
The Cilk++ Concurrency Platform

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation Leiserson, Charles E. "The Cilk++ concurrency platform."
Proceedings of the 46th Annual Design Automation Conference (DAC
'09) pp.522-527. ©2009 Association for Computing Machinery.

As Published http://dx.doi.org/10.1145/1629911.1630048

Publisher Association for Computing Machinery

Version Final published version

Citable link http://hdl.handle.net/1721.1/59828

Terms of Use Article is made available in accordance with the publisher's
policy and may be subject to US copyright law. Please refer to the
publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/59828

The Cilk++ Concurrency Platform

Charles E. Leiserson
MIT CSAIL and Cilk Arts, Inc.

Abstract

The availability of multicore processors across a wide range of
computing platforms has created a strong demand for software
frameworks that can harness these resources. This paper overviews
the Cilk++ programming environment, which incorporates a com-
piler, a runtime system, and a race-detection tool. The Cilk++ run-
time system guarantees to load-balance computations effectively.
To cope with legacy codes containing global variables, Cilk++ pro-
vides a “hyperobject” library which allows races on nonlocal vari-
ables to be mitigated without lock contention or substantial code
restructuring.

Categories and Subject Descriptors

D.1.3 [Software]: Programming Techniques—Concurrent Pro-
gramming

General Terms

Algorithms, Performance, Design, Reliability, Languages.

Keywords

Amdahl’s Law, dag model, hyperobject, multicore programming,
multithreading, parallelism, parallel programming, race detection,
reducer, span, speedup, work.

1 Introduction

Although the software community has extensive experience in se-
rial programming using the C [18] and C++ [30] programming lan-
guages, they have found it hard to adapt C/C++ applications to run
in parallel on multicore systems. In earlier work, the MIT Cilk sys-
tem [14, 32] extended the C programming language with parallel
computing constructs. The Cilk++ solution similarly extends C++,
offering a gentle and reliable path to enable the estimated three
million C++ programmers [31] to write parallel programs for mul-
ticore systems. Cilk++ is available for the Windows Visual Studio
and the Linux/gcc compilers.

This work was supported in part by the National Science Foundation
under Grants 0615215, 0712243, and 0822896 and in part by the Defense
Advanced Research Projects Agency under Contract W31P4Q-08-C-0156.
Cilk, Cilk++, and Cilkscreen are registered trademarks of Cilk Arts, Inc.

1 // Parallel quicksort
2 using namespace std;
3
4 #include <algorithm >
5 #include <iterator >
6 #include <functional >
7
8 template <typename T>
9 void qsort(T begin , T end) {
10 if (begin != end) {
11 T middle = partition(begin , end , bind2nd(

less <typename iterator_traits <T>::
value_type >() ,*begin));

12 cilk_spawn qsort(begin , middle);
13 qsort(max(begin + 1, middle), end);
14 cilk_sync;
15 }
16 }
17
18 // Simple test code:
19 #include <iostream >
20 #include <cmath >
21
22 int main() {
23 int n = 100;
24 double a[n];
25
26 cilk_for (int i=0; i<n; ++i) {
27 a[i] = sin((double) i);
28 }
29
30 qsort(a, a + n);
31 copy(a, a + n, ostream_iterator <double >(cout

, "\n"));
32
33 return 0;
34 }

Figure 1: Parallel quicksort implemented in Cilk++.

Like the MIT Cilk system [14, 32], Cilk++ is a faithful linguis-
tic extension of C++, which means that parallel code retains its
serial semantics when run on one processor. The Cilk++ exten-
sions to C++ consist of just three keywords, which can be un-
derstood from an example. Figure 1 shows a Cilk++ program
adapted from http://www.cvgpr.uni-mannheim.de/heiler/
qsort.html, which implements the quicksort algorithm [7, Chap-
ter 7]. Observe that the program would be an ordinary C++ pro-
gram if the three keywords cilk spawn, cilk sync, and cilk for
were elided.
Parallel work is created when the keyword cilk spawn precedes

the invocation of a function. The semantics of spawning differ from
a C++ function (or method) call only in that the parent can continue
to execute in parallel with the child, instead of waiting for the child
to complete as is done in C++. The scheduler in the Cilk++ runtime
system takes the responsibility of scheduling the spawned functions
on the individual processor cores of the multicore computer.
A function cannot safely use the values returned by its children

until it executes a cilk sync statement. The cilk sync statement
is a local “barrier,” not a global one as, for example, is used in

