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The neuroscience of human decision-making has focused on localizing brain activity

correlating with decision variables and choice, most commonly using functional MRI

(fMRI). Poor temporal resolution means these studies are agnostic in relation to how

decisions unfold in time. Consequently, here we address the temporal evolution of

neural activity related to encoding of risk using magnetoencephalography (MEG), and

show modulations of electromagnetic power in posterior parietal and dorsomedial

prefrontal cortex (DMPFC) which scale with both variance and skewness in a lottery,

detectable within 500 ms following stimulus presentation. Electromagnetic responses

in somatosensory cortex following this risk encoding predict subsequent choices.

Furthermore, within anterior insula we observed early and late effects of subject-specific
risk preferences, suggestive of a role in both risk assessment and risk anticipation during

choice. The observation that cortical activity tracks specific and independent components

of risk from early time-points in a decision-making task supports the hypothesis that

specialized brain circuitry underpins risk perception.
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INTRODUCTION

Risk describes uncertain scenarios wherein chosen actions yield a
range of possible outcomes that are quantified by different statisti-

cal features in a distribution. On the one hand variance measures

outcome spread (uncertainty). On the other hand skewness mea-
sures asymmetry, where positive skewness describes distributions

with occasional returns well-above average (e.g., casino gambles
with high potential winnings) and negative skewness describes

distributions with occasional poor outcomes (e.g., rare catas-

trophic occurrences during routine surgery) (Coombs, 1960;
Jullien and Salanie, 2000). Trading off these distinct aspects of

risk against potential returns is a central component of value-

based choice (Coombs, 1960; Weber and Johnson, 2008), making
it likely that evolution has endowed specialized mechanisms for

this evaluation.

Considerable evidence indicates involvement of specific cor-
tical and subcortical neural regions in decision-making under

risk, ranging from electrophysiological studies in animals (e.g.,

Fiorillo et al., 2003), lesion-based and neuromodulatory stud-
ies (e.g., Knoch et al., 2006; Clark et al., 2008; St. Onge and

Floresco, 2010) to neuroimaging investigations in humans with

positron emission tomography (PET) (e.g., Ernst et al., 2002),
and fMRI (e.g., Critchley et al., 2001; Kuhnen and Knutson, 2005;

McCoy and Platt, 2005; Preuschoff et al., 2006; Tobler et al., 2007;

Christopoulos et al., 2009; Venkatraman et al., 2009; Mohr et al.,
2010b). Recently, several fMRI studies have highlighted scaled

responses to different components of statistical risk in particular

in posterior parietal and prefrontal cortices (Huettel et al., 2005;

Smith et al., 2009; Xue et al., 2009; Symmonds et al., 2010, 2011;

Bach and Dolan, 2012). In contrast to previous electroencephalo-

graphic or MEG studies of economic decision-making focused on
the response to reward feedback (e.g., Gehring and Willoughby,

2002; Hewig et al., 2007), here we investigated the evaluation
stage of an economic decision. We capitalize on the temporal

fidelity of MEG to study the chronometry of risk responses within

these identified parietal and prefrontal regions at a sub-second
timescale.

While fMRI allows precise localization of risk-sensitive net-

works, poor temporal resolution (Kim et al., 1997) limits its
ability to inform the temporal sequence of risk appraisal. This

is an important lacuna, as risky choices can be evaluated within

1–3 s (Kuhnen and Knutson, 2005; Huettel et al., 2006; Xue et al.,
2009), which mandates rapid neural processing of salient sta-

tistical features prior to response generation. Moreover, neural

responses to risk observed with fMRI might represent an ini-
tial encoding of statistical risk or alternatively may represent a

risk anticipation signal after option evaluation and any motor

preparation signal. To disambiguate these two possibilities we
aimed to first test whether it was possible to detect magnetoen-

cephalographic signal changes correlating with risk in the initial

evaluation phase of a decision-making task, and secondly to
demonstrate whether these signals are detected prior to, or fol-

lowing the formation of signals correlating with an individual’s

choices. If risk perception is supported by specialized cortical rep-
resentation, leading to option evaluation and choice, we expect

early variance and skewness processing before or concurrent with
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signal changes predictive of choice. We hypothesized that these
signals would be evident in already identified parietal and pre-

frontal candidate regions. Moreover, an influence of individual

risk preference on choice-related signals has also been reported
in anterior insula (Christopoulos et al., 2009; Tobler et al., 2009).

An early effect of subjective preferences in insula would support

an integral role in risk evaluation (Preuschoff et al., 2006), while
a late effect would corroborate the alternative theory that insula

is involved in an affective anticipation of a risky choice (Kuhnen

and Knutson, 2005).
Here we show early variance and skewness cortical responses

within parietal and prefrontal candidate regions, as well as

preference-dependent activity in anterior insula. Thus, our find-
ings suggest that specialized brain circuitry underpins rapid

perception of discrete aspects of risk.

MATERIALS AND METHODS

PARTICIPANTS

The study was approved by the Institute of Neurology (University

College London) Ethics Committee. Seventeen subjects (mean
age: 31; age range: 25–50; 5 male) were recruited for the experi-

ment. One (female) subject was excluded because of metal artifact

due to dental work, and 1 (male) subject excluded because of
excessive drowsiness and failure to make button-press responses

during the experiment.

