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Abstract

In many cases, neurons process information carried by the precise timings

of spikes. Here we show how neurons can learn to generate specific tempo-

rally precise output spikes in response to input spike patterns, thus process-

ing and memorizing information that is fully temporally coded, both as input

and as output. We introduce two new supervised learning rules for spiking

neurons with temporal coding of information (chronotrons), one that is ana-

lytically derived and highly efficient and one that has a high degree of biolog-

ical plausibility. For the latter rule, synaptic changes are proportional to the

synaptic currents at the timings of actual and target spikes. We study these

learning rules in computer simulations where we train integrate-and-fire neu-

rons. Both learning rules allow neurons to fire spikes at the desired timings,

with sub-millisecond precision. We show how chronotrons can learn to clas-

sify their inputs, by firing identical, temporally coded spike trains for different

inputs belonging to the same class. When the input is noisy, the classification

also leads to noise reduction. We also compute lower bounds for the memory

capacity of chronotrons. The chronotrons can model neurons in oscillatory

networks that encode information in the phases of spikes relative to the back-

ground oscillation.

There is increasing evidence that the precise timing of spikes, and not only the

neural firing rate, represents information in the brain (Bohte, 2004; Tiesinga et al.,

2008). For example, temporally structured multicell spiking patterns, organized

into frames, were observed in hippocampus and cortex, and were associated to

memory traces (Nádasdy et al., 1999; Ji and Wilson, 2007). In the olfactory bulb,

spike latencies represent sensory input strength and identity (Margrie and Schae-

fer, 2003; Junek et al., 2010). The coding of information in the phases of spikes

relative to a background oscillation has been observed in many brain regions, in-

cluding the visual and prefrontal cortices and the hippocampus (Lee et al., 2005;
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Jacobs et al., 2007; Fries et al., 2007; Montemurro et al., 2008; Siegel et al., 2009;

Rutishauser et al., 2010).

Learning in neural networks that represent information through a firing rate

code has been thoroughly studied (Hertz et al., 1991); however, we have lacked ef-

ficient, theory-supported learning rules for spiking neurons with temporal coding

of information. The tempotron, a model of a spiking neuron endowed with a spe-

cific learning rule, has shown how a neuron can give a binary response to informa-

tion encoded in the precise timings of the afferent spikes (Gütig and Sompolinsky,

2006; Florian, 2008; Urbanczik and Senn, 2009). But the tempotron’s output rep-

resents information through the existence or the lack of an output spike during a

predefined period. The timing of the tempotron’s output spikes is arbitrary and

does not carry information. Because of this change in the representation of infor-

mation, the output of a tempotron cannot serve as the input of another tempotron.

By contrast, the ReSuMe learning rule (Ponulak, 2005; Ponulak and Kasiński, 2010)

allows supervised learning of spiking neural codes where the output is also tempo-

rally coded, but this rule is heuristically defined and, as we will show, less efficient

than the analytically derived rule introduced here.

Here we present two new supervised learning rules for spiking neurons, which

allow such neurons to process information that is encoded, for both input and

output, in the precise timings of spikes. We show how single neurons can per-

form classification of input spike patterns into multiple categories, using a tempo-

ral coding of information with sub-millisecond precision. The first learning rule

that we introduce here is analytically derived and highly efficient. The other learn-

ing rule is heuristic, but is more biologically plausible, because synaptic changes

depend directly on the synaptic currents at the timings (actual and target) of the

postsynaptic spikes.

We consider the problem of training a spiking neuron by changing its param-

eters, such that, for a given input, its output is as close as possible to some given

target spike train. Multiple such associations must be performed with a single set

of neural parameters. Information is represented in both the input and the output

through the precise timings of spikes. We call a neuron that solves this problem a

chronotron. In order to solve the chronotron problem, appropriate learning rules

should be defined. Here we focus on learning rules that change the synaptic effi-

cacies of the neuron, although other neural parameters can also be trained.

Materials and Methods

Neural model

Our analysis uses the Spike Response Model (SRM) of spiking neurons, which re-

produces with high accuracy the dynamics of the complex Hodgkin-Huxley neural

model while being amenable to analytical treatment (Gerstner and Kistler, 2002).

The integrate-and-fire neuron is a particular case of the SRM. We consider that

the arrival of the f -th presynaptic spike on the synapse j of a neuron at the mo-

ment t
f

j
leads to a postsynaptic potential (PSP) whose value as a function of the

time t is the product of synaptic efficacy w j and a normalized kernel ǫ j (t , t
f

j
), i.e.

w j ǫ j (t , t
f

j
). We denote as λ j the total normalized synaptic PSP, resulting from the

contribution of past presynaptic spikes, λ j (t ) =
∑

f ǫ j (t , t
f

j
). The membrane po-
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tential u of the neuron is determined by the integration of the PSPs generated by

presynaptic spikes, and also by a term η that models the refractoriness caused by

the last spike fired by the studied neuron:

u(t ) = η(t )+
∑

j

w jλ j (t ). (1)

When the membrane potential reaches the firing threshold θ, a spike is fired and

the membrane potential is reset.

Graphical illustration of the chronotron problem

We denote as n the chronotron’s number of synapses. We consider the n-dimensional

vectors w , having as components the synaptic efficacies w j , and, respectively, λ(t ),

having as components the normalized total synaptic PSPs λ j (t ). After each post-

synaptic spike, the normalized PSPs are reset to 0 and thus the trajectory of λ(t )

in the n-dimensional space starts, after each of these spikes, from the origin of the

space. Eq. 1 can be then rewritten in vectorial form as u(t ) = η(t )+w ·λ(t ). The

neuron fires a spike when u(t ) = θ, or w ·λ(t ) = θ−η(t ). The magnitude of the

projection of the λ vector on the w vector is (w ·λ)/|w |. Thus, the neuron fires a

spike when the magnitude of the projection of λ on w reaches
(

θ−η(t )
)

/|w |, i.e. λ

reaches a spike-generating hyperplane which is perpendicular on the vector w and

at a distance
(

θ−η(t )
)

/|w | of the origin (Fig. 1). The chronotron problem can be

understood as the problem of setting the spike-generating hyperplane, by chang-

ing w, such that it intersects the trajectory of λ(t ) at exactly those timings when we

want spikes to be fired.

Analytical derivation of the E-learning rule

The Victor & Purpura (VP) metric (Victor and Purpura, 1996) defines the distance

between two spike trains as the minimum cost required to transform one into the

other. This is the sum of the costs assigned to either insertion of spikes, removal of

spikes or shifting the timing of spikes. The cost of adding or deleting a single spike

is set to 1, while the cost of shifting a spike by an amount ∆t is σ(|∆t |/τq ), where

σ is a positive, increasing function with σ(0) = 0, and τq is a positive time constant

that is a parameter of the metric.

For a given input, the trained neuron fires at the moments t f , where f repre-

sents the index of the spike in the spike train. The ordered set of the spikes in the

spike train fired by the neuron is F = {t 1, t 2, ...}. The target spike train that the neu-

ron should fire for that input is F̃ = {t̃ 1, t̃ 2, ...}. In a transformation of minimal cost,

according to the VP metric, of the actual spike train F into the target one F̃ , the

operations involved are the following: removal of spikes (that are not previously

moved); insertion of spikes (at their target timings, so that they are not moved af-

ter insertion); and shifting of spikes toward their target timings. We denote as F
∗

the subset of F that represents the spikes that should be eliminated; and as F̃
∗

the subset of F̃ that represents the timings of target spikes at which new spikes

should be inserted into F . The spikes in the actual spike train that are not elim-

inated, F −F
∗, are in a one-to-one correspondence with the spikes in the target

spike train for which a correspondent is not inserted, F̃ − F̃
∗, and they should

be moved towards their targets. The existing algorithm that computes the VP dis-

tance between two given spike trains (Victor and Purpura, 1996) can be extended
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Figure 1: A graphical illustration of the chronotron problem for a neuron with n = 3

synapses and η(t ) = 0. (a) The dynamics of the membrane potential u. The num-

bered arrows indicate the timings when the membrane potential reaches the firing

threshold and spikes are fired. (b) The dynamics of the three components of λ. (c)

The trajectory of λ. Spikes are generated when the trajectory reaches the spike-

generating hyperplane, which is here the black plane, perpendicular on w/|w| and

at a distance θ/|w| of the origin. The chronotron problem is solved by adjusting

the location of the spike-generating hyperplane, through changes in w, such that

the timings of the fired spikes are the target ones. The numbered arrows indicate

the generation of spikes at the timings when the spike-generating hyperplane is

reached.
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in order to also compute the sets F
∗, F̃

∗ and their complements (Supplementary

Material).

E-learning aims to minimize the following error function:

E =
∑

t f ∈F∗

u(t f )−
∑

t̃ f ∈F̃∗

u(t̃ f )+γd

∑

(t f , t̃ g )

t f ∈F−F
∗

t̃ g ∈F̃−F̃
∗

σ(|t f
− t̃ g

|/τq ), (2)

where γd is a positive parameter. Because the creation or deletion of spikes or

changes in their classification in either F
∗ or F−F

∗ lead to discontinuous changes

of E , gradient descent can only be ensured piecewisely. The synaptic changes

that aim to minimize the error function through piecewise gradient descent are

∆w j ∼ −∂E/∂w j . By performing the derivation with σ(x) = x2/2 and after some

approximations (Supplementary Material), we get the E-learning rule:

∆w j = γ

[

∑

t̃ f ∈F̃∗

λ j (t̃ f )−
∑

t f ∈F∗

λ j (t f ) (3)

+
γr

τ2
q

∑

(t f , t̃ g )

t f ∈F−F
∗

t̃ g ∈F̃−F̃
∗

(t f
− t̃ g ) λ j (t f )

]

,

where γ is the learning rate, a positive parameter, and γr another positive param-

eter.

I-learning

The I-learning rule is defined by

∆w j = γ sign(w j )

[

∑

t̃ f ∈F̃

I j (t̃ f )−
∑

t f ∈F

I j (t f )

]

, (4)

where γ is the learning rate, a positive parameter, and I j is the synaptic current on

the synapse j (Supplementary Material).

Computer Simulations

The trained neuron was a classical leaky integrate-and-fire neuron, with synaptic

currents modeled as a difference of two exponentials (Supplementary Material).

The neuron had a membrane time constant τm = 10 ms, a capacity C = 2.5 nF,

a firing threshold θ = 20 mV and a reset potential equal to the resting potential,

ur = 0. The time constants that define the dynamics of the synaptic currents were

τs = 5 ms and τr = 1.25 ms. We used an event-driven simulation (D’Haene et al.,

2009) where the timing of input spikes were represented with machine precision

and the timing of the trained neuron’s spikes were computed with a precision of

10−5 ms.

The neuron received inputs through n synapses. In Figs. 3 and 4 we used

n = 500, while in Fig. 5 n was variable. At the beginning of learning experiments,

synaptic efficacies were generated randomly, distributed uniformly between 0 and

wm . In Figs. 3 and 4 we used wm = 2,000/n pC, while in Fig. 5 we used wm =
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1,000/n pC. The neuron was trained to learn p input patterns by firing a pre-

determined output spike train for each of the input patterns. The length T of the

input patterns was of 200 ms. An input pattern consisted of the ensemble of the

n input spike trains coming through the n synapses during the interval T . The in-

put spike trains consisted, for each of the n synapses, of one spike generated at a

random timing, distributed uniformly between 0 and T . During learning, the in-

put patterns were presented sequentially, in batches consisting of the p patterns,

and the synapses were modified at the end of the batches according to the learning

rules. A presentation of one input pattern and the simulation of the output of the

trained neuron corresponding to this input is called a trial. Each batch of presen-

tations of the p patterns (trials) is called an epoch. At the beginning of each trial,

the membrane potential of the neuron was reset to 0.8 θ. The learning rates that

we used were, for E-learning: γ = 1,250/(n p) pC nF in Fig. 3, γ = 2,500/(n p) pC

nF in Fig. 4, and γ = 5,000/(n p) pC nF in Fig. 5. We also used γr = 15 ms and

τq = 10 ms. For I-learning, the learning rates were γ= 5/p ms in Figs. 3 and 4, and

γ= 20/p ms in Fig. 5.

