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The chromosome-scale reference genome of black
pepper provides insight into piperine biosynthesis
Lisong Hu1,10, Zhongping Xu 2,10, Maojun Wang 2, Rui Fan1, Daojun Yuan 2, Baoduo Wu1, Huasong Wu1,

Xiaowei Qin1, Lin Yan1,3, Lehe Tan1,3,4, Soonliang Sim5, Wen Li6, Christopher A Saski6, Henry Daniell7,

Jonathan F. Wendel 8, Keith Lindsey 9, Xianlong Zhang 2, Chaoyun Hao1,3,4* & Shuangxia Jin2*

Black pepper (Piper nigrum), dubbed the ‘King of Spices’ and ‘Black Gold’, is one of the most

widely used spices. Here, we present its reference genome assembly by integrating PacBio,

10x Chromium, BioNano DLS optical mapping, and Hi-C mapping technologies. The 761.2Mb

sequences (45 scaffolds with an N50 of 29.8Mb) are assembled into 26 pseudochromo-

somes. A phylogenomic analysis of representative plant genomes places magnoliids as sister

to the monocots-eudicots clade and indicates that black pepper has diverged from the shared

Laurales-Magnoliales lineage approximately 180 million years ago. Comparative genomic

analyses reveal specific gene expansions in the glycosyltransferase, cytochrome P450, shi-

kimate hydroxycinnamoyl transferase, lysine decarboxylase, and acyltransferase gene

families. Comparative transcriptomic analyses disclose berry-specific upregulated expression

in representative genes in each of these gene families. These data provide an evolutionary

perspective and shed light on the metabolic processes relevant to the molecular basis of

species-specific piperine biosynthesis.
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B
lack pepper (Piper nigrum, 2n= 52), known as the ‘King of
Spices’, is one of the oldest and most widely used season-
ings in the world. It had been highly valued and considered

as ‘Black Gold’, occupying a preeminent status in the spice trade.
It was the primary spice in early trading between Europe and
Asia. The production, transportation and consumption of black
pepper has influenced the destinies of nations and their people,
both economically and culturally1. Originating in the humid,
tropical evergreen forests of the Western Ghats of South India,
black pepper is now cultivated in most tropical and subtropical
regions, with production primarily in Vietnam, Indonesia, Brazil,
India, Sri Lanka, China, Malaysia and Cambodia. In 2017, the
world’s total cultivation area was 458,731 hectares, which gives
510,045 metric tons of production and 2 billion US dollar trade
value. It is also an important cash crop for small farmers in many
developing countries.

Black pepper is a perennial, woody climbing vine. It belongs to
the family Piperaceae, which is the largest family in the order
Piperales. In current phylogenetic classification2–5, Piperales is
considered as a sister order of the Canellales, Laurales and
Magnoliales orders within the Magnoliid clade. However, the
phylogenetic position of magnoliids relative to eudicots and
monocots is still unsettled, even based on the two newly pub-
lished magnoliid genomes, which indicates a controversial phy-
logenetic understanding of these long-isolated lineages6–8.

The Piperales are well known for their special phytochemistry,
particularly their unique piperidine alkaloids. Piperine is the
major alkaloid responsible for the pungency and flavour of black
pepper. In addition to being a common culinary spice and a
preservative for meat products, black pepper has been widely used
in traditional medicinal systems, such as the Indian Ayurvedic
system, traditional Chinese medicine and folklore medicines of
Latin America and Southeast Asia9. Piperine possesses a range of
pharmacological activities, including the attenuation of fat cell
differentiation through the downregulation of peroxisome
proliferator-activated receptor (PPAR) gamma expression, lead-
ing to its use for treatment of diabetes as a PPAR agonist10. It has
also been used as an antioxidant, antitumour, antimicrobial, anti-
depressive and anti-inflammatory11 agent. The phytochemical
and pharmacological characteristics of black pepper have received
renewed attention in recent decades. However, relatively little is
understood about the genetic mechanisms controlling of its bio-
synthetic pathway and accumulation, and few genetic resources
are available for black pepper.

Here, we report a reference genome of black pepper using a
combination of four technologies. Evolutionary analysis of three
available magnoliid genomes from different orders provides evi-
dence for the phylogenetic position of the magnoliids. In addi-
tion, our comparative genome and transcriptome analyses
identify changes in gene expression, evolution and family size
associated with piperine biosynthesis. Genomic resources pro-
vided here will be valuable for biological and agronomic research
in Piper species.

Results
Genome assembly and main features. Cv. Reyin1 derived from
the cultivar ‘Lampung Daun Kecil’ was used for genome
sequencing. Based on the k-mer genome survey analysis (Sup-
plementary Fig. 1), black pepper (Supplementary Note 1) was
estimated to have a genome size of 761.74Mb. K-mer analysis
with a length of 17 indicates the genome had high heterozygosity
(1.33%) and a repetitive sequence content of 59.54% (Supple-
mentary Table 1).

To overcome the impact of heterozygosity and repetitive
sequence content on the construction of a chromosome-scale

reference genome, a comprehensive de novo assembly strategy
(Supplementary Fig. 2) combining Illumina paired-end reads
(137 × coverage), PacBio single-molecule long reads (N50 length
of 13 Kb, ~138 × coverage), 10X Genomics, BioNano (Supple-
mentary Table 2), and Hi-C sequencing (Supplementary Table 3)
was adopted. The workflow is summarised as follows: (1)
FALCON12 was selected for the PacBio-only assembly, using
the overlap-layout-consensus algorithm and FALCON-Unzip12

for true diploid assembly; (2) fragScaff13, which leverages
information derived from different barcoded pools, was used to
order and orient linked contigs into longer scaffolds, which
resulted in an assembly (Piper_nigrum_v1) consisting of
1277 scaffolds with an N50 of 2.3 Mb and a total length of
791.0 Mb; (3) a non-haplotype-aware hybrid assembly with ‘no
extend split’ and ‘no cut segdups’ parameters (according to
BioNano’s suggestions) was performed using BioNano Solve
tools, yielding an assembly with a total molecule length of
316,350.85 Mb and 128 × effective coverage (Supplementary
Table 2). This improved version (Piper_nigrum_v2) contains
201 hybrid scaffolds with an N50 of 7.8 Mb (3.4 fold improve-
ment compared with the Piper_nigrum_v1) and a longest scaffold
of 25.8 Mb (Supplementary Figs. 3–5); (4) additional scaffold
refinement was performed in a Hi-C experiment with ~125
million unique Di-Tags read pairs (Supplementary Table 3 and
Supplementary Fig. 6) and postprocessing by gap filling and
polishing to generate the final version of the assembly,
‘Piper_nigrum_v3’. This final assembly contains only 45 scaffolds,
with a scaffold N50 of 29.8 Mb and 99.9% of the assembled
genome contained in 26 scaffolds (Table 1). Inasmuch as the
chromosome number of Piper nigrum is 2n= 5214, we infer that
these large scaffolds reflect a chromosome-scale assembly
(Supplementary Figs. 7–14). The assembly size of 761.22Mb
(99.93% coverage of the genome) was very similar to the
estimated genome size of 761.74Mb obtained from the k-mer
analysis. The higher heterozygosity estimated from the k-mer
analysis was also consistent with single-nucleotide polymorphism
(SNP) calling in the final reference genome (Supplementary
Note 4 and Supplementary Fig. 15).

Detailed assembly data are summarised in Table 1. The extent
of comprehensive gene coverage was assessed by screening for
248 core eukaryotic genes (CEGs)15, which revealed a complete
and partial matches for 234 (94.35%) and 244 (98.39%) genes,
respectively (Supplementary Table 4). BUSCO16 analysis against
the plant-specific database containing a total of 430 genes
revealed 413 (96.1%) complete BUSCOs, 80 (19.1%) of which
were duplicated genes (Supplementary Table 5). These data
support the interpretation that the P. nigrum genome assembly is
reasonably complete.