TASK

To dissociate different components of risk, in terms of dispersion

(variance) and asymmetry of outcomes (skewness), we adapted

a previously described decision-making task (Symmonds et al.,
2011) that controlled for the distribution of possible outcomes.

The task, by design, ensured variance and skewness of a set

of lotteries could be manipulated independently. Consequently,
variance and skewness of gambles were orthogonal factors and

this enabled us to test whether neural activity evoked by vari-

ance could be segregated in time and place from that evoked by
skewness.

Participants were required to choose between taking a “sure”

(fixed) amount of money or elect to “gamble” (choosing to play
a lottery with four potential outcomes). Gambles were repre-

sented as pie-charts, where variance and skewness of outcomes

varied over a range, while the expected value of gambles was
kept constant (Figures 1A,B). On each trial, we recorded choices

and simultaneous neural responses (i.e. MEG signal changes)

as a function of these changing variables, which allowed us to
then determine both when, and where, within a priori regions of

interest risk signals are represented.

INDEPENDENT MANIPULATION OF VARIANCE AND SKEWNESS

We constructed a stimulus set of 252 lotteries (each presented

once) where variance and skewness were independent and var-

ied over a range. For every level of variance (16 levels), we
independently varied skewness (16 levels, 8 positively skewed,

8 negatively skewed). The expected value of the lotteries was

kept constant (between 5.95 and £6.05), and the sure amount
alternative remained constant throughout at £4.50. Stimuli were

constrained to have 4 outcomes (segments of the pie chart),

with outcome probabilities varying in minimum 0.1 increments
between 0 and 1 so as to mitigate against probability distor-

tion effects at small probabilities. These restrictions allow the

generation of a space of possible lotteries varying in skew-
ness and variance (Figure 1C). Using lotteries with multiple

outcomes is crucial in enabling such a dissociation of risk dimen-

sions and consequently we used 4 outcome lotteries through-
out to control for perceptual and cognitive variability in task

processing.

PAYMENT

At the end of the experiment, three trials were randomly selected

and these were then played out for real. If subjects had elected

to gamble, we resolved the lottery by an on-screen graphic of
a ball spinning around the outside of the pie until it stopped

at a randomly selected position. This procedure was also shown

in the practice, to demonstrate the idea that the size of each
segment of the pie chart represented the chance of that out-

come occurring. Monetary earnings ranged between 13 and £35

(mean £21.17).

BEHAVIORAL MODELING

To demonstrate that participants had a behavioral sensitivity to

our manipulated risk dimensions of variance and skewness, we
compared behavioral models of risk evaluation.

For a given lottery with 4 potential outcomes (m1, m2, m3,

m4), with probabilities p = p1, p2, p3, p4, we define the statistical
moments [expected value (EV), variance (Var), skewness (Skw)]

of the outcome distribution as:

EV =

4∑

n = 1

mnpn (1)

Var =

4∑

n = 1

(mn − EV)2pn (2)

Skw =

4∑

n = 1

(mn − EV)3pn (3)

In this study, we used the raw statistical moments to define vari-

ance and skewness. This use derives from the fact that any utility
function can be approximated by preferences for summary statis-

tics using a polynomial expansion (Scott and Horvath, 1980;

Müller and Machina, 1987; D’Acremont and Bossaerts, 2008). In
practice, the raw and normalized moments are correlated, and

our focus here was to draw a distinction between responses to the

spread (variance) and asymmetry (skewness) of outcomes, rather
than systematically test neural signatures of alternative measures

of these statistics.
We analyzed choice data by fitting a linear mean-variance-

skewness model (MVS) where individuals are allowed to express

different preferences for variance and skewness. To demonstrate
sensitivity to both variables of interest, we compared the behav-

ioral fit of this model to two alternatives; a model based on mean

difference (M) alone (where subjects only take account of the dif-
ference between the sure amount and the expected value of the

gamble in selecting actions), and a mean-variance model (MV).
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FIGURE 1 | Experimental paradigm and behavior. (A) We represented

gambles on-screen as pie-charts. The pie chart was divided into four

different segments showing possible outcomes from the lottery. The

numbers written in each segment show the monetary value of each

outcome (in pounds sterling) and the angle subtended by each segment

indicated the probability of each outcome occurring. A positively skewed

gamble (left) has a small chance of a better than average outcome (the tail

of the distribution is to the right). Conversely, a negatively skewed gamble

(right) has a small chance of a worse than average outcome (the tail is to the

left). Both example gambles have identical variance and expected value.

(B) Each trial was self paced, with subjects first shown a fixation cross, and

then pressing a button to commence the trial. Following initial button press,

a pie chart gamble was presented for 3.5 s, during which time the subject

was required to make a two alternative forced choice between opting to

gamble, or to take a sure amount of money of £4.50. Subjects selected

actions by a button press, which was indicated on screen by a color change

in the central fixation circle. At the end of the experiment, three trials were

randomly selected and played out for real. If subjects had elected to gamble,

we resolved the lottery by an on-screen graphic of a red ball spinning around

the outside of the pie which stopped at a randomly selected position. (C)

Plot of the stimulus space used in this study, showing 252 gambles

independent in variance and skewness. The non-uniformity at the extremes

of variance is limited by the restrictions on stimulus generation (a fixed

expected value of 5.95–6.05£, 4 segment pie charts with a minimum

probability of 0.1 and probability increments of 0.1). (D) Reaction times were

normally distributed between ∼1–3 s. 99.7% of button press responses

occurred after 1 s following stimulus presentation. (E) Summed AIC scores

for 3 models: mean only (M), mean-variance (MV), mean-variance-skewness

(MVS). A lower score indicates a better model fit. The MV model was

significantly better than the M model (χ2: ∗p < 1 × 10−5), while the MVS

model was significantly better than MV (χ2: ∗p < 1 × 10−5). (F). Parameter

estimates from the MVS model reveal a range of preferences for variance

(negative coefficient reflects variance aversion), and skewness (coefficient

reflects preference for positive vs. negative skewness).