In the experiments presented in Figs. 4 and 5, we trained the neuron to per-

form classifications by setting its target output to be the same for several different,

randomly generated, inputs. The number c of the different outputs was the num-

ber of categories into which the neuron classified the p input patterns. In Fig. 4,

c = 1 and in Fig. 5, c = 3. We assigned equal number of patterns into each category,

such that p was an integer multiple of c. The output used a phase-coded repre-

sentation of the information. The target spike train for each category k ∈ {1, . . . ,c}

consisted of one spike at k T /(c +1). We considered that an input-output associa-

tion was learned correctly by the trained neuron if the number of the actual output

spikes was the one in the target spike train and each of the output spikes was fired

within less than 1 ms of the target timing. We considered that the chronotron was

able to learn correctly a particular setup if, during each of 500 realizations of the

setup with different, random, initial conditions, all input-output mappings were

learned correctly in no more than 10,000 epochs. For each realization of the exper-

iments, both the input patterns and the initial synaptic efficacies were generated

randomly. In Fig. 5, for various values of the number of inputs n we increased

the load α = p/n until the chronotron was not able to learn correctly all the 500

random realizations of the setup. The capacity for a particular setup was the max-

imum load for which the chronotron was able to learn correctly that setup, lower

than the first load for which the chronotron was not able to learn correctly the

setup.

In Fig. 4, we considered that the actual spike matched the target one if there

was exactly one actual spike and its timing was within τq of the target timing. The

probability Pm that the fired spikes matched the target ones was the number of

patterns within a trial for which the actual spikes matched the target one, divided

by the total number of patterns, p = 10.

Methods are presented in more detail in the Supplementary Material.
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Results

Understanding and Illustrating the Chronotron Problem

We investigated how a spiking neuron that uses temporal coding (a chronotron)

can learn to change its parameters, such that, for a given input, its output is as

close as possible to some given target spike train. The chronotron problem can

be illustrated graphically by considering a space having the same number of di-

mensions n as the number of afferent synapses of the neuron. In this space, the

n synaptic efficacies w j define a vector w and the normalized synaptic PSPs λ j

define a vector λ. The vector λ(t ) moves around this space, in time, according

to the dynamics of the PSPs, while w changes on much larger timescales than λ.

The neuron fires when λ(t ) touches a hyperplane determined by w (Materials and

Methods; Fig. 1). The chronotron problem can be understood as the problem of

setting the spike-generating hyperplane, by changing w, such that it intersects the

trajectory of λ(t ) at exactly those timings when we want spikes to be fired.

Similar optimization problems can usually be solved by defining an error func-

tion and then changing the parameters to be optimized, through methods like gra-

dient descent, which minimize this error function. The differences between the

actual spike train fired by the neuron for a particular input and, respectively, the

target spike train can be measured using spike train metrics such as the Victor &

Purpura (VP) distance (Victor and Purpura, 1996). The VP distance is defined as the

minimum cost for transforming one spike train into the other by creating, remov-

ing or moving spikes (Victor and Purpura, 1996). However, one cannot derive an

efficient learning rule using directly this distance, because the terms correspond-

ing to spikes that should be created or removed are constant and do not reflect

how creating or removing these spikes depends on the plastic parameters. In order

to solve this issue, we used a new error function, which is a modification of the VP

distance. Instead of constant cost terms for the independent spikes that have to be

created or removed, our error function changes the VP distance by including terms

that depend on the value of the membrane potential of the neuron at the timings

of these spikes. This allows these terms to be differentiated piecewisely with re-

spect to the plastic parameters (Materials and Methods; Supplementary Material).

E-learning

The resulting learning rule works by modifying each synaptic efficacy j by terms

that depend on the total normalized PSP λ j . For all output spikes that should be

eliminated, each synaptic efficacy needs to be decreased with a term proportional

to the value of λ j at the moments of these spikes. For all target spikes that the neu-

ron should fire, for which a spike should be created, each synaptic efficacy should

be increased with a term proportional to λ j at the moments of these target spikes.

For all actual spikes that are close to their target positions and should be moved

towards them, each synaptic efficacy needs to change with a term proportional to

the value of λ j at the moments of the actual spikes, multiplied by the temporal

difference between actual and target spikes. We call this learning rule E-learning,

because it results from the pursuit of minimization of an error function (Fig. 2;

Materials and Methods; Supplementary Material).

Our learning rule aims to minimize the error function by performing piecewise

gradient descent. The inherent discontinuities introduced in the error function by
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Figure 2: A graphical illustration of the plastic changes implied by the learning

rules under several settings of actual and target spikes. The graphs show the spike

timings and, for one synapse, the dynamics of the synaptic current I , the total nor-

malized PSP λ and the synaptic changes ∆w implied by the two learning rules. It

is considered that one input spike arrives at this synapse at t = 0. The synaptic

changes are shown to be localized temporally along the events that cause them;

the actual application of the synaptic changes can be delayed with respect to these

events. (a) One independent target spike and no actual spike. (b) A pair of match-

ing target and actual spikes, the actual one following the target one. (c) One inde-

pendent actual spike and no target spike. (d) A pair of matching target and actual

spikes, the target one following the actual one.
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creation or removal of spikes or by creation or breaking of matching pairs of actual

and target spikes (Supplementary Material, Fig. S1) lead to the possibility that the

error function is not minimized at each and every step during learning, since the

discontinuous changes may lead to both increases or decreases of the error func-

tion. However, the terms that reflect in the error function spikes that should be

created or removed ensure that the membrane potential is increased or, respec-

tively decreased at the corresponding timings, such that the number of spikes be-

comes the desired one and the actual spikes are close to the target ones. Because

the learning rule uses approximations (Supplementary Material), it is possible that

gradient descent is not ensured, not even piecewisely. Since the learning rule does

not ensure the minimization of the error function at each and every step, it can be

considered a heuristic rule, although it is analytically derived. However, as the sim-

ulations have shown (see below), E-learning is much more efficient for chronotron

training than the other available learning rules, having a much higher memory ca-

pacity. It is possible to devise a continuous error function that is then properly

derivable, yielding a proper gradient descent. However, the continuous error func-

tion will be much more complex than the current one, yielding a complex learning

rule. This will encumber an intuitive understanding of the learning rule, as it is

possible with E-learning. A learning rule based on a continuous error function will

be presented elsewhere.

I-learning

The second learning rule that we developed is heuristic and is inspired by both the

E-learning rule and the existing ReSuMe learning rule (Ponulak, 2005; Ponulak and

Kasiński, 2010) (Supplementary Material). As in ReSuMe, actual and target out-

put spikes lead to synaptic changes of equal amplitude but of opposite signs, such

that when the actual spike train corresponds to the target one the terms cancel

out and synapses become stable. In ReSuMe, synaptic changes depend exponen-

tially on the relative timings of pairs of pre- and postsynaptic spikes, as in some

models of spike-timing-dependent plasticity. In contrast, here we consider that

synaptic changes depend on the value of the synaptic current at the timings of

spikes. This learning rule is thus biologically-plausible, since it depends on quan-

tities that are directly available to the synapse. Target spikes determine synaptic

potentiation, while actual spikes lead to synaptic depression. We call this synaptic

current-dependent rule I-learning (Fig. 2; Materials and Methods; Supplementary

Material).

Performance of the Learning Rules

We have studied these rules in computer simulations involving integrate-and-fire

neurons having synaptic currents modeled as a difference of two exponentials.

Both learning rules allow a neuron to perform accurate input-output mappings.

Fig. 3 illustrates learning of a mapping between one input pattern (the spike trains

coming through all input synapses) and one output spike train. The learning rules

perform a descent in the landscape defined by the VP or E distance (Supplemen-

tary Material, Fig. S1).

We studied next setups where both input and output information were en-

coded temporally in the phases of spikes: both input and output spike trains con-

sisted of one spike per trial (latency patterns), and the timing of this spike rep-
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resented the information (phase coding). The length of spike patterns (and of

one simulation trial) was 200 ms. This models experimentally-observed situations

where phase locking of spikes relative to a theta rhythm is associated to encod-

ing and memorizing of information (Margrie and Schaefer, 2003; Lee et al., 2005;

Jacobs et al., 2007; Siegel et al., 2009; Rutishauser et al., 2010).

Fig. 4 illustrates learning of a mapping between 10 different input patterns and

one output spike train consisting of one spike at the middle of the trial interval. For

example, for E-learning, in 99.9% of the trials of 10,000 realizations, the neuron was

able to fire the correct number of spikes (one spike) and the spike had an average

timing difference of less than 0.03 ms with respect to the timing of the target spike,

after about 8 minutes of learning (simulated time, 241 learning epochs). Learning

worked even when the inputs were jittered, i.e. at each trial, input spikes were

displaced around the reference timing according to a gaussian distribution. For

example, in the same conditions as before but with an input jittered with a 5 ms

amplitude, in more than 95% of trials, the neuron fired one spike with an average

timing error of less than 2 ms, after about 8 minutes of learning (225 epochs). A 5

ms gaussian jitter amplitude corresponds to a 3.99 ms average timing displacement

of the input spikes (Supplementary Material), so, in this case, the mapping also led

to noise reduction, by doubling the precision of spike timing.

There are input-output mappings that are mechanistically impossible to be per-

formed by a spiking neuron. For example, when there is no input, the neuron ob-

viously cannot fire. When input spikes arrive uncorrelated on each of its synapses,

the range of the outputs that the neuron is able to map to these inputs, by adjust-

ing the synaptic efficacies, dramatically increases. But if the neuron has to perform

several different input-output mappings with the same set of synaptic efficacies,

the various mappings constrain each other through the synaptic efficacies. These

constraints lead to the mechanistical impossibility that the neuron performs new

input-output mappings beyond the current ones, and thus to a finite memory ca-

pacity of the neuron, which is discussed next.

Memory Capacity of the Chronotron

The chronotron is able to perform generic classification tasks, where p input pat-

terns must be classified into c categories through hetero-association. In our sim-

ulations, equal number of patterns were randomly assigned to each category. The

ability of neurons to memorize mappings corresponding to classification tasks in-

creases with the number of synapses (number of input neurons) n. The ratio α =

p/n (the number of input patterns memorized per synapse) represents the load

imposed by the task on the neuron. A characteristic of the neuron’s ability to learn

is the maximum load for which the mappings are performed correctly (Gütig and

Sompolinsky, 2006), which we call the capacity αm of the neuron. We considered

that the chronotron had a correct output when target spikes were reproduced with

a 1 ms precision. Fig. 5 illustrates the performance of the chronotron in simula-

tions where inputs were classified into c = 3 categories. For the studied setup, both

I-learning and ReSuMe led to a capacity between 0.02 and 0.04, while E-learning

led to a capacity αm ≈ 0.22 patterns per synapse.

The load and the corresponding capacity has been used for characterizing neu-

rons with binary outputs, which memorize one bit of information for every pattern.

The chronotron can classify inputs in more than one category, and for c categories

it memorizes i = log2(c) bits of information for every input pattern. Therefore, a
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Figure 3: Learning of a mapping between one input pattern and one output spike

train. The trained neuron receives inputs from 500 neurons. The spike trains re-

ceived from these neurons form the input pattern. Each input spike train consists

of one spike within the 200 ms of a trial, generated at a random timing having

an uniform distribution within the trial. The target output spike train consists of

spikes at 50, 100 and 150 ms. (a) A sample input pattern and the output spike train

of the trained neuron, corresponding to this input, before learning. Only part of the

500 input spike trains are illustrated. (b) The synaptic efficacies change according

to E-learning, such that the trained neuron’s output reproduces the target spike

train. Left: The output spike train during learning. Right: The VP distance between

the actual and the target output spike train, during learning. The target output is

reproduced after less than 15 epochs (presentations of the input pattern). (c) The

VP distance between the actual and the target output spike train during learning,

for E-learning and I-learning: averages and standard deviations over 10,000 realiza-

tions of the same experiment. Each realization uses different, random input spike

trains and initial values of the synaptic efficacies.