A total of 54.85% repetitive sequences were identified in the
black pepper genome. Among these repeats, 54.01% are classified
as interspersed repeats (Supplementary Table 7). Similar to most

Table 1 Major indicators of the Piper nigrum genome

Assembly feature Statistic

Estimated genome size (by k-mer analysis) (Mb) 761.74

Number of scaffolds 45

Scaffold N50 (Mb) 29.8

Longest scaffold (Mb) 48.45

Assembled genome size (Mb) 761.22

Assembly % of genome 99.93

Repeat region % of assembly 54.85%

Predicted gene models 63,466

Average coding sequence length (bp) 1347

Average exons per gene 5.84
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plant genomes17, the predominant type of transposable elements
(TEs) was long terminal repeat (LTR) retrotransposons, account-
ing for 40.55% of the genome, including 27.63% LTR/Gypsy and
9.95% LTR/Copia retro-elements (Supplementary Note 2, Sup-
plementary Tables 8–9 and Supplementary Fig. 16). These TEs
exhibit an apparently random distribution on the chromosomes,
and an inverse correlation with gene density (Fig. 1; Supplemen-
tary Figs. 17–25).

We conducted Illumina strand-specific RNA sequencing
(RNA-seq) using eight different tissues and organs, and
performed PacBio isoform sequencing (Iso-Seq) (Supplementary
Fig. 26) to provide transcriptional evidence supporting the
annotation and to obtain reliable gene structure annotation. We

also employed a strategy that combined ab initio and evidence-
based gene prediction using the BRAKER218 pipeline. The black
pepper genome encodes 63,466 inferred protein-coding genes,
with an average length of 900 bp and an average GC content of
51.21%. Annotation Edit Distance (AED)19 quantification
showed a high AED of 0.04 at the nucleotide-level and 0.13 at
the exon level, indicating a highly credible gene model.

Five thousand eighty-two transcription factors (TFs) from 75
gene families accounting for 8.0% of the protein-coding genes are
categorised in this report. In addition, 646 chromatin regulators
(CRs), 157 transcriptional regulators (TRs), 6509 long non-coding
RNAs (lncRNAs), 1514 tRNAs, 1206 rRNAs, 1533 small nuclear
RNAs (snRNAs) and 256 microRNAs (miRNAs) were also
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Fig. 1 Black pepper genomic landscape of diversity and expression data. a Circular representation of the pseudomolecules. b–d The distribution of the GC
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identified (Supplementary Note 3 and Supplementary Fig. 27). An
InterProScan Pfam analysis identified 3652 protein families
containing 21,184 proteins and 2071 Gene Ontology (GO) terms,
of which 41.63%, 13.19% and 45.18% of the genes were annotated
in the biological process, cellular component and molecular
function categories, respectively (Supplementary Fig. 28).

Comparative genomic and phylogenomic analyses. Ancient
whole-genome duplication (WGD) (also known as polyploidiza-
tion) events are important driving forces of the evolution of
animals, fungi and other organisms, particularly plant
lineages20,21. We selected a range of species to perform a com-
parative genomic investigation and assess WGD in black pepper:
Papaver somniferum (WGD ~7.8 million years ago (MYA))22;
Liriodendron chinense as a representative of the Magnoliidae,
with a WGD event ~116 MYA6; Coffea canephora as a repre-
sentative of whole-genome triplication (WGT) of the eudicots
(WGT-γ) without WGT-1 and WGT-223; Helianthus annuus for
its lineage-specific WGD-2 with shared ancestral WGT-γ and
WGT-124; and Vitis vinifera which represents the closest modern
chromosome relative of the ancestral eudicot karyotype (AEK)
with seven protochromosomes25,26. The reciprocal best hit (RBH)
gene pair synonymous substitution rate (Ks) distribution (Sup-
plementary Fig. 29) recovered the WGT-γ in Coffea canephora
and a relatively recent WGD event in Helianthus annuus and
Papaver somniferum, consistent with the findings of previous
reports24,27,28. Indeed, the all-vs-all paralog analysis in black
pepper genome detected 31,138 RBH paralogous gene pairs and

the RBH paralog Ks distribution showed a single peak at ~ 0.1
(Fig. 2b; Supplementary Fig. 29a). Second, the synteny dot plot
analysis revealed duplications within the black pepper genome
that are either inter-chromosomal or intra-chromosomal dupli-
cations (Supplementary Fig. 30).

An analysis of the genomic synteny of black pepper using
MCScanX revealed 1295 syntenic blocks across the whole genome
including 28,621 genes that accounted for 45.10% of the total
number of genes. Among these syntenic blocks, 855 (66.0%) of
the paralogous gene pairs were located inter-chromosomally, and
the other 440 (34.0%) were located within chromosomes (Fig. 1).
In addition, an analysis of the type of duplication of the black
pepper paralogs using MCScanX indicated that most genes were
classified as WGDs or segmental duplications (32,547 genes,
accounting for 51.3%), followed by three other types: dispersed
(19.1%), proximal (7.4%) and tandem (3.6%) duplications. We
also performed a comparative genomic analysis of black pepper
with Amborella and Cinnamomum kanehirae and identified 1:1
and 1:2 syntenic depth ratios in the Amborella-Cinnamomum
kanehirae and Amborella-Piper nigrum comparisons (Supple-
mentary Fig. 31a), respectively. Furthermore, an analysis of
synteny in black pepper with Amborella showed 316 syntenic
blocks that covered 40% and 34% of the assembled genomes,
respectively (Supplementary Fig. 31b and Supplementary
Table 10). By calculating the Ks of the black pepper syntenic
block gene pairs, a major peak was detected at ~0.1 (Supplemen-
tary Figs. 29b, 32).

The RBH and syntenic block gene pair Ks distribution
(Supplementary Note 4) provided convincing evidence for a
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WGD event during black pepper genome evolution. Based on the
slow substitution rate of basal angiosperms, we speculate that the
black pepper WGD event (Ks= 0.106 ± 0.002) occurred
~17.2–17.9 MYA with a synonymous substitution rate of 3.02E
−9 synonymous substitutions per year29 (Fig. 2c).

The high-quality reference genome for black pepper enabled us
to perform comparative genomics among relatively early diver-
ging angiosperms. We compared the black pepper genome with
the genomes of nine eudicots, three monocots, three magnoliids,
Amborella, two gymnosperms and two species Selaginella
moellendorffii and Physcomitrella patens as the outgroups.

Eighty-two single-copy orthologous gene families among the
21 species were identified using OrthoMCL to accomplish this
goal, and a phylogenetic analysis of these families using BEAST
placed magnoliids as a sister clade to the monocots–eudicots
clade, consistent with Liriodendron genome research6, the Plastid
Phylogenomic Angiosperm (PPA) tree30 and Angiosperm
Phylogeny Group (APG) IV5. Furthermore, Piper nigrum was
placed as a sister to Magnoliales–Laurales among the magnoliids
(Fig. 2c), consistent with its phylogenetic position inferred from
chloroplast genomes31. Based on our results, Piperales, represen-
tated by Piper nigrum, first diverged from the Magnoliales
(Liriodendron chinense) plus Laurales (Cinnamomum kanehirae
and Persea americana) approximately 175–187 MYA (95%
highest posterior density (HPD) interval).