We define the subjective value, or utility (U) of each lottery for

our models:

Mean model (M)
U = EV (4)

Mean-variance model (MV)

U = EV + ρVar (5)

Mean-variance-skewness model (MVS)

U = EV + ρVar + λSkw (6)

ρ and λ are free parameters, ρ reflecting preference for variance,
and λ reflecting preference for positive vs. negative skewness,

respectively.

Our models compare the utility of the lottery with the value

of the sure amount (S) to generate a trial-by-trial probability

of choosing the lottery over the sure amount, using a logis-
tic/softmax function which allows for noise in action selection (by

free parameter β).

Pchoose gamble =
1

1 + exp(−(1/β)(U − S))
(7)

We estimated best-fitting model parameters using maximum
likelihood analysis, with optimization implemented with a

non-linear Nelder-Mead simplex search algorithm in Matlab

(Matlab, Natwick, USA). We compared models using the Akaike
Information Criterion (AIC), a comparison which penalizes

model complexity (Akaike, 1974).
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MEG—EXPERIMENTAL SETUP, RECORDING PARAMETERS AND

PREPROCESSING

We recorded MEG continuously (sample rate: 1200 Hz), using

a 274-channel whole-head system (CTF Omega), with partici-

pants in a seated position. Stimuli were presented and responses
recorded using Cogent presentation software (Wellcome Trust

Centre for Neuroimaging, London) written in MATLAB (ver-

sion 6.5.1, MathWork, Natick, MA). Synchronization of MEG
data with the stimulus train was ensured by writing simultane-

ous timing triggers on each trial to an MEG data channel using

the Cogent software (outportb command). Visual cues were pro-
jected onto a screen directly in front of the participant. Choices

were indicated by pressing a button box with the right index

finger. Imaging data were analyzed using Statistical Parametic
Mapping software (routines in the academic freeware package

SPM8; Wellcome Trust Centre for Neuroimaging, UK, www.fil.

ion.ucl.ac.uk/spm).
MEG data were epoched to obtain 1000 ms data segments cor-

responding to the first second after presentation of the stimulus.

This cutoff was chosen as the time window during which stim-
uli were being evaluated and before button press responses were

emitted. On 99.7% of trials motor responses occurred only after

this point (Figure 1D). Data were downsampled to 200 Hz, band-
pass filtered from 1 to 80 Hz, and baseline corrected. One hundred

milliseconds of MEG data prior to presentation of stimulus (when

fixation cross was on screen) was sampled as a baseline period.
We performed artifact rejection using an algorithm that

rejected all trials where the root mean square (RMS) power was a

factor of 10 greater than the average RMS power per trial across
subjects.

MEG—SOURCE LEVEL ANALYSIS

We reduced the dimensionality of our analysis by focusing on four

predefined time windows (0–250 ms, 250–500 ms, 500–750 ms,

750–1000 ms) and four frequency bands theta (4–8 Hz), alpha
(8–16 Hz), beta (16–32 Hz) and gamma (32–64 Hz), using the

multiple sparse prior routine within SPM8 (Friston et al., 2008),

with group constraints (Litvak and Friston, 2008). This inverse
solution performs an iterative Bayesian optimization to estimate

current density on a cortical surface template mesh of several

hundred patches, where the mesh is a tessellated template based
on the canonical Montreal Neurological Institute (MNI) brain

(Mazziotta, 2001), with a single shell template head model. We

selected a 250 ms temporal window length given we examine
oscillatory responses from 4 to 48 Hz (i.e., minimum one cycle

length). Hence we obtained 16 (4 time × 4 frequency) source

images per subject per trial.
Our contrasts of interest pertained to our 3 parametric vari-

ables of variance, skewness and subject’s choice (a categorical
variable indicating gamble or sure choice) on each trial. We

implemented a standard hierarchical analysis, first estimating

within-subjects effect sizes for each of these 3 parametric vari-
ables in a general linear model. For each subject, source-localized

data were entered into a multiple linear regression against pre-

dictor variables corresponding to level of variance, skewness and
choice on each trial. All variables were normalized to the range

0–1 and mean-centered. This regression analysis was performed

at each of the above time and frequency bins, generating within-
subject statistical maps of the regression coefficients correspond-

ing to variance, skewness and choice variables. To make group

(between-subject) inferences we then entered each of these 16 (4
time × 4 frequency) source level statistical images per subject

into a two-factor repeated measures ANOVA. This second-level

ANOVA also included indicator regressors to account for subject
effects. Separate ANOVAs were constructed to analyse effects of

variance, skewness and choice regressors, respectively.

