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The Circle Criterion and Input-to-State Stability 

New Perspectives on a Classical Result 

Bayu Jayawardhana Hartmut Logemann Eugene P. Ryan 

Feedback interconnections consisting of a linear system L in the forward path and a static 

sector-bounded nonlinearity f in the negative feedback path are ubiquitous in control theory and 

practice (see figures 1 and 2). With origins in the classical work [1], such interconnections are 

referred to as systems of Lur’e type, while the study of their stability properties constitutes 

absolute stability theory. 

Absolute stability theory investigates stability through the interplay of the frequency-

domain properties of the linear component L and sector data for the nonlinearity f . In essence, 

if L and the sector data of f are matched in a sufficiently “nice” manner, then the interconnection 

is stable. Notwithstanding the simplicity of its formulation, stability analysis of Lur’e systems 

and closely related topics, such as hyperstability, the Kalman-Popov-Yakubovich lemma, also 

known as the positive-real lemma, passivity, positive realness, and the S-procedure, embrace 

subtle features that have generated much attention since the appearance of [1]. This attention 

relates not only to the early literature on the emerging area of nonlinear control — in [2], it is 

noted that, by 1968, over 200 papers on absolute stability had appeared — but also to the later 

literature as evidenced by the survey articles [3]-[5]. Accounts of the classical theory can be found 

in many textbooks and monographs [6]-[15]. A central theme of the present article is a particular 
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criterion for absolute stability, namely, the circle criterion. We recall this result in the section 

“The Circle Criterion and Lyapunov Stability”. While the circle criterion is well established, we 

consider it from a perhaps unfamiliar – but nevertheless intriguing – point of view, namely, by 

relating it to a complexified version of the Aizerman conjecture [16], [17]. With reference to the 

feedback interconnection of Figure 1, with L = (A, b, c), a linear single-input single-output state 

space system, and locally Lipschitz sector-bounded f , with αv2 ≤ vf(v) ≤ βv2 for all v, the 

Aizerman conjecture postulates a characterization of asymptotic stability of the zero equilibrium 

of the interconnection in terms of stabilizing gains for L. In particular, it conjectures that the 

equilibrium of the interconnection is asymptotically stable if and only if A − kbc∗ is Hurwitz 

for all gains k ∈ (α, β). This conjecture is known to be false, but holds true in case of the 

complexified version alluded to above. 

A distinguishing facet of the present article is a treatment of systems of Lur’e type with 

the additional feature of an exogenous input or disturbance d, as shown in Figure 3, wherein the 

single-input, single-output linear system L in the forward path has the state-space realization 

ẋ(t) = Ax(t) + bu(t), x(0) = x 0 , 

∗ y(t) = c x(t) 

with the function u given by the feedback relation 

∗ u(t) = d(t) − f(c x(t)). 

For a specific example, see “An Example from Circuit Theory”. The investigation in this article 

of Lur’e-type systems with input is predicated on the the concept of input-to-state stability 

(ISS), which we outline in ”The Concept of Input-to-State Stability”. In the specialized context 

of the Lur’e interconnection in Figure 3, ISS pertains to stability of the map from the initial 
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condition and disturbance pair (x0, d) to the state x. Moreover, ISS of the interconnection implies 

absolute stability of the interconnection. In the section “The Circle Criterion and ISS”, the 

circle criterion is embedded in an ISS framework. This framework subsumes variants of the 

classical circle criterion and establishes that the hypotheses of the classical theory not only 

imply absolute stability but also ensure the stronger ISS property. Applications of this theory 

to systems with quantization, output disturbances, and hysteresis are described in “Quantization 

and Output Disturbances” and “Hysteretic Feedback Systems”. 

The treatment of the circle criterion in this article differs from the classical framework in 

three fundamental aspects, specifically, i) nonlinearities of greater generality than the standard 

class of locally Lipschitz functions are permitted in the feedback path; ii) in contrast with most 

of the existing literature, wherein the focus is on global asymptotic stability and L2 or L∞ 

stability, ISS issues are addressed here, in the spirit of [18], [19]; and iii) the sector conditions 

of the classical theory are weakened. With reference to i), we develop a framework of sufficient 

generality to encompass not only time-varying continuous nonlinearities but also discontinuous 

nonlinearities, such as quantization as well as certain causal operators, in particular, hysteresis, 

in the feedback path. With reference to ii), we identify conditions on the linear and nonlinear 

components in the feedback loop under which ISS of the interconnection is guaranteed. With 

reference to iii), through the concept of a generalized sector condition, the investigation is 

extended to include nonlinearities that satisfy a sector condition only within the complement of 

a compact interval, see Figure 4. For a prototype of iii), see “An Example from Circuit Theory”. 

To facilitate the treatment of iii), a theory is developed pertaining to ISS with bias; this concept 

is outlined in “The Concept of Input-to-State Stability”. The underlying approach to ISS with 

bias can be described as follows. With a given continuous nonlinearity f satisfying a sector 
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condition on the complement R\K of the compact interval K, as in Figure 4, we associate a 

continuous function f̃  that satisfies the sector condition on R, as in Figure 2, and coincides 

with f on R\K. We then exploit the equivalence of the two interconnections shown in Figure 

5, wherein d̃ := d + f̃(y)− f(y). In particular, if the interconnection on the right in Figure 5 is 

ISS, then the original interconnection on the left in Figure 5 is ISS with bias, where the bounded 

function f̃ − f is the source of the bias term. 

With a view to a broad treatment of i) and iii), we adopt a set-valued standpoint 

that gives rise to a formulation of the basic problem in terms of a differential inclusion. 

The theory of differential inclusions mirrors fundamental aspects of the standard theory of 

differential equations [20]-[22]. In a control context, this theory has ramifications in the study 

of discontinuous feedback, hybrid systems, systems with quantization, and hysteretic systems. 

Differential inclusions are prominent in the tutorial articles [23] and [24] on discontinuous 

dynamical systems and hybrid dynamical systems, respectively. 

Against this background and with reference to Figure 6, the focus of the paper is a tutorial 

overview of absolute stability, ISS, and boundedness properties of the feedback interconnection 

of a finite-dimensional, linear, single-input, single-output system (A, b, c) and a set-valued 

nonlinearity Φ. Throughout, we assume that ∆ is a set-valued map in which input or disturbance 

signals are embedded. As a simple example to fix ideas, consider again the interconnection shown 

in Figure 3 with a sector-bounded nonlinearity as in Figure 2, with αy2 ≤ yf(y) ≤ βy2 for 

all y, and disturbance d. This system is subsumed by the system shown in Figure 6, where the 
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set-valued maps ∆ and Φ are defined by 

∆(t) := {d(t)}, 
 
 
 
 [αy, βy], y ≥ 0, 

Φ(y) := 
 
 
 [βy, αy], y < 0 . 

Note that Φ satisfies the sector condition 

αy2 ≤ yw ≤ βy2 , y ∈ R, w ∈ Φ(y) , 

which, for economy of notation and keeping mind that Φ(y) is a set, we also write as 

αy2 ≤ yΦ(y) ≤ βy2 , y ∈ R. 

Absolute stability results typically depend on the interplay of frequency-domain properties of 

the linear component and the sector constraints for the nonlinearity, but not on the particular 

form or shape of the nonlinear component. Therefore, it seems natural to consider set-valued 

nonlinearities in the context of absolute stability theory. This point of view is becoming more 

widespread [15], [19], [25], [26]. 

Of course, if, as in the early classical literature on absolute stability, we restrict attention 

to interconnections with only static nonlinearities in the feedback path, then there is nothing to 

be gained by adopting a set-valued formulation; indeed such a formulation would be pedantic. 

The point to bear in mind here is that we seek an analytical framework of sufficient generality 

to encompass inter alia feedback systems with causal operators, and hysteresis operators in 

particular, in the feedback loop. To illustrate this objective, let F be a causal operator acting 

on scalar-valued functions in the domain dom(F ) of F , which is a subset of C[0, ∞). Consider 

the feedback system, structurally of Lur’e type, with input d, given by the functional differential 
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equation 

ẋ(t) = Ax(t) + b d(t) − (F (c ∗ x))(t) . (1) 

By causality of F we mean that, for all y, z ∈ dom(F ) and all τ > 0, if y and z coincide on the 

interval [0, τ ], then F (y) and F (z) also coincide on [0, τ ]. To associate (1) with the structure of 

Figure 6, we assume that F can be embedded in a set-valued map Φ in the sense that, for every 

y ∈ dom(F ), 

(F (y))(t) ∈ Φ(y(t)), a.a. t ≥ 0. (2) 

If the input d is such that d(t) ∈ ∆(t) for almost every t, then every solution of (1) 

is necessarily a solution of the feedback interconnection in Figure 6. In this sense, properties 

of solutions of the feedback interconnection are inherited by solutions of (1). Therefore, if the 

analysis can establish desirable properties of solutions of the overarching formulation in Figure 6, 

then these properties also hold for solutions of (1). As a concrete example, consider backlash or 

mechanical play, illustrated in Figure 7(a) and comprising a link consisting of two components, 

denoted I and II. The displacements of each part, with respect to a fixed origin, at time t ≥ 0 

are given by y(t) and z(t) with |y(t) − z(t)| ≤ σ for all t ≥ 0, and z(0) = y(0) + ξ, where 

ξ ∈ [−σ, σ] plays the role of the initial condition. The position z(t) of II remains constant as 

long as the position y(t) of I remains within the interior of II. For each continuous function y, 

we describe the evolution of the position of I by denoting the corresponding position of II by 

z(t) = (F (y))(t). The action of the operator F is captured in Figure 7(b). Observe that, for each 

y ∈ C[0, ∞), the embedding (2) holds if we define the set-valued map Φ by Φ(s) := [s−σ , s+σ] 

for all s ∈ R. As shown in this article, the operator F is causal and forms the basic building 

block of the class of hysteresis operators known as Preisach operators, see ”Hysteretic Feedback 
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Systems”. The relevance of hysteresis within the control community is underlined by the special 

issue of the IEEE Control Systems Magazine [27], see also [28]-[35]. 

For notation and terminology used throughout this article, see “Notation and Terminol-

ogy”. Formal proofs of the stated results can be found in the section “Proofs”. 

Feedback Systems with Set-Valued Nonlinearities 

The feedback system shown in Figure 6 corresponds to the initial-value problem 

ẋ(t) −Ax(t) ∈ b (∆(t) − Φ(c ∗ x(t))) , x(0) = x 0 ∈ F
n , ∆ ∈ DF , (3) 

where A ∈ Fn×n , b, c ∈ Fn , Φ ∈ UF, and F is either R or C. For most applications, only the 

case F = R is relevant. However, to investigate the relationship between the classical circle 

criterion and the complex Aizerman conjecture, it is convenient to develop the theory also for 

the complex case. As for the set-valued input ∆, the situation most relevant for applications is 

the singleton-valued case ∆(t) = {d(t)}, with d ∈ L∞ [0, ∞). However, including set-valued loc

inputs ∆ comes at no extra cost and turns out to be convenient in the analysis of ISS with bias, 

in the context of which the nonlinearity Φ is replaced by another set-valued nonlinearity Φ̃, and 

the resulting set-valued difference 

˜ ∗ ∗ ˜ ∗ ∗ Φ(c x(t)) − Φ(c x(t)) = {w̃ − w : w̃ ∈ Φ(c x(t)), w ∈ Φ(c x(t))} 

is absorbed into ∆(t) for all t ≥ 0. See the proof of Corollary 16 for a detailed elaboration of 

this idea. 

A solution of (3) is an absolutely continuous function x : [0, T ) Fn, where 0 < T ≤ ∞,→

such that x(0) = x0 and the differential inclusion in (3) is satisfied almost everywhere on [0, T ). 
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A solution x : [0, T ) F
n is maximal if it has no right extension that is also a solution, that is, →

there does not exist a solution xe : [0, Te) Fn of (3) such that Te > T and xe(t) = x(t) for →

all t ∈ [0, T ). A solution x : [0, T ) Fn is global if T = ∞, that is, if it exists on [0, ∞).→

Before developing a stability theory for systems of the form (3), we state an existence 

result that is an immediate consequence of [21, Corollary 5.2]. 

Lemma 1: Let Φ ∈ UF. For each x0 ∈ F
n and each ∆ ∈ DF, the initial-value problem 

(3) has a solution. Moreover, every solution can be extended to a maximal solution. Finally, if 

a maximal solution is bounded, then it is global. 

As noted above, one of the motivations for considering feedback systems given by 

differential inclusions of the form (3) is that functional differential equations of the form (1) with 

a dynamic nonlinearity F can be imbedded into the set-valued formulation (3), provided there 

exists Φ ∈ UF such that (2) holds for every y ∈ dom(F ). Another motivation for studying the 

inclusion (3) is that it allows us to consider discontinuous nonlinearities. To be more specific, 

we consider the following example of a quantized feedback system [36], [37]. 

Example 2: Let A ∈ Rn×n , b, c ∈ Rn, let f : R R be a continuous static nonlinearity →

and consider the system 

ẋ(t) = Ax(t) + b(d(t) − f(c ∗ x(t))), x(0) = x 0 ∈ R
n , (4) 

L∞where d ∈ loc[0, ∞). If the system (4) is subject to quantization of the output y = c ∗ x, we 

obtain the differential equation with discontinuous righthand side given by 

ẋ(t) = Ax(t) + b d(t) − (f ◦ qη)(c ∗ x(t)) , x(0) = x 0 ∈ R
n , (5) 
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where qη : R R, parameterized by η > 0, is the uniform quantizer (see Figure 8) given by →

qη(v) = 2mη, v ∈ (2m − 1)η , (2m + 1)η , m ∈ Z. (6) 

We interpret the differential equation in (5), which has discontinuous righthand side, in 

a set-valued sense as follows. First, we embed the quantizer qη in the set-valued map Qη ∈ UR 

defined by 
 
 ( ) 

Qη(v) := 

 
 {qη(v)}, v ∈ (2m − 1)η , (2m + 1)η , m ∈ Z, 

(7) 
 
 
 [2mη , 2(m + 1)η], v = (2m + 1)η, m ∈ Z. 

This embedding essentially “fills in” the jumps in Figure 8 to yield the graph shown in Figure 

9. Now, we subsume (5) in the differential inclusion 

ẋ(t) − Ax(t) − bd(t) ∈ −bΦη (c 
∗ x(t)), x(0) = x 0 ∈ R

n , (8) 

where Φη ∈ UR is given by 

Φη (v) := f(Qη(v)) = {f(ζ) : ζ ∈ Qη(v)}. 

With ∆ ∈ DR defined by ∆(t) := {d(t)}, (8) can be rewritten as 

ẋ(t) −Ax(t) ∈ b 
( 
∆(t) − Φη(c 

∗ x(t)) 
) 
, x(0) = x 0 ∈ R

n , 

which is of the form (3). We return to this example in the section “Quantization and Output 

Disturbances”. ♦ 

In the following, for each x0 ∈ Fn and each ∆ ∈ DF, the notation X (x0 , ∆) denotes 

the set of all maximal solutions of (3) corresponding to the initial condition x0 and the input 

∆. It follows from Lemma 1 that X (x0 , ∆) =� ∅ for each (x0 , ∆) ∈ Fn × DF. We emphasize 

that maximal solutions of (3) are not necessarily unique, in which case X (x0 , ∆) contains more 
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than one element. For convenience, we set X (x0) := X (x0 , 0), wherein, and henceforth, the 

particular map ∆: t �→ {0} is denoted by ∆ = 0. 

Definition 3: Assume that ∆ = 0 in (3). System (3) is stable in the large if every 

maximal solution of (3) is global and there exists γ ∈ K such that, for every x0 ∈ F
n and every 

x ∈ X (x0), 

�x(t)� ≤ γ(�x 0 �), t ≥ 0. (9) 

System (3) is asymptotically stable in the large if (3) is stable in the large and limt→∞ x(t) = 0 

for every global solution x of (3). System (3) is globally exponentially stable if every maximal 

solution of (3) is global and there exist constants g and ε > 0 such that, for every x0 Fn and ∈

every x ∈ X (x0), 

�x(t)� ≤ ge −εt �x 0 �, t ≥ 0. (10) 

Definition 4: System (3) is input-to-state stable with bias (ISS with bias) if there exist 

γ1 ∈ KL, γ2 ∈ K, and θ ≥ 0 such that, for each (x0 , ∆) ∈ Fn ×DF, every solution x ∈ X (x0 , ∆) 

is global and 

�x(t)� ≤ max 
{ 
γ1(t, �x 0 �), γ2(�∆�L∞[0,t] + θ) 

} 
, t ≥ 0. (11) 

The numbers θ and γ2(θ) are the bias parameter and bias, respectively. If θ = 0, then (3) is 

input-to-state stable (ISS). 

Definition 4 generalizes the concept of ISS [38] to encompass set-valued nonlinearities 

and allow for bias. We also remark that, in Definition 4, the assumption that every solution 

x ∈ X (x0 , ∆) is global is made for presentational purposes only and is, in fact redundant. If 

[0, T ) is the interval of existence of a maximal solution x ∈ X (x0 , ∆) and the estimate in (11) 

holds for all t ∈ [0, T ), then, by Lemma 1, it follows that T = ∞. 
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The Circle Criterion and Lyapunov Stability 

Initially, we consider stability properties of the system (3) with ∆ = 0. Let G denote the 

transfer function of the linear system (A, b, c), that is, the strictly proper rational function given 

by 

G(s) = c ∗ (sI − A)−1b. (12) 

In the context of real systems (A, b, c) ∈ Rn×n ×Rn ×Rn, the Aizerman conjecture [39], 

which is known to be false, can be stated as follows. 

Aizerman conjecture. If A − kbc∗ is Hurwitz for all k ∈ (α, β), then the origin of the 

system ẋ = Ax−bf(c ∗ x) is globally asymptotically stable for every locally Lipschitz f : R → R 

with the property that α < f(v)/v < β for all v = 0. 

The first goal is to state and prove a version of the circle criterion, which we call the 

Aizerman version of the circle criterion because it shows that the Aizerman conjecture is true in 

the context of complex systems. We then show how more familiar versions of the circle criterion 

can be derived from the Aizerman version. 

For (A, b, c) ∈ Cn×n × Cn × Cn, let S(A, b, c) denote the set of all stabilizing complex 

gains, that is, 

S(A, b, c) := {k ∈ C : A − kbc∗ is Hurwitz}. 