32.1

522

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
DAC’09, July 26-31, 2009, San Francisco, California, USA
Copyright 2009 ACM 978-1-60558-497-3/09/07....10.00

message-passing programming [23, 24]. In the quicksort example,
a cilk sync statement occurs on line 14 before the function re-
turns to avoid the anomaly that would occur if the preceding calls
to qsort were scheduled to run in parallel and did not complete
before the return, thus leaving the vector to be sorted in an interme-
diate and inconsistent state.
In addition to explicit synchronization provided by the

cilk sync statement, every Cilk function syncs implicitly before
it returns, thus ensuring that all of its children terminate before it
does. Thus, for this example, the cilk sync before the return is
technically unnecessary.
Cilk++ improves upon the original MIT Cilk in several ways.

It provides full support for C++ exceptions. Loops can be par-
allelized by simply replacing the keyword for with the keyword
cilk for keyword, which allows all iterations of the loop to op-
erate in parallel. Within the main routine, for example, the loop
starting on line 26 fills the array in parallel with random num-
bers. In the MIT Cilk system, such loops had to be rewritten by the
programmer as divide-and-conquer recursion, but Cilk++ provides
the cilk for syntax for automatically parallelizing such loops. In
addition, Cilk++ includes a library for mutual-exclusion (mutex)
locks. Locking tends to be used much less frequently than in other
parallel environments, such as Pthreads [17], because all protocols
for control synchronization are handled by the Cilk++ runtime sys-
tem.
The remainder of this paper is organized as follows. Section 2

provides a brief tutorial on the theory of parallelism. Section 3
describes the performance guarantees of Cilk++’s “work-stealing”
scheduler and overviews how it operates. Section 4 briefly de-
scribes the Cilkscreen race-detection tool which guarantees to find
race bugs in ostensibly deterministic code. Section 5 explains
Cilk++’s “hyperobject” technology, which allows races on nonlocal
variables to be mitigated without lock contention or restructuring of
code. Finally, Section 6 provides some concluding remarks.

2 An overview of parallelism

The Cilk++ runtime system contains a provably efficient work-
stealing scheduler [4, 14], which scales application performance
linearly with processor cores, as long as the application exhibits
sufficient parallelism (and the processor architecture provides suf-
ficient memory bandwidth). Thus, to obtain good performance, the
programmer needs to know what it means for his or her application
to exhibit sufficient parallelism. Before describing the Cilk++ run-
time system, it is helpful to understand something about the theory
of parallelism.
Many discussions of parallelism begin with Amdahl’s Law [1],

originally proffered by Gene Amdahl in 1967. Amdahl made what
amounts to the following observation. Suppose that 50% of a com-
putation can be parallelized and 50% cannot. Then, even if the 50%
that is parallel were run on an infinite number of processors, the to-
tal time is cut at most in half, leaving a speedup of at most 2. In
general, if a fraction p of a computation can be run in parallel and
the rest must run serially, Amdahl’s Law upper-bounds the speedup
by 1/(1− p).
Although Amdahl’s Law provides some insight into parallelism,

it does not quantify parallelism, and thus it does not provide a
good understanding of what a concurrency platform such as Cilk++
should offer for multicore application performance. Fortunately,
there is a simple theoretical model for parallel computing which
provides a more general and precise quantification of parallelism
that subsumes Amdahl’s Law. The dag (directed acyclic graph)
model of multithreading [3] views the execution of a multithreaded
program as a set of instructions (the vertices of the dag) with
graph edges indicating dependencies between instructions. (See
Figure 2.) We say that an instruction x precedes an instruction y,

Figure 2: A directed acyclic graph representation of a multithreaded execu-
tion. Each vertex is an instruction. Edges represent ordering dependencies
between instructions.

sometimes denoted x≺ y, if x must complete before y can begin. If
neither x≺ y nor y≺ x, we say that the instructions are in parallel,
denoted x ‖ y. In Figure 2, for example, we have 1≺ 2, 6≺ 12, and
4 ‖ 9.
The dag model of multithreading can be interpreted in the con-

text of the Cilk++ programming model. A cilk spawn of a func-
tion creates two dependency edges emanating from the instruc-
tion immediately before the cilk spawn: one edge goes to the
first instruction of the spawned function, and the other goes to
the first instruction after the spawned function. A cilk sync cre-
ates dependency edges from the final instruction of each spawned
function to the instruction immediately after the cilk sync. A
cilk for can be viewed as divide-and-conquer parallel recursion
using cilk spawn and cilk sync over the iteration space.
The dag model admits two natural measures that allow us to de-

fine parallelism precisely, as well as to provide important bounds
on performance and speedup.