Evolution piperine biosynthesis-associated genes. Piperine is
synthesised from two direct precursor substrates, piperoyl-
coenzyme A and piperidine, in a reaction catalysed by an acyl-
transferase32. Thus, piperine production is associated with three
major gene groups (see below): group I: genes in the phenyl-
propanoid pathway (KEGG pathway: map00940), which produce
cinnamoyl-CoA for piperoyl-coenzyme A biosynthesis via a few
complex reactions, such as amino transfer and elimination of
ammonia-lyase and cinnamate 4-hydroxylation; group II: genes
involved in L-lysine metabolism (KEGG pathway: map01064),

which catalyse the transformation of lysine to piperidine via a
series of reactions including decarboxylation, amine oxidation,
cyclization and reduction; and group III: acyltransferase genes,
that catalyse the synthesis of piperine in the presence of piperoyl-
coenzyme A and piperidine.

We acquired insights into the genomic basis of piperine
biosynthesis, using OrthoMCL to identify orthologous genes and
CAFE to identify gene family clusters, with a specific focus on the
expansion (gain) and contraction (loss) events related to the
above three gene groups in black pepper. This process identified
39,400 gene families consisting of 471,854 genes among the
21 species (Fig. 2a; for clarity, only species with a close
evolutionary relationship to black pepper are shown). Four
hundred twenty-three gene families containing 4228 genes were
unique to black pepper.

According to the CAFE analysis, 91 gene clusters (including
21,368 genes) and 189 gene clusters (including 14,201 genes)
expanded and contracted, respectively, in the black pepper
genome. Among these clusters, 35 and 4 families exhibited
significant (family-wide p-value ≤ 0.01) contractions and expan-
sions, respectively (Fig. 3). Furthermore, the species-specific
expanded genes were significantly enriched in two main types,
one of which was genes with secondary metabolite-associated
functions, such as glycosyltransferases (GTFs; 19 genes),
shikimate hydroxycinnamoyl transferases (HCTs; 69 genes),
cytochrome P450s (CYP; 31 genes), lysine decarboxylases
(LDCs; 75 genes), BAHD acyltransferases (BAHD-ATs; 6 genes)
and serine carboxypeptidase-like acyltransferases (SCPL-ATs; 7
genes) (Fig. 4a; Supplementary Fig. 33). These expanded genes
occurred in gene clusters on some chromosomes (Supplemen-
tary Fig. 34a–f). A KEGG pathway analysis of these specific gene
families revealed marked enrichment in genes involved in
piperine synthesis, including the biosynthesis of alkaloids
from the shikimate pathway (map01063); alkaloids from
ornithine, lysine and nicotinic acid (map01064); phenylpropa-
noid biosynthesis (map00940); and phenylalanine, tyrosine and
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+90/–159/73*

+148/–73/106*

+78/–134/55*

Fig. 3 Estimation of gene family expansion and contraction on each evolutionary branch. Numbers over the branches indicate the number of expansions

and contractions in gene families. Magenta indicates the number of expansions, turquoise indicates the number of contractions and blue indicates the

number of significantly (p-value≤ 0.01) expanded and contracted gene families. The pie charts on the right show the proportions of these categories.

Source data are provided as a Source Data file
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tryptophan biosynthesis (map00400). The other category was
disease resistance-related genes, such as disease-resistance
proteins (RPS5, RPP13, RGA1, RGA2, RGA3, RGA4 and
RGA5), NBS-LRR disease-resistance proteins, LRR receptor-
like serine/threonine protein kinases (EFR, BAM1, FLS2, GSO2
and EMS1) (Supplementary Fig. 34 g, h) and salicylic acid-
binding protein 2. These genes have been widely reported to
play important roles in pathogen-resistance mechanisms. The
expansion of these genes might indicate that biotic stresses from

pathogen infection and animal ingestion are a source of major
selection pressure on black pepper in the tropical rainforest.

Upregulation of piperine biosynthesis-related genes. The
piperine content determined using high-performance liquid
chromatography (HPLC) (Supplementary Note 5) revealed that
the organ with the highest content was berry at 8 months after
pollination (MAP), followed by 6 MAP, 4 MAP, 2 MAP, flower,
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root, stem and leaf (Fig. 4b). A transcriptomic analysis was per-
formed with RNA-seq using samples from different organs of
black pepper, including berries (which synthesise piperine) at
different developmental stages (2 MAP, 4 MAP, 6 MAP and
8 MAP; Supplementary Fig. 35), and organs not containing
piperine, i.e., the stem, root, leaf and flower (Supplementary Note
6 and Supplementary Figs. 36–38), to investigate genes involved
in piperine production. A gene set enrichment analysis (GSEA)33

and weighted gene co-expression network analysis (WGCNA)34

revealed that upregulated genes in berries relative to nonberry
organs were associated with the phenylpropanoid pathway
(Supplementary Fig. 39) and lysine metabolism. The transcrip-
tional module (Supplementary Figs. 40–42) of piperine synthesis
in berries exhibited significant enrichment of the amino trans-
ferase (PPA-AT), arogenate dehydratase (ADT), cinnamate 4-
hydroxylase (C4H/CYP7335,36), HCT, p-coumarate 3-hydroxylase
(C3H), caffeic acid-3-O-methyltransferase (CAOMT), p-couma-
rate-CoA-ligase (4CL), GTF, CYP72 and CYP71 clans (Fig. 4b;
Supplementary Fig. 43). These genes are involved in the meta-
bolism of phenylpropanoids to produce piperoyl-CoA37 (Fig. 4i).
In addition, the differential expression of LDC, primary-amine
oxidase (PAO) and diamine oxidase (DAO) in black pepper
berries (Fig. 4b) is consistent with the hypothesis that lysine,
rather than quinolizidine or indolizidine, is the intermediate
precursor of piperidine synthesis in black pepper. Importantly,
the expansion of the BAHD-AT and SCPL-AT gene families (11
BAHD-ATs and 3 SCPL-ATs) (Fig. 4a), accompanied by the high
transcriptional activity of these genes in berries (Fig. 4b), is
associated with the metabolism of phenylpropanoids and lysine
into piperine (Fig. 4i).

Purifying selection of piperine biosynthesis gene families.
Based on our analysis of gene expansion and expression, we
synthetically investigated the gene-sequence-level features of the
aforementioned three gene groups exhibiting expansion and
berry-specific upregulated expression that might contribute to the
unique piperine production in black pepper.

Within group I, the GTF, CYP and HCT gene families were
significantly expanded in black pepper (Fig. 4a). HCT has been
reported to play a crucial role in piperoyl-CoA synthesis
(a precursor for piperine biosynthesis) by catalysing the
transformation of p-coumaroyl-CoA into p-coumaroyl shikimic
acid and caffeoyl shikimic acid into caffeoyl-CoA38. The HCT
gene family was expanded in the black pepper genome (69 genes
in black pepper compared with one or two genes in the other
species). The particularly high expression in berries (2 MAP, 6
MAP and 8 MAP; Fig. 4b) detected by analysing transcriptomes

from different organs is consistent with a role for this family in the
biosynthesis of piperine. In the sequence-level analysis of HCT
expansion, most conserved regions (107 sites) were under strong
purifying selection, with one site showing diversifying selection
and eight sites showing episodic selection (Fig. 4c, d). The adaptive
expansion of HCT and the maintenance of duplicates appear to
have operated in concert, resulting in higher enzyme levels for the
accumulation of the necessary donor precursor used for piperine
biosynthesis (Fig. 4i). Despite the significant expansion of the GFT
and CYP gene families in black pepper, no positively selected sites
were detected (Supplementary Fig. 44a, b). The significant
expansion of GFT, CYP and HCT family genes suggests the
importance of the phenylpropanoid pathway, which provides
precursors for the biosynthesis of alkaloids and flavonoids typical
of modern pepper cultivars (Fig. 4i).