11



0 100 200 300 400
0.0
0.5
1.0
1.5
2.0

D
is

ta
nc

e

0 100 200 300 400
0
1
2
3
4
5

∆t
 (m

s)

0.0

0.5

1.0

P
m

0 100 200 300 400
0.0
0.5
1.0
1.5
2.0

D
is

ta
nc

e

0 100 200 300 400
0
1
2
3
4
5

∆t
 (m

s)

0.0

0.5

1.0

P
m

0 100 200 300 400
0.0
0.5
1.0
1.5
2.0

D
is

ta
nc

e

0 100 200 300 400
0
1
2
3
4
5

t (
m

s)

0.0

0.5

1.0

P
m

0 100 200 300 400
Epochs

0.0
0.5
1.0
1.5
2.0

D
is

ta
nc

e

0 100 200 300 400
Epochs

0
1
2
3
4
5

t (
m

s)

0.0

0.5

1.0

P
m

0 5 10 15 20
0.0
0.5
1.0
1.5
2.0

D
is

ta
nc

e

0 5 10 15 20
0
1
2
3
4
5

t (
m

s)

0.0

0.5

1.0
P

m

0 5 10 15 20
Jitter (ms)

0.0
0.5
1.0
1.5
2.0

D
is

ta
nc

e

0 5 10 15 20
Jitter (ms)

0
1
2
3
4
5

t (
m

s)

0.0

0.5

1.0

P
m

∆
∆

∆
∆

a

b

c

d

e

f

∆ t
Pm

E-learning

I-learning

E-learning, jitter

I-learning, jitter

E-learning

I-learning

Figure 4: Learning of a mapping between 10 input patterns, with and without jitter,

and one output spike train. Left: The VP distance between the actual and the tar-

get output spike train. Right: The timing difference ∆t between matching spikes

and the target spikes, and, respectively, the probability Pm that the fired spikes

matched the target ones. The graphs represent averages and standard deviations

over 10,000 realizations. (a), (c), (e): E-learning. (b), (d), (f): I-learning. (a)-(d):

Evolution during learning, as a function of the learning epoch. (a), (b): No jitter.

(c), (d): A gaussian jitter with an amplitude of 5 ms is added to each presentation

of the input patterns. (e), (f): Values after 400 learning epochs, as a function of the

amplitude of the input jitter. The inputs and the length of the trial are as in Fig. 3.

The target output spike train consists of one spike at 100 ms.
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Figure 5: The performance of the chronotron learning rules for a classification

problem with a phase coding of information. The input patterns are classified

into 3 classes. (a)-(c) The average minimum number of epochs required for correct

learning is displayed as a function of the load α, for various values of the num-

ber of synapses (input neurons) n. Note the scale differences. (a) E-Learning. (b)

I-learning. (c) ReSuMe. (d) The maximum load for which correct learning can be

achieved (the capacity), as a function of n. E-learning has a much better perfor-

mance than I-learning or ReSuMe. For E-learning, simulations for higher n were

not performed because of the high computational cost, due to the high capacity

resulted through this learning rule. Averages were computed over 500 realizations

with different, random initial conditions.
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better measure for the chronotron’s learning ability is the information load ι = α i

and the corresponding information capacity ιm , equal to the maximum informa-

tion load. The number of categories into which a chronotron classifies its inputs

is limited only by the temporal precision of the output spikes. For example, if this

temporal precision is 1 ms, with the setup presented here, the chronotron can en-

code up to about c = 80 categories (Supplementary Material). For phase coding of

information, the simulations showed that the chronotron’s capacity does not de-

pend on the number of categories c (Supplementary Material, Fig. S2). The infor-

mation capacity of the chronotron, for E-learning and the setup that we used, can

be then computed as ιm ≈ 1.39 bits per synapse (Supplementary Material). The in-

formation capacity of the perceptron is 2 and the one of the tempotron is around

3 (Gütig and Sompolinsky, 2006). However, if more than two input categories have

to be discriminated, the chronotron has the advantage of being able to carry com-

putations that need multiple perceptrons or tempotrons to be performed, being

thus more efficient. Unlike the tempotron, the chronotron uses the same coding

of information for both inputs and outputs and is therefore able to interact with

other chronotrons.

Assuming that all neurons in the brain use the same encoding of information

as the chronotron, for about 1011 neurons with about 104 synapses each, the total

memory capacity of the brain is about 1.39 petabits. The capacities computed here

are lower bounds, since it might be possible to develop learning rules which are

more efficient than E-learning.

Optimal Information Representation

In our setups, information was represented in the precise timings of spikes rel-

ative to the beginning of trials of constant duration. If trials correspond to pe-

riods of a background oscillation, the timing of spikes corresponds to the phase

relative to this oscillation. Simulations performed in this framework have shown

that chronotrons have the best efficacy when both input and output consist of one

spike per trial (period). Setups where inputs or outputs consisted of more than

one spike, or where some of the inputs fired no spikes, skipping oscillation cycles,

had suboptimal performance (Supplementary Material, Figs. S3–S5). Chronotrons’

efficacy was not affected by initial conditions at the beginning of trials if output

spikes were fired after a delay relative to the beginning of the trial of about 6 times

the time constant of the membrane potential’s exponential decay (Supplementary

Material, Fig. S6). These results underline the role of oscillations for temporal in-

formation processing. First, they segment time into frames (periods), offering a

reference for temporal encoding of information in spike phases. Second, in the

parts of the cycles where neurons are globally inhibited or global excitation is low,

oscillations ensure that neurons are reset such that they are able to process in-

dependently the inputs corresponding to different frames (periods). In the brain,

when the spike phase encodes information relative to a background oscillation,

the neurons fire no more than one spike per cycle in some, but not all, experi-

ments (Nádasdy et al., 1999; Margrie and Schaefer, 2003; Lee et al., 2005; Jacobs

et al., 2007; Rutishauser et al., 2010). Our results show that phase-of-firing coding

with one spike per cycle is optimal for processing and memorization of temporally

encoded information by spiking neurons. Cycle skipping is suboptimal, from an

information processing perspective, but it might be motivated by energy expendi-

ture constraints. For phase-of-firing coding, chronotrons have an optimal capacity
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if the oscillation period is about 8–10 times larger than the membrane time con-

stant (Supplementary Material, Fig. S7).

Discussion

We have thus shown that, through appropriate learning methods, spiking neurons

are able to process and memorize information that is encoded in the precise timing

of spikes. By deriving analytically a spike-timing-based learning rule (E-learning)

and then simulating its performance, we computed, at least for a particular setup,

lower bounds of the memory capacity of a spiking neuron with temporal coding of

information.

We have also developed a supervised learning rule, I-learning, which has a high

degree of biological plausibility. It implies that synaptic changes are proportional

to the corresponding synaptic currents. Postsynaptic spikes lead to synaptic de-

pression similar to anti-Hebbian spike timing-dependent plasticity (STDP) (Bell

et al., 1997; Egger et al., 1999; Han et al., 2000; Tzounopoulos et al., 2004; Fino

et al., 2005; Letzkus et al., 2006; Sjöström and Häusser, 2006; Tzounopoulos et al.,

2007; Fino et al., 2010), while the timings of target postsynaptic spikes trigger po-

tentiation. The depression and potentiation should balance each other when ac-

tual spikes occur at the target timings. These target timings could be indicated

by spikes coming from other, teacher neurons. The firing of these teacher neu-

rons should lead to heterosynaptic associative changes according to the I-learning

rule and should not have a significant impact on the trained neuron’s potential.

Such associative heterosynaptic plasticity that is similar to the potentiation com-

ponent of I-learning has been observed in the brain (Humeau et al., 2003; Huang

et al., 2004; Dudman et al., 2007; Izumi and Zorumski, 2008). For example, in the

hippocampal CA1 pyramidal neurons, the stimulation of distal perforant path (PP)

inputs induces long-term potentiation of the CA1 proximal Schaffer collateral (SC)

synapses when the two inputs are paired at a precise interval (Dudman et al., 2007).

This is similar to how the pairing of target spikes and of the synaptic inputs leads to

potentiation in I-learning. The PP inputs are not plastic and generate much lower

postsynaptic potentials than the SC ones, seeming to have an instructive role for

the SC synapses, as target spikes have in I-learning, rather than an active role in

driving the postsynaptic neuron. It remains to be explored whether the potentia-

tion generated through such a mechanism can coexist with and be balanced by the

anti-Hebbian STDP when the trained neuron reproduces the firing of the teacher

neuron. In this case, the trained neuron’s firing should then become increasingly

correlated to the one of the teacher neuron, eventually mimicking its firing with a

lag corresponding to the delay of the arrival of the teaching spikes. If the trained

neuron learns from several teacher neurons, it should learn to fire when either one

of the teacher neurons fires, acting thus as a kind of multiplexer.

If the trained neuron does not need to reproduce the entire activity of teaching

neurons, but just the one during salient events, teaching could be modulated by

a neuromodulator. Neuromodulation of supervised learning could be similar to

the control of induction of associative plasticity in Purkinje cells through targeted

modulation of instructive climbing fiber synapses (Carey and Regehr, 2009) or the

neuromodulation of STDP (Seol et al., 2007; Couey et al., 2007; Pawlak and Kerr,

2008; Shen et al., 2008; Zhang et al., 2009; Pawlak et al., 2010).

Like STDP (Gerstner et al., 1996) or its neuromodulation (Florian, 2005, 2007)
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were predicted theoretically in advance of experimental verification, future experi-

ments may find plasticity mechanisms similar to I-learning in the brain. For exam-

ple, such mechanisms might be responsible for neural synchronization that mod-

ulates neural interactions (Womelsdorf et al., 2007), such as the synchronization

of thalamic neurons needed for driving the cortex through weak synapses (Bruno

and Sakmann, 2006); for encoding of information through synchronization (Singer,

1999); or for the fine temporal tuning of excitation relative to inhibition that con-

tributes to stimulus selectivity in rat somatosensory cortex (Wilent and Contreras,

2005).

Besides the particular supervised learning rules introduced here, other learn-

ing mechanisms, such as reinforcement learning, or genetic constraints, could lead

to the chronotron-like processing of temporally-coded information that has been

demonstrated here.

Many applications of the presented learning rules are possible. For example,

the supervised learning rules presented here could be used to train readout neu-

rons of liquid state machines, for which perceptrons or spiking neurons with rate

coding of outputs were previously used (Maass et al., 2002). Using spiking neurons

with temporal coding as readouts for liquid state machines makes their informa-

tion representation compatible to the one of spiking neurons in the liquid, thus

allowing the outputs of the readouts to be fed back into the liquid. Such feedback

significantly improves the computing power of liquid state machines (Maass et al.,

2007), allowing the development of better models of information processing in the

brain. Another possible application is the decoding of neural signals. Less efficient

learning rules than the ones presented here have been already applied successfully,

and with better results than alternative methods, to train simulated spiking neural

networks to extract arm movement direction and hand orientation intent from the

timing of spike trains recorded from monkeys (Fang et al., 2010). These are just

a few examples of the potential uses of the learning rules presented here. These

rules open the way to a plethora of future experiments that will explore how infor-

mation encoded in the precise timing of spikes can be processed and memorized.

This should lead to a better understanding of the information-processing features

of neurons in the brain.
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Poznań University of Technology, Poland.
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1 Supplementary results

1.1 The error landscape

Fig. S1 (a)-(b) illustrates the discontinuities of the Victor & Purpura (VP) distance

(Victor and Purpura, 1996) and, respectively, of our E distance between the actual

and the target spike train, as a function of the synaptic efficacies, for a neuron with

two synapses. Fig. S1 (c)-(e) illustrates how the learning rules perform a descent in

the landscape defined by the VP or E distance.

1.2 Capacity does not depend on the number of categories

Fig. S2 shows that, for phase coding of information, the chronotron’s capacity does

not depend on the number of categories. Except the number of categories, the

setup was as in Fig. 5, with n = 500.

1.3 Sensitivity of learning performance to various parameters of

the studied setup

In Fig. S3, we explored the chronotron performance as a function of the number of

output spikes per trial, for a setup where the chronotron had to fire the same out-

put for all inputs. The setup was as in Fig. 5, with E-learning and n = 500, except

that c = 1, and that the output consisted of o output spikes, placed at k T /(o +1),

for k ∈ {1, . . . ,o}. Best performance was achieved for a single output spike per trial.

In Fig. S4, we explored the chronotron performance as a function of the firing

rate of the inputs. Here, the input spike trains were generated using a Gamma

process of order 3 and time constant τΓ, i.e. the interspike intervals were generated

randomly with a probability distribution, for an interspike interval t ,

P (t ) =
t 2

τ3
Γ

exp(−t/τΓ)

2
. (1)

This leads to input spike trains having an average firing rate of 1/τΓ and average in-

terspike interval (period) τΓ. The learning rate was adapted to the input firing rate,

γ= 5,000(τΓ/T )/(n p) pC nF. Except the input and the learning rate, the setup was

as in Fig. 5, with E-learning and n = 500. We studied the performance as a function

of the normalized average period φ= τΓ/T . Best capacity was achieved for values

of φ around 1, i.e. a single input spike per trial, for each synapse, on average, while

fastest learning was achieved for φ around 0.5. The probability distribution of the

number of input spikes per trial, for these values of φ, is illustrated in Fig. S11.

