoxically, lethality of chicken DT40 cells lacking the Survivin gene is rescued by a

Survivin BIR mutant that is missing residues critical for binding the H3 N-terminal peptide

and cannot accumulate at centromeres19. Thus, at least in DT40 cells, accumulation of the

CPC at centromeres may not be essential for CPC function in mitosis.

Roles of the CPC in early mitosis

Aurora B catalyses one classic epigenetic mark of mitotic chromosomes, phosphorylation of

histone H3 on serine 10 (H3S10ph)119, 120. INCENP depletion causes a substantial drop in

H3S10ph levels in vitro and in vivo8, 142. The relationship between H3S10ph and mitotic

chromosome compaction has been extensively explored, but while this modification may

contribute to chromosome compaction during anaphase in budding yeast143 its role in higher

eukaryotes remains to be established.

Mitotic Chromosome Structure

One proposed function of the CPC in mitotic chromosome compaction is regulating the

binding of condensin, a multimeric protein complex that is essential for the maintenance of

mitotic chromosome architecture137, 144–147. In fission yeast, Aurora B-dependent

phosphorylation of the kleisin Cnd2 promotes condensin recruitment to

chromosomes148, 149. Phosphorylation of the human kleisin protein CAP-H by Aurora B

promotes efficient association of condensin I, but not condensin II, to mitotic chromosomes
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in human cells145, 146, 149. Phosphorylated kleisins can bind to the N-terminal tail of histone

H2A, which may contribute to condensin recruitment148, 149. Indeed, chromosome

condensation is impaired in yeast CPC mutants137, 149–151. This effect is much less

pronounced in vertebrates.

Regulation of kinetochore-microtubule attachments

Accurate chromosome segregation requires kinetochores to establish correct, bioriented

attachments to spindle microtubules. Classic experiments using microneedles to manipulate

meiotic chromosomes in grasshopper spermatocytes first revealed that kinetochore-

microtubule attachments are stabilized by tension152. The CPC, via Aurora B activity, plays

a key role in regulating microtubule attachments in response to defective tension. Aurora B

inhibition or Borealin depletion causes a dramatic increase in both merotelic and syntelic

attachments11, 153–156. The CPC is required to destabilize and repair these erroneous

attachments5, 6, 25.

The kinetochore captures dynamic microtubules through the ability of the KMN network to

support load-bearing attachments to microtubule plus ends157. Aurora B regulates the

stability of KMN-microtubule attachments. The unstructured, positively charged N-terminal

tail of Ndc80, which interacts with the negatively charged C-terminal tails of tubulin158–162,

is phosphorylated on multiple sites by Aurora B. This weakens its microtubule-binding

affinity in vitro96, 158, 160, 163, 164. Phosphomimetic Ndc80 mutants fail to support stable

kinetochore-microtubule attachments93, while nonphosphorylatable mutants hyperstabilise

them, resulting in accumulation of syntelic and merotelic attachments in cells96, 158.

Additional phosphorylation of components of the KNL-1 and Mis12 complexes, results in a

synergistic decrease in microtubule binding affinity, allowing Aurora B to exquisitely

control kinetochore-microtubule attachments 94, 165.

Aurora B regulates additional kinetochore proteins that cooperate with the KMN network to

bind microtubules. In fungi, the ring-forming Dam1 complex forms a phospho-regulated

load-bearing attachment to dynamic microtubules166. The Dam1 complex and its

interactions with the Ndc80 complex are negatively regulated by Aurora B phosphorylation

and constitute the major targets of the CPC for error correction in yeast167, 168. In higher

eukaryotes, the Ska complex, which is proposed to be a functional analog of the Dam1

complex169, is also negatively regulated by Aurora B phosphorylation170.

Aurora B regulates the localisation and activity of the kinesin 13 MCAK, which functions as

an important microtubule depolymerase. Interestingly, Aurora B phosphorylation recruits

MCAK to the centromere by facilitating its interaction with centromeric Sgo2171–174 while

simultaneously suppressing both the MCAK microtubule-depolymerizing activity171–175

and its accumulation at microtubule plus ends176. Why recruit MCAK to the centromere

only to inhibit its activity? One possible explanation is that suppressing MCAK stabilises

non-kinetochore microtubules near chromosomes to promote spindle assembly58, 79, 176, 177.