Within group II, LDC catalyses the first step in lysine
metabolism (Fig. 4i) and serves as the rate-limiting enzyme in
the synthesis of lysine-derived alkaloids, including piperidine
alkaloids (piperine), quinolizidine alkaloids and indolizidine
alkaloids39. Seventy-five LDC genes were detected in black
pepper, compared with just six in Ananas comosus, five in Vitis
vinifera and at most one in the other species studied (Fig. 4a). An
analysis of sequence evolution in the LDC family indicated that
19 sites have been under strong purifying selection, two sites have
been under diversifying selection and five sites under episodic
selection (Fig. 4e, f). The expansion of LDC genes suggests the
unique activation of lysine-derived alkaloid synthesis in black
pepper.

Within group III, BAHD-AT and SCPL-AT encode the two
main acyltransferase families that use phenolic compounds as
donor molecules40 (Fig. 4i). The BAHD-AT and SCPL-AT genes
were expanded to include six and seven members, respectively,
in black pepper. An assessment of sequence evolution revealed
that 261 sites have been under strong purifying selection, one
site has been under diversifying selection and nine sites under
episodic selection in BAHD-ATs (Fig. 4g, h), and no sites
showed positive selection in SCPL-ATs (Supplementary Fig. 45).
This adaptive expansion may have resulted from purifying and
diversifying selection and led to high levels of BAHD-AT and
SCPL-AT transcripts in the berries (Fig. 4b), further explaining
why piperine is uniquely accumulated in black pepper.

Overall, the main pathway leading to piperine synthesis and
key genes involved in its regulation (Fig. 4i) are consequences of
the expansion of multiple gene families, followed by evolutionary
selection leading to transcription specifically in the berries.
However, we fully recognise that a direct causal link between each
identified gene and metabolite abundance remains to be

Fig. 4 Analysis of gene families involved in black pepper piperine metabolism. a Expansion of genes involved in the phenylpropanoid pathway, lysine

metabolism and acyltransferase family in black pepper. b Tissue-specific upregulated expression of genes involved in the phenylpropanoid pathway, lysine

metabolism and acyltransferases in different tissues. The heatmap on the right shows the piperine content in the freeze-dried fresh tissues. MAP: months

after pollination. c–h Selection analysis of HCT, LDC and BAHD-AT gene expansion events. Red points indicate positive selection. Green points indicate

episodic selection. Purple points indicate episodic positive selection. Blue bars show sequencing depth. A significance threshold of α= 0.1 was used for

both SLAC and MEME. c Normalised dN-dS (SLAC) values across a multispecies alignment of 94 HCT sequences with 195 sites. Points indicate statistically

significant evidence for codons under selection. One site shows positive selection across the entire tree (SLAC); eight sites show episodic selection

(MEME). d Comparison of episodic selection on particular codons across black pepper HCT genes (n= 69). e Normalised dN-dS (SLAC) values across a

multispecies alignment of 72 LDC sequences with 80 sites. Two sites show positive selection across the entire tree (SLAC); five sites show episodic

selection (MEME). f Comparison of episodic selection on particular codons across black pepper LDC genes (n= 57). g Normalised dN-dS (SLAC) values

across a multispecies alignment of 87 BAHD-AT sequences with 375 sites. One site shows positive selection across the entire tree (SLAC); nine sites show

episodic selection (MEME). h Comparison of episodic selection on particular codons across black pepper BAHD-AT genes (n= 6). i Schematic

representation of the phenylpropanoid pathway and lysine metabolism branch with the reactions associated with piperine biosynthesis genes. The solid

lines indicate genes catalysing major reactions that were characterised in our study. The dotted lines indicate genes catalysing reduction reactions in lysine

metabolism and approximate derivative reactions in the phenylpropanoid pathway that were not characterised in our study. The source data underlying

Fig. 4a–h are provided as a Source Data file
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established. Nevertheless, the genetic framework underpinning
the evolution of piperidine alkaloid biosynthesis is being clarified.

Discussion
The Piperales represents a useful taxonomic group for the study
of the link between evolution, ecology and phytochemistry41

because of its geographic distribution pattern, the diversity of its
lineages, and its characteristic secondary metabolism. The black
pepper genome will provide resources for phylogenomic analyses
and studies of piperine synthesis. Piperales is one of the most
diverse lineages of basal angiosperms. In terms of stem anatomy,
Piper nigrum has a pattern of vascular bundle arrangement that is
similar to monocots, whereas the vascular bundle arrangement of
Piper colubrinum is similar to eudicots42. In addition, the coty-
ledonary forms of Peperomia pellucida, Peperomia peruviana and
Peperomia parvifolia show an evolution typical of eudicots to
monocots. Interestingly, Liriodendron (Magnoliales) also shows
features of both monocots and eudicots6. Because of their anti-
quity and morphological diversity, the phylogenetic positions of
various lineages within the magnoliid clade have remained
unclear, with three primary proposed tree topologies reported6.
Two newly issued genome sequences have been used to address
the phylogenetic position of magnoliids, but have produced
conflicting results6–8. In our comparative genome analysis, a
combination of three representative orders (Piperales, Magno-
liales and Laurales) of magnoliids indicates that magnoliids
are sisters to the monocots–eudicots clade, consistent with
research into the Liriodendron genome6, the PPA tree30 and
APG IV5. In addition, Piper nigrum is placed as a sister to
Magnoliales–Laurales among the magnoliids (Fig. 2c). According
to Soltis et al.8, the inclusion of complete angiosperm lineages
that were missing in the present study (Nymphaeales, Aus-
trobaileyales, Chloranthales, Ceratophyllales and Canellales in
magnoliids) will facilitate a better understanding of the phylo-
genetic relationships of these diverse and long-isolated lineages of
flowering plants.

The current assembly of the black pepper genome provides
insights into the underpinning genetic changes following WGD
events that are responsible for the unique biosynthesis of piper-
ine. Our current study has focused on analysing the biological
processes related to piperine biosynthesis and provides useful
information on the significant expansion of gene families that are
involved in piperine synthesis. Most notable is the discovery of
the berry-specific expression of a series of relevant genes,
including LDC genes involved in lysine metabolism; GTF, CYP
and HCT genes in the phenylpropanoid pathway, and BAHD-AT
and SCPL-AT genes (Fig. 4a). The phenylpropanoid, amino acid
pathways and ATs are ubiquitous in plant secondary metabolism.
Coffea canephora, Malus domestica, Vitis vinifera, Theobroma
cacao, Camellia sinensis, Ananas comosus and Citrus sinensis are
rich in derivatives of phenylpropanoids, and these species syn-
thesise secondary metabolites through the convergence of the two
metabolic pathways described above. One example is Capsicum
(chili pepper) species, in which capsaicinoids are derived from the
phenylpropanoid and branched-chain fatty acid pathways43. In
addition, the precursors of nicotine alkaloids in tobacco (Nicoti-
ana) species are derived from terpenoid and amino metabolism44.
Lysine-derived quinoline alkaloids are synthesised through the
convergence of phenylpropanoid and lysine metabolism in
Nelumbo nucifera, Papaver somniferum, Macleaya cordata27 and
Carica papaya45. However, piperine synthesis originates from the
decarboxylation and amine oxidation of lysine, which distin-
guishes it from the polymerisation of two tyrosines in benzyli-
soquinoline alkaloid biosynthesis (Fig. 4i). Finally, two precursors
derived from phenylpropanoid and lysine metabolism are

catalysed by acyltransferase to produce piperine, and the asso-
ciated genes exhibit gene expansion and high, berry-specific
transcriptional activity in black pepper. The convergence of
phenylpropanoid and lysine metabolism, specifically the dec-
arboxylation and amine oxidation of lysine, and acyl transfor-
mation represent the characteristic features of piperine synthesis
(Fig. 4i), and we describe the genetic and evolutionary basis of
these features in this study.

Sequencing the black pepper genome has advanced our
understanding of the unique piperine biochemistry of black
pepper. Our study therefore provides valuable insights that may
serve as a foundation for future research on Piperales taxonomy
and piperine biosynthesis, leading to a better understanding of
the evolution, phytochemistry and ecology of the Piper genus.