The Work Law

The first important measure is work, which is the total amount of
time spent in all the instructions. Assuming for simplicity that it
takes unit time to execute an instruction, the work for the example
dag in Figure 2 is 18.
We can adopt a simple notation to be more precise. Let TP be the

fastest possible execution time of the application on P processors.
Since the work corresponds to the execution time on 1 processor,
we denote it by T1. Among the reasons that work is an important
measure is because it provides a lower bound on P-processor exe-
cution time:

Tp ≥ T1/P . (1)

This Work Law holds, because in our simple theoretical model,
each processor executes at most 1 instruction per unit time, and
hence P processors can execute at most P instructions per unit time.
Thus, with P processors, to do all the work, it must take at least
T1/P time.
We can interpret the Work Law (1) in terms of the speedup on P

processors, which using our notation, is just T1/TP. The speedup
tells us how much faster the application runs on P processors than
on 1 processor. Rewriting the Work Law, we obtain T1/TP ≤ P,
which is to say that the speedup on P processors can be at most P.
If the application obtains speedup proportional to P, we say that the
application exhibits linear speedup. If it obtains speedup exactly

523

P (which is the best we can do in our model), we say that the ap-
plication exhibits perfect linear speedup. If the application obtains
speedup greater than P (which cannot happen in our model due to
the Work Law, but can happen in models that incorporate caching
and other processor effects), we say that the application exhibits
superlinear speedup.

The Span Law

The second important measure is span, which is the longest path
of dependencies in the dag. The span of the dag in our example is
9, which corresponds to the path 1 ≺ 2 ≺ 3 ≺ 6 ≺ 7 ≺ 8 ≺ 11 ≺
12 ≺ 18. This path is sometimes called the critical path of the
dag, and span is sometimes referred to in the literature as critical-
path length. Since the span is the theoretically fastest time the dag
could be executed on a computer with an infinite number of proces-
sors (assuming no overheads for communication, scheduling, etc.),
we denote it by T∞. Like work, span also provides a bound on
P-processor execution time:

TP ≥ T∞ . (2)

This Span Law arises for the simple reason that a finite number
of processors cannot outperform an infinite number of processors,
because the infinite-processor machine could just ignore all but P
of its processors and mimic a P-processor machine exactly.

Parallelism

We define parallelism as the ratio of work to span, or T1/T∞. Par-
allelism can be viewed as the average amount of work along each
step of the critical path. Moreover, perfect linear speedup cannot be
obtained for any number of processors greater than the parallelism
T1/T∞. To see why, suppose that P > T1/T∞, in which case the
Span Law (2) implies that the speedup satisfies T1/TP≤ T1/T∞ <P.
Since the speedup is strictly less than P, it cannot be perfect lin-
ear speedup. Another way to see that the parallelism bounds the
speedup is to observe that, in the best case, the work is distributed
evenly along the critical path, in which case the amount of work at
each step is the parallelism. But, if the parallelism is less than P,
there isn’t enough work to keep P processors busy at every step.
As an example, the parallelism of the dag in Figure 2 is 18/9= 2.

That means that there’s little point in executing it with more than
2 processors, since additional processors will be surely starved for
work.
As a practical matter, many problems admit considerable paral-

lelism. For example, matrix multiplication of 1000×1000 matrices
is highly parallel, with a parallelism in the milliions. Many prob-
lems on large irregular graphs, such as breadth-first search, gener-
ally exhibit parallelism on the order of thousands. Sparse matrix
algorithms can often exhibit parallelism in the hundreds.