Theorem 5: (Aizerman version of the circle criterion) Assume that ∆ = 0, Φ ∈ UC, 

and Φ(0) = {0}. Furthermore, let z ∈ C and r > 0, and assume that D(z, r) ⊂ S(A, b, c). For 

v =� 0, let Φ(v)/v denote the set {w/v : w ∈ Φ(v)}. 
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(i) If 

Φ(v)/v ⊂ D(z, r), v ∈ C \ {0}, (13) 

then (3) is stable in the large. Moreover, (9) holds with γ ∈ K given by γ(s) = gs, where the 

constant g > 0 depends on (A, b, c), z, and r, but not on Φ. 

(ii) If 

Φ(v)/v ⊂ D(z, r), v ∈ C \ {0}, (14) 

then (3) is asymptotically stable in the large. 

(iii) If there exists r1 ∈ (0, r) such that 

Φ(v)/v ⊂ D(z, r1), v ∈ C \ {0}, (15) 

then (3) is globally exponentially stable. Moreover, (10) holds with constants ε > 0 and g > 0 

depending on (A, b, c), z, r, and r1, but not on Φ. 

To interpret Theorem 5, it is useful to introduce some terminology. The complex number 

k is a gain of Φ if there exist v ∈ C\{0} and w ∈ Φ(v) such that k = w/v. With this terminology, 

Theorem 5 says, roughly speaking, the following. If all linear gains in D(z, r) stabilize (A, b, c), as 

illustrated in Figure 10, then every set-valued nonlinearity Φ ∈ UC that has all its gains in D(z, r) 

stabilizes (A, b, c). Consequently, Theorem 5 shows that the complex version of Aizerman’s 

conjecture is true. This fact is in stark contrast with the failure of Aizerman’s conjecture over 

the reals. For more details, including counterexamples, on Aizerman’s conjecture over the reals, 

see [40, Chapter 7]. Furthermore, [16, Example 4.1] analyzes a class of counterexamples given in 

[40]. The analysis in [40] shows that Aizerman’s conjecture over the reals fails “dramatically” in 

the sense that, for every δ ∈ (0, 1), there exist a system (A, b, c) and β > 0 such that A −kbc∗ is 
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Hurwitz for all k ∈ (−β, β), but there exists a globally Lipschitz function f : R R satisfying →

−δβ < f(v)/v < δβ for all v ∈ R\{0} and such that the origin of ẋ = Ax − bf(c ∗ x) is not 

globally asymptotically stable. 

Theorem 5 is closely related to stability radius theory. To see this, assume that A is 

Hurwitz. Then Theorem 5 applies with r = rC(A; b, c), where 

rC(A; b, c) := inf{|k| : k ∈ C s.t. A − kbc∗ is not Hurwitz} 

is the structured complex stability radius of A with respect to the “weightings” b and c [17], 

[41]. Theorem 5 shows that, for every Φ ∈ UC with Φ(0) = {0} and such that all gains of Φ 

are bounded by rC(A; b, c), the nonlinear system (3) remains stable. Moreover, if κ ∈ C is a 

destabilizing gain of minimal modulus, that is, A − κbc∗ is not Hurwitz and |κ| = rC(A; b, c), 

then, by statement (i) of Theorem 5, A − κbc∗ is still marginally stable, or equivalently, if λ 

is an eigenvalue of A − κbc∗, then Reλ ≤ 0 and λ is semisimple if Reλ = 0. The complex 

stability radius also plays a role in the proof of Theorem 5. In particular, the proof is based on 

on a Riccati equation result from stability radius theory combined with Lyapunov techniques; 

see the section “Proofs”. 

Discs of stabilizing gains play a pivotal role in Theorem 5, in contrast with classical 

versions of the circle criterion wherein positive-real and sector conditions are ubiquitous. In 

many situations, it is more intuitive to think in terms discs of stabilizing gains. This point of 

view is partially inspired by classical results from the stability theory of linear multi-step methods 

in numerical analysis, which can be considered as Aizerman versions of the discrete-time circle 

criterion [42]. 

We now show how more classical, and perhaps more familiar, versions of the circle 
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criterion can be obtained as corollaries of Theorem 5. To this end, if H is a rational function 

and k ∈ C, we set Hk := H(1 + kH)−1 and define 

S(H) := {k ∈ C : Hk ∈ H∞ }. 

Note that if (A, b, c) is stabilizable and detectable, then S(A, b, c) = S(G), where G is given 

by (12). 

In the following, we relate the disc conditions of Theorem 5 to positive-real and sector 

conditions. The next result characterizes the disc condition D(z, r) ⊂ S(H) for a rational function 

H in terms of a positive-real property. 

Lemma 6: Let H be a rational function, r > 0, and z ∈ C. Set κ := z − r and assume 

that H(s) �≡ −1/κ. Then D(z, r) ⊂ S(H) if and only if 1 + 2rHκ is positive real. 

Lemma 7 below expresses sector conditions for a set-valued nonlinearity F in the form 

of conditions requiring all gains of F to be contained in suitable discs. This result is proved by 

direct algebraic calculation, which is therefore omitted. 

Lemma 7: Let v �→ F (v) ⊂ C be a set-valued map defined on C and with nonempty 

values, let α, β ∈ C, α =� β, and set 

z := (α + β)/2 ∈ C, r := |α − β|/2 > 0. 

(i) The map F satisfies the sector condition 

Re (w − αv)(w − βv) ≤ 0, w ∈ F (v), v ∈ C 

if and only if F (0) = {0} and F (v)/v ⊂ D(z, r) for all v ∈ C \ {0}. 
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(ii) The map F satisfies the sector condition 

Re (w − αv)(w − βv) < 0, w ∈ F (v), v ∈ C \ {0} 

if and only if F (v)/v ⊂ D(z, r) for all v ∈ C \ {0}. 

(iii) Let η ∈ (0, r2). The map F satisfies the sector condition 

Re (w − αv)(w − βv) ≤ −η|v| 2 , w ∈ F (v), v ∈ C 

if and only if F (0) = {0} and F (v)/v ⊂ D(z, r2 − η) for all v ∈ C \ {0}. 

We now formulate a result that generalizes the classical circle criterion to differential 

inclusions of the form (3) with F = C. 

Theorem 8: (Classical circle criterion – the complex case) Assume that ∆ = 0, 

(A, b, c) ∈ Cn×n ×Cn ×Cn is stabilizable and detectable, and Φ ∈ UC. Furthermore, let α, β ∈ C 

and assume that (1 + βG)(1 + αG)−1 is positive real. 

(i) If 

Re (w − αv)(w − βv) ≤ 0, w ∈ Φ(v), v ∈ C, (16) 

then (3) is stable in the large. Moreover, (9) holds with γ ∈ K given by γ(s) = gs, where the 

constant g > 0 depends on (A, b, c), α, and β, but not on Φ. 

(ii) If Φ(0) = {0} and 

Re (w − αv)(w − βv) < 0, w ∈ Φ(v), v ∈ C \ {0}, (17) 

then (3) is asymptotically stable in the large. 

(iii) If there exists η > 0 such that 

Re (w − αv)(w − βv) ≤ −η|v| 2 , w ∈ Φ(v), v ∈ C, (18) 
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then (3) is globally exponentially stable. Moreover, (10) holds with constants ε > 0 and g > 0 

depending on (A, b, c), α, β, and η, but not on Φ. 

Note that the linear system (A, b, c) is assumed to be only stabilizable and detectable, in 

contrast with the presentation of the circle criterion in the textbook literature [11], [14], [25], 

wherein controllability and observability are assumed. 

We show how Theorem 5, Lemma 6, and Lemma 7 can be used to prove Theorem 8. 

We consider the derivation of only statement (i); statements (ii) and (iii) can be dealt with in an 

analogous way. To this end, let ψ ∈ [0, 2π) be the argument of β −α, so that β −α = |β −α|eiψ . 

Set Ã := A − αbc∗ and b̃ := eiψb and define Φ̃ ∈ UC by 

Φ̃(v) := e −iψ(Φ(v) − αv), v ∈ C. 

By positive realness of (1 +βG)(1 +αG)−1 it follows that 1 + |β −α|G̃ is positive real, where 

G̃(s) := e iψGα(s) = e iψG(s) 
( 
1 + αG(s) 

)−1 
= c ∗ (sI − Ã)−1b̃. 

Setting r := |β − α|/2, it follows from Lemma 6 that D(r, r) ⊂ S(G̃). Since (A, b, c) is 

stabilizable and detectable, it follows that ( ˜ b, c) is stabilizable and detectable, and we conclude A, ̃

that 

D(r, r) ⊂ S(A, ˜ b̃, c). (19) 

By (16), Φ(0) = {0} and, moreover, by Lemma 7, Φ(v)/v ⊂ D(z, r) for all v ∈ C \ {0}, 

where z := (α + β)/2. Observe that ˜ = {0} and e−iψ(D(z, r) − α) = D(r, r). Therefore, Φ(0) 

Φ̃(v)/v ⊂ D(r, r) for all v ∈ C \ {0}, which, in conjunction with (19) and an application of 

statement (i) of Theorem 5 to the system 

˜ b ̃ ∗ 0 
C
n ẋ−Ax ∈ −˜Φ(c x) , x(0) = x ∈ , (20) 
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shows that (20) is stable in the large. Since (3) and (20) have the same solutions, it follows that 

(3) is stable in the large, establishing statement (i) of Theorem 8. 

As a corollary of Theorem 8, we obtain the following real version of the circle criterion. 

Corollary 9: (Classical circle criterion – the real case) Assume that ∆ = 0, (A, b, c) ∈ 

Rn×n × Rn × Rn is stabilizable and detectable, and Φ ∈ UR with Φ(0) = {0}. Furthermore, let 

α, β ∈ R with α < β, and assume that (1 + βG)(1 + αG)−1 is positive real. 

(i) If 

αv2 ≤ Φ(v)v ≤ βv2 , v ∈ R, (21) 

then (3) is stable in the large. Moreover, (9) holds with γ ∈ K given by γ(s) = gs, where the 

constant g > 0 depends on (A, b, c), α, and β, but not on Φ. 

(ii) If 

αv2 < Φ(v)v < βv2 , v ∈ R\{0}, (22) 

then (3) is asymptotically stable in the large. 

(iii) If there exists δ > 0 such that 

(α + δ)v 2 ≤ Φ(v)v ≤ (β − δ)v 2 , v ∈ R, (23) 

then (3) is globally exponentially stable. Moreover, (10) holds with constants ε > 0 and g > 0 

depending on (A, b, c), α, β, and δ, but not on Φ. 

To derive Corollary 9 from Theorem 8, it is convenient to complexify the real map 

Φ ∈ UR by defining 

Φc(v) := Φ(Re v) + iΦ(Im v) = {w1 + iw2 : w1 ∈ Φ(Re v), w2 ∈ Φ(Im v)}, v ∈ C. 
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Observe that Φc ∈ UC and, if Φ(0) = {0}, then Φc(v) = Φ(v) for all v ∈ R. Furthermore, if 

Φ(0) = {0} and Φ satisfies (21), then 

Re (w − αv)(w − βv) ≤ 0, w ∈ Φc(v), v ∈ C, 

that is, Φc satisfies the complex sector condition (16). Part (i) of Corollary 9 follows now from 

part (i) of Theorem 8. Parts (ii) and (iii) of Corollary 9 can be proved in a similar way. 

While the set-valued quantization map Qη , defined by (7) and illustrated in Figure 9, 

satisfies the sector condition (21) with α = 0 and β = 2, there are many set-valued nonlinearities 

of interest, in particular, set-valued nonlinearities relevant to the description of hysteretic and 

friction phenomena, that satisfy one of the sector conditions (21), (22), or (23) not for all v ∈ R, 

or not for all v ∈ R\{0} in the case of (22), but only for all v with |v| sufficiently large. Stability 

results for the Lur’e-type system (3) with set-valued nonlinearities Φ of this type, that is, sector 

bounded outside a compact interval, are presented in an ISS context in the section “The Circle 

Criterion and ISS”, see corollaries 16, 20, and 21. 

Corollary 9 can be used to derive stability properties of time-varying Lur’e-type systems 

of the form 

ẋ(t) = Ax(t) + b d(t) − f(t, c ∗ x(t)) , x(0) = x 0 ∈ R
n , (24) 

provided that f : [0, ∞) × R → R satisfies a suitable sector condition uniformly in t. Here we 

assume that f is sufficiently regular to guarantee well-posedness of (24). In particular, it is 

assumed that f is continuous in its second argument. If, for example, there exists δ > 0 such 

that f satisfies the sector condition 

(α + δ)v 2 ≤ f(t, v) ≤ (β − δ)v 2 , (t, v) ∈ [0, ∞) × R, 
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then define Φ ∈ UR by 
 
 
 
 [(α + δ)v, (β − δ)v], v ≥ 0, 

Φ(v) = (25) 
 
 
 [(β − δ)v, (α + δ)v], v < 0 . 

Note that Φ(0) = {0} and Φ satisfies the sector condition (23). Furthermore, for each v ∈ R, 

f(t, v) ∈ Φ(v) for all t ≥ 0, and every solution of the time-varying system (24) is also a solution 

of (3) with Φ given by (25). Consequently, if (1+βG)(1+αG)−1 is positive real, statement (iii) 

of Corollary 9 guarantees that all solutions of the time-varying system (24) decay exponentially 

fast. 

We give an example that shows that, in statement (iii) of Corollary 9, the constant δ > 0 

is essential for exponential stability. Consider the integrator ẋ = u and apply negative feedback 

u = −f(x) to obtain the initial-value problem 

ẋ = −f(x), x(0) = x 0 , (26) 

where f : R R is the saturating nonlinearity given by →
 
 
 3 
 v , v ∈ [−1, 1], 
 
 
 
 

f(v) = +1, v > 1, 
 
 
 
 
 
 
 −1, v < −1 , 

see Figure 11. Setting Φ(v) := {f(v)}, we see that the sector condition (22) holds if and only 

if α ≤ 0 and β > 1. We also note that there exists δ > 0 such that (23) is satisfied if and only 

if α < 0 and β > 1. The transfer function G in this example is given by G(s) = 1/s, and 

1 + βG(s) s + β 
= 

1 + αG(s) s + α 

is positive real if and only if α ≥ 0 and β ≥ 0. Therefore, if (s + β)/(s + α) is positive real, 

then there is no value δ > 0 for which the sector condition (23) on Φ holds. On the other hand, 
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both the positive real condition on (s +β)/(s +α) and the sector condition (22) hold if and only 

if α = 0 and β > 1. Consequently, by statement (ii) of Corollary 9, we can conclude that (26) is 

asymptotically stable in the large. While the sufficient conditions associated with statement (iii) 

of Corollary 9 fail to hold in this example, this failure does not by itself rule out the possibility 

of global exponential stability. However, the conclusion that (26) is not globally exponentially 

stable can be arrived at by computing the solution of (26). For example, if x0 > 1, the solution 

x of (26) is given by 

 

x(t) = 

 
 
 x0 − t, t ∈ [0, x0 − 1], 

(27) 
 

√ 
 
 1/ 1 + 2(t + 1 − x0), t > x0 − 1. 

The formula (27) implies in particular that (26) is not globally exponentially stable. Hence, this 

example shows that, in statement (iii) of Corollary 9, the existence of a positive constant δ > 0 

is essential for global exponential stability; in fact, the weaker sector condition (22) does not 

suffice. 

The following lemma, which gives graphical characterizations of the positive realness of 

(1 + βG)(1 + αG)−1 in terms of the Nyquist diagram of G, shows why Corollary 9 is called 

the circle criterion. Recall that, if G does not have any poles on the imaginary axis, then the 

Nyquist diagram of G is defined to be the closure of the set G(iR) = {G(iω) : ω ∈ R} regarded 

as an oriented curve, whose orientation is induced by increasing ω. 

Lemma 10: For α < β with αβ = 0, let D(α, β) denote the open disc in the complex 

plane with center in R and such that −1/α and −1/β belong to the boundary of D(α, β). The 

following statements hold. 

(i) If αβ > 0 and G does not have any poles on the imaginary axis, then (1 + βG)(1 + αG)−1 
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is positive real if and only if the Nyquist diagram of G does not intersect the disc D(α, β) and 

encircles it p times in the counterclockwise sense, where p denotes the number of poles in C+. 

(ii) If αβ < 0, then (1+βG)(1+αG)−1 is positive real if and only if G ∈ H∞ and the Nyquist 

diagram of G is contained in D(α, β). 

For convenience, in Lemma 10 we use the notation D(α, β). This disc is identical to 

D(z, r), where z = −(α + β)/(2αβ) and r = (β − α)/(2αβ). 

The following example illustrates Lemma 10. 

Example 11: Assume that G is given by G(s) = 10/(s3 + 5s2 + 4s − 10), which has 

one pole in C+ at s = 1. The remaining poles are located at s = −2 ± i. With reference to 

Figure 12, we see that, for α = 1.07 and β = 1.5, the Nyquist diagram of G does not intersect 

the disc D(α, β) and encircles it once in the counterclockwise sense. Therefore, by statement 

(i) of Lemma 10, (1 + βG)(1 + αG)−1 is positive real. 

Now assume that G is given by G(s) = 10/(s3 + 7s2 + 16s + 10), whose poles are 

s = −1 and s = −2 ± i. With reference to Figure 13, we see that the Nyquist diagram of G is 

contained in the closed disc D(−1, 1) and thus, by statement (ii) of Lemma 10, (1−G)(1+G)−1 

is positive real. ♦ 

The following result shows that if, in Corollary 9, the assumption of positive realness is 

replaced by the stronger assumption of strict positive realness, then the value of the constant δ 

in statement (iii) of Corollary 9 can be taken to be 0. In this context, see also [43, Theorem 5.1] 

and [11, Theorem 7.1]. 
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Corollary 12: Assume that ∆ = 0, (A, b, c) ∈ R
n×n × R

n × R
n is stabilizable and 

detectable, and Φ ∈ UR, where Φ(0) = {0}. Let α, β ∈ R with α < β. If (1 + βG)(1 + αG)−1 

is strictly positive real and 

αv2 ≤ Φ(v)v ≤ βv2 , v ∈ R, 

then (3) is globally exponentially stable. Moreover, (10) holds with constants ε > 0 and g > 0 

depending on (A, b, c), α, β, and δ, but not on Φ. 

The next result extends statements (i) and (ii) of Corollary 9 to the case β = ∞; note, 

however, that the assumption of stabilizability is replaced by controllability. 