An alternative hypothesis is that inner centromere Kin-I stimulator (ICIS), which can reverse

Aurora B-mediated inhibition of the microtubule depolymerase Kif2a at centromeres 175,

might do the same for MCAK at the centromere but not the kinetochore. This could allow

MCAK to destabilize microtubules participating in merotelic attachments, while stabilizing

k-MT attachments at the kinetochore. Aurora B-dependent recruitment of protein

phosphatase 2A (PP2A) to Sgo2 may also facilitate dephosphorylation of MCAK and other

kinetochore regulators to promote stable microtubule attachment 105, 174. In addition to its

regulation of MCAK, Aurora B also regulates microtubule stability by inhibiting the

microtubule-stabilizing activity of the formin mDia3 at kinetochores178.
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Spindle Assembly Checkpoint Control

The SAC delays sister chromatid separation and cell cycle progression until all kinetochores

attain bipolar microtubule attachments - for review, see7.

The CPC was initially implicated in the SAC in budding yeast where it was found that the

Aurora B yeast homologue Ipl1 is required for the checkpoint under conditions that permit

microtubule attachment but prevent tension179. It was suggested that the CPC might create

unattached kinetochores that are recognized by the SAC pathway180. Similarly, inhibition of

Aurora B impaired the SAC in vertebrate tissue culture cells exposed to taxol, which causes

a loss of kinetochore tension19, 140, 141, 153, 181.

The CPC is required for all aspects of SAC activation and maintenance in fission yeast and

in X. laevis egg extracts133, 150, 182, 183. Aurora B activity promotes kinetochore recruitment

of key SAC components Mad1, Mad2, Bub1, BubR1, Mps1 and CENP-E (kinesin-7) in X.

laevis and human cultured cells133, 140, 184–186. Tethering Mps1, an upstream activator of the

SAC, to the kinetochore can bypass the checkpoint requirement for Aurora B in human

cells, suggesting that a primary function of Aurora B for the SAC may be Mps1

recruitment185, 187.

Recent studies in human cells further established the role of Aurora B in SAC activity

independently of its capacity to destabilise kinetochore-microtubule attachments186, 187.

Artificial targeting of Mad1 to the kinetochore revealed that Aurora B and Mps1 contribute

to SAC maintenance in a step after recruitment of Mad1 and Mad2 to the kinetochore187.

Reduced requirement of Aurora B in SAC activation in response to unattached kinetochores

in budding yeast and human cells may be explained by the existence of an Aurora B-

independent mechanism188.

Much recent interest focuses on silencing of the SAC to allow chromosome segregation and

mitotic exit, since the SAC is normally activated in every cell as it enters mitosis.

Recruitment of PP1 to the kinetochore by KNL-1/Spc105/Blinkin is required for checkpoint

silencing, but can be bypassed if Aurora B activity is compromised103, 189, 190. Thus, Aurora

B promotes SAC activation whereas PP1 promotes SAC silencing in several ways. First,

PP1 may antagonize the Mps1-dependent phosphorylation of KNL-1 by dissociating the

checkpoint components Bub1 and Bub3191–193. Second, PP1 reverses the Aurora B-

dependent phosphorylation of ZWINT-1 in humans and this promotes the dynein-mediated

stripping of SAC components from the kinetochore194. Lastly, PP1 dephosphorylation of

CENP-E also helps stabilize kinetochore microtubule attachments102.

The CPC in late mitosis

The CPC’s journey that started on the chromosomes finally comes to an end at the central

spindle and the midbody, where it executes its functions in late mitosis including anaphase

chromatid compaction, anaphase spindle stabilization (or destabilization in budding yeast)

and cytokinesis. Removal of the CPC from chromosomes is also required to reform the

nucleus and facilitates mitotic exit.