In Fig. S5, we explored the chronotron performance as a function of the prob-

ability Ps that input neurons skip cycles. Each input spike train consisted of ei-

ther one spike generated at a random timing, distributed uniformly between 0

and T , as before, or, with a probability Ps , of no spikes. This models the cycle

skipping of neurons in oscillatory networks. The learning rate was adapted as

γ = 5,000/(n p)/(1−Ps ) pC nF. Except the input and the learning rate, the setup

was as in Fig. 5, with E-learning and n = 500. Best capacity was achieved for values

of Ps less or equal to 0.1, while fastest learning was achieved for no cycle skipping.

In Fig. S6, we explored the chronotron performance as a function of the timing

of the output spike and of the initial state of the membrane potential. The neuron

had to learn to have the same output for all inputs. The output was one spike at

2



a given timing ψ relative to the beginning of the trial. At the beginning of each

trial, the membrane potential u was either set to 0.8 θ, as in the other experiments

(stable initial state), or was generated randomly, with a uniform distribution, be-

tween 0 and 0.8 θ (random initial state). Except the target output, the setup was as

in Fig. 5, with E-learning, n = 500, and c = 1. For this setup, the capacity and the

learning time for reaching the correct output, for stable initial state, does not de-

pend on ψ if it is larger than about 40 ms. Because of the exponential decay of the

membrane potential of the chronotron with a time constant τm , the effect of the

random initial state of the membrane potential on the chronotron’s performance,

as a function of the output spike timing ψ, becomes insignificant at ψ≈ 6 τm , sim-

ilarly to exp(−ψ/τm), as exp(−6) ≈ 0.002.

In Fig. S7, we explored the chronotron performance as a function of the trial

length T . Except the trial length, the setup was as in Fig. 5, with E-learning and n =

500. Best performance was achieved for T = 80. . .100 ms (T /τm = 8. . .10). Since

the setup is invariant to a change of the time scale, the relevant parameters are the

relative time scales T /τm , T /τs , T /τr , T /τq .

In Fig. S8, we explored the chronotron performance as a function of the reset

potential ur . Except the reset potential, the setup was as in Fig. 5, with E-learning

and n = 500. The performance does not depend on the reset potential if it is lower

than half of the firing threshold, θ/2 = 10 mV.

In Fig. S9, we used parameters optimized for fast learning for a setup with a

relatively low load, p = 20, n = 1,000 (α = 0.02), with c = 5. Parameters were op-

timized to lead to the minimum average number of learning epochs needed for

correct learning for this setup. Averages were computed over 500 realizations with

random initial conditions and inputs. Inputs and outputs were phase-coded, as in

Fig. 5. The parameters that resulted from the optimization were: for E-learning,

γ = 11,800/(n p) pC nF, γr = 87.5 ms, τq = 23.5 ms; for I-learning, γ = 30.5/p ms;

for ReSuMe, γ = 96,000/(n p) pC, τR = 10 ms, aR = 0. For the setup that was opti-

mized and for the optimal parameters, ReSuMe had the fastest learning (16.752

± 7.427 epochs), followed by I-learning (23.388 ± 6.866 epochs) and E-learning

(36.480 ± 7.615 epochs). However, the advantages of the first two learning rules

over E-learning disappeared for setups with higher loads or higher number of in-

puts than the optimized setup, when the other parameters were kept the same.

1.4 Synaptic distributions resulted from learning

Fig. S10 presents the distribution of the synaptic efficacies, before and after lear-

ning, for the experiments presented in Fig. 4.
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Figure S1: The error landscape for a neuron with two synapses and the descent

on this landscape during learning. The neuron receives several input spikes on

each synapse and has to fire one spike at a predefined target timing. (a) A contour

plot of the VP distance between the actual spike train and the target spike train as

a function of the values of the synaptic efficacies. The thick lines correspond to

discontinuities of the distance. (b) A contour plot of the E distance. (c), (d), (e)

The dynamics of the synaptic efficacies according to the learning rules. The black

lines represent actual trajectories of the synaptic efficacies. The vectors represent

synaptic changes. The green line corresponds to the values of the synaptic effica-

cies for which the output corresponds to the target spike train. (c) E-learning. (d)

I-learning. (e) ReSuMe.
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Figure S2: The dependence on the number of categories c of the performance of

E-learning for a classification problem with a phase coding of information. (a) The

average minimum number of epochs required for correct learning, as a function of

the load α, for various numbers of categories c. Regardless of c, the points fall on

the same curve. b) The maximum load for which correct learning is achieved (the

capacity), as a function of the number of categories c. The shaded area represents

the uncertainty due to the fact that the load can vary only discretely, in steps of

c/n, for a particular c. The capacity is approximately constant for all c.
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Figure S3: The dependence of chronotron performance on the number of output

spikes per trial. The neuron had to learn to have the same output for all inputs,

using E-learning. The output consisted of o output spikes, placed at k T /(o+1), for

k ∈ {1, . . . ,o}. (a) The maximum load (the capacity) as a function of the number of

output spikes o. (b) The number of learning epochs required for correct learning

as a function of the number of output spikes, for various loads α. (c) The number

of learning epochs required for correct learning as a function of load, for various

numbers of output spikes o.
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Figure S4: The dependence of chronotron performance on the firing rate of the

inputs. The inputs were generated using a Gamma process having a normalized

average period φ (see text). (a) The maximum load (the capacity) as a function of

the normalized average period. (b) The number of learning epochs required for

correct learning as a function of the normalized average period, for various loads

α. (c) The number of learning epochs required for correct learning as a function of

load, for various values of the normalized average period φ.
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Figure S5: The dependence of chronotron performance on the probability Ps that

input neurons skip cycles. Each input spike train consisted of either one spike gen-

erated at a random timing or, with a probability Ps , of no spikes. (a) The maximum

load (the capacity) as a function of the skip cycles probability. (b) The number of

learning epochs required for correct learning as a function of the skip cycles prob-

ability, for various loads α. (c) The number of learning epochs required for correct

learning as a function of load, for various values of the skip cycles probability Ps .
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Figure S6: The dependence of chronotron performance on the timing of the out-

put spike and on the initial state of the membrane potential. The neuron had to

learn to have the same output for all inputs, using E-learning. The output was one

spike at a given timing ψ. At the beginning of each trial, the membrane potential u

was either set to 0.8 θ, as in the other experiments (stable initial state), or was gen-

erated randomly, with a uniform distribution, between 0 and 0.8 θ (random initial

state). (a) The maximum load (the capacity) as a function of the timing of the out-

put spike. (b) The number of learning epochs required for correct learning as a

function of the timing of the output spike, for various loads α. (c) exp(−ψ/τm),

as a reference for comparing the effect on learning of the initial conditions, as a

function of the timing of the output spike ψ.

9



a

b

c

0 50 100 150 200 250 300 350 400
Trial length (ms)

0.00

0.05

0.10

0.15

0.20

0.25
M

ax
im

um
 lo

ad

0 50 100 150 200 250 300 350 400
Trial length (ms)

0
500

1000
1500
2000
2500
3000

E
po

ch
s

a=0.012
a=0.024
a=0.036
a=0.048
a=0.060
a=0.072
a=0.084
a=0.096
a=0.108
a=0.120

0.00 0.05 0.10 0.15 0.20 0.25
Load

0

1000

2000

3000

4000

5000

E
po

ch
s

T =40 ms
T =80 ms
T =120 ms
T =160 ms
T =200 ms
T =240 ms
T =280 ms
T =320 ms
T =360 ms
T =400 ms

Figure S7: The dependence of chronotron performance on trial length T . (a) The

maximum load (the capacity) as a function of the trial length. (b) The number of

learning epochs required for correct learning as a function of the trial length, for

various loads α. (c) The number of learning epochs required for correct learning

as a function of load, for various values of the trial length T . Best performance was

achieved for T = 80. . .100 ms (T /τm = 8. . .10).
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Figure S8: The dependence of chronotron performance on the reset potential ur .

(a) The maximum load (the capacity) as a function of the reset potential. (b) The

number of learning epochs required for correct learning as a function of the reset

potential, for various loads α. (c) The number of learning epochs required for cor-

rect learning as a function of load, for various values of the reset potential ur . The

performance does not depend on the reset potential if it is lower than half of the

firing threshold, θ/2 = 10 mV.

11



0.00 0.01 0.02 0.03 0.04
Load

0

20

40

60

80

100

E
po

ch
s

E-learning
I-learning
ReSuMe

0 2000 4000 6000 8000 10000
Number of inputs

0
50

100
150
200
250
300
350
400

E
po

ch
s

a

b

E-learning
I-learning
ReSuMe

Figure S9: The performance of learning rules when their parameters were opti-

mized for fast learning for p = 20, n = 1,000 (α= 0.02). (a) The number of learning

epochs required for correct learning as a function of the load α, for n = 1,000. Cor-

rect learning was not achieved for I-learning and ReSuMe for α larger than 0.03. (b)

The number of learning epochs required for correct learning as a function of the

number of inputs n. Correct learning was not achieved for I-learning for n = 500

nor n larger than 6,000. Averages and standard deviations over 500 realizations.

The arrows indicate the conditions for which the parameters were optimized.
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Figure S10: The distribution of the synaptic efficacies, before and after learning, for

the experiments presented in Fig. 4. (a) Before learning. (b)-(e) After 400 learning

epochs. (b), (d) E-learning. (c), (e) I-learning. (b), (c) No jitter. (d), (e) A gaussian

jitter with an amplitude of 5 ms is applied to the inputs.
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Figure S11: The distribution of the number of input spikes per trial, for inputs gen-

erated using a Gamma process, as in Fig. S4. (a) φ= 0.5. (b) φ= 1.

2 Detailed methods

2.1 The neural model

Our analysis uses the Spike Response Model (SRM) of spiking neurons, which re-

produces with high accuracy the dynamics of the complex Hodgkin-Huxley neural

model while being amenable to analytical treatment (Gerstner, 2001; Gerstner and

Kistler, 2002). For this model, the dynamics of the membrane potential u of a neu-

ron as a function of the time t is given by

u(t ) = η(t , t̂ )+
∑

j

w j

∑

f

ǫ j (t , t̂ , t
f

j
), (2)

where η is a kernel that represents the refractoriness caused by the last spike of

the neuron; t̂ is the last time the neuron fired before t ; the first sum runs over

all neurons j presynaptic to the considered neuron; w j is the synaptic efficacy of

the synapse from neuron j ; the second sum runs over the set of the timings when

spikes fired by neuron j reach the postsynaptic neuron, t
f

j
∈F j ; ǫ j is a normalized

kernel that determines the postsynaptic potential (PSP) caused by a presynaptic

spike. We have chosen the reference of the membrane potential such that the rest-

ing potential of the neuron is 0. The ǫ kernel is causal, i.e. ǫ j (t , t̂ , t
f

j
) = 0 for t < t

f

j
,

and also decays to 0 for t →∞. We denote as λ j the total normalized PSP,

λ j (t , t̂ ,F j ) =
∑

f

ǫ j (t , t̂ , t
f

j
) (3)

and thus

u(t ) = η(t , t̂ )+
∑

j

w j λ j (t , t̂ ,F j ). (4)

14



When the membrane potential reaches the firing threshold θ, the neuron fires a

spike and the membrane potential is reset.

2.2 Graphical illustration of the chronotron problem

We consider the problem of training the plastic parameters of a spiking neuron,

such that the spike train of the trained neuron is, for a given input, as close as

possible to some given target spike train. Although we focus here on training the

synaptic efficacies, the plastic parameters may also be synaptic delays, the firing

threshold, the membrane time constant, etc.

We consider the vector w having as components the synaptic efficacies w j and

the vector λ(t , t̂ , {F j }) having as components the normalized total synaptic PSPs

λ j (t , t̂ ,F j ). Each of these vectors has a dimension equal to the number of synapses,

n. The equation that defines the dynamics of the Spike Response Model, Eq. 4, can

be then rewritten in vectorial form as

u(t ) = η(t , t̂ )+w ·λ(t , t̂ , {F j }). (5)

We consider here that synaptic changes are applied on a time scale that is much

slower than the time scale of the variation of the PSPs, or that the synaptic changes

are applied at the end of episodes of information processing.

The dynamics of the normalized synaptic PSPs define a trajectory of λ in the

corresponding n-dimensional space. After each postsynaptic spike, the normal-

ized PSPs are reset to 0 and thus this trajectory always starts from the origin of the

space. The neuron fires a spike when u(t ) = θ, or

w ·λ(t , t̂ , {F j }) = θ−η(t , t̂ ). (6)

The magnitude of the projection of the λ vector on the w vector is (w ·λ)/|w|.