Methods
Leaf sample collection and DNA library construction. Fresh leaf tissues from
single-living black pepper plants were collected to extract genomic DNA and RNA
(Supplementary Note 1). For genome survey analysis, a short paired-end Illumina
DNA library with a 350 bp insert size (137 × coverage) was sequenced on the
Illumina HiSeq 2500 sequencer. For PacBio Sequel sequencing, 50 µg of high-
molecular-weight (HMW) genomic DNA were prepared to generate five standard
SMRTbell libraries with 20 Kb insertions. PacBio long reads were sequenced using
15 SMRTcells on the PacBio Sequel System (Pacific Biosciences) with SMRTbell
Template Prep Kit 1.0-SPv3 (Pacific Biosciences). HMW genomic DNA was also
prepared for 10 × Genomics libraries according to the manufacturer’s protocol
(Chromium Genome v1, PN-120229). Sequencing-read libraries were sequenced
using HiSeq 2500 with 2 × 150 paired-end reads to generate ~96 Gb (120 × cov-
erage) raw data.

Transcriptome library preparation and sequencing. RNA-seq experiments
(three biological replicates) used RNA extracted from different organs of the black
pepper Cv. Reyin1 (root, stem, leaf, flower and berries at four different stages:
2 months after pollination (MAP), 4 MAP, 6 MAP and 8 MAP) (Supplementary
Fig. 35). Prepared libraries were sequenced on the Illumina HiSeq 2500 platform
according to the manufacturer’s recommended protocol. We generated an average
of 28.0 million paired-end reads for each sample.

RNA samples from black pepper Cv. Reyin1 leaves were also prepared for full-
length transcriptome sequencing using the PacBio Iso-Seq protocol. The synthetic
full-length cDNAs were selected to prepare a 20 Kb SMRTbell Template library for
sequencing on a PacBio Sequel instrument.

Preprocessing of PacBio Iso-Seq reads. The PacBio Iso-Seq3 pipeline (https://
github.com/PacificBiosciences/IsoSeq3) was applied to obtain high-confidence
transcriptome reads through the CCS (circular consensus sequence), classify,
cluster and polishing process. The high-quality, full-length and consistent isoform
transcript sequences were prepared for subsequent analysis.

De novo genome assembly. The errors in the PacBio single-molecule real-time
(SMRT) sequences were initially corrected using Canu46 with the default para-
meters. Because of heterozygosity and repeated sequences, FALCON12 was sub-
sequently employed for de novo assembly using the corrected reads to produce
primary contigs (p-Contigs). Then, FALCON-Unzip used the p-Contigs to perform
phasing and directional classification of the heterozygosity from the initial
assembly into updated primary Contigs (p-Contigs) and haplotigs (h-Contigs).
Finally, the postprocessing step was used to polish using Arrow47 based on cor-
rected PacBio long reads. The 10X Genomics Linked-reads were mapped to the
consensus assembly described above using BWA-MEM48 with a default parameter.
Then, fragScaff13 was used to extend contigs into initiatory scaffolds (Piper_ni-
grum_v1) according to the recommended scripts and processes of the fragScaff
software.

BioNano optical maps and hybrid assembly. Total of 750 ng of fresh young leaf
tissues were collected from living plant material following BioNano Genomics
guidelines. HMW genomic DNA with a fragment distribution ranging from 150 Kb
to 2Mb was fluorescently labelled using single-sequence-specific DLE-1 endonu-
cleases (BioNano Genomics) based on the BioNano Direct Label and Stain (DLS)
technology. The fluorescently labelled DNA was stained for at least two hours at
room temperature and then loaded onto a Saphyr chips to scan on the BioNano
Genomics Saphyr System by the sequencing provider Berry Genomics Corporation.

BioNano data were first filtered based on molecule length, mapping rate and
label density using BioNano Solve (https://bionanogenomics.com/wp-content/
uploads/2017/10/30182-Bionano-Tools-Installation-Guide.pdf). Non-haplotype de
novo assembly was performed in BioNano Solve using filtered high-quality BNX
files based on the Overlap–Layout–Consensus paradigm. The 350,823 filtered
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DLE-1 molecules (N50 length 0.288 Mb) produced 547 genome maps with an N50
of 3.8 Mb for a total map length of 1304Mb. The de novo assembly containing
BioNano molecules was combined with Piper_nigrum_v1 input into the BioNano
Solve hybrid scaffolding pipeline to produce a hybrid scaffold assembly with -T
p-value set to 1e-10 in both initial alignment, final alignment and hybrid scaffold
steps, and more stringent value of 1e−11 for both the ‘merge_Tvalue’ and
‘T_cutoff’ p-value thresholds. Finally, the hybrid assembly had an N50 of 7.8 Mb,
and the longest scaffold was 25.8 Mb. This stage of assembly was term
Piper_nigrum_v2 (Supplementary Note 1).

Scaffolding with Lachesis. About 5 g of fresh young leaf tissue from living plants
were macerated and crosslinked using paraformaldehyde to capture the interacting
DNA segments. Chromatin was subsequently digested with HindIII (NEB), and
biotinylated nucleotides were used to fill in the resulting sticky ends. Following
ligation, a protease was used to remove the crosslinks. Finally, genomic DNA was
extracted, sheared into 350 bp fragments using a focused ultrasonicator (Covaris,
Woburn, USA), and fragments into which biotin had been incorporated were
pulled down with streptavidin-coated magnetic beads based. Purified DNA was
then prepared and sequenced on an Illumina HiSeq instrument according to the
manufacturer’s recommendations.

Hi-C paired-end reads were trimmed to remove low-quality bases and Illumina
adapter sequences using Trimmomatic (http://www.usadellab.org/cms/?page=
trimmomatic), and then checked with HiCUP49. The scaffolding began by aligning
the clean Hi-C read pairs to Piper_nigrum_v2 using the aln and sampe commands
from BWA48 with default parameters. Then, Lachesis (https://github.com/
shendurelab/LACHESIS) with the cluster number set to 26 and other parameters
set to the default values were used to cluster, order and orient the scaffolds. The
oriented scaffolds were used to build the interaction matrices with juicer (https://
github.com/aidenlab/juicer), inspect and manually correct with Juicebox assembly
tools (https://github.com/aidenlab/Juicebox).

Post-processing. We also performed an additional round of gap filling to elim-
inate the gaps generated in the final scaffolding steps using PBJelly (https://github.
com/alvaralmstedt/Tutorials/wiki/Gap-closing-with-PBJelly) with PacBio subreads.
The assembled scaffolds were further polished with Pilon (https://github.com/
broadinstitute/pilon) using Illumina paired-end reads to correct base errors. The
ultimate assembly consisted of 45 scaffolds with a total size of 761.2 Mb and a
scaffold N50 of 29.8 Mb. This assembly is designated as final version of black
pepper genome: Piper_nigrum_v3.

For an assessment of completeness, the Piper_nigrum_v3 genome was subjected
to a BUSCO analysis16 and compared with the Viridiplantae_odb10 database
(Update date: 2017–12–01) with the --long parameter. In addition, Core Eukaryotic
Genes (CEGs) were also aligned to Piper_nigrum_v3 using CEGMA15 with the
default parameters.