CPC relocalisation during anaphase

At the metaphase-anaphase transition a population of the CPC leaves the inner centromeres

and transfers to central spindle microtubules (Figure 5A). Slightly later, the CPC also

localises to the equatorial cortex, the region of the plasma membrane where the cytokinetic

machinery is assembled195. Relocalisation of the CPC is coupled to cell cycle progression

and is facilitated by three general events: cessation of chromosome targeting, active removal

from chromosomes, and targeting to the central spindle. CPC relocalisation is mediated by a
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decrease in Cdk1 activity and requires both phosphatase and Aurora B kinase

activity31, 141, 196.

Recruitment of the CPC to chromosomes is suppressed in late mitosis following the

dephosphorylation of H3T3ph at anaphase onset20, 197, 198. Active removal of the CPC from

chromosomes may also facilitate relocalisation to the spindle midzone. Aurora B is

ubiquinated by two midzone-associated E3 ubiquitin ligase complexes, Cul3-KLHL9-

KLHL1388 and Cul3-KLHL21199. Ubiquinated Aurora B is subsequently removed from

chromosomes by the AAA+ ATPase Cdc48/p97 and its adaptor proteins Ufd1-Npl4200, 201.

This process contributes to the level and distribution of the CPC on chromosomes prior to

anaphase and facilitates chromosome decondensation and nuclear reformation at the end of

mitosis200.

Transfer of the S. cerevisiae CPC to the spindle requires dephosphorylation of CDK sites on

Sli15/INCENP by cdc14 phosphatase31, 32. Fission yeast cdc14/Clp1 binds Nbl1/Borealin60.

Although dephosphorylation of a Cdk1 site in human INCENP is also required for

translocation196, the role of human Cdc14 phosphatase family members in mitotic exit is

unclear.

CPC release from chromosomes and targeting to the central spindle requires the interaction

of INCENP and Aurora B with MKLP2, a kinesin-6 that binds microtubules at the central

spindle196, 202–204 (Figure 5A). The CPC and MKLP2 only interact during anaphase when

CDK1-mediated inhibitory phosphorylation is removed196. The CPC and MKLP2 are

interdependent on each other for their localisation in most species, though not in

Dictyostelium205. In budding yeast, which lacks Mklp2, Aurora B/Ipl1 is targeted to the

spindle midzone at anaphase by the microtubule plus-end tracking protein Bim1 (the yeast

homologue of EB1). This interaction is negatively regulated prior to anaphase by CDK

phosphorylation of Aurora B206. In addition, Aurora B kinase activity141, DNA

topoisomerase II207 and INCENP phosphorylation at Ser197 by an unidentified kinase208

are also required for midbody localisation of the CPC.

Formation and stabilization of the spindle midzone

The central spindle is an organized structure formed from the bundled plus-ends of

antiparallel microtubules. INCENP was the first protein shown to localise specifically to the

central spindle during anaphase2, and this structure is an important site of CPC action.

Central spindle formation requires the action of the microtubule bundling protein PRC1209,

the kinesin KIF4210 and centralspindlin; a heterotetrameric complex formed by MKLP1 (a

kinesin-6 protein) and MgcRacGAP (a Rho GAP)211–213. The CPC is required for

centralspindlin localisation to the spindle midzone4 (Figure 5A). Phosphorylation of

MKLP1 by Aurora B promotes centralspindlin clustering and increases its microtubule-

bundling activity, thereby stabilizing the central spindle214. The CPC also binds to PRC1

and KIF4 later during cytokinesis215 though the function of these interactions is unclear.

Roles of the CPC in Cytokinesis

Cytokinesis requires the assembly and constriction of an equatorial contractile ring

composed of actin, myosin and other cytoskeletal filaments. The site of contractile ring

assembly and the timing of its constriction are coordinated closely with chromosome

segregation to allow accurate partitioning of the genome and formation of the two daughter

cells. The CPC plays an important role in coordinating and regulating these processes

through its roles in central spindle formation, regulation of furrow ingression and

abscission5, 7, 24 (Figure 5B).