Thus, the neuron fires a spike when the magnitude of the projection of λ on w

reaches
(
θ−η(t , t̂ )

)
/|w|, i.e. λ reaches a spike-generating hyperplane which is per-

pendicular on the vector w and at a distance
(
θ−η(t , t̂ )

)
/|w| of the origin. This is

illustrated in Fig. 1 for a neuron with 3 synapses and in Figs. S12 and S13 for a

neuron with 2 synapses. These artificially low numbers of synapses were chosen

because it is difficult to visualize spaces with dimensions higher than 3.

The chronotron problem can then be understood as setting the vector w such

that the spike-generating hyperplane that it defines is such that λ reaches it at

the moments of the target spikes. This problem is very similar to the problem

that needs to be solved in reservoir computing (Jaeger, 2001; Maass et al., 2002;

Schrauwen et al., 2007), where the state of a high-dimensional dynamical system,

such as our vector λ, is processed by a (usually) linear discriminator such that the

switch between output states (the crossing of the hyperplane defined by the linear

discriminator) happens at desired moments of time.

2.3 Analytical derivation of the E-learning rule

For a given input, the trained neuron fires at the moments t f , where f represents

the index of the spike in the spike train. The ordered set of the spikes in the spike

train fired by the neuron is F = {t 1, t 2, ...}. The target spike train that the neuron

should fire for that input is F̃ = {t̃ 1, t̃ 2, ...}.
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Figure S12: A graphical illustration of the chronotron problem for a neuron with

n = 2 synapses and η(t , t̂ ) = 0. (a) The dynamics of the membrane potential u. The

numbered arrows indicate the timings when the membrane potential reaches the

firing threshold and spikes are fired. (b) The dynamics of the two components of λ.

(c) The trajectory of λ. Spikes are generated when the trajectory reaches the spike-

generating hyperplane, which is here a line. The chronotron problem is solved by

adjusting the location of the spike-generating hyperplane, through changes in w,

such that the timings of the fired spikes are the target ones. The numbered arrows

indicate the generation of spikes at the times when the spike-generating line is

reached. The neuron’s parameters are as described in section 2.7, with w = (90,70)

pC and several input spikes generated at random timings, the same as in Fig. S1.

16



a

b

c

0 50 100 150 200
0

10

20

u
HmVL

0 50 100 150 200
0.

0.1
0.2
0.3

t HmsLl 1
,l

2
HnF-

1 L

0. 0.1 0.2 0.3
0.

0.1

0.2

0.3

l1 HnF- 1L

l 2
HnF-

1 L

0 50 100 150 200
0

10

20

u
HmVL

0 50 100 150 200
0.

0.1
0.2
0.3

t HmsLl 1
,l

2
HnF-

1 L

0. 0.1 0.2 0.3
0.

0.1

0.2

0.3

l1 HnF- 1L

l 2
HnF-

1 L

2wq/|w| 2wq/|w|

Figure S13: As in Fig. S12, but for other values of w, resulted through the appli-

cation of E-learning, starting from the situation in Fig. S12, and having as a target

the generation of one spike at 75 ms. Left: during learning. Right: after learning

converged, w ≈ (53.75,70.32) pC.
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The key to solving the chronotron problem is finding appropriate error func-

tions that can be afterwards minimized through methods like gradient descent in

the space of the plastic parameters. In order to find such an error function, we

start from the Victor & Purpura (VP) family of metrics based on spike times that

defines distances between pairs of spike trains (Victor and Purpura, 1996, 1997).

The distance between two spike trains is defined as the minimum cost required to

transform one into the other. This is the sum of the costs assigned to either inser-

tion of spikes, removal of spikes or shifting the timing of spikes. The cost of adding

or deleting a single spike is set to 1, while the cost of shifting a spike by an amount

∆t is σ(|∆t |/τq ), where σ is a positive, increasing function with σ(0) = 0, and τq

is a positive time constant that is a parameter of the metric. The commonly used

form of this function is simply σ(x) = x (Victor and Purpura, 1996, 1997).

Because the transformation is of minimal cost, the operations that define it are

severely constrained. The same spike cannot be both moved and deleted, nor in-

serted and moved, nor inserted and deleted. A spike can be moved in only one di-

rection, and the trajectories of moved spikes should not intersect (Victor and Pur-

pura, 1996). Thus, in a transformation of minimal cost of the actual spike train F

into the target one F̃ , the operations involved are the following: removal of spikes

(that are not previously moved); insertion of spikes (at their target timings, so that

they are not moved after insertion); and shifting of spikes toward their target tim-

ings. The order of these operations is irrelevant.

We denote as F
∗ the subset of F that represents the spikes that should be

eliminated; and as F̃
∗ the subset of F̃ that represents the timings of target spikes

at which new spikes should be inserted into F . The spikes in the actual spike

train that are not eliminated, F−F
∗, are in a one-to-one correspondence with the

spikes in the target spike train for which a correspondent is not inserted, F̃ − F̃
∗,

and they should be moved towards their targets. We say that the spikes in F
∗ and

F̃
∗ are independent, while the spikes in F −F

∗ and F̃ − F̃
∗ are linked or paired

to their correspondent (match). The VP distance is then

EV P =
∑

t f ∈F∗

1+
∑

t̃ f ∈F̃∗

1+
∑

(t f , t̃ g )

t f ∈F−F
∗

t̃ g ∈F̃−F̃
∗

σ(|t f
− t̃ g

|/τq ), (7)

where the first sum equals the number of elements in F
∗, the second sum equals

the number of elements in F̃
∗, and the last sum runs over all unique pairs of

matching spikes.

The existing algorithm that computes the VP distance between two given spike

trains (Victor and Purpura, 1996, 1997) can be extended in order to also compute

the sets F
∗, F̃

∗ and their complements. We present this extended algorithm in

Section 2.9.

We can thus determine which of the actual spikes fired by the trained neuron

should be removed, which target spikes do not have a correspondent and thus new

spikes should be created to match them, and which spikes should be moved and

toward which of the targets, in order to transform the actual spike train into the

target one with a minimal cost. The plastic parameters should then change in or-

der to perform this transformation.

For an existing spike at t f that should be moved towards t̃ g , the error that

should be minimized is σ(|t f − t̃ g |/τq ). This can be differentiated piecewisely with

respect to the plastic parameters, so that the changes of the parameters that lead
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to a decrease of the error can be computed. However, the spikes in F
∗ and F̃

∗

that are independent contribute to the distance a constant term of 1 each, and this

is not differentiable with respect to the plastic parameters. In order to be able to

minimize the contribution of these terms to the distance between the spike trains,

we must focus more closely on the mechanisms of spike creation and removal.

The neuron fires a spike when its membrane potential u reaches the firing

threshold θ; after a spike is emitted, the membrane potential is reset to ur . If a new

spike should be created at a target timing t̃ f , this is because the membrane poten-

tial is not high enough at that moment. In order to minimize the spike train dis-

tance by creating a new spike, we should thus minimize the error θ−u(t̃ f ). This re-

flects the amount with which the membrane potential should increase at t̃ f in or-

der to reach the threshold and let the neuron fire at the target timing. Analogously,

if an actual spike at t f should be removed we should decrease the membrane po-

tential at that timing and minimize u(t f ). Note that we minimize the membrane

potential at the current moments of the spikes to be removed. The membrane po-

tential at a generic moment of these spikes equals the firing threshold, thus being

a constant that cannot be minimized. The effect of this minimization will be, in

most cases, a change of the timing of these spikes, until their elimination.

These error terms that depend on the values of the membrane potential at the

timings of the spikes are piecewisely differentiable with respect to the plastic pa-

rameters. We will replace, in the error function to be minimized by changes in the

plastic parameters, the constant terms corresponding to independent actual and

target spikes with these new error terms. Because the new error terms are not com-

mensurable with the original spike train distance, we scale the original terms by a

constant, positive parameter γd . The final error function that we seek to minimize

is thus

E =
∑

t f ∈F∗

u(t f )+
∑

t̃ f ∈F̃∗

(θ−u(t̃ f ))+γd

∑

(t f , t̃ g )

t f ∈F−F
∗

t̃ g ∈F̃−F̃
∗

σ(|t f
− t̃ g

|/τq ). (8)

The first sum is over the independent actual spikes, the second sum is over the

independent target spikes, and the last sum is over unique pairs of linked spikes,

consisting of one target spike and one actual spike that should be moved towards

the target one.

We aim to minimize this error function by piecewise gradient descent in the

space of the plastic parameters of the trained neuron. We will consider here train-

ing the efficacies w j of the synapses afferent to the neuron, where the index j in-

dicates the synapse. The synaptic changes that aim to minimize the error function

are thus

∆w j ∼−
∂E

∂w j
. (9)

We have

∂

∂w j
σ

(
|t f − t̃ g |

τq

)
=σ′

(
|t f − t̃ g |

τq

)
sign(t f − t̃ g )

τq

∂t f

∂w j
, (10)

where σ′(x) = dσ(x)/dx. Because of the presence of the absolute value function

in the argument of σ, its derivative is discontinuous when the actual spike is at

its target timing, t f − t̃ g → 0, unless we have σ′(0) = 0. We would like to fulfill
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this condition in order to avoid, during learning, oscillations of the emitted spikes

around the target positions. Here we will use

σ(x) =
1

2
x2. (11)

Like for the commonly used form σ(x) = x, for our choice of σ the switch from

considering two spikes (one from each of the two spike trains) as independent

to considering them as linked is when the difference of their timings, in abso-

lute value, is |∆t switch| = 2 τq . This is because a pair of independent spikes con-

tributes to the distance with a term of 1 each, for a total of 2 (one actual spike

should be removed and a matching spike for the target one should be created);

and σ(|∆t switch|/τq ) =σ(2) = 2.

We have σ′(x) = x and

∂

∂w j
σ

(
|t f − t̃ g |

τq

)
=

t f − t̃ g

τ2
q

∂t f

∂w j
. (12)

The derivative of the firing time of the neuron with respect to a synaptic efficacy

can be computed by taking into consideration that the firing time depends on the

synaptic efficacies through its dependence on the dynamics of the membrane po-

tential of the neuron. However, the membrane potential at a generic firing time is

always constant, equal to the firing threshold, and thus we have (Bohte et al., 2002;

Booij, 2004):

u(t f ) = θ (13)

du(t f ) = 0. (14)

By expanding the last equation, we get

∂u(t f )

∂w j
dw j +

∂u(t f )

∂t

∂t f

∂w j
dw j = 0 (15)

and, finally,

∂t f

∂w j
=−

1

∂u(t f )

∂t

∂u(t f )

∂w j
. (16)

By introducing Eqs. 8, 12, and 16 into Eq. 9, we get:

∆w j ∼
∑

t̃ f ∈F̃∗

∂u(t̃ f )

∂w j
−

∑

t f ∈F∗

∂u(t f )

∂w j
+
γd

τ2
q

∑

(t f , t̃ g )

t f ∈F−F
∗

t̃ g ∈F̃−F̃
∗

t f − t̃ g

∂u(t f )

∂t

∂u(t f )

∂w j
. (17)

In order to be able to compute the derivatives of the membrane potential with

respect to the synaptic efficacies, we have to choose a specific neural model. As

discussed above, here we use the Spike Response Model, Eq. 4. We can then com-
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pute

∂u(t )

∂w j
=

∂η(t , t̂ )

∂t̂

∂t̂

∂w j
+λ j (t , t̂ ,F j )+

∑

k

wk

∂λk (t , t̂ ,F j )

∂t̂

∂t̂

∂w j
(18)

∂u(t )

∂w j
=λ j (t , t̂ ,F j )+

[
∂η(t , t̂ )

∂t̂
+

∑

k

wk

∂λk (t , t̂ ,F j )

∂t̂

]
∂t̂

∂w j
(19)

∂u(t )

∂w j
=λ j (t , t̂ ,F j )+

∂u(t )

∂t̂

∂t̂

∂w j
(20)

In order to simplify the learning rule, its presentation and its computational

implementation, we neglected the last term in the last equation and we used for

the simulations the approximation

∂u(t )

∂w j
≈λ j (t , t̂ ,F j ). (21)

Another approximation that we used was to replace the factor 1/[∂u(t f )/∂t ] in Eq.

17 with a constant. This is needed because this factor diverges numerically when a

spike is fired while the membrane potential barely reaches the threshold and thus

∂u(t f )/∂t is close to 0. This divergence reflects a discontinuity of the studied sys-

tem (Booij and tat Nguyen, 2005): in this situation, an infinitesimal change of a

synaptic efficacy can lead to a finite change of the error function, if this results in

the removal of the considered spike. Our error function deals with spike creation

or removal trough the two terms that ensure that the membrane potential is in-

creased or, respectively, decreased at the desired timings, such that the number of

spikes becomes the desired one and the actual spikes are close to the target ones.