Theorem 13: Assume that ∆ = 0, (A, b, c) ∈ Rn×n × Rn × Rn is controllable and 

detectable, and Φ ∈ UR, where Φ(0) = {0}. Furthermore, let α ∈ R and assume that G(1+αG)−1 

is positive real. 

(i) If Φ(0) = {0} and 

αv2 ≤ Φ(v)v, v ∈ R, (28) 

then (3) is stable in the large. If, in addition, (A, b, c) is observable, then there exists g > 0 such 

that 

�x(t)� ≤ g�x 0 �, t ≥ 0, x ∈ X (x 0), 

where g depends on (A, b, c) and α, but not on Φ. 

(ii) If 

αv2 < Φ(v)v, v ∈ R \ {0}, (29) 

then (3) is asymptotically stable in the large. 
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Theorem 13 can be used to extend statements (i) and (ii) of Corollary 9 to the case 

α = −∞ and β < ∞. 

We close this section with a result that is in the spirit of the real Aizerman conjecture 

in the sense that a condition on the linear component of the feedback system is identified that 

together with the assumption (α, β) ⊂ S(A, b, c) guarantees that (3) is asymptotically stable in 

the large for all Φ ∈ UR with Φ(0) = {0} and such that (22) holds. To this end, recall the 

notation Gk = G(1 + kG)−1 . 

Corollary 14: Assume that (A, b, c) ∈ Rn×n × Rn × Rn is stabilizable and detectable. 

Let α < β and set k := (α + β)/2. If (α, β) ⊂ S(A, b, c) and 

max{|Gk(iω)| : ω ∈ R s.t. Gk(iω) ∈ R} = �Gk�H∞, (30) 

then (3) is asymptotically stable in the large for all Φ ∈ UR with Φ(0) = {0} and such that 

αv2 < Φ(v)v < βv2 for all v ∈ R\{0}. 

Note that (30) says that the maximal distance from the Nyquist diagram of Gk to the 

origin is attained when the Nyquist diagram intersects with the real axis. The transfer function 

G given by G(s) = 10/(s3 +7s2 +16s +10), which is considered in Example 11, satisfies (30) 

with k = 0, see Figure 13. 

To see how Corollary 14 can be derived from Corollary 9, it is convenient to define 

l := 
β − α

, Ak := A − kbc ∗ . 
2 

Then (α, β) = (k − l, k + l) and, since (α, β) ⊂ S(A, b, c), we have 

(−l, l) ⊂ S(Ak, b, c). (31) 
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By (30), there exists ω0 ∈ R such that Gk(iω0) ∈ R and |Gk(iω0)| = �Gk�H∞ . Setting r := 

1/|Gk(iω0)| = 1/�Gk�H∞ , it follows from a small-gain argument that 

D(0, r) ⊂ S(Gk) = S(Ak, b, c). (32) 

Furthermore, the real output feedback gain κ := −1/Gk(iω0), if applied to Gk, is destabilizing in 

the sense that Gk(1+κGk)
−1 has a pole at iω0. Consequently, the matrix Ak−κbc∗ is not Hurwitz. 

Now κ = r or κ = −r and thus, by (31), l ≤ r. Invoking (32) yields D(0, l) ⊂ S(Ak, b, c), which 

is equivalent to D(k, l) ⊂ S(A, b, c). Therefore, by Lemma 6, 1 + 2lGα = (1 + βG)(1 +αG)−1 

is positive real, and Corollary 14 follows from Corollary 9. 

The Circle Criterion and ISS 

We now arrive at one of the main concerns, namely, ISS properties of feedback 

interconnections of Lur’e type. The following theorem is the first of the two main results on 

input-to-state stability. 

Theorem 15: Assume that (A, b, c) ∈ Rn×n × Rn × Rn is stabilizable and detectable, 

and Φ ∈ UR, where Φ(0) = {0}. Furthermore, let α, β ∈ R with α < β and assume that 

(1 + βG)(1 + αG)−1 is positive real and (23) holds for some δ > 0. Then there exist constants 

g1 > 0, g2 > 0, and ε > 0, depending on (A, b, c), α, β, and δ, but not on Φ, such that, for each 

x0 ∈ Rn and each ∆ ∈ DR, every solution x ∈ X (x0 , ∆) of (3) is global and 

�x(t)� ≤ g1e 
−εt �x 0 � + g2�∆�L∞[0,t], t ≥ 0. (33) 

In particular, the system (3) is ISS 
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Theorem 15 is a refinement of a version of the classical circle criterion [11], [14]. In 

particular, Theorem 15 shows that, under the standard assumptions of the circle criterion, ISS 

is guaranteed. We emphasize that proof of Theorem 15 is based on small-gain and exponential 

weighting techniques but not on Lyapunov methods, see “Proofs” for details. This technique is 

used in [8, Section V.3] to prove classical stability results of input-output type as well as in 

[44] to derive a version of the circle criterion that guarantees exponential stability for a class 

of infinite-dimensional state-space systems. However, its application here is in an ISS context, 

with origins in [19]. In particular, while the standard textbook version of the circle criterion for 

state-space systems is usually proved using Lyapunov techniques combined with the positive-real 

lemma [9, pp. 375], [11, Theorem 7.1], [14, p. 227], or [45, pp. 587], the proof of Theorem 15 

given in the section “Proofs” provides an alternative, more elementary, approach. Moreover, the 

methodology can be extended to an infinite-dimensional setting [29]. 

In the following corollary of Theorem 15, we consider not only nonlinearities satisfying 

(23) for all arguments v ∈ R, but also nonlinearities Φ ∈ UR with the property that there exists 

a compact interval K ⊂ R such that (23) holds for all arguments v ∈ R\K, that is, 

(α + δ)v 2 ≤ Φ(v)v ≤ (β − δ)v 2 , v ∈ R\K, (34) 

see Figure 14. For example, single-input, single-output hysteretic elements can be subsumed by 

this set-valued formulation provided that the characteristic diagram of the hysteresis is contained 

in the graph of some Φ ∈ UR, see Theorem S3 in “Hysteretic Feedback Systems”. 

Corollary 16: Assume that (A, b, c) ∈ Rn×n × Rn × Rn is stabilizable and detectable, 

and Φ ∈ UR. Let α, β ∈ R with α < β and assume that (1 + βG)(1 + αG)−1 is positive real. 

Furthermore, assume that there exist δ > 0 and a compact interval K ⊂ R, with 0 ∈ K, such 
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that (34) holds. Define 

θ := sup sup dist(w, Iv), (35) 
v∈K w∈Φ(v) 

where 
 
 
 
 [(α + δ)v, (β − δ)v], v ≥ 0, 

Iv := 
 
 
 [(β − δ)v, (α + δ)v], v < 0. 

Then there exist constants g1 > 0, g2 > 0, and ε > 0, depending on (A, b, c), α, β, and δ, but 

not on Φ and K, such that, for each x0 ∈ Rn and each ∆ ∈ DR, every solution x ∈ X (x0 , ∆) 

of (3) is global and 

�x(t)� ≤ g1e 
−εt �x 0 � + g2 

( 
�∆�L∞[0,t] + θ 

) 
, t ≥ 0. (36) 

In particular, the system (3) is ISS with bias g2θ. 

The bias parameter θ defined by (35) provides a natural measure of the extent of the 

violation of the sector condition (α + δ)v2 ≤ Φ(v)v ≤ (β − δ)v2 for v in the interval K. The 

assumption that the interval K contains 0 is imposed for convenience. This assumption is not 

essential for ISS with bias. Indeed, an inspection of the proof of Corollary 16 shows that, if 0 

is not contained in K, then the assertion of Corollary 16 remains valid provided that, on the 

right-hand side of (36), the term θ is replaced by max{(|Φ(0)|, θ)}. 

Note that, even if the feedback system under investigation is not subject to external 

inputs or disturbances, Corollary 16 is still of interest because, although the sector condition 

is not required to hold globally but holds only outside a compact interval, boundedness of all 

solutions is guaranteed and, moreover, lim supt→∞ �x(t)� ≤ g2θ. 

Next we consider situations that are not covered by Theorem 15. In particular, such 

situations involve the consideration of feedback nonlinearities with not necessarily linear sector 
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boundaries, as typified, in the case of singleton-valued maps Φ, by figures 15 and 16. For example, 

the latter figure encompasses nonlinearities with logarithmic growth as well as nonlinearities with 

exponential growth. 

The following two hypotheses involve nonlinear counterparts of the sector conditions 

(23) and (28). 

Hypothesis (H1) Φ(0) = {0}, and there exist ϕ ∈ K∞ and β, δ > 0 such that 

ϕ(|v|)|v| ≤ Φ(v)v ≤ (β − δ)v 2 , v ∈ R, (37) 

and 1 + βG is positive real. 

Hypothesis (H2) Φ(0) = {0}, and there exists ϕ ∈ K∞ such that 

ϕ(|v|)|v| ≤ Φ(v)v, v ∈ R, (38) 

and G is positive real. 

In both (H1) and (H2), the assumption that ϕ is unbounded is essential for ISS. If K∞ 

is replaced by K in either case, then the ISS property does not necessarily hold. For example, 

let ϕ ∈ K be bounded and choose a bounded nonlinearity Φ ∈ UR satisfying either (37) for 

some β, δ > 0 or (38). Consider the one-dimensional case wherein (A, b, c) = (0, 1, 1) and thus 

G is given by G(s) = 1/s. Evidently, both G and 1 + βG are positive real. Therefore, (H1) 

or (H2), as appropriate, holds with K∞ replaced by K. In either case, and with constant input 

∆(t) = {d}, we have 

ẋ(t) − d ∈ −Φ(x(t)), x(0) = x 0 , 

which, for d > supv∈R |Φ(v)|, has an unbounded solution, and thus the ISS property fails to 

hold. 
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Theorem 17: Assume that (A, b, c) ∈ R
n×n × R

n × R
n is controllable and observable, 

Φ ∈ UR, and either (H1) or (H2) holds. 

(i) There exist functions γ1 ∈ KL and γ2 ∈ K such that, for each (x0 , ∆) ∈ Rn × DR, every 

solution x ∈ X (x0 , ∆) of (3) is global and 

�x(t)� ≤ max 
{ 
γ1(t, �x 0 �), γ2(�∆�L∞[0,t]) 

} 
, t ≥ 0. 

In particular, the system (3) is ISS. 

(ii) In the case wherein (H1) holds, γ1 and γ2 depend on (A, b, c), ϕ, β, and δ, but not on Φ. 

In contrast with the small-gain and exponential weighting technique, which is crucial 

in the proof of Theorem 15, the proof of Theorem 17 is based on a Lyapunov argument. The 

key step in this argument is to establish the existence of a ISS Lyapunov function, which is a 

Lyapunov function with special properties. More precisely, we have the following lemma. 

Lemma 18: Under the hypotheses of Theorem 17, there exist α1, α2, α3, α4 ∈ K∞ and a 

continuously differentiable function V : Rn [0, ∞) such that →

α1(�ξ�) ≤ V (ξ) ≤ α2(�ξ�), ξ ∈ Rn , (39) 

max w)� ≤ −α3(�ξ�) + α4(|d| (ξ, d) ∈ R
n × R. (40) 

w∈Φ(c ∗ξ)
�∇V (ξ), Aξ + b(d − ), 

Moreover, in the case wherein (H1) holds, α1, α2, α3, α4, and V depend on (A, b, c), ϕ, β, and 

δ, but not on Φ. 

The proof of Lemma 18 is rather technical, see “Proofs” for details. The approach is akin 

to that of [18] insofar as parts of the argument adopted in the proof of Lemma 18 are variants 

of arguments used in [18]. Lemma 18 plays a central role in the proof of Theorem 17. In the 
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extensive literature on ISS in the context of differential equations, the fact that the existence 

of a C∞ ISS Lyapunov function is both necessary and sufficient for ISS is well established 

[38], [46]. See also “The Concept of Input-to-State Stability”. For the present purposes, we 

require a suitable variant of the arguments establishing sufficiency of the ISS-Lyapunov function 

condition, wherein we impose only C1 smoothness on the function. Again, details can be found 

in “Proofs”. 

Example 19: Consider the circuit example in “An Example from Circuit Theory”, that 

is, the system given by (S1) and (S2), where, in (S4), strict inequality holds for every v = 0 

and, moreover, limv→±∞ |h(v)| = ∞. Define ϕ ∈ K∞ by 

ϕ(s) = ϕ0(s) inf h(σ) , s ≥ 0, 
|σ|≥s 

| |

where ϕ0 : [0, ∞) [0, ∞) is continuous, strictly increasing, and such that 0 < ϕ0(s) < 1→ 

for all s > 0; the functions given by ϕ0(s) = 1 − 1/(s + 1) and ϕ0(s) = 1 − e−s are typical 

examples. By construction, 

ϕ(|v|)|v| ≤ h(v)v, v ∈ R. 

Combining this inequality with the positive realness of the transfer function (S3), it follows that 

(H2) holds, and thus, by Theorem 17, we conclude that the system (S1) is ISS. ♦ 

In the next result, we consider nonlinearities for which the inequality (37) is required to 

hold only for values v outside some nonempty compact interval K, thereby relaxing hypotheses 

(H1) and (H2). The price paid for this added generality is that the ISS property is lost and 

replaced by ISS with bias. 

Corollary 20: Assume that (A, b, c) ∈ Rn×n × Rn × Rn is controllable and observable, 
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let Φ ∈ UR, let β > 0, and assume that 1 + βG is positive real. Furthermore, assume that there 

exist ϕ ∈ K∞, δ > 0, and a compact interval K ⊂ R, with 0 ∈ K, such that ϕ(s) ≤ (β − δ)s 

for all s ≥ 0 and 

ϕ(|v|)|v| ≤ Φ(v)v ≤ (β − δ)v 2 , v ∈ R\K. (41) 

Define 

θ := sup sup dist(w, Iv), 
v∈K w∈Φ(v) 

where 
 
 
 
 [ϕ(v), (β − δ)v], v ≥ 0, 

Iv := 
 
 
 [(β − δ)v, −ϕ(|v|)], v < 0. 

Then there exist functions γ1 ∈ KL and γ2 ∈ K, depending on (A, b, c), ϕ, β, and δ, but not on 

Φ and K, such that, for each x0 ∈ Rn and each ∆ ∈ DR, every solution x ∈ X (x0 , ∆) of (3) is 

global and 

�x(t)� ≤ max 
{ 
γ1(t, �x 0 �) , γ2(�∆�L∞[0,t] + θ) 

} 
, t ≥ 0. (42) 

In particular, system (3) is ISS with bias γ2(θ). 

Corollary 21: Assume that (A, b, c) ∈ R
n×n × R

n × R
n is controllable and observable, 

Φ ∈ UR, and G is positive real. Furthermore, assume that there exist ϕ, ψ ∈ K∞ and a compact 

interval K ⊂ R, with 0 ∈ K, such that ϕ(s) ≤ ψ(s) for all s ≥ 0 and 

ϕ(|v|)|v| ≤ Φ(v)v ≤ ψ(|v|)|v|, v ∈ R\K. (43) 

Define 

θ := sup sup dist(w, Iv), (44) 
v∈K w∈Φ(v) 

30 



{ } 

where 
 
 
 
 [ϕ(v), ψ(v)], if v ≥ 0, 

Iv := 
 
 
 [−ψ(|v|), −ϕ(|v|)], if v < 0. 

Then there exist functions γ1 ∈ KL and γ2 ∈ K, depending on (A, b, c), ϕ, and ψ, but not on 

Φ and K, such that, for each x0 ∈ R
n and each ∆ ∈ DR, every solution x ∈ X (x0 , ∆) of (3) is 

global and 

�x(t)� ≤ max γ1(t, �x 0 �) , γ2(�∆�L∞[0,t] + θ) , t ≥ 0. (45) 

In particular, the system (3) is ISS with bias γ2(θ). 

The proofs of corollaries 20 and 21 are similar to that of Corollary 16 and are therefore 

left to the reader. 

Example 22: Consider again the circuit example, that is, the system given by (S1) and 

(S2), where h now describes a negative resistance element, that is, h(0) = 0, h ′ (0) < 0, h(v) → 

∞ as v → ∞, and h(v) → −∞ as v → −∞. As in Example 19, let ϕ0 : [0, ∞) → [0, ∞) be 

continuous, strictly increasing, and such that 0 < ϕ0(s) < 1 for all s > 0. Let k > max{|v| : 

h(v) = 0} and define ϕ ∈ K∞ by setting 

ϕ(s) = inf h(σ) , s ≥ k, ϕ0(s) 
|σ|≥s 

| |

and 

ϕ(s) = sϕ(k)/k, 0 ≤ s < k. 

Furthermore, let ψ0 : [0, ∞) [0, ∞) be continuous, strictly increasing, and such that ψ0(s) > 1→

for all s > 0. Define ψ ∈ K∞ by 

ψ(s) = ψ0(s) sup h(σ) , s ≥ k, 
k≤|σ|≤s 

| |
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and 

ψ(s) = sψ(k)/k, 0 ≤ s < k. 

Then ϕ(s) ≤ ψ(s) for all s ≥ 0 and 

ϕ(|v|)|v| ≤ h(v)v ≤ ψ(|v|)|v|, v ∈ R\[−k, k]. 

Combining this fact with the positive realness of the transfer function (S3), it follows from 

Corollary 21 that the system (S1) is ISS with bias. The bias parameter θ is given by 

θ = sup dist(h(v), Iv), 
v∈[−k,k] 

where Iv is defined as in (44). ♦ 

Quantization and Output Disturbances 

Let A ∈ Rn×n , b, c ∈ Rn, let f : R R be a continuous static nonlinearity, and consider →

the system 

ẋ(t) = Ax(t) + b(d(t) − f(c ∗ x(t))), x(0) = x 0 ∈ R
n , (46) 

where d ∈ L∞ 
loc[0, ∞). As before, we denote the transfer function of the linear system (A, b, c) by 

G, that is, G(s) = c ∗(sI −A)−1b. In the following, we want to analyze asymptotic properties of 

system (46) subject to two classes of disturbances, namely, output disturbances, that is, in (46) the 

term f(c ∗ x(t)) is replaced by f(c ∗ (t)), where do ∈ L∞x(t)+do loc[0, ∞), and output quantization, 

that is, in (46) the term f(c ∗ x(t)) is replaced by (f qη )(c 
∗ x(t)), where the uniform output ◦

quantizer qη is given by (6). 
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To this end, it is useful to state two auxiliary robustness results. Let ̺ = (̺1, ̺2) ∈ 

[0, ∞) × [0, ∞) and define F̺ ∈ UR by 

F̺(v) = {f(v + r) : r ∈ [−̺1, ̺1]} + [−̺2, ̺2], v ∈ R. (47) 

The following lemma is a consequence of Corollary 16. A detailed proof can be found 

in the section “Proofs”. 