We were agnostic about the direction of any correlation
between decision variables and MEG responses and had no a

priori assumptions about the frequency bands in which specific

effects would be expressed. For inference, F-tests were performed
to isolate the main effect over time, collapsing across frequency

bands. In other words, we ask where source-localized power cor-

relates with variance, skewness or choice at any of our 4 time
windows. Rather than a broadband analysis, we enter trial-by-

trial source localized power corresponding to each of our 4

pre-specified frequency bands (4–8, 8–16, 16–32, 32–64 Hz). We
analyzed source level induced responses in these windows over

subjects using a second-level ANOVA. We used an omnibus test

as we had no a priori assumptions about the frequency bands
at which effects could be expressed and to avoid multiple com-

parisons. Note the F test denominator degrees of freedom is

derived from the dimensions of the second level design matrix,
with 15 (subject) × 4 (time bands) × 4 (frequency bands) rows.

Subsequent post-hoc t-tests were then used to delineate the effect

size within each time-bin only in areas expressing a significant
main effect.

STATISTICAL REPORTING AND FIGURES

We restricted our tests to likely cortical regions expressing

responses to statistical risk during decision-making, guided by a

priori knowledge regarding localization of a risk evaluation net-
work. A meta-analysis of functional imaging studies has identified

consistent decision risk (i.e., risk processing before or during

choice) responses across several studies in dorsomedial prefrontal
cortex (DMPFC), anterior insula and parietal cortices (Mohr

et al., 2010a), regions also identified in our similarly designed

study where variance and skewness were independently manip-
ulated (Symmonds et al., 2011). We therefore draw inferences

in source space by mapping observed profiles of responses in a

mask of 6 regions—bilateral posterior parietal, dorsomedial pre-
frontal, and anterior insular cortices. These were defined using

anatomical labels in WFU PickAtlas v2.5 (Maldjian et al., 2003),

a software method for generating region of interest masks based
on the Talairach Daemon database, converted into MNI spatial

coordinates (Lancaster et al., 1997, 2000). We report voxel-wise

significant results at a p < 0.005 threshold. Brain image figures
show second-level SPM-F maps, superimposed upon a canonical

brain image, thresholded at p = 0.01. Stereotactic coordinates are

reported in MNI space (Mazziotta, 2001). Bar plots show effect
sizes across time within regions showing a significant main effect.

RESULTS

Fifteen subjects chose between gambling on a lottery or select-

ing a sure amount of money in a set of individually presented
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lotteries where we independently manipulated variance and skew-
ness. On each trial, we recorded choices and simultaneous neural

responses (i.e., MEG signal changes) as a function of these chang-

ing variables (Figures 1A,B), which allowed us to then determine
both when, and where, within a priori regions of interest risk

signals are represented. To demonstrate behavioral sensitivity to

both variance and skewness, we measured subjective preferences
for both these variables using behavioral economic models. We

analyzed activity unfolding from stimulus presentation, allowing

us to map the temporal sequence of events underlying the initial
stage of risk information processing.

BEHAVIOR

Our stimulus set (Figure 1C) was designed such that participants
would evenly distribute their choices between gamble and sure

amounts. This approach maximizes power for both behavioral
fitting and subsequent analysis of MEG activity corresponding

to choice. As planned, our subjects on average distributed their

choices between gamble and sure options throughout the course
of the experiment (mean percentage of gamble choices = 55%,

std. 17%). There were few error (missed) trials (0.4% of all trials).

Mean response times (RTs) (from stimulus presentation to button
press) were 2.26 ± (SD) 0.53 s (Figure 1D).

In designing the paradigm, we aimed to minimize eye move-

ment, and render this uncorrelated with variables of interest.
Thus, subjects were required to fixate on a central fixation cross,

and pie chart lottery stimuli of the same size were centrally pre-

sented with random orientation on the screen. Each lottery had
4 outcomes with numerical amounts placed in identically spaced

radial locations (Figure 1A), to ensure that an equal amount of

eye movement per trial was required to take in the statistical infor-
mation, such that saccades would average out across trials and

subjects.

We further checked whether eye movements were correlated
with variables of interest, recording electro-oculogram (EOG)

data (with 3 EOG electrodes placed above, below and lateral to

the left eye), in 10 of our participants. We measured eye move-
ment per trial by the magnitude of signal change (from mean)

across the EOG channels. The total amount of eye movement

in our 1000 ms post-stimulus window of interest was not signifi-
cantly correlated with the lottery statistics [variance: t(1, 9) = 1.2,

p = 0.27; skewness: t(1, 9) = 1.4, p = 0.19] or the subject’s choice

[t(1, 9) = 0.9, p = 0.37].

Sensitivity to both variance and skewness

Individuals’ choices were sensitive to both variance and skewness.

To formally test this sensitivity we compared a mean-variance-
skewness model (MVS), where individuals are allowed to express

preferences for both variance and skewness, to a set of alterna-
tive decision models (see Materials and Methods). As predicted,

a mean-variance-skewness (MVS) model provided a significantly

better fit to the observed behavioral data than the alternatives
(summed AIC scores: M: 4909; MV: 3778; MVS: 3642); MVS

model posterior probability >0.99 (very strong evidence in favor

of MVS) (Figure 1E). Our winning MVS model provided subject-
specific preference metrics for variance and skewness (Figure 1F).

All subjects were averse to variance (average variance preference:

−0.56 ± SD 0.25), and 7/15 preferred negative to positive skew-
ness (average skewness preference: −0.06 ± SD 0.16). Beta (tem-

perature) values for the logistic function were low, indicating that

choices were well-partitioned by the linear model (average beta =

0.13; SD 0.06).