It is thus safe to enforce a hard bound for the divergent factor or, as we did here, to

replace it with a constant. This constant is positive, because a spike is generated

only when the membrane potential increases. We fold this constant and γd into a

new positive constant, γr .

The resulting learning rule, that we call E-learning, is thus

∆w j = γ

[ ∑

t̃ f ∈F̃∗

λ j (t̃ f ,̂̃t f ,F j )−
∑

t f ∈F∗

λ j (t f , ˆt f ,F j ) (22)

+
γr

τ2
q

∑

(t f , t̃ g )

t f ∈F−F
∗

t̃ g ∈F̃−F̃
∗

(t f
− t̃ g ) λ j (t f , ˆt f ,F j )

]
,

where γ is the learning rate, a positive parameter.

The E-learning rule can be described more intuitively as follows. For each of

the target spikes, if these target spikes are independent (do not have a correspond-

ing actual spike close to them), each synapse j is potentiated proportionally to

the normalized postsynaptic potential λ j at the moments of these target spikes.

For each of the independent actual spikes (that do not have a corresponding tar-

get spike close to them), each synapse is decreased proportionally to the normal-

ized postsynaptic potential at the moments of these actual spikes. For each pair of

matching spikes, each synapse changes proportionally to the difference between

the timing of the actual spike and the timing of the target spike in the pair, and

also proportionally to the normalized postsynaptic potential at the moment of the
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actual spike. The first two terms of the learning rule will create or remove spikes

in order to match them to the target ones. The last term of the learning rule will

move the actual spikes that match the target ones toward their targets. When the

timing of the spikes coincide to their targets, the changes of the synaptic efficacies

suggested by the learning rule become zero and thus learning stops.

The E-learning rule is appropriate for both excitatory and inhibitory synapses.

If we consider that the excitatory synapses have a positive synaptic efficacy w j

and the inhibitory synapses have a negative one, the learning rule in the form

presented above can be applied to both cases. Without an extra bounding of the

synaptic efficacies, E-learning will transform an excitatory synapse into an inhibi-

tory one or viceversa, as needed for minimizing the error function.

The E-learning rule can also be understood intuitively by considering snap-

shots of the trajectory of λ(t ) at the timings of target and actual spikes of the

trained neuron. The equation defining the E-learning rule, Eq. 22, can be written

in vectorial form as

∆w = γ

[ ∑

t̃ f ∈F̃∗

λ(t̃ f ,̂̃t f , {F j })−
∑

t f ∈F∗

λ(t f , ˆt f , {F j }) (23)

+
γr

τ2
q

∑

(t f , t̃ g )

t f ∈F−F
∗

t̃ g ∈F̃−F̃
∗

(t f
− t̃ g )λ(t f , ˆt f , {F j })

]
.

At the timings t̃ f of independent target spikes, the spike-generating hyperplane

must be brought closer to the λ(t̃ f ) vector and the w ·λ(t̃ f ) product must be in-

creased. This can be done best, for a given perturbation of w, by increasing just

the component of w that is parallel to the λ(t̃ f ), which would lead w to turn to-

wards λ(t̃ f ). This leads to setting ∆w ∼ λ(t̃ f ), hence the first term of Eq. 23. At

the timings t f of independent actual spikes, λ(t f ) reaches the spike-generating

hyperplane which must be then moved away from λ(t f ) and thus it leads to ∆w ∼

−λ(t f ), hence the second term of Eq. 23.

When an actual spike at t f is followed closely by a matching target spike at

t̃ g , bringing the spike-generating hyperplane closer to λ(t̃ g ) is deleterious since it

does not take into account that λ has just been reset to 0 because of the recent

actual spike. In this case, what should be done is just delaying the actual spike.

This could be done by moving the spike-generating hyperplane away from λ(t f ),

proportionally to t f −t̃ g . When a target spike at t̃ g is followed closely by a matching

actual spike at t f , bringing the spike-generating hyperplane closer to λ(t̃ g ), in the

same way as in the case of an independent target spike described above, would

bring the timing of the actual spike closer to the target one, but in an imprecise

fashion. We would like that the convergence of the actual spike towards the target

one to be smooth. The third term of Eq. 23, ∆w ∼ (t f − t̃ g )λ(t f ), takes care of the

last two situations.

2.4 The I-learning rule

The form of the synaptic changes indicated by the previously described E-learning

rule depends on whether spikes are independent or not, being different in the two

cases. While, as the simulations have shown, this learning rule is very efficient, the

biological plausibility of this switch of the form of the synaptic changes is debat-
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able. For this reason, we sought a more biologically plausible supervised learning

rule.

One may consider the limit τq → 0 (all spikes are independent; F = F
∗ and

F̃ = F̃
∗) and thus consider just the first two terms of the E-learning rule, which

depend on the normalized postsynaptic potentials. The switch of the form of the

synaptic changes as a function of the pairing status of the spikes is then removed.

However, due to the spike generation mechanism, the postsynaptic potentials suf-

fer a discontinuity after each actual spike, being reset to zero. If there is no distinct

treatment of pairs of close actual and target spikes, this leads to a discontinuity of

the synaptic changes when an actual spike oscillates around a target one. Lear-

ning does not converge to a stable firing of the actual spikes at the target timings.

Moreover, it is not clear whether the normalized postsynaptic potential (i.e., the

postsynaptic potential with the synaptic efficacy factored out) is a quantity avail-

able to the synapse.

For these reasons, we heuristically defined a new learning rule. As before, we

wanted the synaptic changes to depend on a quantity that reflects the contribution

of each synapse to the membrane potential, a quantity that would be correlated

to λ j , which is used by the analytically-derived E-learning rule. As in E-learning

with τq → 0, the synaptic changes for excitatory synapses should be determined

by synaptic increases proportional to the value of the considered quantity at the

timing of the target spikes and by synaptic decreases proportional to the value of

that quantity at the timing of the actual spikes. In this case, when the actual spikes

coincide with the target ones, the terms cancel out, resulting in the convergence of

the learning rule. Another condition was that the sum of the terms corresponding

to a pair of close actual and target spikes converges continuously to zero when

the actual spikes moves towards the target one. We also wanted that the quantity

used by the learning rule to be locally available to the synapse, thus ensuring its

biological plausibility. We thus used the synaptic current, I j , as this quantity. The

resulting learning rule, that we call I-learning, is thus:

∆w j = γ sign(w j )

[
∑

t̃ f ∈F̃

I j (t̃ f )−
∑

t f ∈F

I j (t f )

]
, (24)

with γ being the learning rate, a positive constant. Although we did not make it ex-

plicit in the notation, the synaptic currents I j on each synapse obviously depend

on the parts of the presynaptic spike trains F j coming through that synapse previ-

ous to the moment at which I j is evaluated. The sign(w j ) in the learning rule (i.e.,

± 1 as a function of whether the synapse is excitatory or inhibitory) reflects that

the sign of the synaptic changes depends on the sign of the synaptic efficacy. For

excitatory synapses, both w j and I j are positive, while for negative synapses both

are negative.

Because I j is proportional to w j , the I-learning rule does not allow an excita-

tory synapse to become inhibitory or viceversa, for small γ, thus corresponding to

the biological reality.

This learning rule is quite similar to the existing ReSuMe learning rule (Ponu-

lak, 2005; Ponulak and Kasiński, 2006; Ponulak, 2008; Ponulak and Kasiński, 2010).

As in ReSuMe, actual and target postsynaptic spikes lead to synaptic changes of

opposite signs, such that when the actual spike train corresponds to the target one

the terms cancel out and synapses become stable. In contrast to ReSuMe, where

synaptic changes depend exponentially on pairs of pre- and postsynaptic spikes, as
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in some models of spike-timing-dependent plasticity, here we consider that synap-

tic changes depend on the value of the synaptic current.

E-learning is an episodic learning rule, because one needs the actual spikes

fired during the entire trial under study in order to compute which spikes are inde-

pendent and which are linked, although one can imagine approximate algorithms

for matching the spike trains, which would also work online. However, I-learning

can be applied for both episodic learning and online learning, only the latter case

being biologically plausible.

2.5 ReSuMe

We have also performed simulations using the ReSuMe learning rule (Ponulak, 2005;

Ponulak and Kasiński, 2006; Ponulak, 2008; Ponulak and Kasiński, 2010), in order

to compare it to the new learning rules introduced here. We used the following

form of ReSuMe:

∆w j = γ






∑

t̃ f ∈F̃



aR +
∑

t
g

j
<t̃ f

exp

(
−

t̃ f − t
g

j

τR

)

−
∑

t f ∈F



aR +
∑

t
g

j
<t f

exp

(
−

t f − t
g

j

τR

)







,

(25)

where γ is the learning rate, aR is a non-Hebbian term, and τR is a time constant,

all being positive parameters of the learning rule.

2.6 Details of the neural model

In order to be able to test the learning rules in a computer simulation, we must

define the forms of the ǫ and η kernels of the Spike Response Model. We define

them to correspond to the classical leaky integrate-and-fire neural model, which

is a particular case of the Spike Response Model (Gerstner and Kistler, 2002). A

further choice must be made for the form of the synaptic currents. We modeled

the kernel α that reflects the form of the synaptic current generated by the arrival

of a presynaptic spike through the synapse j at the timing t
f

j
as a difference of two

exponentials (double-exponential current):

α(t , t
f

j
) =

1

τs −τr



exp



−
t − t

f

j

τs



−exp



−
t − t

f

j

τr







 , (26)

for t ≥ t
f

j
, where τs and τr are positive parameters (time constants). The α kernel

is illustrated in Fig. S14 (a).

The synaptic current contributed by one spike at t
f

j
is the product of the synap-

tic efficacy w j and of the normalized α kernel:

I
f

j
(t , t

f

j
) = w j α(t , t

f

j
). (27)

The α kernel is normalized:
∫∞

t
f

j

α(t , t
f

j
) dt = 1, (28)

and thus the synaptic efficacy w j represents the total charge transmitted to the

postsynaptic neuron as a consequence of one presynaptic spike.
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Figure S14: (a) The α kernel. (b), (c) The ǫ kernel. In (b) there is no postsynap-

tic spike. In (c), a postsynaptic spike is fired at t = 10 ms. A presynaptic spike is

received at t = 0. The parameters are as described in Section 2.7.

The synaptic current generated through the synapse j by one or more presy-

naptic spikes is

I j (t ) =
∑

t
f

j
∈F j

t
f

j
≤t

I
f

j
(t , t

f

j
), (29)

and the total synaptic current received by the neuron from all synapses is

I (t ) =
∑

j

I j (t ). (30)

The dynamics of the membrane potential u of the leaky integrate-and-fire neu-

ron is defined by
du(t )

dt
=−

u(t )

τm
+

I (t )

C
, (31)

where τm is the time constant of the neuron’s leakage and C is the capacity of the

neuron’s membrane (we use here a scale for the membrane potential where the

resting potential is 0). When the membrane potential reaches the threshold θ, the

neuron fires a spike and the membrane potential is reset to the reset potential ur .

By integrating the last equation between the moment t̂ of the last emitted spike

before t , and, respectively, t , we get

u(t ) = ur exp

(
−

t − t̂

τm

)
+

1

C

∫t

t̂
I (s) exp

(
−

t − s

τm

)
ds. (32)

By expanding I (s) into its components generated by each presynaptic spike, we get

u(t ) = ur exp

(
−

t − t̂

τm

)
+

1

C

∑

j

w j

∑

t
f

j
≤t

∫t

t̂
α j (s, t

f

j
) exp

(
−

t − s

τm

)
ds. (33)
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We define:

η(t , t̂ ) = ur exp

(
−

t − t̂

τm

)
(34)

ǫ j (t , t̂ , t
f

j
) =

1

C

∫t

t̂
α j (s, t

f

j
) exp

(
−

t − s

τm

)
ds (35)

We can then express the dynamics of the integrate-and-fire neuron in the form of

the Spike Response Model, Eq. 2:

u(t ) = η(t , t̂ )+
∑

j

w j

∑

f

ǫ j (t , t̂ , t
f

j
). (36)

After performing the integration in Eq. 35 by taking into account the form of

the α kernel given by Eq. 26, we get:

ǫ j (t , t̂ , t
f

j
) =

τm

C (τs −τr )
(37)

×






τs

τm−τs

[
exp

(
−

t−t
f

j

τm

)
−exp

(
−

t−t
f

j

τs

)]

−
τr

τm−τr

[
exp

(
−

t−t
f

j

τm

)
−exp

(
−

t−t
f

j

τr

)]
, if t ≥ t

f

j
> t̂ ,

τs

τm−τs

[
exp

(
−

t−t̂
τm

)
exp

(
−

t̂−t
f

j

τs

)
−exp

(
−

t−t
f

j

τs

)]

−
τr

τm−τr

[
exp

(
−

t−t̂
τm

)
exp

(
−

t̂−t
f

j

τr

)
−exp

(
−

t−t
f

j

τr

)]
, if t ≥ t̂ ≥ t

f

j
,

0, otherwise.