Lemma 23: Assume that (A, b, c) is stabilizable and detectable. Let α, β ∈ R with α < β, 

and assume that (1 + βG)(1 + αG)−1 is positive real and there exists δ > 0 such that 

(α + δ)v 2 ≤ f(v)v ≤ (β − δ)v 2 , v ∈ R. (48) 

Then there exist constants g1 > 0, g2 > 0, and ε > 0, depending on (A, b, c), α, β, and δ, but 

not on f , such that, for each ̺ ∈ [0, ∞)× [0, ∞), each F ∈ UR satisfying F (v) ⊂ F̺(v) for all 

R, each x0 Rn, and each d ∈ L∞ [0, ∞), every maximal solution x of v ∈ ∈ loc

ẋ(t) −Ax(t) − bd(t) ∈ −bF (c ∗ x(t)), x(0) = x 0 (49) 

is global and 

�x(t)� ≤ g1e 
−εt �x 0 � + g2(�d�L∞[0,t] + �̺�), t ≥ 0. 

In particular, the system (49) is ISS with bias g2�̺�. 

Lemma 23, in the context of the special case ρ = 0, shows that under the assumptions 

imposed on (A, b, c), G, and f , there exist constants g1 > 0, g2 > 0, and ε > 0 such that, for 

every x0 ∈ Rn and every d ∈ L∞ [0, ∞), every maximal solution x of (46) is global and loc

�x(t)� ≤ g1e 
−εt �x 0 � + g2�d�L∞[0,t], t ≥ 0, (50) 
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which can also be obtained as a consequence of Theorem 15. Lemma 23 also guarantees that 

if, in (46), the nonlinearity f is subjected to a set-valued perturbation such that the resulting 

nonlinearity F is in UR and contained in the ̺-neighbourhood F̺ of f , then, by adding the 

constant g2�̺� to the right-hand side of (50), we obtain an estimate for the solutions of the 

perturbed system. 

The next lemma is a consequence of corollaries 20 and 21. The proof is given in the 

section “Proofs”. 

Lemma 24: Assume that (A, b, c) is controllable and observable, and either (H1) or (H2) 

holds with Φ(v) = {f(v)} for all v ∈ R. Then there exist functions γ1 ∈ KL and γ2 ∈ K such 

that, for each ̺ ∈ [0, ∞) × [0, ∞), each F ∈ UR satisfying Φ(v) ⊂ F̺(v) for all v ∈ R, each 

x0 ∈ Rn, and each d ∈ L∞ [0, ∞), every maximal solution x of (49) is global and loc

�x(t)� ≤ max γ1(t, �x 0 �), γ2(�d�L∞[0,t] + �̺�) , t ≥ 0. 

In particular, the system (49) is ISS with bias γ2(�̺�). 

The comment after the statement of Lemma 23 applies mutatis mutandis to Lemma 24. 

PID control in the presence of quantization 

With reference to Figure 17, we consider the double integrator with a static nonlinearity 

f : R R in the input channel and subject to input quantization given by →

ξ̈(t) = (f qη )(u(t)), ξ(0) = ξ0 , ξ̇(0) = ξ1 , (51) ◦

where qη : R R, parameterized by η > 0, is the uniform quantizer described in Example 2, →

see Figure 8. The nonlinearity f : R R is assumed to be continuous and sector bounded in →
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the sense that there exist α > 0 and ϕ ∈ K∞ such that 

αv2 + ϕ(|v|)|v| ≤ vf(v), v ∈ R. (52) 

Figure 18 illustrates the case in which ϕ is linear, that is, there exists ε > 0 such that ϕ(s) = εs 

for all s ≥ 0. 

Adopting the PID control structure 

( t ) 
u(t) = − kp(ξ(t) − r) + kdξ̇(t) + ki 

0 

(ξ(τ) − r)dτ + kiz 
0 , z 0 ∈ R, (53) 

with gains kp, kd, ki > 0, the control objective is to asymptotically track an arbitrary constant 

reference signal r ∈ R, that is, e(t) 0 as t → ∞, where e(t) := ξ(t) − r.→

Writing z(t) := 
∫ t 
e(τ)dτ + z0 , x(t) := 

[ 
e(t), ė(t), z(t) 

]∗ 
, x0 := 

[ 
ξ0 − r, ξ1, z0 

]∗ 
and 

0 

      

0 1 0 0 −kp 
      
      
     

A := 
0 0 0  , b := 

  , c := 
  , (54) 

  

−1 
 

−kd 
 

      

1 0 0 0 −ki 

with transfer function G given by 

G(s) = c ∗ (sI − A)−1b = 
kds

2 + kps + ki 
,

3s

we see that the closed-loop initial-value problem (51)-(53) can be expressed in the form 

ẋ(t) = Ax(t) − b(f qη)(c 
∗ x(t)), x(0) = x 0 . (55) ◦

Note that the linear system (A, b, c) is controllable and observable, and its transfer function G 

is given by 

G(s) = c ∗ (sI − A)−1b = 
kds

2 + kps + ki 
. 

3s
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As in Example 2, we interpret the differential equation (55) with discontinuous righthand side 

in a set-valued sense by embedding the quantizer qη in the set-valued map Qη ∈ UR, see (6) and 

(7), and also figures 8 and 9. We now subsume (55) in the differential inclusion 

ẋ(t) − Ax(t) ∈ −bΦη (c 
∗ x(t)), x(0) = x 0 ∈ R

3 , (56) 

where Φη ∈ U is given by 

Φη (v) := f(Qη(v)) = {f(ζ) : ζ ∈ Qη(v)}. (57) 

Set f̃(v) := f(v)−αv and Φ̃η(v) := Φη(v)−αv for all v ∈ R and Ã := A −αbc∗. Note 

that x is a solution of (56) if and only if x is solution of 

˜ ∗ 0 
R

3 ẋ(t) − Ax(t) ∈ −bΦ̃η (c x(t)), x(0) = x ∈ . (58) 

Note further that, for all v ∈ R, 

Φ̃η (v) ⊂ f̃(Qη(v)) + αQη(v) − αv ⊂ {f̃(v + r) : r ∈ [−η, η]} + α[−η, η]. 

Therefore, in order to apply Lemma 24 to (58), it is sufficient to check that, in the context of 

the linear system ( ˜ f̃ , the hypotheses of Lemma 24 are satisfied. It A, b, c) and the nonlinearity 

follows from (52) that 

ϕ(|v|)|v| ≤ f̃(v)v, v ∈ R. (59) 

Next, we choose the controller gains to ensure that the transfer function G(1 + αG)−1 

of the linear system given by (A, b, c˜ ) is positive real. Let kp > 0. Choose kd > 0 sufficiently 

large and ki > 0 sufficiently small so that 

αkd 
2 > kp, ki < min 

{ 
αkdkp , kp

2/(2kd) 
} 
. 

With these choices, we have G(1 + αG)−1 ∈ H∞ and 

Re G(iω) 
( 
1 + αG(iω) 

)−1 ≥ 0, ω ∈ R, 
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showing that G(1 + αG)−1 is positive real. Using (59), it follows that, in the context of the 

linear system (Ã, b, c) and the single-valued nonlinearity f̃ , hypothesis (H2) holds. 

Therefore, Lemma 24 can be applied to (58) and thus we can conclude that there exist 

γ1 ∈ KL and γ2 ∈ K such that, for all η > 0 and all x0 ∈ R
3, every maximal solution x of (58), 

and hence of (56), is global and satisfies 

�x(t)� ≤ max γ1(t, �x 0 �) , γ2(η) , t ≥ 0, 

In particular, for each fixed η > 0, Lemma 24 guarantees tracking with asymptotic accuracy 

γ2(η). Moreover, we see that the quantized PID-controlled system is such that exact asymptotic 

tracking is achieved in the limit as η 0.↓

For numerical simulation, let f(v) = v(1 + v2), which satisfies (52) with α = 1/2 and ϕ 

given by ϕ(s) = εs, where ε ∈ (0, 1/2). For the reference value r = 1 and the controller gains 

kp = 1, kd = 4, and ki = 0.1, Figure 19 shows MATLAB-generated simulations for three values 

of the quantization parameter η, illustrating the property that asymptotic tracking is recovered 

as η tends to zero. 

Lur’e systems subject to output quantization 

Consider again the quantized feedback system described in Example 2. Recall that this 

system, with input d ∈ L∞ 
loc[0, ∞) and continuous static nonlinearity f , is expressed in the form 

ẋ(t) − Ax(t) − bd(t) ∈ −bΦη (c 
∗ x(t)), x(0) = x 0 ∈ R

n , (60) 

where Φη ∈ UR is given by 

Φη (v) := f(Qη(v)) = {f(ζ) : ζ ∈ Qη(v)}. 
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Note that (60) is of the form (3) with Φ = Φη and ∆(t) = {d(t)} for all t ≥ 0. 

Corollary 25: Assume that (A, b, c) is stabilizable and detectable. Let α, β ∈ R with 

α < β, and assume that (1 + βG)(1 + αG)−1 is positive real and there exists δ > 0 such that 

(α + δ)v 2 ≤ f(v)v ≤ (β − δ)v 2 , v ∈ R. (61) 

Then there exist constants g1 > 0, g2 > 0, and ε > 0, depending on (A, b, c), α, β, and δ, but 

not on f , such that, for each x0 ∈ Rn, each η > 0, and each d ∈ L∞ [0, ∞), every maximal loc

solution x of (60) is global and 

�x(t)� ≤ g1e 
−εt �x 0 � + g2(�d�L∞[0,t] + η), t ≥ 0. 

In particular, system (60) is ISS with bias g2η. 

To show how Corollary 25 follows from Lemma 23, let x be a maximal solution of (60) 

and let F(η,0) ∈ UR be defined by (47). Then Φη(v) ⊂ F(η,0)(v) for all v ∈ R, and, therefore, x 

is also a maximal solution of 

ẋ(t) − Ax(t) − bd(t) ∈ −bF(η,0)(c 
∗ x(t)), x(0) = x 0 . 

It follows from Lemma 23 that there exist constants g1 > 0, g2 > 0, and ε > 0, depending on 

(A, b, c), α, β, and δ, but not on f , such that, for each x0 ∈ loc[0, ∞), and each R
n, each d ∈ L∞ 

η > 0, x is global and 

�x(t)� ≤ g1e 
−εt �x 0 � + g2(�d�L∞[0,t] + η), t ≥ 0, 

establishing Corollary 25. 

Invoking Lemma 24 instead of Lemma 23, an argument similar to the one above yields 

the following corollary. 
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Corollary 26: Assume that (A, b, c) is controllable and observable, and either (H1) or 

(H2) holds with Φ(v) = {f(v)} for all v ∈ R. Then there exist functions γ1 ∈ KL and γ2 ∈ K 

such that, for each x0 ∈ Rn, each η > 0, and each d ∈ L∞ [0, ∞), every maximal solution x of loc

(60) is global and 

�x(t)� ≤ max γ1(t, �x 0 �), γ2(�d�L∞[0,t] + η) , t ≥ 0. 

In particular, system (60) is ISS with bias γ2(η). 

Lur’e systems subject to output disturbances 

Consider the system 

ẋ(t) = Ax(t) + b d(t) − f(c ∗ x(t) + do(t)) , x(0) = x 0 ∈ R
n , (62) 

where A ∈ R
n×n , b, c ∈ R

n , f : R → R is continuous and d, do ∈ L∞ [0, ∞), see also Figure 20. loc

The following result shows that, under the standard assumptions of the classical circle criterion, 

the system (62) is ISS with respect to d and do. 

Corollary 27: Assume that (A, b, c) is stabilizable and detectable. Let α, β ∈ R with 

α < β, and assume that (1 + βG)(1 + αG)−1 is positive real and there exists δ > 0 such that 

(α + δ)v 2 ≤ f(v)v ≤ (β − δ)v 2 , v ∈ R. (63) 

Then there exist constants g1 > 0, g2 > 0, and ε > 0, depending on (A, b, c), α, β, and δ, but 

not on f , such that, for all x0 ∈ Rn and all d, do ∈ L∞ [0, ∞), every maximal solution x of (62) loc

is global and 

�x(t)� ≤ g1e 
−εt �x 0 � + g2(�d�L∞[0,t] + �do�L∞[0,t]), t ≥ 0. (64) 
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In particular, the system (62) is ISS with respect to d and do. 

If either (H1) or (H2) holds, then we have the following result. 

Corollary 28: Assume that (A, b, c) is controllable and observable, and either (H1) or 

(H2) holds with Φ(v) = {f(v)} for all v ∈ R. Then there exist functions γ1 ∈ KL and γ2 ∈ K 

such that, for all x0 ∈ Rn and all d, do ∈ L∞ [0, ∞), every maximal solution x of (62) is global loc

and 

�x(t)� ≤ max 
{ 
γ1(t, �x 0 �), γ2(�d�L∞[0,t] + �do�L∞[0,t]) 

} 
, t ≥ 0. 

In particular, system (62) is ISS with respect to d and do. 

The proof of Corollary 27 can be found in the section “Proofs”. The proof of Corollary 

28 is similar and is therefore not included. 

Proofs 

Proof of Theorem 5. Let z ∈ C, r > 0 and assume that D(z, r) ⊂ S(A, b, c). Assume 

further that ∆ = 0. Let x0 ∈ Cn and x ∈ X (x0). Setting Ã := A − zbc∗ and defining Φ̃ ∈ UC 

by Φ(˜ v) := Φ(v) − zv, it follows that x is also a maximal solution of 

˙ ˜ Φ(c ∗ x(t)) , x(0) = x 0 . (65) x(t) −Ax(t) ∈ −b˜

The proof of statement (i) makes essential use of arguments from [17, pp. 703]. Note 

that the complex stability radius 

rC(Ã; b, c) := inf{|k| : k ∈ C s.t. Ã+ kbc∗ is not Hurwitz} 
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satisfies rC(Ã; b, c) ≥ r. By [41] or [47, Theorem 23.3.1], there exists a matrix P = P ∗ ≥ 0 

solving the Riccati equation 

PÃ+ Ã∗ P + r 2 cc ∗ + P bb ∗ P = 0. (66) 

Note that, as an immediate consequence of (66), we have 

kerP ⊂ ker c ∗ . (67) 

For all ξ ∈ Cn, define V (ξ) := �ξ, P ξ� and 

Vd(ξ) := {2Re � ˜ Φ(cAξ − bw, P ξ� : w ∈ ˜ ∗ ξ)}, 

so that 

(V x) ′ (t) ∈ Vd(x(t)), a.a. t ∈ [0, T ), (68) ◦

where [0, T ) is the maximal interval of existence of x. Invoking (66), we have 

˜ ∗ ξ)},Vd(ξ) = {−|w + b ∗ Pξ| 2 − r 2 |c ∗ ξ| 2 + |w| 2 : w ∈ Φ(c ξ ∈ C
n . (69) 

Assume now that (13) holds. Then, 

|Φ(˜ c ∗ ξ)| ≤ r|c ∗ ξ|, ξ ∈ C
n , (70) 

and therefore, by (69), 

maxVd(ξ) ≤ 0, ξ ∈ C
n . (71) 

Consequently, by (68), 

(V x) ′ (t) ≤ 0 a.a. t ∈ [0, T ). (72) ◦

Let Π be the orthogonal projection of Cn onto (kerP )⊥ and define the function x⊥ by 

setting x⊥(t) = Πx(t) for all t ∈ [0, T ). The restriction of the quadratic form V to (kerP )⊥ 
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is positive definite, so that there exists ε > 0 such that V (ξ) ≥ ε�ξ�2 for all ξ ∈ (kerP )⊥ . 

Moreover, V (x(t)) = V (x⊥(t)) for all t ∈ [0, T ), and thus, invoking (72), we conclude that 

ε�x⊥(t)� 2 ≤ V (x⊥(t)) ≤ V (x⊥(0)) = V (x 0) ≤ �P ��x 0 � 2 , t ∈ [0, T ). (73) 

Now, by (67), c ∗ x(t) = c ∗ x⊥(t) for all t ∈ [0, T ), and therefore, by (73), 

|c ∗ x(t)| ≤ g0�x 0 �, t ∈ [0, T ), (74) 

where g0 := �c� �P �/ε. Furthermore, applying Filippov’s selection theorem shows that there 

exists a measurable function u : [0, T ) R such that u(t) ∈ −˜ x(t))→ Φ(c ∗ for a.a. t ∈ [0, T ) and 

˜ẋ(t) = Ax(t) + bu(t), a.a. t ∈ [0, T ). (75) 

See “Filippov’s Selection Theorem” for details. By (70), 

|u(t)| ≤ r|c ∗ x(t)|, a.a. t ∈ [0, T ), (76) 

which, combined with (74), yields 

|u(t)| ≤ rg0�x 0 �, a.a. t ∈ [0, T ). (77) 

Since Ã is Hurwitz an application of the variation-of-parameters formula to (75) shows 

that there exist positive constants g1 and g2, depending only on Ã and b, such that 

�x(t)� ≤ g1�x 0 � + g2�u�L∞(0,T ), t ∈ [0, T ) . 

This argument shows that x is bounded and thus, by Lemma 1, T = ∞, that is, the solution x 

is global. Moreover, using (77) and setting g := g1 + rg0g2, we obtain 

�x(t)� ≤ g�x 0 �, t ≥ 0 , 

completing the proof of statement (i). 
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We proceed to prove statement (ii). Note that, by (72) and the fact that T = ∞, the limit 

of V (x(t)) as t → ∞ exists and is finite. Let Ω denote the omega-limit set of x. We claim that 

Ω ⊂ ker c ∗ . (78) 

Seeking a contradiction, suppose the claim is not true. Then there exists ζ ∈ Ω such that c ∗ζ =� 0. 