Carmena et al. Page 10

Nat Rev Mol Cell Biol. Author manuscript; available in PMC 2013 December 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Regulation of contractile ring formation & function

Determining the site of cleavage furrow formation is a classic problem that inspired the

elegant experiments of Raymond Rappaport216. The RhoA GEF Ect2 is important for this

determination, as are the central spindle and astral microtubules 217. What is less appreciated

is that the CPC may have an as-yet unknown function early in contractile ring function.

INCENP accumulates at the equatorial cortex in close proximity to the plasma membrane

during early-mid anaphase, well before the initiation of furrowing195 (Figure 5A). It is

difficult to see this cortical population of INCENP in cells that remain flat during mitosis,

however, where it was analysed, INCENP was shown to precede myosin II concentration at

the equatorial cortex218. While the function of INCENP at this early stage is not known, it

will be interesting to see if the CPC contributes to the early assembly of the contractile ring.

The CPC contributes to contractile ring maturation and constriction through indirect

regulation of RhoA, a small GTPase that promotes actin polymerization and myosin II

activation (Figure 5). The CPC recruits centralspindlin to the spindle midzone which in turn

promotes localisation of the RhoGEF ECT2 to microtubules219–222. Additionally, Aurora B

phosphorylation of the centralspindlin component MgcRacGAP induces its RhoGAP

activity223, 224. RhoA is required for the assembly of the contractile ring225, but a parallel

suppression of Rac activity by MgcRacGAP is also thought to contribute226. A recent

analysis in C. elegans indicates that the CPC and MgcRacGAP may function at the relatively

late stage of compact contractile ring assembly by regulating actin filament assembly227.

Aurora B also participates in RhoA regulation through inhibitory phosphorylation of the

microtubule-binding GEF-H1228 (Figure 5A). Phosphorylation of GEF-H1 prevents RhoA

loading and activation at the equator but is reversed at the onset of cytokinesis to facilitate

contractile ring formation 228. In this way, Aurora B may prevent premature assembly of the

contractile ring.

In addition to its action in regulating RhoA, the CPC has a broader role in regulating

cytoskeletal dynamics during cytokinesis. It has been widely assumed that interactions

between myosin II and actin filaments shorten the contractile ring during constriction,

driving the furrowing of the associated membrane. In Dictyostelium, the INCENP N-

terminus interacts with the actin cytoskeleton205. Aurora B activity also modulates Myosin

binding to the cytoskeleton215. This may be via phosphorylation of Myosin Regulatory

Light Chain II229 though this was not confirmed in human cells215.

The detailed mechanism of contractile ring constriction is not known217, and other filaments

may be involved. One candidate for such filaments are the septins230, GTP-binding proteins

that form ordered rings in the bud-neck of S. cerevisiae231. Septins are required for

cytokinesis in budding yeast232, Drosophila233 and humans234.

In budding yeast, a CPC sub-complex composed of Sli15/INCENP and Bir1p/Survivin

regulates septin dynamics in anaphase and cytokinesis235, 236 (Figure 5B). The interaction

between the CPC and septins is also critical for cytokinesis in C. elegans227. It will be

extremely interesting to see if the CPC regulates cytokinesis through septins in other

animals, where Aurora B is known to phosphorylate Septin 1 in vivo237. Interestingly, S.

pombe Ark1/Aurora B functions during cytokinesis but is not essential60, 150. This may be

because septin filaments are not required for cytokinesis in S. pombe238 as they are in S.

cerevisiae232

A recent quantitative proteomics approach revealed that Aurora B undergoes a dramatic

switch in binding partners during mitotic exit215. Aurora B activity is required for optimal

interactions of a number of microtubule-associated proteins with the cytoskeleton. These
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include Keratin-8 and Keratin-18 and the Formin FHOD-1239, which interacts with the

Rac1-GTPase and mediates actin polymerization.