The form of ǫ is illustrated in Fig. S14 (b)-(c).

2.7 Computer simulations

The learning rules were tested and explored in computer simulations. We trained

an integrate-and-fire neuron with double-exponential synaptic currents, as des-

cribed in Section 2.6. The neuron had a membrane time constant τm = 10 ms, a

capacity C = 2.5 nF, a firing threshold θ = 20 mV, and the resting potential was 0.

Except in Fig. S8, the neuron had a reset potential equal to the resting potential,

ur = 0. The time constants that define the dynamics of the synaptic currents were

τs = 5 ms and τr = 1.25 ms.

Since we were interested in the coding of information in the precise timing of

the spikes, we used an event-driven simulation (D’Haene et al., 2009) where the

timing of input spikes were represented with machine precision and the timing of

the trained neuron’s spikes were computed with a precision of 10−5 ms.

The neuron received inputs through n synapses. In Figs. 3, 4, and S2–S8 we

used n = 500, while in Figs. 5 and S9 n was variable, but at least 500. At the begin-

ning of learning experiments, synaptic efficacies were generated randomly, with an

uniform distribution between 0 and wm . In Figs. 3 and 4 we used wm = 2,000/n

pC, while in Figs. 5 and S2–S9 we used wm = 1,000/n pC.

The neuron was trained to learn p input patterns by firing a pre-determined

output spike train for each of the inputs. Except in Fig. S7, the length T of the
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input patterns was of 200 ms. An input pattern consisted of the ensemble of the

n input spike trains coming through the n synapses during the interval T . During

learning, the input patterns were presented sequentially, in batches consisting of

the p patterns, and the synapses were modified at the end of the batches according

to the learning rules. A presentation of one input pattern and the simulation of the

output of the trained neuron corresponding to this input is called a trial. Each

batch of presentations of the p patterns (trials) is called an epoch. Except in Fig.

S6, at the beginning of each trial, the membrane potential of the neuron was reset

to 0.8 of the value of the firing threshold θ; this value was used in order to allow

the neuron to fire even at moments close to the beginning of the trial.

The learning rates that we used were, for E-learning: γ = 1,250/(n p) pC nF in

Fig. 3, γ = 2,500/(n p) pC nF in Fig. 4, and γ = 5,000/(n p) pC nF in Figs. 5, S2,

S3, S6, and S7. We also used γr = 15 ms. For I-learning, the learning rates were

γ= 5/p ms in Figs. 3 and 4, and γ= 20/p ms in Fig. 5. These values were close to

the optimal ones. The inverse proportionality to p reflects the accumulation of the

synaptic changes during the presentation of the p patterns. The inverse propor-

tionality with n for E-learning but not for I-learning reflects that the average value

of the synaptic efficacies scales inversely proportional to the number of synapses,

for about the same behavior of the neuron. In I-learning the changes of synap-

tic efficacies are proportional to the synaptic current, which is already scaled in-

versely proportional to the number of synapses as it is proportional to the synaptic

efficacy, and thus no scaling with n is needed for the learning rate. We also used

τq = 10 ms.

The I-learning rule implies that changes of synaptic efficacies are proportional

to the synaptic current and thus to the values of the synaptic efficacies. Thus, if

the initial synaptic efficacies are all positive, they cannot become negative if the

learning rates are sufficiently small. The application in batches of synaptic changes

or rounding errors may, however, allow a sign change of the synaptic efficacies in a

computer simulation. In our simulations with I-learning we enforced that synaptic

efficacies stayed positive, by using a hard bound. For E-learning, we allowed the

synapses to switch sign, according to the changes suggested by the learning rule.

In Figs. 3–5, S2, S3, and S6–S9, the input spike trains consisted, for each of

the n synapses, of one spike generated at a random timing, distributed uniformly

between 0 and T (phase coding of information).

In Fig. 4, we considered that the actual spike matched the target one if there

was exactly one actual spike and its timing was within τq of the target timing. The

probability Pm that the fired spikes matched the target ones was the number of

patterns within a trial for which the actual spikes matched the target one, divided

by the total number of patterns, p = 10.

In the experiments presented in Figs. 4, 5 and S2–S9, we trained the neuron to

perform classifications by setting its target output to be the same for several dif-

ferent, randomly generated, inputs. The number c of the different outputs was the

number of categories into which the neuron classified the p input patterns. We

assigned equal number of patterns into each category, such that p was an integer

multiple of c. We considered that an input-output association was learned cor-

rectly by the trained neuron if the number of the actual output spikes was the one

in the target spike train and each of the output spikes was fired within less than 1

ms of the target timing. We considered that the chronotron was able to learn cor-

rectly a particular setup if, during each of 500 realizations of the setup with differ-

ent, random, initial conditions, all input-output mappings were learned correctly
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in no more than 10,000 epochs.

The output used a phase-coded representation of the information. Except in

Figs. S3 and S6, the target spike train for each category k ∈ {1, . . . ,c} consisted of

one spike at k T /(c +1).

For each realization of the experiments, both the input patterns and the initial

synaptic efficacies were generated randomly. In Figs. 5, S2 and S4, for various val-

ues of the number of inputs n we increased the load α= p/n until the chronotron

was not able to learn correctly all the 500 random realizations of the setup. The ca-

pacity for a particular setup was the maximum load for which the chronotron was

able to learn correctly that setup, lower than the first load for which the chronotron

was not able to learn correctly the setup. In Figs. S3 and S5–S8, the capacity was

the maximum load for which chronotron was able to learn correctly a particular

setup, lower than the first load for which the chronotron was not able to learn

correctly more than 1% of the 500 random realizations of the setup. For each

setup and load, we recorded the minimum number of epochs e after which the

chronotron was able to learn correctly the setup.

In Figs. 5, S4, S5, S7, and S8, the experiments were performed with c = 3 cate-

gories, in Figs. S3 and S6 with c = 1, in Fig. S9 with c = 5, and in Fig. S2 the number

of categories varied.

For E-learning, simulations for n higher than 2,000 were not performed in Fig. 5

because of the high computational cost, due to the high capacity resulted through

this learning rule. For example, the simulations required for obtaining the results

presented for n = 2,000 took about 13 days on a computer with 8 Xeon cores run-

ning in parallel at 2.33 GHz.

For the simulations using ReSuMe in Fig. 5, we used γ = 75,000/(n p) pC and

τR = 20 ms. These were optimal parameters, that led to the lowest occurrence of

cases where correct learning was not achieved for p = 21, n = 500 (α= 0.042), c = 3,

from a scan of the γ, τR parameter space with a resolution of 2,500/(n p) pC and,

respectively, 2 ms. We also used aR = 0. We verified that, for n = 500, the capacity

did not increase if we used nonzero aR , for various values spanning several orders

of magnitude.

In Fig. 1, we used w = (20,70,55) pC, F1 ={0, 235, 468, 550, 649, 734, 826, 962}

ms, F2 ={30, 177, 285, 396, 782, 922} ms, and F3 ={107, 452, 586, 945} ms.

In Figs. S1, S12, and S13 we used F1 ={0, 35, 100, 156, 188} ms and F2 ={15, 55,

70, 120, 170} ms. In Figs. S1 and S13, the target spike train was F̃ = {75} ms.

2.8 The information capacity of the chronotron

The load α of a neuronal classifier is the number of patterns it memorizes per each

synapse of the neuron. If the neuron has n synapses and memorizes p patterns,

the load is

α=
p

n
. (38)

We define the information load ι of a neuronal classifier as the quantity of in-

formation it can store for each of the patterns that it memorizes, per each synapse

of the neuron. We assume that the patterns are classified into c categories, and

the same number of patterns is assigned to each category. The neuron stores then

i = log2(c) bits of information for each pattern, and the information load is

ι=
p i

n
=α i . (39)
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The information capacity ιm of a neuronal classifier is the maximum informa-

tion load it can carry. It depends on both the maximum load αm it can carry as

well as the maximum quantity of information it can store for each pattern, if they

are independent.

For the perceptron and the tempotron, which can classify patterns in just c = 2

categories, we have i = 1 and thus the information load equals the (pattern) load

and the information capacity equals the (pattern) capacity.

For chronotrons with phase coding of their outputs, the information capacity

depends on the temporal precision of the output spikes and on the duration of the

interval in which output spikes can be fired with no loss of capacity. We consider

that T0 is the time interval, at the beginning of each trial, where, if target spikes are

located, learning capacity is reduced (see Fig. S6). A chronotron having a precision

of the output spike of ±δt , can encode, for a trial duration T , at most cm = (T −

T0)/(2 δt ) categories. The information capacity of the chronotron is then

ιm =αm log2(cm). (40)

The capacity obtained in our simulations for E-learning was αm ≈ 0.22. For T = 200

ms, δt = 1 ms, T0 ≈ 40 ms, we get the maximum number of categories cm ≈ 80, the

corresponding information memorized per pattern im = log2(cm) ≈ 6.32 bits per

pattern, and the information capacity ιm ≈ 1.39 bits per input synapse.

Barak and Tsodyks (2006) have developed a learning rule that allows an integrate-

and-fire neuron with exponential currents to recognize input patterns from a given

set, by increasing its firing rate for learned patterns in comparison to the one for

background inputs. The maximum number of patterns that this rule can learn

is pm = n τ′s /T , where τ′s is the decay time constant of the exponential neurons.

Thus, the capacity of this rule is αm = pm/n = τ′s /T . If we extrapolate this result to

neurons with double-exponential currents by assuming that the same relationship

applies if we consider the largest time constant of the double-exponential current,

τs in our case, instead of τ′s , then the capacity of a neuron for recognizing patterns

would be, for our setup, αm = τs /T = 0.025. It can be seen then that the capacity

that we obtained in simulations through E-learning, about 0.22, for having a par-

ticular, precisely-timed spike output pattern for each input, is about an order of

magnitude larger than the capacity computed for just the recognition of patterns.

2.9 The algorithm for computing the sets of spikes to be removed,

inserted or moved

Victor and Purpura (1996, 1997) presented an algorithm for computing the dis-

tance between spike trains that they defined, but not one for indicating the pairs of

matching spikes (consisting of one spike from each spike train) and the sets of in-

dependent spikes that the distance implies. This information represents the struc-

ture of the pair of spike trains, as defined by the metric. Here we extend the Victor

& Purpura algorithm with the capacity of computing this structure.

When the two spike trains that are compared consist of one that is fixed (the

target one) and one that is modifiable (the actual one), as in our supervised lear-

ning problem, the set F̃
∗ of independent spikes in the target spike train corre-

sponds to timings when new spikes should be created in the actual spike train; the

set F
∗ of independent spikes in the actual spike train represents the spikes that

have to be removed; and pairs of matching spikes define the set of actual spikes

that have to move and their targets.
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The original algorithm (Victor and Purpura, 1996, 1997) computes the distance

between spike trains inductively, as follows. Let Di , j be the distance between the

spike trains composed of the first i spikes of F , F
i = {t 1, t 2, . . . t i }, and, respec-

tively, the first j spikes of F̃ , F̃
j = {t̃ 1, t̃ 2, . . . t̃ j }. Di , j is computed as:

Di , j = min
{

Di−1, j +1, Di , j−1 +1, Di−1, j−1 +σ(|t i
− t̃ j

|/τq )
}

. (41)

The elements from which the induction starts are Di , 0 = i and D0, j = j , because

it is considered that F
0 = F̃

0 = ; (the distance between a train of i spikes and a

train of no spikes is i because all spikes must be removed or correspondents for all

must be inserted for a cost of 1 each). If there are n spikes in F and ñ spikes in

F̃ , the algorithm needs to use a n+1 by ñ+1 matrix that stores the Di , j values for

the various i and j . The actual distance between the full spike trains is Dn, ñ , the

element at the bottom right of the matrix. Because the computation of each Di , j

element requires all the three values placed above, left and above left in the matrix,

all the elements in the matrix have to be computed inductively.