Choose ε > 0 such that c ∗ξ =� 0 for all ξ ∈ Bε, where Bε := {ξ ∈ Cn : �ξ − ζ� ≤ ε}. Since (14) 

holds, it follows that 

˜ ∗ ξ) ∗ ξ|Φ(c | − r|c | < 0, ξ ∈ Bε. (79) 

Next, we assert that a stronger property holds, namely, that there exists δ > 0 such that 

|Φ(˜ c ∗ ξ)| − r|c ∗ ξ| < −δ, ξ ∈ Bε. (80) 

˜Suppose otherwise. Then there exists a sequence (ξj, wj) with ξj ∈ Bε and wj ∈ Φ(c ∗ξj) for all 

positive integers j, and 

lim 
( 
wj r c ∗ ξj

) 
= 0. 

j→∞ 
| | − | | 

This sequence is bounded and thus has a convergent subsequence, the limit of which we denote 

by (ξ∞, w∞). By compactness of Bε, it follows that ξ∞ ∈ Bε. By upper semicontinuity of the 

˜map Φ̃ and compactness of its values, w∞ ∈ Φ(c ∗ξ∞). Hence, |w∞| − r|c ∗ξ∞| = 0 and thus 

˜ ∗ξ∞|Φ(c ∗ξ∞)| − r|c | ≥ 0, contradicting (79). Therefore, (80) holds, which, in conjunction with 

(69), gives 

maxVd(ξ) ≤ −δ, ξ ∈ Bε. (81) 

Let (tj ) be a sequence in [0, ∞) such that tj → ∞ and x(tj ) ζ as j → ∞. Since x is →

bounded, it follows that ẋ is essentially bounded and thus x is uniformly continuous. Therefore, 
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there exists τ > 0 such that 

�x(tj + t) − x(tj )� ≤ ε/2, t ∈ [0, τ ], j ∈ N. 

Choosing j0 ∈ N such that �x(tj ) − ζ� ≤ ε/2 for all j ≥ j0, it follows that 

x(t) ∈ Bε, t ∈ ∪j≥j0 
[tj , tj + τ ]. 

Combining this fact with (68) and (81), we conclude that 

(V x) ′ (t) ≤ −δ, a.a. t ∈ ∪j≥j0 
[tj , tj + τ ].◦

Integrating from tj to tj + τ , j ≥ j0, yields 

V (x(tj + τ)) ≤ V (x(tj )) − δτ, j ≥ j0, 

contradicting the convergence of V (x(t)) as t Consequently, (78) is true and thus, → ∞. 

limt→∞ c 
∗ x(t) = 0. Invoking (75), (76), the fact that T = ∞, and the Hurwitz property of 

Ã, we obtain that x(t) 0 as t → ∞, completing the proof of statement (ii). →

To prove statement (iii), assume that there exists r1 ∈ (0, r) such that (15) holds. Since 

rC(Ã; b, c) ≥ r, there exists κ > 0 such that rC(Ã + κI; b, c) > r1. Again, by [41] or [47, 

Theorem 23.3.1], there exists a matrix Pκ = P ∗ ≥ 0 solving the Riccati equation κ 

Pκ(Ã+ κI) + (Ã∗ + κI)Pκ + r1
2 cc ∗ + Pκbb 

∗ Pκ = 0, 

and hence 

PκÃ+ Ã∗ Pκ + r1
2 cc ∗ + Pκbb 

∗ Pκ = −2κPκ. (82) 

As an immediate consequence of (82) we have that kerPκ ker c ∗ . Defining V and Vd as ⊂

before, but with Pκ replacing P , and invoking (82), we have 

w + b ∗ Pκξ
2 2 ∗ ξ 2 2 ˜ C

nVd(ξ) = {−| | − r1|c | + |w| − 2κV (ξ) : w ∈ Φ(c ∗ ξ)}, ξ ∈ . 
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Since 

w r1 c , w ∈ Φ(c ξ ∈ , (83) | | ≤ | ∗ ξ| ˜ ∗ ξ), C
n 

we conclude that 

max Vd(ξ) ≤ −2κV (ξ), ξ ∈ C
n . 

Consequently, by (68) with T = ∞, 

(V ◦ x) ′ (t) ≤ −2κ(V ◦ x)(t), a.a. t ≥ 0, 

and thus, 

V (x(t)) ≤ e −2κtV (x 0), t ≥ 0. 

An argument similar to that used to obtain (73) shows that there exists a constant gκ > 0, 

depending only on (A, b, c), z, r, and r1, such that 

|c ∗ x(t)| ≤ gκe 
−κt �x 0 �, t ≥ 0. (84) 

As above, Filippov’s selection theorem guarantees the existence of a measurable function u : 

R R such u(t) ∈ −˜ x(t))→ Φ(c ∗ for a.a. t ≥ 0 and 

˜ ẋ(t) = Ax(t) + bu(t), a.a. t ≥ 0. (85) 

By (83) and (84), 

|u(t)| ≤ r1gκe 
−κt �x 0 �, a.a. t ≥ 0. (86) 

Since Ã is Hurwitz, the conjunction of (85) and (86) imply the existence of constants g > 0 and 

ε > 0 such that 

�x(t)� ≤ ge −εt �x 0 �, t ≥ 0. 

Hence statement (iii) holds. � 
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Proof of Lemma 6. We proceed in two steps. 

Step 1. In this step, we first prove the assertion in the specific case of z = r. The more 

general case z ∈ C is treated in Step 2. If z = r, then κ = 0 and Hκ = H0 = H. Furthermore, 

note that D(r, r) ⊂ S(H) if and only if −1/H(s) �∈ D(r, r) for all s ∈ C+. Now, for every 

s ∈ C, the condition −1/H(s) �∈ D(r, r) is equivalent to |1 + rH(s)|2 ≥ r2|H(s)|2, which, in 

turn, is equivalent to 1 + 2rReH(s) ≥ 0. Hence D(r, r) ⊂ S(H) is equivalent to the positive 

realness of 1 + 2rH. 

Step 2. Let z ∈ C and note that 

S(Hκ) = S(H) − κ. 

Therefore, since D(z, r) ⊂ S(H) is equivalent to D(r, r) = D(z, r) − κ ⊂ S(H) − κ, it follows 

that D(z, r) ⊂ S(H) if and only if D(r, r) ⊂ S(Hκ). By Step 1, the last inclusion is equivalent 

to the positive realness of 1 + 2rHκ, completing the proof. � 

Proof of Lemma 10. The positive realness of (1 + βG)(1 + αG)−1 is equivalent to the 

positive realness of 1 + (β − α)G(1 + αG)−1, which in turn, by Lemma 6, is equivalent to 

D(z, r) ⊂ S(G), (87) 

where r := (β − α)/2, z := (α + β)/2, and S(G) := {k ∈ C : G(1 + kG)−1 ∈ H∞}. 

To prove statement (i), assume that αβ > 0 and note that in this case the function 

s �→ −1/s maps D(z, r) onto D(α, β). It now follows from the Nyquist criterion that (87) is 

equivalent to the statement that the Nyquist diagram of G does not intersect the disc D(α, β) 

and encircles it p times in the counterclockwise sense. 
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To prove statement (ii), assume that αβ < 0 and note that, in this case, 0 ∈ D(z, r) and 

the function s �→ −1/s maps D(z, r) onto (C \D(α, β)) ∪ {∞}. Consequently, if (87) holds, 

then G ∈ H∞ and 

G(iω) ∈ D(α, β), ω ∈ R. (88) 

Conversely, if G ∈ H∞ and (88) is satisfied, then it follows from the Nyquist criterion that (87) 

holds. � 

Proof of Corollary 12. By statement (iii) of Corollary 9, it suffices to show that strict 

positive realness of (1 + βG)(1 + αG)−1 implies positive realness of (1 + (β + δ)G)(1 + (α − 

δ)G)−1 for all sufficiently small δ > 0. Recalling that Gα := G(1 + αG)−1 and noting that 

(1 + βG)(1 + αG)−1 = 1 + (β − α)Gα, it follows from strict positive realness that there exists 

η > 0 such that 

1 + (β − α)ReGα(s − η) ≥ 0, s ∈ C+. (89) 

We claim that 

1 + (β − α) inf ReGα(s) > 0. (90) 
s∈C+ 

Seeking a contradiction, suppose that (90) is not true. Then, since Gα is strictly proper, there 

exists s0 ∈ C+ such that 1 + (β − α)ReGα(s0) = 0. By (89), Gα is analytic in the half plane 

Re s > η, and, consequently, 1 + (β − α)ReGα is harmonic in the half plane Re s > η. The 

minimum principle for harmonic functions shows that 1 + (β − α)ReGα(s) = 0 for all s with 

Re s > η. On the other hand, by strict properness of Gα, 

lim 1 + (β − α)ReGα(s) = 1, 
|s|→∞ 
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yielding the desired contradiction. Therefore, (90) holds. Since 

lim = 0, 
δ↓0 

�Gα−δ − Gα�H∞ 

we conclude from (90) that, for all sufficiently small δ > 0, 

1 + β + δ − (α − δ) ReGα−δ(s) ≥ 0, s ∈ C+. 

Therefore, 

1 + (β + δ)G ( ) 

1 + (α − δ)G 
= 1 + β + δ − (α − δ) Gα−δ 

is positive real for all sufficiently small δ > 0. � 

Proof of Theorem 13. Let x0 ∈ Rn and x ∈ X (x0). Defining Ã := A−αbc∗ and Φ̃ ∈ UR 

by ˜ := Φ(v) − αv, it follows that x is also a maximal solution of Φ(v)

˙ ˜ Φ(c ∗ x(t)) , x(0) = x 0 .x(t) −Ax(t) ∈ −b˜

Note that ( ˜ is a controllable and detectable realization of G(1 + αG)−1 A variant of A, b, c) . 

the positive-real lemma, see [48, Problem 5.2.2], guarantees the existence of a real matrix P = 

P ∗ ≥ 0 such that 

PÃ+ Ã∗ P ≤ 0, Pb = c. (91) 

For all ξ ∈ R
n, define V (ξ) := �ξ, P ξ� and 

Vd(ξ) := {2� ˜ Φ(cAξ − bw, P ξ� : w ∈ ˜ ∗ ξ)}. 

Then we have 

(V x) ′ (t) ∈ Vd(x(t)), a.a. t ∈ [0, T ), (92) ◦

where [0, T ) is the maximal interval of existence of x. The second identity in (91) yields 

Vd(ξ) {2�P ˜ w ∈ ˜ ∗ ξ)}, ξ ∈= Aξ, ξ� − 2w(c ∗ ξ) : Φ(c R
n . (93) 
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Assume that (28) holds. Then 

˜ R
n0 ≤ w(c ∗ ξ), w ∈ Φ(c ∗ ξ), ξ ∈ . (94) 

Combining this inequality with (93) and with the fact that, by (91), �P ˜ ,Aξ, ξ� ≤ 0 for all ξ ∈ R
n 

it follows that 

˜ R
n maxVd(ξ) ≤ −2 min{w(c ∗ ξ) : w ∈ Φ(c ∗ ξ)} ≤ 0, ξ ∈ . (95) 

Consequently, by (92), 

(V x) ′ (t) ≤ 0, a.a. t ∈ [0, T ). (96) ◦

Let Π be the orthogonal projection of Rn onto (kerP )⊥ and define the function x⊥ by 

setting x⊥(t) = Πx(t) for all t ∈ [0, T ). As in the proof of Theorem 5, it can be shown that 

there exists g0 > 0, depending only on P and c, such that 

∗ 0 �c x(t)� ≤ g0�x �, t ∈ [0, T ). (97) 

Let η > 0 and note that positive realness of G(1 + αG)−1 implies that G(1 + (α + 

η)G)−1 ∈ H∞. Consequently, Â := A − (α + η)bc∗ is Hurwitz. Defining Φ̂ ∈ UR by ˆ := Φ(v)

Φ(v) − (α + η)v, it follows that x is also a maximal solution of 

ẋ(t) − ˆ Φ(c ∗ x(t)) , x(0) = x 0 . (98) Ax(t) ∈ −bˆ

Furthermore, an application of Filippov’s selection theorem shows that there exists a measurable 

function u : [0, T ) R such that u(t) ∈ −ˆ x(t))→ Φ(c ∗ for a.a. t ∈ [0, T ) and 

ˆẋ(t) = Ax(t) + bu(t), a.a. t ∈ [0, T ). (99) 
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Define a nondecreasing function γ0 : [0, ∞) [0, ∞) by γ0(s) := max{ Φ(v) : v s}. Then → |ˆ | | | ≤

the function γ1 : [0, ∞) [0, ∞) defined by →

1 
∫ 2s 

γ1(0) = 0, γ1(s) = γ0(σ)dσ, s > 0, 
s s 

is in K∞ and satisfies γ0(s) ≤ γ1(s) for all s ≥ 0. It follows that 

|u(t)| ≤ γ1(|c ∗ x(t)|), a.a. t ∈ [0, T ), (100) 

which, combined with (97), yields 

|u(t)| ≤ γ1(g0�x 0 �), a.a. t ∈ [0, T ). (101) 

Since Â is Hurwitz, an application of the variation-of-parameters formula to (99) shows 

that there exist positive constants g1 and g2, depending only on Â and b, such that 

�x(t)� ≤ g1�x 0 � + g2�u�L∞(0,T ), t ∈ [0, T ) . 

It follows that x is bounded and thus, by Lemma 1, T = ∞, that is, the solution x is global. 

Moreover, using (101) and defining γ ∈ K∞ by γ(s) := g1s + g2γ1(g0s), we obtain 

�x(t)� ≤ γ(�x 0 �), t ≥ 0, 

completing the proof of stability in the large. 

If (A, b, c) is observable, then the positive-real lemma guarantees the existence of a 

positive-definite solution P = P ∗ > 0 of (91). Consequently, (96) leads to 

�x(t)� ≤ �P ��P −1��x 0 �, t ∈ [0, T ) , 

which, together with Lemma 1, implies that T = ∞. Hence the above inequality is valid for 

T = ∞, showing that (9) holds with γ(s) = gs, where g := �P ��P −1�. 
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Finally, the proof of statement (ii) is similar to the proof of statement (ii) of Theorem 

5. � 

Proof of Theorem 15. Let x0 ∈ Rn , ∆ ∈ DR, and x ∈ X (x0 , ∆). Let [0, T ) be the 

maximal interval of existence of x, where 0 < T ≤ ∞. An application of Filippov’s selection 

theorem shows that there exists a measurable function u : [0, T ) R such that u(t) ∈ ∆(t) −→

Φ(c ∗ x(t)) for a.a. t ∈ [0, T ) and 

ẋ(t) = Ax(t) + bu(t), a.a. t ∈ [0, T ). 

With k := (α + β)/2 and Ak := A − kbc∗, we have 

∫ t 
x(t) = e Akt x 0 + e Ak(t−τ )b 

( 
u(τ) + kc ∗ x(τ) 

) 
dτ, t ∈ [0, T ) . (102) 

0 

Since u(t) ∈ ∆(t) − Φ(c ∗ x(t)) for a.a. t ∈ [0, T ), there exist functions d, w : [0, T ) → Rm, not 

necessarily measurable, such that u(t) = d(t)−w(t), d(t) ∈ ∆(t) and w(t) ∈ Φ(c ∗ x(t)) for a.a. 

t ∈ [0, T ). By assumption, there exists δ > 0 such that (23) holds, and thus 

( )2 ( ) ( )2 ( )2∗ ∗ ∗ ∗ (α + δ − k) c x(τ) ≤ w(τ) c x(τ) − k c x(τ) ≤ (β − δ − k) c x(τ) , a.a. τ ∈ [0, T ). 

Since Φ(0) = {0}, it follows that 

|w(τ) − kc ∗ x(τ)| ≤ (l − δ)|c ∗ x(τ)|, a.a. τ ∈ [0, T ) , 

where l := (β − α)/2. Consequently, 

|u(τ) + kc ∗ x(τ)| ≤ |∆(τ)| + (l − δ)|c ∗ x(τ)|, a.a. τ ∈ [0, T ). (103) 

Using the estimate (103) in (102) leads to 

�x(t)� ≤ �e Akt x 0 � + �b� 
∫ t 

0 

�e Ak(t−τ )�|∆(τ)|dτ 

+ (l − δ)�b��c� 
∫ t 

0 

�e Ak(t−τ )��x(τ)�dτ, t ∈ [0, T ) . (104) 
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We now show that T = ∞. Seeking a contradiction, suppose that T < ∞. Then, by the 

inequality (104), there exists a constant a > 0 such that 

∫ t 
�x(t)� ≤ a 1 + 

0 

�x(τ)�dτ , t ∈ [0, T ) . 

By Gronwall’s lemma, it follows that the maximal solution x of (102) is bounded on [0, T ), 

which, in conjunction with Lemma 1, contradicts the supposition that T < ∞. Consequently, 

T = ∞. 

The positive-real assumption implies that 

1 �Gk�H∞ ≤
l
, (105) 

as is shown at the end of the proof. Since Gk H∞ and Gk(s) = G(I + kG(s))−1 =∈ 

c ∗(sI − Ak)
−1b, the stabilizability and detectability assumptions guarantee that Ak is Hurwitz. 

Let ε > 0 be sufficiently small so that Ak + εI is Hurwitz and 

g := sup Gk(s) < 1/(l − δ) . (106) 
Re s≥−ε 

| |

Set y := c ∗ x and, for all t ≥ 0, define yε(t) := eεty(t) and uε(t) := eεtu(t). It follows from 

(102) that 

∫ t 
yε(t) = c ∗ e(Ak+εI)t x 0 + c ∗ e(Ak+εI)(t−τ )b(uε(τ) + kyε(τ))dτ, t ≥ 0. 

0 

Setting k0 := 
(∫ 

0 

∞ �c ∗ e(Ak+εI)τ �2dτ 
)1/2 

< ∞ , we obtain 

�yε�L2[0,t] ≤ k0�x 0 � + g�uε + kyε�L2[0,t], t ≥ 0. (107) 

By (103), 

|uε(τ) + kyε(τ)| ≤ |∆ε(τ)| + (l − δ)|yε(τ)|, a.a. τ ≥ 0 , (108) 

52 



( ) 

where ∆ε(τ) := eετ ∆(τ) for all τ ≥ 0. From (106), we see that g(l − δ) < 1. Hence, setting 

k1 := 1/(1 − g(l − δ)) and invoking (107) and (108), we have 

�yε�L2[0,t] ≤ k1 k0�x 0 � + g�∆ε�L2[0,t] , t ≥ 0. (109) 

By (102), 

∫ t 
e εt x(t) = e(Ak+εI)t x 0 + e(Ak+εI)(t−τ )b(uε(τ) + kyε(τ)))dτ, t ≥ 0, 

0 

which, together with (108), yields 

∫ t 
�x(t)�e εt ≤ k2�x 0 � + �b� 

0 

�e(Ak+εI)(t−τ )� 
( 
|∆ε(τ)| + (l − δ)|yε(τ)| 

) 
dτ, t ≥ 0, (110) 

where k2 := supt≥0 �e(Ak+εI)t�. Invoking Hölder’s inequality to estimate the integral on the 

right-hand side of (110), we conclude that there exists a constant k3 > 0 such that 

�x(t)�e εt ≤ k2�x 0 � + k3(�∆ε�L2[0,t] + (l − δ)�yε�L2[0,t]), t ≥ 0. (111) 

Combining (109) with (111), we conclude that there exist constants k4 and k5 such that 

�x(t)�e εt ≤ k4�x 0 � + k5�∆ε�L2[0,t], t ≥ 0 . 