Genomic annotation. We used a combination of the de novo repeat library and
homology-based strategies to identify repeat structures. TransposonPSI (http://
transposonpsi.sourceforge.net/) was used to identify transposable elements; Gen-
omeTools suite50 (LTRharvest and LTRdigest) was used to annotate LTR-RTs with
protein HMMs from the Pfam (Supplementary Table 6) database (Supplementary
Note 2). Then, a de novo repeat library of black pepper was built using Repeat-
Modeler software (http://www.repeatmasker.org/RepeatModeler/), and each of the
three repeat libraries was classified with RepeatClassifier, followed by Merge and
de-redundancy using USEARCH (https://www.drive5.com/usearch/) with ≥ 80%
identity. Subsequently, the non-redundant repeat library was analysed using
BLASTX to search the transposase database (-evalue 1e-10) and non-redundant
plant protein databases (-evalue 1e-10) to remove protein-coding genes. Unknown
repetitive sequences were further classified used CENSOR (https://www.girinst.org/
censor/index.php). Then, the de novo repeat library was used to discover and mask
the assembled genome with RepeatMasker (http://www.repeatmasker.org/
RMDownload.html) with the -xsmall parameter.

For gene structure annotations, the Illumina RNA-seq data from black pepper
Cv. Reyin1 were aligned to repeat-softmasked genome using GSNAP51, which
generates intron hints with other aligned hints (ESTs, proteins and nucleotides
from NCBI) for gene structure annotation. For PacBio Iso-Seq reads, GMAP52, a
splice-aware aligner, was used to align the high-quality isoform transcripts to the
repeat-softmasked genome for the detection of new isoforms.

The structural annotation of protein-coding genes was performed using
BRAKER218, which integrates GeneMark-ET and AUGUSTUS by combining the
aligned resulted from ab initio predictions, homologous protein mapping, RNA-seq
mapping and GMAP PacBio mapping to produce the final gene set. Gene models
from these different approaches were combined using the EVM software (version
1.1.1)53. Moreover, tRNA loci, rRNA, lncRNAs, snRNA and miRNAs and non-
protein-coding genes were annotated by performing homologous searching and
deep-learning analyses across the assembled genome sequence (Supplementary
Note 3).

Functional annotation of protein-coding genes. Predicted genes were subjected
to functional annotation by performing a BLASTP homologue search against the

UniProtKB Viridiplantae database, and the NCBI non-redundant protein database
with an e-value threshold of 1e-10. In addition, a comprehensive annotation was
also achieved using InterProScan (v5.31–70.0)54, which includes motifs/domains
prediction, functional classifications, protein family identification, transmembrane
topology, predicted signal peptides and GO annotations. KAAS (https://www.
genome.jp/kegg/kaas/) and KOBAS 3.0 (http://kobas.cbi.pku.edu.cn/) were used to
search the KEGG GENES database for KO (KEGG Orthology) assignments and
generating a KEGG pathway membership. PlantTFcat55 was also used to system-
atically analyse InterProScan domain and categorise possible chromatin regulators
(CRs), transcription factors (TFs) and other transcriptional regulators (TRs) in the
current assembly. The plantiSMASH version 3.0.5-a04b4cd56 software was used to
cluster the plant-specific secondary metabolism genes.

Transcriptome assembly and gene expression analysis. RNA-seq reads from
three replicates of the eight tissue types were preprocessed using Trimmomatic by
removing adaptor sequences and filtering low-quality reads. HISAT2 was used to
align the samples with the genome for genome-guided transcript assembly using
StringTie57.

Read counts extracted from StringTie were filtered using the sva R package to
decrease batch effects and hidden variables. Differentially expressed genes (DEGs)
were detected using DESeq258, and calculated based on absolute log2 transformed
fold-change values greater than 2 and p-value of 0.05 using the
Benjamini–Hochberg correction59. A gene set enrichment analysis (GSEA)33 was
performed to determine significant gene sets, and the WGCNA package34 in R was
applied to perform a multivariate analysis of gene co-expression modules. See
Supplementary Note 6 for additional details.

Synteny analyses. For estimation of the time of whole-genome duplication events,
BLASTP reciprocal best hit (RBH) pairwise sequences of paralogous (within the
species genome) and orthologous relationships (between black pepper and other
species) were identified and the synonymous divergence levels (Ks) were calculated
using the YN model in KaKs_Calculator v2.060. The raw Ks distributions were used
to fit a mixture model of Gaussian distributions and thus derive the mean Ks values
between paralogs and orthologues in R package Mclust 5. The Ks distributions of
orthologues between black pepper and other species were adopted to compare the
relative substitution rates in different species by plotting with the ggplot2 package.
The divergence time of black pepper was calculated by combining the Ks value with
synonymous substitutions at each site per year (r) for magnoliids through the
formula: divergence date (T)= Ks/2r. Synteny and syntenic block gene pair ana-
lyses were performed using MCScanX and the CoGe Comparative Genomics
Platform (Supplementary Note 4).

Comparative genomics for phylogenomic and gene family. Putative orthologous
genes were constructed from nine eudicots, three monocots, three magnoliids,
Amborella, two gymnosperms and the outgroups Selaginella moellendorfii and
Physcomitrella patens were inferred using OrthoMCL61 and compared with protein
genes from the current assembly genome of black pepper to investigate the evo-
lution and phylogenetic placement of black pepper among seed plants (Supple-
mentary Note 7). The total of one-to-one orthologous gene sets were identified and
extracted for alignment using muscle62 and further trimmed using Gblocks 0.91b63.
A maximum likelihood phylogenetic tree was constructed using concatenated
alignment with RAxML v8.2.1264 and the PROTGAMMAILGF model to auto-
matically determine the best reasonable tree by conducting 1000 bootstrap repli-
cates. The maximum likelihood tree was used as a starting tree to estimate species
divergence time using BEAST v2.1.2 (Bayesian Evolutionary Analysis Sampling
Trees2)65. A Calibrated Yule model with a Strict Clock rate and gamma hyper-
parameter of prior distribution were used to estimate the divergence time. Spe-
ciation event dates for Ananas comosus-Oryza sativa (Normal model, Mean: 105
MYA, Sigma: 0.5) and Liriodendron chinense-Cinnamomum kanehirae (Normal
model, Mean: 118 MYA, Sigma: 0.5), which were obtained using Timetree web
service (http://www.timetree.org/), Papaver somniferum-Nelumbo nucifera (Nor-
mal model, Mean: 125 MYA, Sigma: 0.5)22, monocots–eudicots (Log Normal
model, Mean: 150 MYA, Std dev: 4MYA), were used to calibrate the divergence
time. The Markov chain Monte–Carlo analysis was repeated 10,000,000 times with
1000 steps.

The orthologous genes and phylogenetic tree topology inferred from the
OrthoMCL analysis were taken into CAFE v4.266, which employed a random birth
and death model, to estimate the size of each family at each ancestral node and
obtain a family-wise p-value (based on a Monte–Carlo re-sampling procedure) to
indicate whether has a significant expansion or contraction occurred in each gene
family across species

Identification of alkaloid and piperine biosynthesis genes. Predicted protein-
coding genes from the black pepper genome were aligned against annotated
alkaloid and piperine biosynthesis pathway genes in the KEGG database by
BLASTP with an e-value cut-off of 1e-5, identity > 50% and alignment coverage ≥
50%. In addition, all orthologous gene sequences involved in alkaloid and piperine
biosynthesis were also captured from comparative genomics analyses, and
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corresponding gene functions were verified by searching the published literature
and the NCBI and UniProt databases.

Sequence evolution of gene families. Gene families derived from OrthoMCL
identification were aligned using ClustalW (http://www.clustal.org/clustal2) and
trimmed with trimAl (v1.2) (http://trimal.cgenomics.org/introduction). Evidence
of selection across genes within gene families was tested using a multispecies
alignment in HyPhy with the datamonkey webserver67. The genetic algorithm
recombination detection method68 was performed to detect breakpoints at
nucleotide sites. Evidence of positive selection and episodic selection sites in genes
was inferred by estimating the rates of synonymous and non-synonymous changes
at each site in the aligned sequence through single likelihood ancestor counting
(SLAC)69 and a mixed effects model of episodic diversifying selection (MEME)70

(Supplementary Note 8).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data supporting the findings of this work are available within the paper and its

Supplementary Information files. A reporting summary for this Article is available as a

Supplementary Information file. The data sets generated and analysed during this study

are available from the corresponding author upon request. All the raw sequencing data

generated during this study have been deposited at NCBI as a BioProject under accession

PRJNA529758. Transcriptome sequence reads have been deposited in the SRA database

under BioProject number PRJNA529760. The genome assemblies and annotation files

are available at the website http://cotton.hzau.edu.cn/EN/download.php. The source data

underlying Figs. 1, 2a, b, 3 and 4a–h are provided as a Source Data file.