3 Runtime system

Although optimal multiprocessor scheduling is known to be NP-
complete [15], Cilk++’s runtime system employs a “work-stealing”
scheduler [4, 14] that achieves provably tight bounds. An applica-
tion with sufficient parallelism can rely on the Cilk++ runtime sys-
tem to dynamically and automatically exploit an arbitrary number
of available processor cores near optimally. Moreover, on a single
core, typical programs run with negligible overhead (less than 2%).

Performance bounds

Specifically, for an application with T1 work and T∞ span running
on a computer with P processors, the Cilk++ works-stealing sched-

Figure 3: Parallelism profile of quicksort produced by the Cilk++ perfor-
mance analyzer.

uler achieves expected running time

TP ≤ T1/P+O(T∞) . (3)

If the parallelism T1/T∞ exceeds the number P of processors by
a sufficient margin, this bound (proved in [4]), guarantees near-
perfect linear speedup. To see why, assume that T1/T∞�P. Equiv-
alently, we have T∞ � T1/P. Thus, in Inequality (3), the T1/P term
dominates the O(T∞) term, and thus the running time is TP ≈ T1/P,
leading to a speedup of T1/TP ≈ P.
The Cilk++ development environment contains a performance-

analysis tool that allows a programmer to analyze the work and
span of an application. Figure 3 shows the output of this tool run-
ning the quicksort program from Figure 1 on 100 million numbers.
The upper bound on speedup provided by the Work Law corre-
sponds to the line of slope 1, and the upper bound provided by the
Span Law corresponds to the horizontal line at 10.31. The per-
formance analysis tool also provides an estimated lower bound on
speedup— the lower curve in the figure— based on burdened par-
allelism, which takes into account the estimated cost of scheduling.
Although quicksort seems naturally parallel, one can show that the
expected parallelism for sorting n numbers is only O(lgn). Practi-
cal sorts with more parallelism exist, however. See [7, Chapter 27]
for more details.
In addition to guaranteeing performance bounds, the Cilk++ run-

time system also provides bounds on stack space. Specifically, on P
processors, a Cilk++ program consumes at most P times the stack
space of a single-processor execution. Consider the following sim-
ple code fragment:

for (int i=0; i<1000000000; ++i) {
cilk_spawn foo(i);

}
cilk_sync;

This code conceptually creates one billion invocations of foo that
operate logically in parallel. Executing on one processor, however,
this Cilk++ code uses no more stack space than a serial C++ ex-
ecution, that is, the call depth is of whichever invocation of foo
requires the deepest stack. On two processors, it requires at most
twice this space, and so on. This guarantee contrasts with that of
more naive schedulers, which may create a work-queue of one bil-
lion tasks, one for each iteration of the subroutine foo, before exe-
cuting even the first iteration, thus blowing out physical memory.

524

Work stealing

Cilk++’s work-stealing scheduler operates as follows. When the
runtime system starts up, it allocates as many operating-system
threads, called workers, as there are processors (although the pro-
grammer can override this default decision). Each worker’s stack
operates like a work queue. When a subroutine is spawned, the sub-
routine’s activation frame containing its local variables is pushed
onto the bottom of the stack. When it returns, the frame is popped
off the bottom. Thus, in the common case, Cilk++ operates just
like C++ and imposes little overhead.
When a worker runs out of work, however, it becomes a thief and

“steals” the top frame from another victimworker’s stack. Thus, the
stack is in fact a double-ended queue, with the worker operating on
the bottom and thieves stealing from the top. This strategy has
the great advantage that all communication and synchronization is
incurred only when a worker runs out of work. If an application
exhibits sufficient parallelism, one can prove mathematically [4,14]
that stealing is infrequent, and thus the cost of communication and
synchronization to effect a steal is negligible.
The dynamic load-balancing capability provided by the Cilk++

runtime system adapts well in real-world multiprogrammed com-
puting environments. If a worker becomes descheduled by the op-
erating system (for example, because another application starts to
run), the work of that worker can be stolen away by other workers.
Thus, Cilk++ programs tend to “play nicely” with other jobs on the
system.
Cilk++’s runtime system also makes Cilk++ programs

performance-composable. Suppose that a programmer develops
a parallel library in Cilk++. That library can be called not only
from a serial program or the serial portion of a parallel program, it
can be invoked multiple times in parallel and continue to exhibit
good speedup. In contrast, some concurrency platforms constrain
library code to run on a given number of processors, and if
multiple instances of the library execute simultaneously, they end
up thrashing as they compete for processor resources.