Finally, noting that �∆ε�L2[0,t] ≤ (eεt/
√

2ε)�∆�L∞[0,t] for all t ≥ 0, we conclude that there exist 

constants g1 ≥ 1 and g2 > 0 such that 

�x(t)� ≤ g1e 
−εt �x 0 � + g2�∆�L∞[0,t], t ≥ 0, 

which is (33). 

It remains to be shown that (105) holds. To this end note that, by positive realness of 

the transfer function (1 + βG)(1 + αG)−1 , 

1 + βG(s) 1 + βG(s)
0 ≤

1 + αG(s)
+

1 + αG(s) 
, s ∈ C+. 
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Multiplying by |1 + αG(s)|2/2 and rearranging, we obtain 

αβ 2 
( ) αβ 2 −

2 
|G(s)| ≤ 1 + k G(s) + G(s) +

2 
|G(s)| , s ∈ C+. 

Adding (α2 + β2)|G(s)|2/4 to both sides shows that 

l2 |G(s)| 2 ≤ 
( 
1 + kG(s) 

)( 
1 + kG(s) 

) 
, s ∈ C+. 

Consequently, 
∣ ∣2 
∣ G(s) ∣ 1 
∣ ∣ , C+, 
∣1 + kG(s) ∣ 

≤
l2 

s ∈

from which (105) follows. � 

Proof of Corollary 16. First, it follows from the upper semicontinuity of the set-valued 

nonlinearity Φ together with the compactness of its values and the compactness of K that θ 

is finite. Let x0 ∈ R
n , ∆ ∈ DR, and x ∈ X (x0 , ∆). Let [0, T ), 0 < T ≤ ∞, be the maximal 

interval of existence of x and write y := c ∗ x. Define z ∈ L1 
loc([0, T ), Rn) by z := ẋ−Ax. Since 

z(t) ∈ b ∆(t) − Φ(y(t)) for almost every t ∈ [0, T ), there exist functions d, w : [0, T ) R→ 

such that 

(d(t), w(t)) ∈ ∆(t) × Φ(y(t)), t ∈ [0, T ), 

and z(t) = b 
( 
d(t) − w(t) 

) 
for a.a. t ∈ [0, T ). Define a set-valued function Φ̃ ∈ UR by setting 

˜ Φ(0) {0} and Φ(v) := Iv for all v ∈ R. Then ˜ = 

(α + δ)v 2 Φ(v)v ≤ (β − δ)v , R.≤ ˜ 2 v ∈

For each t ∈ [0, T ), let w(t) ∈ ˜ Φ(y(t)) ˜ Φ(y(t)) be the unique point of the compact interval ˜

closest to w(t) ∈ Φ(y(t)). Then 
 
 
 
 dist(w(t), Iy(t)), if y(t) ∈ K, 

|w(t) − w̃(t)| = 
 
 
 0, if y(t) ∈ R\K , 
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so that |w(t) − w̃(t)| ≤ θ for all t ∈ [0, T ). 

Define ∆̃ ∈ DR by ˜ := ∆(t) + [−θ, θ] d : [0, T ) → R by d̃(t) := d(t) − w(t) + ∆(t) and ˜

w̃(t). Then, for a.a. t ∈ [0, T ), 

z(t) = d(t) − ˜ d̃(t) ∈ ∆(t), w(t) ∈ ˜b( ˜ w(t)), ˜ ˜ Φ(y(t)), 

and thus the solution x of (3) is also a solution of 

˜ ˜ ∗ 0 ẋ(t) − Ax(t) ∈ b ∆(t) − Φ(c x(t)) , x(0) = x . (112) 

Applying Theorem 15 to (112) completes the proof. � 

Proof of Theorem 17. By Lemma 18, there exist α1, α2, α3, α4 ∈ K∞ and a continuously 

differentiable function V : Rn → [0, ∞) such that (39) and (40) hold. Let x0 ∈ Rn and ∆ ∈ DR 

be arbitrary. By Lemma 1, (3) has a solution and every solution can be maximally extended. 

Let x : [0, T ) Rn be a maximal solution of (3). By (40), we have →

( ) ′ 
V ◦ x (t) ≤ −α3(�x(t)�) + α4(|∆(t)|), a.a. t ∈ [0, T ). (113) 

We first show that T = ∞. Seeking a contradiction, suppose T < ∞. Then, by local essential 

boundedness of ∆ and continuity of α4, there exists c0 > 0 such that α4(|∆(t)|) ≤ c0 for all 

t ∈ [0, T ). By the final assertion of Lemma 1, x is unbounded, contradicting the fact that, by 

(113), α1(�x(t)�) ≤ V (x(t)) ≤ V (x0)+c0T for all t ∈ [0, T ). Therefore, every maximal solution 

of (3) is global. 

Write α5 := α3 α2 
−1 ∈ K∞ and let α6 : [0, ∞) [0, ∞) be a locally Lipschitz function ◦ →

such that α6 ≤ α5(s) for all s ≥ 0 and α6(s) > 0 for all s > 0. The existence of such a function 

α6, which is intuitively reasonable, is established at the end of this proof. Define the locally 
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Lipschitz function 
 
 
 
 −α6(ζ)/2, ζ ≥ 0, 

Z : R R, := → ζ �→ Z(ζ)
 
 
 0, ζ < 0, 

consider the scalar system 

ż(t) = Z(z(t)), 

and let γ : R R denote the corresponding flow. Observe that 0 is an equilibrium of his × R →

system and Z(s)s < 0 for all s > 0. It follows that the restriction γ0 of γ to [0, ∞)× [0, ∞) is 

in KL. Now define γ1 ∈ KL and γ2 ∈ K∞ by 

γ1(t, s) := α1 
−1(γ0(t, α2(s))), γ2(s) := 

( 
α1 
−1 α2 α3 

−1
) 
(2α4(s)).◦ ◦

For simplicity of notation, write k(t) := α4 �∆�L∞[0,t] , where t ≥ 0, and define the sets 

{ ( )( )} 
T1 := t ≥ 0: V (x(t)) ≤ α2 α−1 2k(t) ,◦ 3 

T2 := [0, ∞)\T1 = 
{ 
t ≥ 0: V (x(t)) > 

( 
α2 α3 

−1
)( 

2k(t) 
)} 
.◦

Observe that 

�x(t)� ≤ γ2(�∆�L∞[0,t]), t ∈ T1, (114) 

and, moreover, 

α3(�x(t)�) > 2k(t), t ∈ T2. 

Invoking (40), we obtain 

(V x) ′ (t) ≤ −α3(�x(t)�) + k(t), a.a. t ≥ 0.◦

Combining the last two inequalities gives 

(V ◦ x) ′ (t) ≤ − α3(�x
2

(t)�) 
, a.a. t ∈ T2. 
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By (39), α3(�x(t)�) ≥ α5(V (x(t)), whence α3(�x(t)�) ≥ α6 V (x(t)) = −2Z V (x(t)) and 

thus 

(V x) ′ (t) ≤ Z 
( 
(V x)(t) 

) 
< 0, a.a. t ∈ T2. (115) ◦ ◦

We claim that, if t ∈ T2, then [0, t] ⊂ T2. Let t ∈ T2. Since k is nondecreasing, it follows 

from the definition of T2, that, to establish the claim, it is sufficient to prove that 

V (x(s)) ≥ V (x(t)) , s ∈ [0, t]. (116) 

Let τ ∈ (0, t] be such that V (x(τ)) ≥ V (x(t)). Then τ ∈ T2 and, appealing to the continuity 

of V x and the fact that k is nondecreasing, we can conclude that there exists σ ∈ [0, τ) such ◦

that [σ, τ ] ⊂ T2. Therefore, by (115), (V ◦ x) ′ < 0 almost everywhere on [σ, τ ], which shows 

V (x(s)) > V (x(τ)) ≥ V (x(t)) for all s ∈ [σ, τ). Consequently, (116) holds, and thus [0, t] ⊂ T2. 

Let t ∈ T2. Then, [0, t] ⊂ T2, and hence, by (115), 

(V x) ′ (s) ≤ Z 
( 
(V x)(s) 

) 
, a.a. s ∈ [0, t].◦ ◦

Therefore, (V ◦ x)(t) ≤ γ0(t, V (x0)), and, since t ∈ T2 is arbitrary, 

V (x(t)) ≤ γ0(t, V (x 0)) ≤ γ0(t, α2(�x 0 �)), t ∈ T2. 

Invoking (39), we conclude that 

�x(t)� ≤ γ1(t, �x 0 �), t ∈ T2, 

which, in conjunction with (114), yields 

�x(t)� ≤ max{γ1(t, �x 0 �), γ2(�∆�L∞[0,t])}, t ≥ 0, 

completing the proof of (i). 
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Now assume that (H1) holds. Then, by Lemma 18, the functions α1, α2, α3, α4, and V 

depend on (A, b, c), ϕ, β, and δ, but not on Φ. Therefore, the functions γ1 and γ2, constructed 

in the above argument, also depend only on (A, b, c), ϕ, β, and δ, but not on Φ. 

Finally, it remains to show that there exists a locally Lipschitz function α6 : [0, ∞) → 

[0, ∞) such that α6(s) ≤ α5(s) for all s ≥ 0 and α6(s) > 0 for all s > 0. Define α6 : [0, ∞) → 

[0, ∞) by α6(0) := 0 and 

2β(s) 
∫ s 

α6(s) := α5(t)dt, s > 0. 
s s/2 

where β : [0, ∞) [0, 1] is given by β(s) = s(2 − s) for s ∈ [0, 1] and β(s) = 1 for s > 1.→ 

Then α6(s) ≤ α5(s) for all s ≥ 0 and α6(s) > 0 for all s > 0. Moreover, α6 is continuously 

differentiable and hence locally Lipschitz. � 

Proof of Lemma 18. For brevity, we present the argument only in the case for which 

hypothesis (H1) holds. The case in which (H2) holds is structurally similar and we refer the 

reader to the proof of [19, Lemma 5.1] for full details. 

Let (A, b, c) ∈ R
n×n ×R

n ×R
n be controllable and observable, let Φ ∈ UR, and assume 

that (H1) holds. Then, 1 +βG is positive real and thus, by the positive-real lemma, there exists 

l ∈ Rn and a symmetric, positive-definite P ∈ Rn×n such that 

PA + A ∗ P = −ll ∗ , Pb = c − 2/β l . (117) 
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Define V0 : Rn → [0, ∞), ξ �→ �ξ, P ξ�. Then, for ξ ∈ R
n and (d, w) ∈ R × Φ(c ∗ξ), 

�∇V0(ξ), Aξ + b(d − w)� = �ξ, (PA + A ∗ P )ξ� + 2�ξ, P b(d − w)� 

= − 
( 
l ∗ ξ 
)2 

+ 2 
( 
c ∗ ξ 
) 
(d − w) − 2 2/β 

( 
l ∗ ξ 
) 
(d − w) 

= − l ∗ ξ + 2/β (d − w) 
)2 

+ (2/β)(d − w)2 + 2 c ∗ ξ (d − w) 

≤ 2d2/β + (4/β)|d||w|+ 2w 2/β + 2|c ∗ ξ||d| − 2 
( 
c ∗ ξ 
) 
w. (118) 

Note that, by (37) and the fact that Φ(0) = {0}, 

|w| ≤ (β − δ)|c ∗ ξ|, w 2 ≤ (β − δ) 
( 
c ∗ ξ 
) 
w, ξ ∈ R

n , w ∈ Φ(c ∗ ξ), 

which, when combined with (118), gives 

�∇V0(ξ),Aξ + b(d − w)� ≤ 2d2/β + 
( 
2 + 4(β − δ)/β 

) 
|d||c ∗ ξ| − (2δ/β) 

( 
c ∗ ξ 
) 
w 

= 2d2/β + 2(3 − 2k0)|d||c ∗ ξ| − 2k0 

( 
c ∗ ξ 
) 
w, ξ ∈ R

n , (d, w) ∈ R × Φ(c ∗ ξ), (119) 

wherein, for notational convenience, we have set k0 := δ/β. 

For ξ ∈ Rn and d ∈ R, we consider two exhaustive cases. 

Case 1. If 2(3 − 2k0)|d| ≤ k0ϕ(|c ∗ξ|), then 

2(3 − 2k0)|d||c ∗ ξ| ≤ k0ϕ(|c ∗ ξ|)|c ∗ ξ| ≤ k0 

( 
c ∗ ξ 
) 
w, w ∈ Φ(c ∗ ξ). 

Case 2. If 2(3 − 2k0)|d| > k0ϕ(|c ∗ξ|), then ϕ−1 2(3 − 2k0)|d|/k0 > |c ∗ξ|, and thus 

2(3 − 2k0)|d||c ∗ ξ| < 2(3 − 2k0)|d|ϕ−1
( 
2(3 − 2k0)|d|/k0 

) 
= γ(|d|), 

where the function γ ∈ K∞ is defined by 

γ(s) := 2(3 − 2k0)sϕ
−1
( 
2(3 − 2k0)s/k0 

) 
, s ≥ 0. 
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Therefore, we conclude that 

2(3 − 2k0)|d||c ∗ ξ| ≤ k0 

( 
c ∗ ξ 
) 
w + γ(|d|), ξ ∈ R

n , (d, w) ∈ R × Φ(c ∗ ξ), 

which, together with (119), yields 

�∇V0(ξ), Aξ + b(d − w)� ≤ −k0(c 
∗ ξ)w + γ(|d|) + 2d2/β, 

ξ ∈ R
n , (d, w) ∈ R × Φ(c ∗ ξ). (120) 

Next, by observability, there exists h ∈ R
n such that A − hc∗ is Hurwitz. Let Q ∈ R

n×n 

be a symmetric, positive-definite matrix such that 

Q(A − hc ∗ ) + (A − hc ∗ ) ∗ Q = −3I, 

and define W : Rn [0, ∞) by W (ξ) := �ξ, Qξ�. Then, we have →

�∇W (ξ), Aξ + b(d − w)� ≤ −2�ξ� 2 + k1�ξ� 
( 
|c ∗ ξ| + |w| 

) 
+ k1d

2 , 

ξ ∈ R
n , (d, w) ∈ R × Φ(c ∗ ξ), (121) 

with k1 := max 2�Qb�, 2�Qh�, �Qb�2 . 

For notational convenience, define f0 : [0, ∞) [0, ∞) by f0(s) = (1 + β − δ)s and → 

define the continuous, nondecreasing function f1 : (0, 1] (0, ∞) by →

tϕ(t)
f1(s) := min . 

t∈[s,1] (f0(t))2 

Moreover, define f2 : [0, ∞) [0, ∞) by →
 
 
 0, s = 0,
 
 
 
 

f2(s) := min{s, f1(s)}, s ∈ (0, 1], 
 
 
 
 
 
 f1(1) + s − 1, s > 1. 

60 



√ 

√ 

It can be verified that f2 is continuous, nondecreasing, and unbounded. Writing f3 := f2 ◦ f0 
−1 , 

we see that f3 is continuous, nondecreasing, and unbounded, with f3(0) = 0 and, for later use, 

we record that 

f3((1 + β − δ)|v|)((1 + β − δ)|v|)2 = (f3 ◦ f0)(|v|) 
( 
f0(|v|) 

)2 

= f2(|v|) 
( 
f0(|v|) 

)2 ≤ f1(|v|) 
( 
f0(|v|) 

)2 ≤ |v|ϕ(|v|), |v| ≤ 1. (122) 

Next, define η ∈ K∞ by 

1 s 
η(s) := 

k1 �Q� , s ≥ 0, 

and define the continuous, nondecreasing, and unbounded function σ := f3 η. Let s ∗ be ◦

the unique point in (0, ∞) with the property η(s ∗)σ(s ∗) = 1. Define the continuous function 

ρ : [0, ∞) [0, ∞) and the continuously differentiable function V1 : Rn [0, ∞) by → →
 
 
 ∗ 
 σ(s), 0 ≤ s ≤ s , 

ρ(s) := 
 
 
 1/η(s), s > s ∗ , 

and 

∫ W (ξ) 

V1(ξ) := ρ(s) ds , 
0 

respectively. Note that 

ρ(s) ≤ σ(s ∗ ) = 1/η(s ∗ ) =: k2, s ≥ 0 , (123) 

ρ(W (ξ))�ξ� ≤ k1 �Q��Q−1� =: k3, ξ ∈ R
n , (124) 

ρ(W (ξ))�ξ� 2 ≥ �ξ�min 
{ 
�ξ�f3 

( 
�ξ�/k3) 

) 
, k1 

} 
, ξ ∈ R

n . (125) 
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Equation (123) is an immediate consequence of the definition of ρ. To confirm that (124) and 

(125) hold, we introduce the sets 

S1 := {ξ ∈ R
n : W (ξ) > s ∗ }, 

S2 := Rn \S1 = {ξ ∈ R
n : W (ξ) ≤ s ∗ }. 

Then we have 

ρ(W (ξ))�ξ� = 
�ξ� 

= 
�ξ
√

�k1 �Q� 
ξ ∈ S1,

η(W (ξ)) �ξ, Qξ�
≤ k3, 

and 

ρ(W (ξ))�ξ� ≤ �
η

Q

(s 

−

∗

1

) 

�s ∗ 
= k3, ξ ∈ S2, 

and thus (124) holds. To see that (125) also holds, simply note that 

1 k1 k1
ρ(W (ξ)) = = √ 

�Q� 
, ξ ∈ S1

η(W (ξ)) �ξ, Qξ�
≥ �ξ� 

and 

W (ξ) ( ) 
ρ(W (ξ)) = σ(W (ξ)) = f3 √ ≥ f3 �ξ�/k3 , ξ ∈ S2. 

k1 �Q� 

The conjunction of (121) and (123) now gives 

�∇V1(ξ), Aξ + b(d − w)� ≤ −2ρ(W (ξ))�ξ� 2 + k1ρ(W (ξ))�ξ� 
( 
|c ∗ ξ| + |w| 

) 
+ k1k2d

2 , 

ξ ∈ R
n , (d, w) ∈ R × Φ(c ∗ ξ). (126) 

We proceed to obtain a convenient estimate of the term k1ρ(W (ξ))�ξ� |c ∗ξ| + |w| . 