MEG SOURCE LEVEL ANALYSIS

We report induced time-frequency responses where our depen-
dent variable is trial-by-trial oscillatory power induced by specific

components of a decision. This is in contrast to previous stud-

ies using electrographic or magneto-encephalographic recording
of economic decision making (Gehring and Willoughby, 2002;

Schutter et al., 2004; Hewig et al., 2007; Hedgcock et al., 2010;

Harris et al., 2011; Steffen et al., 2011; Yu et al., 2011), which
often focus on evoked responses (event-related potentials—ERPs,

or fields—ERFs), usually to feedback about decision outcome.
While receipt of a reward or loss can generate synchronized event-

related signals occurring rapidly following feedback, we focused

on time-frequency responses as we were interested in risk eval-
uation signals evolving over an extended period of hundreds of

milliseconds, with considerable potential variability which may

curtail detection in evoked responses given signal changes might
cancel out in the average.

Early encoding of variance and skewness

Our first goal was to test whether we could detect magnetoen-
cephalographic signal changes corresponding to different aspects

of risk, and hence characterize this temporal processing dur-

ing decision-making. We localized induced power in four pre-
specified time windows (0–250, 250–500, 500–750, 750–1000 ms)

following stimulus presentation, at each of these 4 frequency win-

dows [4–8 Hz (“theta”), 8–16 Hz (“alpha”), 16–32 Hz (“beta”),
32–48 Hz (“gamma”)]. We report results within masked regions

of interests to spatially constrain the analyses. These comprise

parietal, prefrontal and insula cortex, based on previous investi-
gations (see Materials and Methods).

We observed an early effect of variance in left posterior

parietal cortex [F(3, 210) = 4.60, p = 0.004; Figure 2A]. This lin-
ear modulation of induced power commenced in the initial

0–250 ms following lottery presentation [t(1, 210) = 2.32, p =

0.011], peaking between 250 and 500 ms [t(1, 210) = 2.74, p =

0.003] (Figure 2B). On presentation of high (vs. low) variance

gambles, power (8–32 Hz) initially decreased between 0 and

250 ms [peak effect: 16–32 Hz, t(1, 210) = 2.06, p = 0.020], before
a broadband increase in power between 250 and 500 ms [peak

effect: 4–8 Hz, t(1, 210) = 1.75, p = 0.040] (Figure 3).

Gamble skewness significantly correlated with MEG sig-
nal power in DMPFC, with a peak effect seen on the right

[R DMPFC: F(3, 210) = 4.76, p = 0.003; Figure 2C], a response
present between 250 and 750 ms [t(1, 210) = 4.21, p < 0.001]

(Figure 2D). Within the area of peak effect there was signifi-

cantly greater power during presentation of negative relative to
positively skewed gambles driven by increased alpha (8–16 Hz)

and gamma (32–48 Hz) power at 500–750 ms. Thus, the earliest

responses to variance are observed 250 ms before the responses
to skewness (Figure 4), although there is substantial overlap

between the two signals.
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FIGURE 2 | Responses to risk and choice. Results of group analysis GLM

(two-factor repeated measures ANOVA) of signal power correlating with

variance, skewness, and subject’s choice. Figures show

source-reconstructed induced power parametrically correlating with each of

these three regressors. GLM-estimated coefficients for each parametric

variable give the estimated slope of the best linear fit, where the null

hypothesis at each source is that activity is insensitive to variance,

skewness or choice (i.e., the regression coefficient equals zero). Figures

show second-level SPM-F image thresholded at p < 0.01, superimposed

upon a canonical brain (∗p < 0.01, ∗∗p < 0.0001; colorbars show

F -statistics). T = 0 corresponds to time of stimulus presentation. (A) Power

correlation with variance in left posterior parietal cortex [all effects across 4

frequency bands: “theta” (4–8 Hz), “alpha” (8–16 Hz), “beta” (16–32 Hz),

“gamma” (32–48 Hz)]. (B) Timecourse of effect, showing significant effects

in first 0–250 ms window, peaking at 250–500ms (variance peak voxel at

−12, −56, 52). (C) Power correlation with skewness in left and right

DMPFC (across all frequencies). (D) Timecourses of effects in right

DMPFC (skewness peak voxel at 22, 24, 34). (E) Power correlation with

trial-by-trial choices (gamble vs. sure, across all frequency bands). The

effect is seen bilaterally posterior to the central sulcus. (F) Timecourse for

peak voxel (at 28, −46, 50) shows effects commencing at 250–500ms,

maximal at 750–1000ms after stimulus presentation.

FIGURE 3 | Variance effects across frequency bands. Plot of effect sizes

for correlation of signal power with lottery variance at 0–250 ms (gray bars)

and 250–500 ms (black bars) time windows, for each of 4 specified

frequency bands. This corresponds to times at which significant main

effects of variance (i.e., across all frequencies) were observed (see

Figure 2). Positive contrast estimates reflect greater signal power for high

risk (high variance) than low risk (low variance) lotteries. See main text for

details and statistical reporting.

These data show that both components of risk (variance and

skewness) induce independent scaled modulations of oscilla-
tory activity at similar time epochs in parietal (variance) and

prefrontal cortices (skewness). These are regions previously iden-

tified as candidate anatomical loci using fMRI, and the MEG
data now reveal that these responses occur very rapidly following

stimulus presentation.