4 Race detection

The Cilk++ development environment includes a race detector,
called Cilkscreen, a powerful debugging tool that greatly simpli-
fies the task of ensuring that a parallel application is correct. We
define a strand to be a sequence of serially executed instructions
containing no parallel control, that is, a path in the multithreaded
dag, where each vertex except the first in the path has at most one
incoming edge and every vertex except the last in the path has at
most one outgoing edge. A data race [26] exists if logically par-
allel strands access the same shared location, the two strands hold
no locks in common, and at least one of the strands writes to the
location. A data race is usually a bug, because the program may
exhibit unexpected, nondeterministic behavior depending on how
the strands are scheduled. Serial code containing nonlocal vari-
ables is particularly prone to the introduction of data races when
the code is parallelized.
As an example of a race bug, suppose that line 13 in Figure 1 is

replaced with the following line:

qsort(max(begin + 1, middle -1), end);

The resulting serial code is still correct, but the parallel code now
contains a race bug, because the two subproblems overlap, which
could cause an error during execution.
Race conditions have been studied extensively [6, 8–12, 16, 20–

22,25,27–29]. They are pernicious and occur nondeterministically.
A program with a race bug may execute successfully millions of
times during testing, only to raise its head after the application is

1 bool has_property(Node *);
2 std::list <Node *> output_list;
3 // ...
4 void walk(Node *x)
5 {
6 if (x)
7 {
8 if (has_property(x))
9 {
10 output_list.push_back(x);
11 }
12 walk(x->left);
13 walk(x->right);
14 }
15 }

Figure 4: C++ code to create a list of all the nodes in a binary tree that
satisfy a given property.

shipped. Even after detecting a race bug, writing regression tests to
ensure its continued absence is difficult.
The Cilkscreen race detector is based on provably good algo-

rithms [2,6,11] developed originally for MIT Cilk. In a single serial
execution on a test input for a deterministic program, Cilkscreen
guarantees to report a race bug if the race bug is exposed: that is,
if two different schedulings of the parallel code would produce dif-
ferent results. Cilkscreen uses efficient data structures to track the
series-parallel relationships of the executing application during a
serial execution of the parallel code. As the application executes,
Cilkscreen uses dynamic instrumentation [5, 19] to intercept every
load and store executed at user level. Metadata in the Cilk++ bi-
naries allows Cilkscreen to identify the parallel control constructs
in the executing application precisely, track the series-parallel re-
lationships of strands, and report races precisely. Additional meta-
data allows the race to be localized in the application source code.

5 Reducer hyperobjects

Many serial programs use nonlocal variables, which are variables
that are bound outside of the scope of the function, method, or class
in which they are used. If a variable is bound outside of all local
scopes, it is a global variable. Nonlocal variables have long been
considered a problematic programming practice [33], but program-
mers often find them convenient to use, because they can be ac-
cessed at the leaves of a computation without the overhead and
complexity of passing them as parameters through all the inter-
nal nodes. Thus, nonlocal variables have persisted in serial pro-
gramming. In the world of parallel computing, nonlocal variables
may inhibit otherwise independent parts of a multithreaded pro-
gram from operating in parallel, because they introduce races. This
section describes Cilk++ reducer hyperobjects [13], which can mit-
igate races on nonlocal variables without creating lock contention
or requiring code restructuring.
As an example of how a nonlocal variable can introduce a data

race, consider the problem of walking a binary tree to make a list
of those nodes that nodes satisfy a given property. A C++ code to
solve the problem is abstracted in Figure 4. If the node x being
visited is nonnull, the code checks whether x has the desired prop-
erty in line 8, and if so, it appends x to the list stored in the global
variable output list in line 10. Then, it recursively visits the left
and right children of x in lines 12 and 13.
Figure 5 illustrates a straightforward parallelization of this code

in Cilk++. In line 12 of the figure, the walk function is spawned
recursively on the left child, while the parent continues on to exe-
cute an ordinary recursive call of walk in line 13. As the recursion
unfolds, the running program generates a tree of parallel execution

525

1 bool has_property(Node *);
2 std::list <Node *> output_list;
3 // ...
4 void walk(Node *x)
5 {
6 if (x)
7 {
8 if (has_property(x))
9 {
10 output_list.push_back(x);
11 }
12 cilk_spawn walk(x->left);
13 walk(x->right);
14 cilk_sync;
15 }
16 }

Figure 5: A naive Cilk++ parallelization of the code in Figure 4. This code
has a data race in line 10.