Observing that 

vw = |v||w| ≥ |w|, w ∈ Φ(v), |v| ≥ 1, 
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writing k4 := min{1, ϕ(1)}/2, and invoking (37), we can conclude that 

2vw ≥ |v|ϕ(|v|) + |w| ≥ |v|ϕ(1) + |w| ≥ 2k4 |v| + |w| , w ∈ Φ(v), |v| ≥ 1, 

which, together with (124), gives 

ρ(W (ξ))�ξ� 
( 
|c ∗ ξ| + |w| 

) 
≤ k
k

3

4 

(c ∗ ξ)w, w ∈ Φ(c ∗ ξ), |c ∗ ξ| ≥ 1. (127) 

Moreover, by (37) and (122), 

( )2 ( )2 
f3(|v| + |Φ(v)|) |v| + |Φ(v)| ≤ f3(|v| + ψ(|v|)) |v| + ψ(|v|) ≤ |v|ϕ(|v|), |v| < 1. 

Note that, if w ∈ Φ(c ∗ξ) and k1(|c ∗ξ| + |w|) ≥ �ξ�, then 

ρ(W (ξ)) ≤ σ(W (ξ)) ≤ σ(�Q��ξ� 2) ≤ σ 
( 
k1

2 �Q�(|c ∗ ξ| + |w|)2
) 

= f3(|c ∗ ξ| + |w|). 

Therefore, if w ∈ Φ(c ∗ξ), k1(|c ∗ξ| + |w|) ≥ �ξ� and |c ∗ξ| < 1, then 

k1ρ(W (ξ))�ξ� 
( 
|c ∗ ξ| + |w| 

) 
≤ ρ(W (ξ))�ξ� 2 + 

k

4 
1
2 

ρ(W (ξ)) 
( 
|c ∗ ξ| + |w| 

)2 

k2 

≤ ρ(W (ξ))�ξ� 2 + 1 (c ∗ ξ)w. 
4 

On the other hand, if w ∈ Φ(c ∗ξ), k1(|c ∗ξ| + |w|) ≤ �ξ� and |c ∗ξ| < 1, then 

k1ρ(W (ξ))�ξ� 
( 
�c ∗ ξ| + |w| 

) 
≤ ρ(W (ξ))�ξ� 2 . 

Using the fact that (c ∗ξ)w ≥ 0 for all w ∈ Φ(c ∗ξ) and all ξ ∈ R
n, it follows that 

k2 

k1ρ(W (ξ))�ξ� 
( 
|c ∗ ξ| + |w| 

) 
≤ ρ(W (ξ))�ξ� 2 +

4 
1 (c ∗ ξ)w, w ∈ Φ(c ∗ ξ), |c ∗ ξ| < 1. (128) 

Writing k5 := max{k1k3/k4 , k
2/4}, the conjunction of (127) and (128) gives 1

k1ρ W (ξ) �ξ� |c ∗ ξ| + |w| ≤ ρ W (ξ) �ξ� 2 + k5 c 
∗ ξ w, ξ ∈ R

n , w ∈ Φ(c ∗ ξ). 
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The latter, together with (126), implies 

�∇V1(ξ), Aξ + b(d − w)� ≤ −ρ(W (ξ))�ξ� 2 + k5(c 
∗ ξ)w + k1k2d

2 , 

ξ ∈ R
n , (d, w) ∈ R × Φ(c ∗ ξ). (129) 

Now define V := k5V0 + k0V1. Then, by (120) and (129), 

�∇V (ξ), Aξ + b(d − w)� ≤ −k0ρ(W (ξ))�ξ� 2 + 
( 
k0k1k2 + 2k5/β 

) 
d2 + k5γ(|d|), 

ξ ∈ R
n , (d, w) ∈ R × Φ(c ∗ ξ). (130) 

Finally, defining α1, α2, α3, α4 ∈ K∞ by 

α1(s) := k5s
2/�P −1�, α2(s) := k5�P �s2 + k0 

∫ ‖Q‖s2 

0 

ρ(τ) dτ, 

α3(s) := k0 s min{sf3(s/k3), k1}, α4(s) := 
( 
k0k1k2 + 2k5/β 

) 
s2 + k5γ(s), 

we have 

α1(�ξ�) = k5�P −1 � −1 �ξ� 2 

≤ k5�ξ, P ξ� 

= k5V0(ξ) 

≤ V (ξ) 

≤ k5�P ��ξ� 2 + k0 

∫ ‖Q‖‖ξ‖2 

0 

ρ(τ) dτ 

= α2(�ξ�), ξ ∈ R
n 

and, invoking (125) and (130), 

�∇V (ξ), Aξ + b(d − w)� ≤ −α3(�ξ�) + α4(|d|), (ξ, d) ∈ R
n × R. 

� 
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Proof of Lemma 23. The sector condition (48) implies 

(α + δ)(v + r)2 − f(v + r)r ≤ f(v + r)v ≤ (β − δ)(v + r)2 − f(v + r)r, (r, v) ∈ R
2 . 

Setting κ := max{|α + δ|, |β − δ|} and again invoking (48) shows that 

|f(v + r)r| ≤ κ(|vr| + r 2), (r, v) ∈ R
2 . (131) 

Therefore, 

(α + δ)v 2 − 3κ(|vr| + r 2) ≤ f(v + r)v ≤ (β − δ)v 2 + 3κ(|vr| + r 2), (r, v) ∈ R
2 . 

Defining λ1 := max{1, 12κ/δ}, it follows that 

κ(|v|̺1 + ̺ 2
1) ≤ δv2/6, v ∈ R\[−λ1̺1, λ1̺1], 

and thus, 

(α + δ/2)v 2 ≤ f(v + r)v ≤ (β − δ/2)v 2 , r ∈ [−̺1, ̺1], v ∈ R\[−λ1̺1, λ1̺1]. 

Consequently, 

α + δ/2 − ̺2/|v| v 2 ≤ F̺(v)v ≤ β − δ/2 + ̺2/|v| v 2 , v ∈ R\[−λ1̺1, λ1̺1]. 

Setting λ2 := 4/δ and noting that ̺2/|v| ≤ δ/4 for all v ∈ R\[−λ2̺2, λ2̺2], we obtain 

(α + δ/4)v 2 ≤ F̺(v)v ≤ (β − δ/4)v 2 , v ∈ R\[−λ�̺�, λ�̺�], 

where λ := max{λ1, λ2}. Therefore, we can apply Corollary 16, with Φ = F̺ and K = 

[−λ�̺�, λ�̺�], to conclude that there exist constants k1 > 0, k2 > 0, and ε > 0, depending 

only on (A, b, c), α, β, and δ, such that, for each ̺ ∈ [0, ∞) × [0, ∞), each x0 ∈ Rn, and each 

d ∈ L∞ [0, ∞), every maximal solution x of loc

ẋ(t) − Ax(t) − bd(t) ∈ −bF̺(c ∗ x(t)), x(0) = x 0 (132) 
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is global and 

�x(t)� ≤ k1e 
−εt �x 0 � + k2(�d�L∞[0,t] + θ̺), t ≥ 0, (133) 

where 

θ̺ := sup sup dist(w, Iv), 
|v|≤λ‖̺‖ w∈F̺(v) 

with 
 
 
 
 [(α + δ/4)v, (β − δ/4)v], v ≥ 0, 

Iv := 
 
 
 [(β − δ/4)v, (α + δ/4)v], v < 0. 

From (131), it follows that 

|f(v + r)| ≤ κ(λ�̺� + �̺�) ≤ 2κλ�̺�, v ∈ [−λ�̺�, λ�̺�], r ∈ [−̺1, ̺1], 

and thus, 

|F̺(v)| ≤ (2κλ + 1)�̺�, v ∈ [−λ�̺�, λ�̺�]. (134) 

Setting 

k3 := max 2κλ + 1 , λ|α + δ/4| , λ|β − δ/4| , 

we have that, for all v ∈ [−λ�̺�, λ�̺�], 

F̺(v) ⊂ [−k3�̺�, k3�̺�], Iv ⊂ [−k3�̺�, k3�̺�]. 

Consequently, θ̺ ≤ 2k3�̺�. Setting g1 := k1 and g2 := 2k2k3, and invoking (133), it follows 

that every maximal solution x of (132) is global and 

�x(t)� ≤ g1e 
−εt �x 0 � + g2(�d�L∞[0,t] + �̺�), t ≥ 0. 

The assertion of the lemma now follows, since, for each F ∈ UR satisfying F (v) ⊂ F̺(v) for 

all v ∈ R, every maximal solution of (49) is also a maximal solution of (132). � 
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Proof of Lemma 24. Assume first that (H2) holds with Φ(v) = {f(v)}. Defining ψ ∈ K∞ 

by 

ψ(s) = s + max f(σ) , s ≥ 0, 
|σ|≤s 

| |

it follows that 

ϕ(|v|)|v| ≤ f(v)v ≤ ψ(|v|)|v|, v ∈ R. (135) 

For |v| ≥ 2ρ1 and |r| ≤ ρ1, we have |v|/2 ≤ |v| − |r| ≤ |v + r| ≤ |v| + |r| ≤ 2|v|. 

Therefore, 

ϕ(|v|/2) ≤ ϕ(|v + r|), r ∈ [−̺1, ̺1], v ∈ R\[−2̺1, 2̺1] 

and 

ψ(2|v|) ≥ ψ(|v + r|), r ∈ [−̺1, ̺1], v ∈ R\[−̺1, ̺1]. 

Invoking (135), it follows that 

ϕ(|v|/2) ≤ |f(v + r)| ≤ ψ(2|v|), r ∈ [−̺1, ̺1], v ∈ R\[−2̺1, 2̺1]. 

Since f(v + r)v ≥ 0 for all r ∈ [−̺1, ̺1] and all v ∈ R\[−2̺1, 2̺1], we conclude that 

ϕ(|v|/2)|v| ≤ f(v + r)v ≤ ψ(2|v|)|v|, r ∈ [−̺1, ̺1], v ∈ R\[−2̺1, 2̺1]. 

Hence, 

ϕ(|v|/2)|v| − ̺2|v| ≤ F̺(v)v ≤ ψ(2|v|)|v|+ ̺ 2|v|, v ∈ R\[−2̺1, 2̺1]. (136) 

Defining µ ∈ K∞ by 

µ(s) := max{2ϕ−1(2s), ψ−1(s)/2}, s ≥ 0, 
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we have that, for every s ≥ 0 and every t ≥ µ(s), ϕ(t/2) ≥ 2s and ψ(2t) ≥ s. Consequently, 

defining ϕ1, ψ1 ∈ K∞ by 

ϕ1(s) := ϕ(s/2)/2, ψ1(s) := 2ψ(2s), s ≥ 0, 

and setting a(̺) := max{2̺1, µ(̺2)}, we have that 

ϕ1(|v|)|v| ≤ F̺(v)v ≤ ψ1(|v|)|v|, v ∈ R\[−a(̺), a(̺)]. 

Therefore, it follows from Corollary 21, with Φ = F̺ and K = [−a(̺), a(̺)], that there exist 

κ1 ∈ KL and κ2 ∈ K such that, for each ̺ ∈ [0, ∞) × [0, ∞), each x0 ∈ Rn , and each 

d ∈ L∞ [0, ∞), every maximal solution x of loc

ẋ(t) − Ax(t) − bd(t) ∈ −bF̺(c ∗ x(t)), x(0) = x 0 (137) 

is global and 

�x(t)� ≤ max 
{ 
κ1(t, �x 0 �), κ2(�d�L∞[0,t] + θ̺) 

} 
, t ≥ 0, (138) 

where 

θ̺ := sup sup dist(w, Iv), 
|v|≤a(̺) w∈F̺(v) 

with 
 
 
 
 [ϕ1(v), ψ1(v)], v ≥ 0 

Iv := 
 
 
 [−ψ1(|v|), −ϕ1(|v|)], v < 0. 

Moreover, note that, for all r ∈ [−̺1, ̺1] and all v ∈ [−a(̺), a(̺)], 

|f(v + r)| ≤ ψ(|v + r|) ≤ ψ(a(̺) + ̺1) ≤ ψ1(a(̺) + ̺1). 

Consequently, 

|F̺(v)| ≤ ψ1(a(̺) + ̺1) + ̺2, v ∈ [−a(̺), a(̺)]. 
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Setting b(̺) := ψ1(a(̺) + ̺1) + ̺2, it follows that F̺(v) ⊂ [−b(̺), b(̺)] and Iv ⊂ [−b(̺), b(̺)] 

for all v ∈ [−a(̺), a(̺)], implying 

θ̺ ≤ 2b(̺), ̺ ∈ [0, ∞) × [0, ∞). (139) 

Also, since a(̺) ≤ µ(�̺�) + 2�̺� for all ̺ ∈ [0, ∞) × [0, ∞), we have 

b(̺) ≤ ψ1(µ(�̺�) + 3�̺�) + �̺�, ̺ ∈ [0, ∞) × [0, ∞). (140) 

The function ψ2 : [0, ∞) [0, ∞) defined by →

ψ2(s) := 2(ψ1(µ(s) + 3s) + s), s ≥ 0, 

is in K∞. Inequalities (139) and (140) now yield 

θ̺ ≤ ψ2(�̺�), ̺ ∈ [0, ∞) × [0, ∞). 

Setting γ1 := κ1 and γ2 = κ2 (id + ψ2), it follows, invoking (138), that every maximal ◦

solution x of (137) is global and 

�x(t)� ≤ max 
{ 
γ1(t, �x 0 �), γ2(�d�L∞[0,t] + �̺�) 

} 
, t ≥ 0. 

Since, for each F ∈ UR satisfying F (v) ⊂ F̺(v) for all v ∈ R, every maximal solution of (49) 

is also a maximal solution of (137), we can conclude that the assertion of the lemma is valid 

under the assumption that (H2) holds. 

Under the assumption that (H1) holds, proof of the assertion of the lemma is similar to 

the above proof and is therefore omitted. � 

Proof of Corollary 27. We proceed in two steps. 
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Step 1. In this step, we assume that do ∈ L∞[0, ∞). Set ̺ := (�do�L∞[0,∞), 0). Let 

F̺ ∈ UR be defined by (47), and let x be a maximal solution x of (62). Every maximal solution 

x of (62) is also a maximal solution of 

ẋ(t) − Ax(t) − bd(t) ∈ −bF̺(c ∗ x(t)), x(0) = x 0 . (141) 

Applying Lemma 23 shows that there exist constants g1 > 0, g2 > 0, and ε > 0, depending on 

(A, b, c), α, β, and δ, but not on f , such that, for each x0 ∈ R
n, each d ∈ L∞ and each loc[0, ∞)

do ∈ L∞[0, ∞), every maximal solution x of (141) is global and 

�x(t)� ≤ g1e 
−εt �x 0 � + g2(�d�L∞[0,t] + �do�L∞[0,∞)), t ≥ 0. 

Step 2. Now, let do L∞ Let x be a maximal solution of (62). Seeking a∈ loc[0, ∞). 

contradiction, suppose that the maximal interval of existence of x is of the form [0, T ), where 

T < ∞. By Lemma 1, lim supt→T �x(t)� = ∞. Define d̃o ∈ L∞[0, ∞) by 
 
 
 

d̃o(t) := 
 do(t), 0 ≤ t ≤ T, 

 
  0, t > T, 

and note that x is also a maximal solution of 

ẋ(t) = Ax(t) + b d(t) − f(c ∗ x(t) + d̃o(t)) , x(0) = x 0 . (142) 

By Step 1, every maximal solution of (142) is global, yielding a contradiction. Therefore, the 

solution x is global. 

It remains to show that (64) holds. To this end, let τ > 0 be fixed, but arbitrary, define 

d̂o ∈ L∞[0, ∞) by 
 
 
 

d̂o(t) := 
 do(t), 0 ≤ t ≤ τ, 

 
 
 0, t > τ, 
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( ) 
∫ ∫ 

and consider the initial-value problem 

ẋ(t) = Ax(t) + b d(t) − f(c ∗ x(t) + d̂o(t)) , x(0) = x 0 . (143) 

Let x be a maximal solution of (62). We know that x is global and x|[0,τ ] is a solution of (143) 

on the interval [0, τ ]. Let x̂ be a maximal solution of (143) extending x|[0,τ ]. By Step 1, x̂ is 

global and 

�x̂(t)� ≤ g1e 
−εt �x 0 � + g2(�d�L∞[0,t] + �d̂o�L∞[0,∞)), t ≥ 0. 

Finally, since �d̂o�L∞[0,∞) = �do�L∞[0,τ ] and x(τ) = x̂(τ), we conclude that 

�x(τ)� ≤ g1e 
−ετ �x 0 � + g2(�d�L∞[0,τ ] + �do�L∞[0,τ ]). 

Since τ is arbitrary, (64) now follows. � 

Proof of Theorem S3. Let y ∈ C[0, ∞) and t ≥ 0 be arbitrary. Note initially that, by 

the definition of the backlash operator, 

Bσ, ξ(σ)(y) (t) ∈ [y(t) − σ, y(t) + σ], t ≥ 0. 

Case 1. Assume y(t) ≥ 0. Writing E1 := [0, y(t)] and E2 := (y(t), ∞), we have 

(
∫ ∫

)
∫ y(t)−σ 

Pξ(y) (t) ≥ 
E1 

+ 
E2 0 

w(s, σ)µL(ds)µ(dσ) − |w0| 

≥ b1 (y(t) − σ)µ(dσ) + b2 (y(t) − σ)µ(dσ) − |w0|
E1 E2 

= b1µ(E1) + b2µ(E2) y(t) − b1 σ µ(dσ) − b2 σ µ(dσ) − |w0|
E1 E2 

≥ a1b1y(t) − a2b2 − |w0| = aPy(t) − θP . 
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( ) 

Moreover, 

∫ ∞ ∫ y(t)+σ 

Pξ(y) (t) ≤ 
0 0 

w(s, σ)µL(ds)µ(dσ) + |w0| 
∫ ∞ 

≤ b2
0 

(y(t) + σ)µ(dσ) + |w0| 

≤ a1b2y(t) + a2b2 + |w 0 | 

= bPy(t) + θP , 

which establishes (S14). 