The CPC contributes to furrow ingression by regulating intermediate filament (IF) assembly

(Figure 5B). As is the case for the nuclear lamins240, cytoplasmic IF phosphorylation can

lead to reversible filament disassembly. Mutation of an Aurora B phosphorylation site on

vimentin leads to the formation of IF bridges in cytokinesis and subsequent

multinucleation241. Aurora B and Rho (ROCK) kinases also phosphorylate the IF proteins

GFAP (Glial Fibrillar Acidic Protein) and Desmin. Mutation of these phosphorylation sites

results in defects in filament disassembly in cytokinesis, suggesting that the CPC promotes

IF disassembly to facilitate constriction of the contractile ring and allow abscission to

occur242.

Regulation of abscission

Abscission is the fusion of membranes that completes the separation of daughter cells during

cytokinesis. Aurora B has been implicated in a checkpoint during cytokinesis that delays

abscission in response to lagging chromatin in the intercellular bridge, the site of cleavage

furrow ingression that connects daughter cells. Known as the abscission checkpoint (or “No-

Cut” pathway in yeast where it was discovered)243, this poorly understood but seemingly

conserved checkpoint may prevent chromosome breakage and protect cells from

tetraploidization244.

The abscission checkpoint can also be activated by defects in nuclear pore reassembly

during mitotic exit. Depletion of the nucleoporins Nup153 or Nup50 results in a delay in

cytokinesis and the formation of cytoplasmic foci of active Aurora B that are not associated

with the rest of the CPC subunits245. Inhibition of Aurora B permits the completion of

cytokinesis, suggesting that in this checkpoint, Aurora B may act independent of the CPCto

delay cytokinesis.

The mechanisms by which Aurora B regulates abscission in higher eukaryotes are beginning

to emerge. During abscission in Drosophila and humans, Borealin binds to Shrb/CHMP4C

(Charged multivesicular body protein)67, 68 (Figure 5B), a component of the Endosomal

Sorting Complex Required for Transport III (ESCRT-III). ESCRTs are conserved

complexes involved in membrane budding processes. ESCRT-III in particular mediates

membrane fission at the end of cytokinesis246–248. Borealin binding may facilitate

phosphorylation of Shrb/CHMP4C by Aurora B and has been proposed to inhibit its ability

to participate in abscission, thereby delaying premature cytokinesis.
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GLOSSARY

GEF guanine exchange factor - enzyme that activates small GTPases by

stimulating the release of GDP and allowing the formation of the

active GTP-bound form

Spindle midzone the region of the anaphase spindle, composed of overlapping anti-

parallel microtubules from opposite spindle poles, also known as the

central spindle
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kinetochore complex protein super-assembly located at centromeres that

mediates microtubule attachment and regulates chromosome

segregation

BIR (Baculovirus

IAP repeat)

domain

a Zn2+-coordinated globular domain involved in protein–protein

interactions present in all IAP proteins

centromere specialised chromatin at the primary constriction of mitotic

chromosomes that is the site of kinetochore assembly and the focal

point for sister chromatid cohesion

midbody dense structure derived from the remnants of the central spindle

during late telophase. It is present in the intercellular bridge that

connects daughter cells during cytokinesis

CDKs cyclin dependent kinases - family of highly conserved Serine-

Threonine kinases involved in the regulation of cell cycle

progression characterized by their association and regulation by

cyclins

Plks polo-like kinases –first identified in D. melanogaster, they are

involved in many aspects of cell cycle regulation including

chromosome-microtubule interactions, centrosome duplication

checkpoints biochemical signaling networks that monitor whether key processes

have taken place before allowing progression to the next cell cycle

stage

Inner centromere the region of the centromere located between paired sister

chromatids

SUMOylation posttranslational modification by reversible conjugation of Small

Ubiquitin-like Modifier (SUMO) proteins; involved in regulation of

the cell cycle, DNA repair, gene expression nuclear transport and

protein stability

E3 ligases enzymes that promote the attachment of ubiquitin or SUMO to a

protein, leading to a variety of outcomes, including changes in

binding partners, sorting into different subcellular compartments or

degradation

Förster resonance

energy transfer

(FRET)