1 bool has_property(Node *);
2 std::list <Node *> output_list;
3 mutex L;
4 // ...
5 void walk(Node *x)
6 {
7 if (x)
8 {
9 if (has_property(x))
10 {
11 L.lock();
12 output_list.push_back(x);
13 L.unlock();
14 }
15 cilk_spawn walk(x->left);
16 walk(x->right);
17 cilk_sync;
18 }
19 }

Figure 6: Cilk++ code that solves the race condition using a mutex.

that follows the structure of the binary tree. Unfortunately, this
naive parallelization contains a data race. Specifically, two paral-
lel instantiations of walk may attempt to update the shared global
variable output list in parallel at line 10.
The traditional solution to fixing this kind of data race is to as-

sociate a mutual-exclusion lock (mutex) L with output list, as is
shown in Figure 6. Before updating output list, the mutex L is
acquired in line 11, and after the update, it is released in line 13.
Although this code is now correct, the mutex may create a bottle-
neck in the computation. If there are many nodes that have the
desired property, the contention on the mutex can destroy all the
parallelism. For example, on one set of test inputs for a real-world
tree-walking code that performs collision-detection of mechanical
assemblies, lock contention actually degraded performance on 4
processors so that it was worse than running on a single processor.
In addition, the locking solution has the problem that it jumbles up
the order of list elements. That might be okay for some applica-
tions, but other programs may depend on the order produced by the
serial execution.
An alternative to locking is to restructure the code to accumulate

the output lists in each subcomputation and concatenate them when
the computations return. If one is careful, it is also possible to keep
the order of elements in the list the same as in the serial execution.
For the simple tree-walking code, code restructuring may suffice,
but for many larger codes, disrupting the original logic can be time-
consuming and tedious undertaking, and it may require expert skill,

1 #include <reducer_list.h>
2 bool has_property(Node *);
3 cilk::hyperobject <cilk::reducer_list_append <

Node *> > output_list;

4 // ...
5 void walk(Node *x)
6 {
7 if (x)
8 {
9 if (has_property(x))
10 {
11 output_list().push_back(x);
12 }
13 cilk_spawn walk(x->left);
14 walk(x->right);
15 cilk_sync;
16 }
17 }

Figure 7: A Cilk++ parallelization of the code in Figure 4, which uses a
reducer hyperobject to avoid data races.

making it impractical for parallelizing large legacy codes.
Cilk++ provides a novel approach [13] to avoiding data races in

code with nonlocal variables. A Cilk++ reducer hyperobject is a
linguistic construct that allows many strands to coordinate in updat-
ing a shared variable or data structure independently by providing
them different but coordinated views of the same object. The state
of a hyperobject as seen by a strand of an execution is called the
strand’s “view” of the object at the time the strand is executing. A
strand can access and change any of its view’s state independently,
without synchronizing with other strands. Throughout the execu-
tion of a strand, the strand’s view of the reducer is private, thereby
providing isolation from other strands. When two or more strands
join, their different views are combined according to a system- or
user-defined reduce()method. Thus, reducers preserve the advan-
tages of parallelism without forcing the programmer to restructure
the logic of his or her program.
As an example, Figure 7 shows how the tree-walking code from

Figure 4 can be parallelized using a reducer. Line 3 declares
output list to be a reducer hyperobject for list appending. The
reducer list append class implements a reduce function that
concatenates two lists, but the programmer of the tree-walking code
need not be aware of how this class is implemented. All the pro-
grammer does is identify the global variables as the appropriate
type of reducer when they are declared. No logic needs to be re-
structured, and if the programmer fails to catch all the use instances,
the compiler reports a type error.
This parallelization takes advantage of the fact that list append-

ing is associative. That is, if we append a list L1 to a list L2 and
append the result to L3, it is the same as if we appended list L1 to
the result of appending L2 to L3. As the Cilk++ runtime system
load-balances this computation over the available processors, it en-
sures that each branch of the recursive computation has access to
a private view of the variable output list, eliminating races on
this global variable without requiring locks. When the branches
synchronize, the private views are reduced (combined) by concate-
nating the lists, and Cilk++ carefully maintains the proper ordering
so that the resulting list contains the identical elements in the same
order as in a serial execution.