Received: 28 March 2019; Accepted: 16 September 2019;

References
1. Ravindran, P. Black pepper: Piper nigrum (CRC Press, 2003).
2. Soltis, D. et al. Phylogeny and Evolution of the Angiosperms: Revised and

Updated Edition (University of Chicago Press, 2018).
3. Zeng, L. et al. Resolution of deep angiosperm phylogeny using conserved

nuclear genes and estimates of early divergence times. Nat. Commun. 5, 4956
(2014).

4. Sauquet, H. & Magallón, S. Key questions and challenges in angiosperm
macroevolution. New Phytologist 219, 1170–1187 (2018).

5. Chase, M. et al. An update of the Angiosperm Phylogeny Group classification
for the orders and families of flowering plants: APG IV. Botanical J. Linn. Soc.
181, 1–20 (2016).

6. Chen, J. et al. Liriodendron genome sheds light on angiosperm phylogeny and
species–pair differentiation. Nat. Plants 5, 18–25 (2019).

7. Chaw, S.-M. et al. Stout camphor tree genome fills gaps in understanding of
flowering plant genome evolution. Nat. Plants 5, 63–73 (2019).

8. Soltis, D. E. & Soltis, P. S. Nuclear genomes of two magnoliids. Nat. Plants 5,
6–7 (2019).

9. Meghwal, M. & Goswami, T. K. Piper nigrum and Piperine: an update.
Phytother. Res. 27, 1121–1130 (2013).

10. Kharbanda, C. et al. Novel piperine derivatives with antidiabetic effect as
PPAR–γ agonists. Chem. Biol. Drug Des. 88, 354–362 (2016).

11. Manayi, A., Nabavi, S. M., Setzer, W. N. & Jafari, S. Piperine as a potential
anti-cancer agent: a review on preclinical studies. Curr. medicinal Chem. 25,
4918–4928 (2018).

12. Chin, C. S. et al. Phased diploid genome assembly with single-molecule real-
time sequencing. Nat. Methods 13, 1050–1054 (2016).

13. Adey, A. et al. In vitro, long-range sequence information for de novo
genome assembly via transposase contiguity. Genome Res. 24, 2041–2049
(2014).

14. Samuel, R. & Morawetz, W. Chromosomal evolution within Piperaceae. Plant
Syst. Evol. 166, 105–117 (1989).

15. Parra, G., Bradnam, K. & Korf, I. CEGMA: a pipeline to accurately
annotate core genes in eukaryotic genomes. Bioinformatics 23, 1061–1067
(2007).

16. Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov,
E. M. BUSCO: assessing genome assembly and annotation completeness with
single-copy orthologs. Bioinformatics 31, 3210–3212 (2017).

17. Kim, N.-S. The genomes and transposable elements in plants: are they friends
or foes? Genes Genom. 39, 359–370 (2017).

18. Hoff, K. J., Lange, S., Lomsadze, A., Borodovsky, M. & Stanke, M. BRAKER1:
unsupervised RNA-Seq-based genome annotation with GeneMark-ET and
AUGUSTUS. Bioinformatics 32, 767–769 (2015).

19. Yandell, M. & Ence, D. A beginner’s guide to eukaryotic genome annotation.
Nat. Rev. Genet. 13, 329–342 (2012).

20. Adams, K. Genomic clues to the ancestral flowering plant. Science 342,
1456–1457 (2013).

21. Jiao, Y. et al. Ancestral polyploidy in seed plants and angiosperms. Nature
473, 97–100 (2011).

22. Guo, L. et al. The opium poppy genome and morphinan production. Science
362, 343–347 (2018).

23. Denoeud, F. et al. The coffee genome provides insight into the convergent
evolution of caffeine biosynthesis. Science 345, 1181–1184 (2014).

24. Badouin, H. et al. The sunflower genome provides insights into oil
metabolism, flowering and Asterid evolution. Nature 546, 148–152 (2017).

25. Jaillon, O. et al. The grapevine genome sequence suggests ancestral
hexaploidization in major angiosperm phyla. Nature 449, 463–467 (2007).

26. Salse, J. Ancestors of modern plant crops. Curr. Opin. Plant Biol. 30, 134–142
(2016).

27. Liu, X. et al. The genome of medicinal plant Macleaya cordata provides new
insights into benzylisoquinoline alkaloids metabolism. Mol. Plant 10, 975–989
(2017).

28. Jaramillo, M. A. & Manos, P. S. Phylogeny and patterns of floral diversity in
the genus Piper (Piperaceae). Am. J. Bot. 88, 706–716 (2001).

29. Cui, L. et al. Widespread genome duplications throughout the history of
flowering plants. Genome Res. 16, 738–749 (2006).

30. Li, H.-T. et al. Origin of angiosperms and the puzzle of the Jurassic gap. Nat.
Plants 5, 461–470 (2019).

31. Zhou, J. et al. Molecular structure and phylogenetic analyses of complete
chloroplast genomes of two Aristolochia medicinal species. Int. J. Mol. Sci. 18,
1839 (2017).

32. Geisler, J. G. & Gross, G. G. The biosynthesis of piperine in Piper nigrum.
Phytochemistry 29, 489–492 (1990).

33. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based
approach for interpreting genome-wide expression profiles. Proc. Natl Acad.
Sci. USA 102, 15545–15550 (2005).

34. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation
network analysis. BMC Bioinforma. 9, 559 (2008).

35. Ehlting, J., Hamberger, B., Million-Rousseau, R. & Werck-Reichhart, D.
Cytochromes P450 in phenolic metabolism. Phytochemistry Rev. 5, 239–270
(2006).

36. Batard, Y. et al. Regulation of the cinnamate 4-hydroxylase (CYP73A1) in
jerusalem artichoke tubers in response to wounding and chemical treatments.
Plant Physiol. 113, 951–959 (1997).

37. Laurent, H., Stephane, M., Francoise, M., Pierrette, G. & Michel, L.
Purification, cloning, and properties of an acyltransferase controlling
shikimate and quinate ester intermediates in phenylpropanoid metabolism. J.
Biol. Chem. 278, 95–103 (2003).

38. Hoffmann, L. et al. Silencing of hydroxycinnamoyl-coenzyme A shikimate/
quinate hydroxycinnamoyltransferase affects phenylpropanoid biosynthesis.
Plant Cell 16, 1446–1465 (2004).

39. Bunsupa, S. et al. Lysine decarboxylase catalyzes the first step of quinolizidine
alkaloid biosynthesis and coevolved with alkaloid production in leguminosae.
Plant Cell 24, 1202–1216 (2012).

40. Bontpart, T., Cheynier, V., Ageorges, A. & Terrier, N. BAHD or SCPL
acyltransferase? What a dilemma for acylation in the world of plant phenolic
compounds. New Phytologist 208, 695–707 (2015).

41. Dyer, L. A. & Palmer, A. D. Piper: A Model Genus for Studies of
Phytochemistry, Ecology, and Evolution (Springer, 2004).

42. Empari, K. & Sim, S. In National Conference on Pepper in Malaysia (Kuching,
Sarawak (Malaysia), Universiti Pertanian Malaysia, 16–17 December 1985).