a method for detecting associations between proteins by measuring

the transfer of energy over distances of a few nanometers between

fluorescent probes attached to the proteins

KMN network an important microtubule-binding module of the outer kinetochore

formed of the NDC80, MIS12, and KNL1 complexes

condensins large heteropentameric complexes essential for chromosome

architecture that are composed of two structural maintenance of

chromosomes (SMC) subunits and three auxiliary non-SMC

subunits

kleisin subunit that bridges the ATPase heads of SMC proteins in SMC

complexes, converting them into closed rings

merotelic

attachment

a single kinetochore attaches to microtubules from both spindle

poles
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syntelic

attachment

both sister kinetochores attach to microtubules from the same pole

kinesins superfamily of microtubule associated motor proteins whose

functions include the transport of cargo along microtubules and

regulation of microtubule dynamics

formins proteins defined by the presence of a catalytic FH2 [formin

homology 2] domain that interact with actin and regulate its

polymerization

AAA+ ATPase ATPases with associated diverse cellular activities- hexameric

ATPase that couple ATP hydrolysis to translocation or remodeling

of macromolecules in a wide range of cellular processes

DNA

topoisomerase II

abundant nuclear enzyme that relieves tolopogical stress in DNA by

passing one duplex through another using an ATP-regulated protein

gate

GAP GTPase Activating Protein that activates small GTPases by

stimulating them to hydrolize GTP into GDP
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Perspectives

The switching of the CPC from interactions with chromatin and the kinetochore in early

mitosis to a role in regulating cytoskeletal events during mitotic exit provides strong

confirmation of the original CPC hypothesis1. This complex temporally and spatially

regulated signaling module can send and receive signals from both chromatin and

cytoskeletal components. It can fine-tune highly local protein-protein interactions while

simultaneously regulating the global effects of the SAC. Some of the many key questions

that remain to be solved include the mechanistic basis for Aurora B kinase activation

beyond density-dependent autophosphorylation, the control of substrate recognition, and

how the spatial distribution of kinase and phosphatase activities is balanced. Beyond this,

the functions of the CPC during interphase remain largely uncharted territory, though

initial results are beginning to come in249. The journey of discovery is clearly far from

over for the CPC.
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FIGURE 1. Structure and regulation of the chromosomal passenger complex (CPC)

(A, Left) Diagram of the CPC, which is formed by Aurora B, INCENP, Survivin and

Borealin. The diagram shows domains and functions for each CPC component. (Right,

upper): the crystal structure of full length Aurora B complexed with the INCENP C-

terminus (AA790-894) (adapted with permission from ref 78). (Right, bottom): the crystal

structure of the three-helix bundle of INCENP(AA1-58), Borealin (AA10-109) and full

length Survivin (adapted with permission from ref 16).

(B) Phospho-regulation of the CPC showing phosphorylations (yellow spheres) that regulate

CPC localisation and function throughout mitosis (pale yellow boxes). Multiple kinases

(coloured spheres) phosphorylate the CPC (plain arrows) to regulate CPC function.

Additionally, Aurora B activates its own kinase activity by phosphorylating its T-loop

(T232) and the INCENP TSS-motif (dotted arrows). Note that some of the depicted

Carmena et al. Page 28

Nat Rev Mol Cell Biol. Author manuscript; available in PMC 2013 December 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



phosphorylations are present throughout mitosis (AurB T232) while others are present at

specific stages of mitosis (INC T388, T58).
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FIGURE 2. Coupling of Aurora B kinase Activation to CPC formation and localisation

(A) Activation of Aurora B (red circle) requires binding to INCENP (yellow) and

phosphorylation in a feedback loop. Both of these phosphorylations are catalysed in trans.