6 Conclusion

Multicore microprocessors are now commonplace, and Moore’s
Law is steadily increasing the pressure on software developers to
multicore-enable their codebases. Cilk++ provides a simple but

526

effective concurrency platform for multicore programming which
leverages almost two decades of research on multithreaded pro-
gramming. The Cilk++ model builds upon the sound theoretical
framework of multithreaded dags, allowing parallelism to be quan-
tified in terms of work and span. The Cilkscreen race detector al-
lows race bugs to be detected and localized. Cilk++’s hyperob-
ject library mitigates races on nonlocal variables. Although paral-
lel programming will surely continue to evolve, Cilk++ today pro-
vides a full-featured suite of technology for multicore-enabling any
compute-intensive application.

Acknowledgments

Many thanks to the great team at Cilk Arts and to our many cus-
tomers who have helped us refine the Cilk++ system. Thanks to
Patrick Madden of SUNY Binghamton for proposing extensive re-
visions to the original manuscript.

References

[1] Gene Amdahl. The validity of the single processor approach to
achieving large-scale computing capabilities. In Proceedings of the
AFIPS Spring Joint Computer Conference, pages 483–485, April
1967.

[2] Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, and Charles E.
Leiserson. On-the-fly maintenance of series-parallel relationships in
fork-join multithreaded programs. In Proceedings of the Sixteenth
Annual ACM Symposium on Parallel Algorithms and Architectures
(SPAA 2004), pages 133–144, Barcelona, Spain, June 2004.

[3] Robert D. Blumofe and Charles E. Leiserson. Space-efficient schedul-
ing of multithreaded computations. In Proceedings of the Twenty Fifth
Annual ACM Symposium on Theory of Computing, pages 362–371,
San Diego, California, May 1993.

[4] Robert D. Blumofe and Charles E. Leiserson. Scheduling mul-
tithreaded computations by work stealing. Journal of the ACM,
46(5):720–748, September 1999.

[5] Derek Bruening. Efficient, Transparent, and Comprehensive Runtime
Code Manipulation. PhD thesis, Department of Electrical Engineer-
ing and Computer Science, Massachusetts Institute of Technology,
2004.

[6] Guang-Ien Cheng, Mingdong Feng, Charles E. Leiserson, Keith H.
Randall, and Andrew F. Stark. Detecting data races in cilk programs
that use locks. In Proceedings of the Tenth Annual ACM Symposium
on Parallel Algorithms and Architectures (SPAA ’98), pages 298–309,
Puerto Vallarta, Mexico, June 28–July 2 1998.

[7] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clif-
ford Stein. Introduction to Algorithms. The MIT Press, third edition,
2009.

[8] Anne Dinning and Edith Schonberg. An empirical comparison of
monitoring algorithms for access anomaly detection. In Proceedings
of the Second ACM SIGPLAN Symposium on Principles & Practice
of Parallel Programming (PPoPP), pages 1–10. ACM Press, 1990.

[9] Anne Dinning and Edith Schonberg. Detecting access anomalies in
programs with critical sections. In Proceedings of the ACM/ONR
Workshop on Parallel and Distributed Debugging, pages 85–96. ACM
Press, May 1991.

[10] Perry A. Emrath, Sanjoy Ghosh, and David A. Padua. Event synchro-
nization analysis for debugging parallel programs. In Supercomputing
’91, pages 580–588, November 1991.

[11] Mingdong Feng and Charles E. Leiserson. Efficient detection of deter-
minacy races in Cilk programs. In Proceedings of the Ninth Annual
ACM Symposium on Parallel Algorithms and Architectures (SPAA),
pages 1–11, Newport, Rhode Island, June22–25 1997.

[12] Yaacov Fenster. Detecting parallel access anomalies. Master’s thesis,
Hebrew University, March 1998.

[13] Matteo Frigo, Pablo Halpern, Charles E. Leiserson, and Stephen
Lewin-Berlin. Reducers and other Cilk++ hyperobjects. In Proceed-
ings of the Twenty-First Annual ACM Symposium on Parallel Algo-
rithms and Architectures (SPAA ’09), Calgary, Canada, August 2009.
To appear.