FIGURE 4 | Skewness effects across frequency bands. Plot of effect sizes

for correlation of signal power with lottery skewness at 250–500ms (gray

bars) and 500–750ms (black bars) time windows, for each of 4 specified

frequency bands. These correspond to the time windows showing

significant main effects in Figure 2. The uniformly negative contrast

estimates reflect greater signal power for negatively skewed than positively

skewed lotteries. See main text for details and statistical reporting.

Induced responses to gamble versus sure choices

fMRI studies have consistently reported differential activation
during riskier or safer choices (Kuhnen and Knutson, 2005;

Christopoulos et al., 2009; Xue et al., 2009; Symmonds et al.,

2011), hence we next asked whether choice-specific modula-
tions were evident in the MEG signal. We observed such mod-

ulation bilaterally over the central sulcus [right somatosensory
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cortex: F(3, 210) = 7.81; p = 0.0001; left: F(3, 210) = 5.64, p =

0.001; Figure 2E], reaching a peak effect in the 750–1000 ms

time window following stimulus presentation [t(1, 210) = 3.25,

p = 0.001; Figure 2F]. This choice-related activity peaked at a
later time-point than signals corresponding to decision statistics,

suggesting a sequence of cortical processing of statistical risk prior

to formation of choice. This choice signal was expressed mainly as
a reduction in 8–16 and 32–48 Hz band power prior to choosing

to gamble.

Exploring this further, we also asked whether choice-related
signals were expressed uniformly across subjects, or whether

risk-tolerant individuals show a different temporal profile to risk-

averse individuals. We found a significant correlation between
choice activity and both variance and skewness preference in ante-

rior insula/inferior frontal gyrus (Figure 5A). This interaction of

neural activity with behavioral preference was expressed just prior
to decision execution in the 500–1000 ms window [conjunction

analysis: 500–750 ms, t(1, 54) = 2.69, p = 0.005; 750–1000 ms,

t(1, 54) = 2.75, p = 0.004], but also in the first time window
[0–250 ms: variance coefficient × choice activity: t(1, 54) = 2.70,

p = 0.005; Figure 5B].

To illustrate these preference-dependent responses, we
obtained a full time-frequency characterization using a pseu-

doinverse to extract regional signals from the anterior insula

area displaying maximal effects of our parametric regressors.
When we split subjects according to both variance and skewness

preference, a general pattern emerged whereby variance tolerant,

and positive-skew seeking individuals (tolerant of uncertainty

FIGURE 5 | Choice-dependent responses vary with risk-preference.

Choice-related activity is modulated by risk-preferences. (A)

Source-reconstructed induced power over 4 time windows showing that

choice-related activity (gamble > sure) covaried with both variance and

skewness preferences in anterior insula and dorsal premotor cortex

(conjunction analysis—colorbar shows T -statistic). (B) The interaction

between neural activity and behavioral preference (both for variance and

skewness) plotted for left anterior insula (peak voxel −44, −14, −2).

Significant effects (collapsed across frequency bands) were observed in the

0–250 ms window and between 500 and 1000 ms. ∗p ≤ 0.005.

and driven by the potential of large rewards), express an early
increase in power prior to a choice to gamble, while individuals

with the opposite preference pattern exhibit enhanced activity

much later (Figure 6). Thus, insula activity predicts gamble
and sure choices, but exhibits a different time course of activity

depending upon an individual’s specific risk preferences. The

early choice-predictive signal in insula occurs concurrently with
encoding of variance and skewness in parietal and prefrontal cor-

tices. Conversely, the late effect is consistent with an anticipatory

response prior to action execution, with heightened activity prior
to gamble choices in individuals who dislike taking risk.

DISCUSSION

In this study, we map the temporal evolution of induced responses
to risk, separating effects of outcome dispersion or uncertainty

(variance) and outcome asymmetry (skewness). We show these

different aspects of statistical risk are processed as early as 250 ms
in separate cortical regions, evident in changes of electromagnetic

power in distinct frequency bands.

We suggest that early induced oscillatory activity during lot-
tery evaluation represents encoding of relevant decision variables.

These stimulus-locked responses are modulated, per trial, by both

variance and skewness consistent with a highly specialized cortical
evaluation of risk. By contrast, choice signals seen over the central

FIGURE 6 | Time-frequency plot of preference-dependent effects within

anterior insula. Subjects were split into four groups—variance

averse/tolerant and positive/negative skew averse individuals (median split).

Full time-frequency characterization of the signals in the left anterior insula

correlating with choice. This data extraction was performed in a 10 mm

sphere centered on peak voxel coordinates (peak voxel MNI coordinates:

−44, −14, −2) from our statistical image using a source-extraction routine

implemented in SPM. We used a Morlet wavelet time-frequency

decomposition with 7 cycles, with a frequency-dependent cycle length as

implemented in SPM8 (Kiebel et al., 2005). Gridlines show 4 time windows

(0–250 ms, 250–500 ms, 500–750ms, 750–1000ms) and 4 frequency

bands [“theta” (4–8 Hz), “alpha” (8–16 Hz), “beta” (16–32 Hz), “gamma”