43. Aza-González, C., Núñez-Palenius, H. G. & Ochoa-Alejo, N. Molecular
biology of capsaicinoid biosynthesis in chili pepper (Capsicum spp.). Plant
Cell Rep. 30, 695–706 (2011).

44. The Tomato Genome, C. et al. The tomato genome sequence provides insights
into fleshy fruit evolution. Nature 485, 635–641 (2012).

45. Bennett, R. N., Kiddle, G. & Wallsgrove, R. M. Biosynthesis of
benzylglucosinolate, cyanogenic glucosides and phenylpropanoids in Carica
papaya. Phytochemistry 45, 59–66 (1997).

46. Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive k-
mer weighting and repeat separation. Genome Res. 27, 722–736 (2017).

47. Chin, C.-S. et al. Nonhybrid, finished microbial genome assemblies from long-
read SMRT sequencing data. Nat. Methods 10, 563–569 (2013).

48. Li, H. Aligning sequence reads, clone sequences and assembly contigs with
BWA-MEM. arXiv Preprint arXiv: 1303.3997 (2013).

49. Wingett, S. et al. HiCUP: pipeline for mapping and processing Hi-C data.
F1000res. 4, 1310 (2015).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12607-6

10 NATURE COMMUNICATIONS |         (2019) 10:4702 | https://doi.org/10.1038/s41467-019-12607-6 | www.nature.com/naturecommunications

http://www.clustal.org/clustal2
http://trimal.cgenomics.org/introduction
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA529758
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA529760
http://cotton.hzau.edu.cn/EN/download.php
www.nature.com/naturecommunications


50. Gremme, G., Steinbiss, S. & Kurtz, S. GenomeTools: a comprehensive software
library for efficient processing of structured genome annotations. IEEE/ACM
Trans. Comput. Biol. Bioinform. 10, 645–656 (2013).

51. Wu, T. D. & Nacu, S. Fast and SNP-tolerant detection of complex variants and
splicing in short reads. Bioinformatics 26, 873–881 (2010).

52. Wu, T. D. & Watanabe, C. K. GMAP: a genomic mapping and alignment
program for mRNA and EST sequences. Bioinformatics 21, 1859–1875 (2005).

53. Haas, B. J. et al. Automated eukaryotic gene structure annotation using
EVidenceModeler and the program to assemble spliced alignments. Genome
Biol. 9, R7 (2008).

54. Jones, P. et al. InterProScan 5: genome-scale protein function classification.
Bioinformatics 30, 1236–1240 (2014).

55. Dai, X., Sinharoy, S., Udvardi, M. & Zhao, P. X. PlantTFcat: an online plant
transcription factor and transcriptional regulator categorization and analysis
tool. Bmc Bioinforma. 14, 321 (2013).

56. Kautsar, S. A., Suarez Duran, H. G., Blin, K., Osbourn, A. & Medema, M. H.
plantiSMASH: automated identification, annotation and expression analysis of
plant biosynthetic gene clusters. Nucleic Acids Res. 45, W55–W63 (2017).

57. Pertea, M., Kim, D., Pertea, G. M., Leek, J. T. & Salzberg, S. L. Transcript-level
expression analysis of RNA-seq experiments with HISAT, StringTie and
Ballgown. Nat. Protoc. 11, 1650–1667 (2016).

58. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

59. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical
and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).

60. Wang, D., Zhang, Y., Zhang, Z., Zhu, J. & Yu, J. KaKs_Calculator 2.0: a toolkit
incorporating gamma-series methods and sliding window strategies. Genomics
Proteom. Bioinforma. 8, 77–80 (2010).

61. Li, L., Jr, S. C. & Roos, D. S. OrthoMCL: identification of ortholog groups for
eukaryotic genomes. Genome Res. 13, 2178–2189 (2003).

62. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and
high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

63. Talavera, G. & Castresana, J. Improvement of phylogenies after removing
divergent and ambiguously aligned blocks from protein sequence alignments.
Syst. Biol. 56, 564–577 (2007).

64. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-
analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

65. Barido-Sottani, J. et al. Taming the BEAST-a community teaching material
resource for BEAST 2. Syst. Biol. 67, 170–174 (2018).

66. De Bie, T., Cristianini, N., Demuth, J. P. & Hahn, M. W. CAFE: a
computational tool for the study of gene family evolution. Bioinformatics 22,
(1269–1271 (2006).

67. Delport, W., Poon, A. F., Frost, S. D. & Kosakovsky Pond, S. L. Datamonkey
2010: a suite of phylogenetic analysis tools for evolutionary biology.
Bioinformatics 26, 2455–2457 (2010).

68. Kosakovsky Pond, S. L., Posada, D., Gravenor, M. B., Woelk, C. H. & Frost, S.
D. W. GARD: a genetic algorithm for recombination detection. Bioinformatics
22, 3096–3098 (2006).

69. Kosakovsky Pond, S. L. & Frost, S. D. W. Not so different after all: a
comparison of methods for detecting amino acid sites under selection. Mol.
Biol. Evolution 22, 1208–1222 (2005).

70. Murrell, B. et al. Detecting individual sites subject to episodic diversifying
selection. PLoS Genet. 8, e1002764 (2012).

Acknowledgements
We thank Prof. Kai Ye of Xi’an Jiaotong University for suggestions on phylogenetic

analysis. We also thank Prof. Jisen Shi of Nanjing Forestry University for providing the

timely annotation data for the Liriodendron genome. This research was supported by the

Natural Science Foundation of Hainan Province of China (No. 2019CXTD417), Central

Public-interest Scientific Institution Basal Research Fund for Chinese Academy of Tro-

pical Agricultural Sciences (No. 1630142019001) and the Programme of Introducing

Talents of Discipline to Universities in China (grant No. B14032).

Author contributions
C.H. and S.J. designed and supervised the research. Z.X. performed the genome

assemblies and annotation. Z.X. and L.H. performed the transcriptome and phylogenetic

analysis. L.H., H.W., X.Q., L.Y. and L.T. collected materials for sequencing and generated

transcriptome data. Z.X., L.H., R.F. and B.W. analysed the RNA-seq data. M.W., D.Y.,

S.S., W.L., C.S., H.D., J.W., K.L. and X.Z. provided constructive comments and sugges-

tions on data analysis. Z.X. and L.H. wrote the paper with input from all other authors.

All authors approved the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-

019-12607-6.

Correspondence and requests for materials should be addressed to C.H. or S.J.

Peer review information Nature Communications thanks Doil Choi, Douglas Soltis and

Robert VanBuren for their contribution to the peer review of this work. Peer reviewer

reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made. The images or other third party

material in this article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons license and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this license, visit http://creativecommons.org/

licenses/by/4.0/.

© The Author(s) 2019

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12607-6 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:4702 | https://doi.org/10.1038/s41467-019-12607-6 | www.nature.com/naturecommunications 11

https://doi.org/10.1038/s41467-019-12607-6
https://doi.org/10.1038/s41467-019-12607-6
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	The chromosome-scale reference genome of black pepper provides insight into piperine biosynthesis
	Results
	Genome assembly and main features
	Comparative genomic and phylogenomic analyses
	Evolution piperine biosynthesis-associated genes
	Upregulation of piperine biosynthesis-related genes
	Purifying selection of piperine biosynthesis gene families

	Discussion
	Methods
	Leaf sample collection and DNA library construction
	Transcriptome library preparation and sequencing
	Preprocessing of PacBio Iso-Seq reads
	De novo genome assembly
	BioNano optical maps and hybrid assembly
	Scaffolding with Lachesis
	Post-processing
	Genomic annotation
	Functional annotation of protein-coding genes
	Transcriptome assembly and gene expression analysis
	Synteny analyses
	Comparative genomics for phylogenomic and gene family
	Identification of alkaloid and piperine biosynthesis genes
	Sequence evolution of gene families
	Reporting summary

	Data availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information