[14] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The im-
plementation of the Cilk-5 multithreaded language. In Proceedings of
the ACM SIGPLAN ’98 Conference on Programming Language De-
sign and Implementation, pages 212–223, Montreal, Quebec, Canada,
June 1998. Proceedings published ACM SIGPLAN Notices, Vol. 33,
No. 5, May, 1998.

[15] Michael R. Garey and David S. Johnson. Computers and Intractabil-
ity. W.H. Freeman and Company, 1979.

[16] David P. Helmbold, Charles E. McDowell, and Jian-Zhong Wang.
Analyzing traces with anonymous synchronization. In Proceedings
of the 1990 International Conference on Parallel Processing, pages
II70–II77, August 1990.

[17] Institute of Electrical and Electronic Engineers. Information technol-
ogy — Portable Operating System Interface (POSIX) — Part 1: Sys-
tem application program interface (API) [C language]. IEEE Standard
1003.1, 1996 Edition.

[18] Brian W. Kernighan and Dennis M. Ritchie. The C Programming
Language. Prentice Hall, Inc., second edition, 1988.

[19] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur
Klauser, Geoff Lowney, StevenWallace, Vijay Janapa Reddi, and Kim
Hazelwood. Pin: building customized program analysis tools with dy-
namic instrumentation. In PLDI ’05: Proceedings of the 2005 ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, pages 190–200, New York, NY, USA, 2005. ACM Press.

[20] John Mellor-Crummey. On-the-fly detection of data races for pro-
grams with nested fork-join parallelism. In Proceedings of Super-
computing’91, pages 24–33. IEEE Computer Society Press, 1991.

[21] Barton P. Miller and Jong-Deok Choi. A mechanism for efficient de-
bugging of parallel programs. In Proceedings of the 1988 ACM SIG-
PLAN Conference on Programming Language Design and Implemen-
tation (PLDI), pages 135–144, Atlanta, Georgia, June 1988.

[22] Sang Lyul Min and Jong-Deok Choi. An efficient cache-based ac-
cess anomaly detection scheme. In Proceedings of the Fourth Inter-
national Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), pages 235–244, Palo Alto,
California, April 1991.

[23] The MPI Forum. MPI: A message passing interface. In Supercomput-
ing ’93, pages 878–883, Portland, Oregon, November 1993.

[24] The MPI Forum. MPI-2: Extensions to the Message-Passing Inter-
face. Technical Report, University of Tennessee, Knoxville, 1996.
Available from: citeseer.ist.psu.edu/517818.html.

[25] Robert H. B. Netzer and Sanjoy Ghosh. Efficient race condition de-
tection for shared-memory programs with post/wait synchronization.
In Proceedings of the 1992 International Conference on Parallel Pro-
cessing, St. Charles, Illinois, August 1992.

[26] Robert H. B. Netzer and Barton P. Miller. What are race conditions?
ACM Letters on Programming Languages and Systems, 1(1):74–88,
March 1992.

[27] Itzhak Nudler and Larry Rudolph. Tools for the efficient develop-
ment of efficient parallel programs. In Proceedings of the First Israeli
Conference on Computer Systems Engineering, May 1986.

[28] Dejan Perković and Peter Keleher. Online data-race detection via
coherency guarantees. In Proceedings of the Second USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI),
Seattle, Washington, October 1996.

[29] Stefan Savage, Michael Burrows, Greg Nelson, Patric Sobalvarro,
and Thomas Anderson. Eraser: A dynamic race detector for multi-
threaded programs. In Proceedings of the Sixteenth ACM Symposium
on Operating Systems Principles (SOSP), October 1997.

[30] Bjarne Stroustrup. The C++ Programming Language. Addison-
Wesley, third edition, 2000.

[31] Bjarne Stroustrup. C++ in 2005. Addison-Wesley, 2005. Preface to
the Japanese translation.

[32] Supercomputing Technologies Group, Massachusetts Institute of
Technology Laboratory for Computer Science. Cilk 5.4.2.3 Reference
Manual, April 2006. Available from: http://supertech.csail.
mit.edu/cilk/home/software.html.

[33] William Wulf and Mary Shaw. Global variable considered harmful.
SIGPLAN Notices, 8(2):28–34, 1973.

527