(32–48 Hz)]. Late increased beta and gamma activity prior to gamble

choices is most evident in variance and negative skew averse individuals,

while early theta and beta activity prior to gamble choices is most evident

in variance tolerant, positive skew averse individuals. Colorbar shows z

score values. T = 0 corresponds to time of stimulus presentation.
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sulcus (i.e., sensorimotor cortex), occur after these risk encod-
ing effects in parietal and prefrontal cortex, as indeed would be

expected from the perspective of a process model of risk percep-

tion leading to subsequent evaluation and choice. Notably, these
effects are expressed within previously identified risk-sensitive

regions (Huettel et al., 2006; Platt and Huettel, 2008; Preuschoff

et al., 2008; Mohr et al., 2010b). For example, a linear response
to variance in parietal cortex occurs within the first 250 ms,

and in DMPFC to skewness, between 250 and 750 ms following

stimulus presentation. This pattern supports behavioral evidence
(Coombs, 1960; Coombs and Bowen, 1971; Peiro, 1999), and

independently corroborates fMRI data (Burke and Tobler, 2011;

Symmonds et al., 2011; Wu et al., 2011), that risk is not a unitary
phenomenon but is a construct with independent dimensions

that are each evaluated within discrete neural networks. PPC has

been shown to accumulate perceptual evidence under uncertainty
prior to action selection (Huk and Shadlen, 2005; Kiani et al.,

2008), and has a general role in numerical and spatial quantifi-

cation (Hubbard et al., 2005; Piazza et al., 2007) while DMPFC is
implicated in encoding probability of loss (Smith et al., 2009; Xue

et al., 2010), and is also consistently implicated in risk-processing

(Tobler et al., 2007; Bach et al., 2009; Engelmann and Tamir, 2009;
St. Onge and Floresco, 2009; Venkatraman et al., 2009; Mohr

et al., 2010a). The distributed spatial processing of these risk

dimensions corroborates an hypothesis that dispersion and rela-
tive hedonic asymmetry of outcomes are supported by separable,

specialized, neural processing.

Although responses to risk 250 ms after stimulus onset are
clearly rapid, these early responses are similar to processing speeds

seen during perceptual decision-making, for example, judging

direction in moving dot stereograms (Heekeren et al., 2006),
complex discrimination (Fleming et al., 2010), or value compar-

isons (Milosavljevic et al., 2010; Steffen et al., 2011). Moreover,

the parametric changes in induced oscillatory activity we observe
are also found to underpin many cognitive processes including

sensory perception (Gray and Singer, 1989; Tiitinen et al., 1993;
Tallon-Baudry and Bertrand, 1999), comparison (Spitzer et al.,

2010), and maintenance in working memory (Romo et al., 1999).

It is important to note that individuals are unlikely to be perform-
ing an explicit computation of variance, rather a rapid assay of

the spread of possible outcomes, for which variance is a surrogate

marker (and highly correlated with other measures of dispersion
in our stimulus set). Our data make the point that individu-

als independently respond to both dispersion and asymmetry of

outcomes. These responses to variance and skewness overlap in
time, although there is a suggestion that signals correlating with

variance are detectable prior to those correlating with skewness.

While this does not prove temporal precedence, it is interesting to
note that this profile mirrors variance being a first-order measure

of uncertainty while skewness (mathematically) reflects a second-

order attribute (the amount of relative gain vs. loss inherent in
a gamble). Although recent investigations in trading behavior

under time pressure suggest that skew sensitivity emerges rapidly

(Nursimulu and Bossaerts, 2013) it is tempting to speculate that
this time delay is sufficiently large to potentially affect outcomes

in fast-paced markets (where orders can be transacted within

125 ms).

Our findings where we map out frequency-based responses to
risk are exploratory by nature given the dearth of prior research.

While this makes it difficult to draw any conclusive inferences

about the neurophysiological basis of the expressed effects in spe-
cific frequency bands, it is nevertheless notable that this frequency

band profile differs for variance and skewness signals. For vari-

ance, we note an initial decrease in alpha band power at 0–250 ms.
While early decreases in alpha have previously been observed

in high-risk social decision-making situations (Qin et al., 2009;

Billeke et al., 2012), decreased parietal alpha is also a marker
of enhanced attention (Fries et al., 2001) and as all our sub-

jects were variance-averse this relative decrement before selecting

lower risk gambles could reflect a top–down attentional effect.
This cannot explain the entire picture, and the cause of the sub-

sequent broadband increase in power correlating with variance

is less clear. Drawing a tentative parallel with similar cognitive
processes, we note gamma band power increases in parietal lobe

are associated with mathematical computation (Micheloyannis

et al., 2005) but have not previously been shown to scale with
specific stimulus attributes as we report here. This rebound

increase in gamma signal power with high-risk gambles between

250 and 500 ms echoes findings in perceptual decision-making
tasks requiring spatial judgments, where gamma-band enhance-

ments are more evident for easier than more difficult decisions

(Kaiser et al., 2007). Similarly, increased beta power has been
shown in situations requiring a response inhibition (i.e., here,

rejecting the gamble) (Cohen et al., 2008). Increased theta-band

power is also seen at this timepoint, an effect that might be
related to coupling between encoding and working memory in

cross-cortical networks (Sauseng et al., 2005) in decision-making

processes. Despite this, it is important to bear in mind that there
is no one-to-one mapping between frequency bands and cog-

nitive processes, and our speculations here are almost certainly

over-simplistic.
The profile we observe for skewness is markedly different,

with a unimodal change predominantly in alpha and gamma
power. Increased gamma and alpha power are typically seen dur-

ing evaluation of task-relevant variables and in maintenance of

information in working memory (Tallon-Baudry and Bertrand,
1999; Jensen et al., 2007). Notably, there is greater right frontal

alpha power for negatively than positively skewed gambles (i.e.,

situations with a small chance of a very poor outcome). Increased
right frontal alpha power has been suggested to relate to avoid-

ance or withdrawal and negative affect (Harmon-Jones et al.,

2010). Skewness captures an implicit relative comparison of better
than average to worse than average outcomes, hence we speculate

that these alpha power changes may be involved in quantifying

an asymmetry in valence of outcomes. Approach-avoidance pro-
cesses are implicated in decision-making for gains and losses, and

are distinct from processing of variance (Wright et al., 2012).