The choice of the minimum of the three values performed at the computation

of each element Di , j of the matrix (except the ones in the left and top edges of the

matrix, i = 0 or j = 0) reflects an optimal choice of the status of the last spikes in the

partial spike trains corresponding to the considered element. The optimal status

of the last spikes depends on the structure of the pair of partial spike trains that

precedes them. If the minimum is Di−1, j +1, then the spike at t i has a contribution

of 1 to the distance and it is thus independent of any spike in the reciprocal spike

train F̃
j ; the spike at t̃ j may or may not be independent, as a function of the

structure of the (F i−1, F̃
j ) pair of spike trains. If the minimum is Di , j−1 +1, then

the spike at t̃ j is independent of any spike in the reciprocal spike train F
i ; again,

the spike at t i may or may not be independent, as a function of the structure of

the (F i , F̃
j−1). If the minimum is Di−1, j−1 +σ(|t i − t̃ j |/τq ) then the actual spike

at t i is linked to the target one at t̃ j and will have to move towards it.

If more than one of the three values have the minimum value, then, at least the-

oretically, they might represent different, alternative choices of the optimal struc-

ture of the (F i , F̃
j ) pair of spike trains. We will consider here that a pair of spikes

(t i , t̃ j ) is linked if and only if Di−1, j−1 +σ(|t i − t̃ j |/τq ) is a strict minimum, i.e. it

is the only one of the three choices that corresponds to the minimum value of

Di , j . If it is equal to another minimum, the link has just been broken and we

will consider the alternative structure. If Di−1, j +1 and Di , j−1 +1 are equal min-

ima, they might correspond to different structures, as a function of the structures

of (F i−1, F̃
j ) and (F i , F̃

j−1). However, if these structures involve pairs of linked

spikes, it is extremely improbable that the equality Di−1, j = Di , j−1 will hold ex-

actly, especially in a numerical computer simulation. The equality can hold with

a non-vanishing probability when all spikes in (F i−1, F̃
j ) and (F i , F̃

j−1) are in-

dependent, in which case the two alternative structures for (F i , F̃
j ) are actually

identical, since they both consider that all the spikes are independent. Even in the

improbable case that the equality holds when links do exist, for our purpose of su-

pervised learning is is sufficient to consider only one of the alternatives, as long as

we are consistent in the choice of this alternative.

It can be shown that, if Di−1, j−1 +σ(|t i − t̃ j |/τq ) is a strict minimum value for

computing Di , j , then σ(|t i − t̃ j |/τq ) < 2 and thus the two spikes are linked (not

independent), as follows. The addition of a spike at t i to the pair of spike trains

F
i−1 and F̃

j−1 can increase the distance with at most 1, because in the worst case
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Input: The pair of spike trains F , F̃ ; the parameter τq ; the function σ

Output: The distance between the spike trains and the structure of the spike

trains corresponding to this distance

D0, 0 := 0;

S0, 0 :=;;

S̃0, 0 :=;;

Set the left edge of the matrix

for i := 1. . .n do

Di , 0 := i ;

Si , 0 := Si−1, 0 ∪ (i ,◦);

S̃i , 0 :=;;

Set the top edge of the matrix

for j := 1. . . ñ do

D0, j := j ;

S0, j :=;;

S̃0, j := S̃0, j−1 ∪ ( j ,◦);

Perform the inductive computation

for i := 1. . .n do

for j := 1. . . ñ do

Compute (Di , j , (Si , j , S̃i , j ))

ς := Di−1, j−1 +σ(|t i − t̃ j |/τq );

if Di−1, j ≤ Di , j−1 ∧ Di−1, j +1 ≤ ς then

Spike j is independent

Di , j := Di−1, j +1;

Si , j := Si−1, j ∪ (i ,◦);

S̃i , j := S̃i−1, j ;

else if Di , j−1 +1 ≤ ς then

Spike i is independent

Di , j := Di , j−1 +1;

Si , j := Si , j−1;

S̃i , j := S̃i , j−1 ∪ ( j ,◦);

else

Spikes i and j are linked

Di , j := ς;

Si , j := Si−1, j−1 ∪ (i , j );

S̃i , j := S̃i−1, j−1 ∪ ( j , i );

return (Dn, ñ , (Sn, ñ , S̃n, ñ));

Algorithm 1: The algorithm for computing the distance between two spike trains

and the structure of these spike trains corresponding to the distance. The text in

italics represents comments.
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the spike will be removed for a cost of 1. We thus have

Di , j−1 ≤ Di−1, j−1 +1 (42)

Di , j−1 +1 ≤ Di−1, j−1 +2. (43)

But if Di−1, j−1 +σ(|t i − t̃ j |/τq ) is a strict minimum, then

Di−1, j−1 +σ(|t i
− t̃ j

|/τq ) < Di , j−1 +1 (44)

and from the last two equations we get

Di−1, j−1 +σ(|t i
− t̃ j

|/τq ) < Di−1, j−1 +2 (45)

σ(|t i
− t̃ j

|/τq ) < 2, (46)

which was to be demonstrated.

The algorithm for computing the structure of the pair of spike trains (F , F̃ )

has to compute the structure inductively, along with the computation of the dis-

tance between the spike trains. We will thus have to store the structure of all pairs

of partial spike trains (F i , F̃
j ) for i = 0. . .n and j = 0. . . ñ. This structure is defined

by indicating for each spike whether it is independent or not; if it is linked (not in-

dependent), it will also have to indicate the index of the spike in the other train

to which it is linked. The structure of (F i , F̃
j ) is formed by the pair (Si , j , S̃i , j )

where the first element is the structure information for F
i when used for com-

puted Di , j and the second element is the structure information for F̃
j when used

for computed Di , j . More precisely, Si , j is a list in which each element indicates

whether the corresponding spike k, with k = 1. . . i , is independent, which we de-

note through an element (k,◦); or whether the spike is linked to a spike l in the

other spike train, which we denote through an element (k, l ). The list S̃i , j has an

analogous meaning for the spikes in the target spike train F̃
j .

Algorithm 1 lists the entire procedure of computing the structure of the pair of

spike trains along with the distance between them.

2.10 Average displacement for gaussian jitter

In Fig. 4, input spikes were displaced randomly around the reference timing ac-

cording to a gaussian distribution with an amplitude ς. The probability density of

a (positive or negative) displacement δt is

P (δt ) =
1

√
2 πς2

exp

(
−
δt 2

2 ς2

)
. (47)

The probability density of a given displacement, in absolute value, is

P (|δt |) = 2 P (δt ). (48)

The average displacement (in absolute value) is then

|δt | =

∫∞

0
P (|x|) x dx (49)

=

∫∞

0

√
2

πς2
exp

(
−

x2

2 ς2

)
x dx (50)

=

√
2

π
ς. (51)

For ς= 5 ms, we get |δt | ≃ 3.99 ms.
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3 Comparison to other results

The first supervised learning method for spiking neurons was SpikeProp (Bohte

et al., 2000, 2002), a method inspired by the backpropagation algorithm used for

training classical neural networks. SpikeProp works by minimizing the difference

between the timing of an output spike and the desired timing. The first versions of

the learning method required a feedforward network and that each neuron in the

network fires only once during a trial. Later versions (Xin and Embrechts, 2001;

Moore, 2002; Schrauwen et al., 2004; Booij and tat Nguyen, 2005; Tiňo and Mills,

2005, 2006; McKennoch et al., 2006) extended the method for including a momen-

tum term; adapting the synaptic delays, time constants and neurons’ thresholds

during learning; for networks where the input (but not the output) neurons fire

more than once per trial; for recurrent networks; and for improving learning speed

under certain assumptions. However, the method is designed for adjusting just the

timing of a single (first) spike per output neuron and assumes that the synapses

are such that each output neuron fires at least one spike for the given inputs. The

method is not suitable for adjusting the number of output spikes nor for training a

network to fire given output spike patterns that extend in time.

Carnell and Richardson (2005) devised a method for modifying the synaptic

weights such as the weighted sum of the presynaptic spike trains (in an algebraic

representation) converge to a desired one. If the neuron model is such that the

firing of the postsynaptic neuron is close to this weighted sum, then the method

allows the supervised learning of a target output spike train. The method is quite

original and general, but ignores the details of the dynamics of the postsynaptic

potential and of the neuronal membrane.

Pfister et al. (2006) have derived supervised learning rules for probabilistic neu-

rons. The learning method is based on gradient ascent in the space of synaptic

efficacies, which maximizes the likelihood of having a trained neuron firing at the

desired moments. Because of the probabilistic framework, the learning rules do

not involve the actual timing of the output spikes, but the probability of having a

particular output spike train given a particular input spike train. Calculating such a

probability while taking into account the reset of the membrane potential after the

spikes of the output neuron is computationally challenging and not biologically

plausible.

Legenstein and colleagues (Legenstein et al., 2005; Legenstein and Maass, 2006)

have studied a supervised, biologically-inspired learning method for spiking neu-

rons that works by clamping neurons to the desired output and applying spike

timing–dependent plasticity (STDP) to the afferent synapses of the trained neu-

rons. Under certain conditions, after learning, the neurons yield the desired out-

put even after the teaching signal is removed. The efficacy of this learning method

has been proved analytically only for Poisson input spike trains, and there are worst

case scenarios where the method fails, but simulations have shown that the method

is effective in more general conditions. The method works only when synapses

have hard bounds, by driving synaptic efficacies toward these bounds. Thus, the

output patterns that this method can learn are restricted to those that can be gen-

erated by synapses that have either minimum (zero) or maximum efficacy. A simi-

lar rule is effective for supervised learning of patterns by networks (Gerstner et al.,

1993), but not by single neurons.

The tempotron (Gütig and Sompolinsky, 2006) implements supervised learning

for a particular task where an output neuron either fires one spike or does not fire,
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when presented with an input spike train. The approach assumes that after the

neuron emits a spike in response to a input pattern all other incoming spikes have

no effect on the neuron (are shunted), which is artificial. The method requires

information that is nonlocal in time, needing to monitor the maximum of the out-

put, and information that is not available to the neuron, such as the maximum of

the membrane potential that would have been reached if the neuron would have

not fired. The timing of the output spike cannot be controlled with this method.

The tempotron has a binary response and thus its output cannot distinguish be-

tween more than two input categories. All these constraints undermine its bio-

logical plausibility and its applicability to more general problems. We have shown

that the tempotron is equivalent to a particularization of the ReSuMe learning rule

(Florian, 2008). A learning rule by Urbanczik and Senn (2009) improves the original

tempotron learning rule but is still focused on the artificial tempotron setup.

Barak and Tsodyks (2006) have developed learning rules that increase the vari-

ance of the input current evoked by a set of learned patterns relative to that ob-

tained from random background patterns. The trained neuron then has a larger

firing rate when presented with one of the learned patterns, as compared to when

presented with a typical background pattern. The learning rules are quite com-

plex, with low biological plausibility. They allow a neuron to recognize input pat-

terns, but the timing of the output spikes is not controlled by these rules. Other

complex setups for recognizing spike patterns were also developed (Hopfield and

Brody, 2001; Gers et al., 2002; Jin, 2004, 2008).

A few other supervised learning methods for supervised neural networks also

exist but work only for some specific cases, such as population-temporal coding

(Schrauwen and Van Campenhout, 2006), theta neurons (Voegtlin, 2007; McKen-

noch et al., 2009), neurons with very large membrane decay time constants and

constant interspike intervals for the inputs (Kaiser and Feldbusch, 2007), networks

with time to first spike coding for classification through plasticity of synaptic de-

lays (Paugam-Moisy et al., 2007), neurons having two presynaptic and one post-

synaptic spikes per learning cycle (Ruf and Schmitt, 1997), specific configurations,

composed of several modules, of the trained network (Amin and Fujii, 2004).

ReSuMe (Ponulak, 2005, 2006a,b; Kasiński and Ponulak, 2005; Ponulak and Ka-

siński, 2006; Ponulak, 2008; Ponulak and Kasiński, 2010) is a general supervised

learning method for spiking neurons that allows learning of arbitrary output spike

trains. It is the only existing learning rule that is comparable to the ones intro-

duced here. However, this learning rule has been conjectured without an analyti-

cal justification, by analogy to the Widrow-Hoff rule for analog neurons. To date,

it has been shown analytically that ReSuMe will converge to an optimal solution

only for the case of one input spike and one target output spike (Ponulak, 2006a).

Simulations have shown that not all the terms of the conjectured learning rule are

needed for learning (Ponulak, 2008). We have shown here (Fig. 5) that ReSuMe is

less efficient than E-learning, leading to a lower capacity.

For a review of supervised learning methods for spiking neural networks, see

Kasiński and Ponulak (2006).
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