(B) Aurora B activation is coupled to CPC localisation in vivo. The localisation module of

INCENP, Survivin and Borealin targets the CPC to histones at the inner-centromere and

microtubules at the spindle midzone during early and late mitosis, respectively. Enrichment

of the CPC at these locations facilitates auto-phosphorylation in trans, leading to full Aurora

B activation.
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FIGURE 3. The CPC produces spatial gradients of Aurora B activity throughout mitosis

(left) At metaphase, Aurora B phosphorylation (detected with a FRET sensor probe on

microtubules) is high throughout the spindle and does not form a gradient. Addition of low

dose Aurora B inhibitors reveals a phosphorylation gradient where activity is highest around

chromatin and decreases towards the spindle poles. During anaphase, an Aurora B

phosphorylation gradient is centred at the spindle midzone.

(middle) At metaphase, Aurora B activity is high along the chromosome (FRET sensor

probe on chromatin). A transient pulse of high dose Aurora B inhibitors followed by

washout leads to the production of a phosphorylation gradient emanating from the

centromere and decreasing along the arms. This gradient rapidly disappears as Aurora B

activity recovers.

(right) Unattached kinetochores exhibit a gradient of Aurora B activity emanating from

centromeric chromatin towards the kinetochore (FRET sensor probes at various kinetochore

locations). Microtubules (red) attach to the kinetochore, generating tension that physically

stretches the kinetochore (visualized by stretching of the white kinetochore springs). This

change pulls substrates at the kinetochore away from centromeric chromatin, resulting in a

decrease in Aurora B activity along the kinetochore. Sensors on centromeric chromatin do

not change their relative position upon microtubule binding and remain highly

phosphorylated.
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FIGURE 4. Recruitment of the CPC to centromeres during early mitosis

(A) During interphase, the CPC is targeted to heterochromatin through the interaction of

INCENP (yellow) with dimeric HP1 (purple). HP1 requires Mis14 (pink) for proper

localisation. HP1 also recruits Shugoshin proteins (green) through a similar mechanism. At

the beginning of prophase, active Aurora B phosphorylates histone 3 Ser10, displacing HP1

from the adjacent H3K9me mark. A series of kinases then phosphorylate the CPC and

centromeric histone tails to recruit the CPC to the inner centromere by (pro)metaphase. The

BIR-domain of Survivin (green) binds H3T3ph while Borealin that has been phosphorylated

by CDK1 binds shugoshin proteins, which interact with H2A S121ph.

(B) Overlap between H3T3ph (blue) and H2A S121ph (yellow) defines the inner centromere

(green) and recruits the CPC. H3T3ph is deposited by Haspin kinase recruited to

centromeric chromatin by cohesin/HP1 (Left). H2A S121ph is deposited by Bub1 kinase,

which is recruited to the kinetochore (red) by KNL-1 (purple) phosphorylated by MPS1

kinase (Right).
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FIGURE 5.

CPC re-localisation and function in mitotic exit

(A) At anaphase onset, the CPC relocalises from chromosomes to the spindle midzone

where Aurora B activity promotes centralspindlin recruitment. This stabilizes the spindle

midzone and recruits factors important for late telophase/cytokinesis such as the RhoGEF

Ect2 (purple). Aurora B also phosphorylates the RhoGEF H1 (pink) to prevent its targeting

to microtubules prior to telophase. Additionally, a small population of the CPC accumulates

at the cell cortex where cleavage furrow ingression will occur.

(B) During telophase and cytokinesis, Ect2 stimulates the conversion of inactive Rho-GDP

to active Rho-GTP. Dephosphorylated Rho GEF now also activates Rho near microtubules.

This promotes actin polymerization and contractile ring formation. Aurora B-mediated

phosphorylation of Septin filaments (running out of the plane of the page in this diagram)

may also be important in contractile ring formation. The CPC promotes disassembly of

intermediate filaments (dark purple) that could otherwise obstruct cleavage furrow

constriction. In the presence of lagging chromosomes, it also activates the abscission

checkpoint to prevent the completion of cytokinesis. Checkpoint activation involves

recruitment of the membrane fusion protein Shrb/CHMP4C (yellow square) to Borealin and

inactivation of its membrane fusion activity by Aurora B-mediated phosphorylation.
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