However, it remains to be determined if skewness is encoded
entirely independently of valence.

The choice signal was expressed mainly as a reduction in

8–16 and 32–48 Hz band power prior to choosing to gamble.
Reductions in 8–25 Hz band power (alpha/mu and beta band

desynchronization—ERD), as well as a slow D.C. potential shift

or magnetic field change (the “readiness potential”) are typically
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observed prior to voluntary movement (Deecke et al., 1982;
Cheyne, 2013). There is also evidence that this desynchronization

during motor planning varies dependent upon the movement

to be executed (Park et al., 2013), as well as cognitive variables
such as response uncertainty (Tzagarakis et al., 2010). This lends

further plausibility to our observations of differential signal pat-

terns prior to gamble and sure responses, and the suggestion that
these signals reflect specific motor preparation following lottery

evaluation.

There is a tension in the theoretical literature between differ-
ent models of decision-making under risk. Utility theory proposes

risk sensitivity as an implicit by-product of a monotonically

decreasing utility function (Pratt, 1964; Müller and Machina,
1987). In this schema, a separate processing pathway for risk is

superfluous, as risk-preference is purely a consequence of trans-

lating objective quantities into subjective values. An alternative
model, which has an affinity with financial theory and strongly

supported by our data, suggests decisions involve an evaluation of

the sufficient statistics or moments of a distribution of outcomes
(expected value, variance and skewness). This is a useful heuris-

tic in natural stochastic environments, where it is difficult to

encode each possible outcome or state of the world with fidelity.
The tracking of summary statistics is also efficient for learning,

as it is computationally much easier to update these estimates

rather than each outcome and its associated probability sepa-
rately (D’Acremont and Bossaerts, 2008). While our paradigm

is designed to be sensitive to risk effects rather than rule out a

utility based encoding of value, our observation of early cortical
responses to risk suggest that variance and skewness are relevant

perceptual variables in the brain.

The insula has been implicated in risk-processing itself
(Preuschoff et al., 2008), the integration of objective risk with

subjective risk-preferences (Paulus et al., 2003; Christopoulos

et al., 2009; Engelmann and Tamir, 2009; Xue et al., 2010), and
in anticipating forthcoming risk (Kuhnen and Knutson, 2005).

Intriguingly, we find the temporal profile of insula responses
show two distinct effects, an early influence of risk-preference

on choice-activity at 0–250 ms after stimulus presentation, and

a later effect prior to making a decision at 750–1000 ms. The
early effect occurs concurrently with risk encoding in parietal and

prefrontal cortices, indicating a possible role in a risk-processing

network. The later insula response is consistent with an affec-
tive component in risky choice, particularly as it follows rather

than precedes choice-sensitive premotor activity. We explored

this further, partitioning anterior insula effects in individuals
with different risk preference profiles to show positive skew seek-

ing, variance tolerant individuals (similar to casino gamblers

who accept risk for the chance of high reward) show strong
early responses before both gamble and sure choices rather than

simply an early effect preceding a safe default option. More

conservative individuals, preferring negative skewness and dis-
liking uncertainty (variance), show dominance of late responses

but only before choosing to gamble. Our data therefore hints

at a dual role for insula, both at the time of risk encoding
and also during entrainment of a motor program for action

selection.

There are necessarily limitations to our study. MEG is maxi-
mally sensitive to cortical effects, hence we do not explore subcor-

tical risk processing (Knutson et al., 2005; Preuschoff et al., 2006).

However, this is compensated for by the fact that MEG allows
resolution of risk-sensitive processes at sub-second timescales,

measuring the temporal precedence of specific processes. This

overcomes problems inherent in inferring causality from fMRI
data (Friston, 2009). We focused on the chronometry of responses

within the first second following stimulus presentation, as we

were interested in processes underlying risk quantification and
perception rather than responses locked to action execution.

Importantly we show that signals correlating with statistical

risk occur very early in decision-making, which strongly sug-
gests a primary process of risk perception rather than evaluative

responses emerging after the construction of actions.

CONCLUSION

Here we characterize the temporal sequence of neural responses

during the perception and evaluation of risk. We show initial
rapid processing of salient risk dimensions in PPC followed

by DMPFC, manifest as parametric variations in electromag-

netic responses correlating with these experimentally manipu-
lated variables. We highlight a temporal dissociation in processing

variance vs. skewness, and demonstrate that by mapping the

sequence of neuronal activity at a sub-second timescale, it is possi-
ble to temporally dissect the dynamic processes that characterize

risk evaluation. These early responses to independent statistical
components indicate that specialized cortical circuitry underpins

rapid decision-making under risk.
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