Case 2. Now assume y(t) ≤ 0. The argument used in Case 1 applies mutatis mutandis 

to conclude (S15). 

Finally, the inequality (S16) is a consequence of (S14) and (S15). � 

Conclusions 

Adopting a tutorial style of presentation, this article provides an overview of the circle 

criterion and its connection with ISS. Classical absolute stability theory, and the circle criterion 

in particular, is concerned with the analysis of a feedback interconnection of Lur’e type, which 

consists of a linear system in the forward path and a sector-bounded nonlinearity in the negative 

feedback path. The classical methodology seeks to conclude stability of the interconnected system 

through the interplay of frequency-domain properties of the linear component and sector data for 

the nonlinearity. This article adopts a similar standpoint, but with several features that distinguish 

it from the classical approach. Firstly, classical absolute stability results are revisited in the 

context of systems described by differential inclusions and within a framework based on the 
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complex Aizerman conjecture. This methodology provides new perspectives on classical results. 

Secondly, nonlinearities of greater generality, including hysteresis and quantization operators, are 

permitted in the feedback path. To accommodate this generality, an analytic framework of set-

valued maps and differential inclusions is adopted. Thirdly, in contrast with the classical literature 

which is focussed mainly on asymptotic stability of the feedback interconnection, ISS issues are 

addressed and resolved. Fourthly, the sector conditions of the classical theory are significantly 

weakened. In particular, through the interaction of the notions of ISS with bias and generalized 

sector conditions, results pertaining to feedback nonlinearities satisfying a sector condition only 

in the complement of a compact set are obtained. These results facilitate applications to hysteretic 

and quantized feedback systems. 
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L 

−f 

Figure 1. A classical Lur’e system. The negative feedback interconnection consists of a linear 

system L in the forward path and a static, sector-bounded nonlinearity f in the feedback path. 
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Figure 2. Sector-bounded nonlinearity f . The graph of f is contained in the shaded sector 

determined by two lines through the origin. 
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L 

d ẋ = Ax + bu c ∗ 

f 

y 
+ 

− 

u x 

Figure 3. Lur’e system. This system consists of a linear system L and a static nonlinearity f 

with exogenous input d, representing either a reference or disturbance signal. 
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f (y) 

y 

Figure 4. Nonlinearity f satisfying a generalized sector condition. The points (y, f(y)) of the 

graph of f are contained in the shaded area, for all |y| sufficiently large. 
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L 
+ y

L 
+ y 

d d̃
− − 

⇔ 
f f̃ 

Figure 5. Equivalent interconnections. The nonlinearity f satisfies a sector condition on the 

complement R\K of the compact interval K. The continuous function f̃  coincides with f on 

R\K and satisfies the same sector condition, but on the whole real line. Then f̃ −f is bounded, 

and d̃ := d + f̃(y) − f(y) is locally bounded. The term f̃(y) − f(y) is the source of the ISS 

bias. 
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∆ (A, b, c) 

Φ 

+ 

− 

Figure 6. A system of Lur’e type in a set-valued setting. The linear system (A, b, c) is 

interconnected with the set-valued nonlinearity Φ, and the resulting feedback system is subjected 

to a set-valued exogenous input ∆. 
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z = F (y) 
z(t) 

y(t) 

2σ 

II 

I 

(a) 

−σ σ 

(b) 

y 

Figure 7. Backlash or play hysteresis. (a) depicts a mechanical play consisting of two 

components, denoted I and II. The displacements of each part at time t ≥ 0, denoted by y(t) 

and z(t), satisfy |y(t) − z(t)| ≤ σ for all t ≥ 0, where z(0) = y(0) + ξ for the initial condition 

ξ ∈ [−σ, σ]. In particular, the position z(t) of II remains constant as long as the position y(t) 

of I remains within the interior of II. Denoting the corresponding operator by F , (b) illustrates 

the action of F . If, for example, component I makes contact with the right end of component II 

at t0 ≥ 0 and y(t) is nondecreasing on the interval [t0, t1], where t1 > t0, then z(t) = y(t) − σ 

for all t ∈ [t0, t1]. 
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( ] 

qη(v) 

+4η 

+ 
−5η 

+ 
−3η 

+ 

+ 

−2η 

2η 

+ 

3η 
+ 

5η 
v 

+ −4η 

Figure 8. Uniform quantizer qη. For every v ∈ R there exists a unique integer m ∈ Z such 

that v ∈ (2m − 1)η , (2m + 1)η and the quantizer qη maps v to 2mη. 
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( ) 

graph(Qη) 

v+ + + + 

+ 

+ 

+ 

+ 

−4η 

−2η 

4η 

2η 

3η 5η 

−5η −3η 

Figure 9. The graph of the set-valued map Qη ∈ UR. This map is the natural set-valued version 

of the single-valued uniform quantizer qη. For each v ∈ R, the set Qη(v) is the smallest convex 

set containing limw↑v qη(w) and limw↓v qη(w). In particular, for m ∈ Z, Qη(v) = {2mη} for all 

v ∈ (2m − 1)η, (2m + 1)η and Qη(v) = [2mη, 2(m + 1)η] for all v = (2m + 1)η. 
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S(A, b, c) 

D(z, r) 

Figure 10. A disc D(z, r) of stabilizing complex gains. If (A, b, c) is stabilizable and detectable, 

then, by Lemma 6, the disc D(z, r) is contained in the set S(A, b, c) of stabilizing complex gains 

if and only if the rational function 1+2rc ∗ 
( 
sI −(A−κbc∗) 

)−1 
b is positive real, where κ := z −r. 
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f (v) 

+1 

−1 
v 

+1 

−1 

Figure 11. Saturating nonlinearity f . The feedback u = −f(x) applied to the integrator ẋ = u 

yields asymptotic stability in the large, but not global exponential stability. 
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Im 

Re (−1, 0) 
(0, 0) 

(−1/α, 0) (−1/β, 0) 

Figure 12. Nyquist diagram of G(s) = 10/(s3 + 5s2 + 4s − 10) and the disc D(α, β) with 

α = 1.07 and β = 1.5. The Nyquist diagram of G does not intersect the disc D(α, β) and 

encircles it once in the counterclockwise sense. Therefore, by statement (i) of Lemma 10, (1 + 

βG)(1 + αG)−1 is positive real. 
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Im 

Re 
(1, 0) 

(−1, 0) 

Figure 13. The Nyquist diagram of G(s) = 10/(s3 + 7s2 + 16s + 10) and the closed unit 

disc D(−1, 1). The Nyquist diagram of G is contained in the closed disc D(−1, 1) and thus, 

by statement (ii) of Lemma 10, (1 − G)(1 + G)−1 is positive real. 
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−k 

k 

graph(Φ) 

Figure 14. Set-valued Φ satisfying the sector condition (34) with K = [−k, k]. For every v ∈ R 

such that |v| > k and every w ∈ Φ(v), the point (v, w) lies in the sector given by the shaded 

area bounded by the two dashed lines passing through the origin. 
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Figure 15. (H1)-type sector. Inequalities (37) hold if and only if the graph of the nonlinearity 

Φ, illustrated here in the case of a singleton-valued map for simplicity, lies in the shaded region 

bounded by the line of slope β − δ through the origin and the curve given by the graph of ϕ 

and its reflection through the origin. 

93 



Figure 16. (H2)-type sector. Inequality (38) holds if and only if the graph of the nonlinearity 

Φ, illustrated here in the case of a singleton-valued map for simplicity, lies in the shaded region 

bounded by the vertical axis and the curve given by the graph of ϕ and its reflection through 

the origin. 
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u qη f ¨ ξ = (f ◦ qη)(u) ξ 

Figure 17. PID control application. The controlled system is the double integrator with input 

nonlinearity f and a uniform quantizer qη parameterized by η > 0. 

95 



gradient α + ε 

f 

Figure 18. PID control application. Sector-bounded static nonlinearity. The graph of f is 

required to lie in the shaded region bounded by the vertical axis and the line of slope α + ε 

through the origin. 
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η = 0.0005 

η = 0.005 

η = 0.05 

Figure 19. PID controlled system (56). This plot shows the behavior of the system (56) for 

three values of the quantization parameter η. In (56), (A, b, c) and Φη are given by (54) and 

(57), respectively, with nonlinearity f : v �→ v(1 + v2), controller gains kp = 1, kd = 4, and 

ki = 0.1, and reference signal r = 1. The objective of asymptotic tracking of the reference 

signal, equivalently, convergence to 0 as t → ∞ of the first component e(t) of the solution, is 

attained in the limit as η 0.→
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+ 

− 
d (A, b, c) 

f 

do 

+ + 

Figure 20. Lur’e system. The linear system (A, b, c) is in the forward path, the nonlinearity f 

is in the negative feedback path, the exogenous input is d and the output disturbance is do. 
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Sidebar 1: Notation and Terminology 

For M ∈ Cp×q, M∗ ∈ Cq×p denotes the conjugate transpose of M . If all entries of M 

are real, then M∗ is the transpose of M . For z ∈ C and r > 0, let D(z, r) denote the open disc 

in C of radius r and with center z. The open right-half complex plane is denoted by C+. The 

space of bounded analytic functions on C+ is denoted by H∞ = H∞(C+). If H ∈ H∞, then 

�H�H∞ := sups∈C+ 
|H(s)|. 

Positive real functions. Let H be a real or complex rational function. The function H 

is positive real if ReH(s) ≥ 0 for all s ∈ C+ such that s not a pole of H. It can be shown 

that positive realness of H implies that H does not have any poles in C+. The function H is 

strictly positive real if there exists ε > 0 such that the shifted rational function s �→ H(s − ε) 

is positive real. 

Absolutely continuous functions. The importance of absolute continuity stems from 

the fact that absolutely continuous functions are precisely those functions for which the 

fundamental theorem of calculus in the context of Lebesgue integration is valid. Let I ⊂ R 

be an interval and F either R or C. A function x : I F
n is absolutely continuous if, and only →

if, x is differentiable at almost all (a.a.) t ∈ I , x ∈ L1˙ loc(I, F
n), the space of locally Lebesgue 

integrable functions I Fn, and, for every fixed a ∈ I , x(t) = x(a) + 
∫ t 
ẋ(s)ds for all t ∈ I . 

a
→

Function classes K, K∞, and KL. Let K denote the set of continuous and strictly 

increasing functions f : [0, ∞) [0, ∞) with f(0) = 0. The set of all functions f ∈ K with the →

property that f(s) → ∞ as s → ∞ is denoted by f ∈ K∞. Finally, KL denotes the class of all 

functions f : [0, ∞) × [0, ∞) [0, ∞) such that, for each r ∈ [0, ∞), the function s �→ f(r, s)→
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is in K and, for each s ∈ [0, ∞), the function r �→ f(r, s) is nonincreasing with f(r, s) 0 as →

r → ∞. Functions in K, K∞, and KL are sometimes referred to as comparison functions. 

Set-valued maps. In the following, F is either R or C. A set-valued map v �→ Φ(v) ⊂ F, 

with nonempty values and defined on F, is upper semicontinuous at v0 ∈ F if, for every open 

set W containing Φ(v0), there exists an open set V containing v0 such that, for all v V ,∈

Φ(v) ⊂W , see Figure S1. The map Φ is upper semicontinuous if it is upper semicontinuous at 

every point in F. 

Let UF denote the set of all upper semicontinuous maps v �→ Φ(v) ⊂ F such that, for all 

v ∈ F, the set Φ(v) is compact and convex. In the real case, Φ ∈ UR if and only if Φ is upper 

semicontinuous and, for all v ∈ R, Φ(v) is of the form [w1, w2] for w1, w2 ∈ R with w1 ≤ w2. 

Let D be a set-valued map defined on an interval I ⊂ R and with nonempty values 

contained in Fm. The map D is measurable if the preimage D−1(W ) := {t ∈ I : D(t)∩ W =� ∅} 

of every open set W ⊂ Fm is Lebesgue measurable. Moreover, for nonempty S ⊂ F, we define 

|S| := sup{|s| : s ∈ S}. A set-valued map ∆ defined on [0, ∞) with nonempty values contained 

in F is locally essentially bounded if ∆ is measurable and the function t �→ |∆(t)| is in L∞ 
loc[0, ∞), 

the space of measurable locally essentially bounded functions [0, ∞) R. The set of all locally →

essentially bounded set-valued maps defined on [0, ∞) and with compact and convex values 

contained in F is denoted by DF. Finally, for ∆ ∈ DF and a bounded interval I ⊂ [0, ∞), we 

define 
(∫ )1/p 

�∆�Lp(I) := 
I 

|∆(t)|pdt , 1 ≤ p < ∞ 

and 

�∆�L∞(I) := ess supt∈I |∆(t)|. 
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Φ(v) 
v0 

v 

V 

Φ 

Φ(v0) 

W 

Figure S1. Upper semicontinuity of the set-valued map Φ. For every v0 in F, every open 

neighborhood W of Φ(v0) contains the image under Φ of some open neighborhood V of v0, 

that is, Φ(v) ⊂W for all v ∈ V . 
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Sidebar 2: An Example from Circuit Theory 

Consider the circuit in Figure S2, consisting of a capacitor with capacitance C > 0, 

an inductor with inductance L > 0, a current source ı, and a nonlinear resistive element with 

current-voltage characteristic given by the continuously differentiable function h : R R.→ 

Adopting the current through the inductor L and the voltage across the capacitor C as the state 

variables x1 and x2, respectively, elementary circuit analysis gives 

Lẋ1(t) = x2(t), Cẋ2(t) = −x1(t) − h(x2(t)) + ı(t). 

We thus arrive at the equivalent representation 

ẋ(t) = Ax(t) + bu(t), u(t) = d(t) − f(c ∗ x(t)), (S1) 

where 
      

 x1  0 1/L 
  0 

 h(v) ı(t) 
   x = , A =  , b =  = c, f(v) = , d(t) = , (S2) 
      C C 
x2 −1/C 0 1 

and c ∗ denotes the transpose of the column vector c. This structure forms a prototype for the 

general class of systems investigated in the paper. Note that the transfer function G of the linear 

system (A, b, c), given by 

G(s) = c ∗ (sI − A)−1b = 
s2 + 1

s

/(CL)
, (S3) 

is positive real. 

Nonnegative resistance element. We assume that h satisfies the condition 

0 ≤ h(v)v, v ∈ R. (S4) 

102 



�

�

Consider first the unforced system, that is, ı = 0. Then a suitable version of the classical 

circle criterion, given in Theorem 13, guarantees that there exists g > 0 such that every solution 

x of (S1) is defined on [0, ∞) and 

�x(t)� ≤ g�x(0)�, t ≥ 0. 

If, in (S4), strict inequality holds for every v = 0, then, by Theorem 13, limt→∞ x(t) = 0, that 

is, 0 is globally attractive. 

Now consider the system with forcing, that is, ı = 0. If, in (S4), strict inequality holds 

for every v =� 0 and if limv→±∞ |h(v)| = ∞, then Theorem 17 can be used to show that the 

system given by (S1) and (S2) is ISS, see Example 19. 

Negative resistance element. Finally, let h describe a negative resistance element, that 

is, h(0) = 0, h ′ (0) < 0, h(v) → ∞ as v → ∞, and h(v) → −∞ as v → −∞; an example is 

shown in Figure S3. Such a characteristic typically occurs if the resistive element is given by 

a twin-tunnel-diode circuit. In the case of negative resistance, the condition (S4) does not hold 

for all v ∈ R, but only for all v ∈ R\K for some suitable compact interval K. This situation is 

addressed in Example 22. 
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Figure S2. Example from circuit theory. A parallel connection of a current source, capacitor, 

inductor, and nonlinear resistive element h. 
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current=h(v) 

voltage v 

Figure S3. Negative resistance element with characteristic h. The function h satisfies h(0) = 0, 

h ′ (0) < 0, h(v) → ∞ as v → ∞, and h(v) → −∞ as v → ∞. 
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Sidebar 3: The Concept of Input-to-State Stability 

Since its inception in the 1980s, the concept of input-to-state stability (ISS) has generated 

a rich body of results relating to stability properties of nonlinear systems with inputs. A succinct 

description of the area can be found in [38]. Here, we provide a brief overview and, for simplicity 

of presentation, we restrict attention to single-input systems. 

ISS concerns stability-type questions pertaining to systems with input u, which, on the 

one hand, might be an exogenous disturbance/perturbation or, on the other hand, might be a 

control open to choice. These systems are of the form 

ẋ(t) = g(x(t), u(t)), x(0) = x 0 , (S5) 

where, typically, it is assumed that g : Rn × R Rn is sufficiently regular to ensure that, for →

0 Rn L∞each initial condition x ∈ and every locally essentially bounded input u ∈ loc[0, ∞), the 

system (S5) has a unique solution x : [0, ∞) Rn. ISS investigates properties of the map →

(x 0 , u( )) �→ x( )· ·

using a concept that encompasses two desirable modes of dynamic behavior. 

(i) Bounded-input bounded-state (BIBS) property: for every x0 Rn and every essentially ∈ 

bounded input u, the solution x of (S5) is bounded. 

(ii) Convergent-input convergent-state (CICS) property: for every x0 Rn and every input u∈

with u(t) 0 as t → ∞, the solution x of (S5) is such that x(t) 0 as t → ∞.→ →

By way of motivation, consider the single-input, linear initial-value problem 

ẋ(t) = Ax(t) + bu(t), x(0) = x 0 , A ∈ R
n×n , b ∈ R

n (S6) 
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with unique solution x : [0, ∞) R
n given by →

∫ t 
x(t) = e At x 0 + e A(t−s)bu(s) ds, t ≥ 0. 

0 

If we assume that A is Hurwitz, then there exist M ≥ 1 and α > 0 such that 

�e At � ≤Me−αt , t ≥ 0. 

Therefore, 

∫ t 
�x(t)� ≤Me−αt �x 0 � + M�b� sup �u(s)� e −α(t−s)ds, t ≥ 0 

s∈[0,t] 0 

and hence, with γ := M�b�/α, we have 

�x(t)� ≤Me−αt �x 0 � + γ sup �u(s)�, t ≥ 0. (S7) 
s∈[0,t]

Thus, for the linear system (S6), the Hurwitz condition on A leads to the estimate (S7), which, in 

turn, implies both the BIBS property and the CICS property. Conversely, if there exist constants 

M, a, γ > 0 such that (S7) holds for all solutions of (S6), then A is Hurwitz. 

In the context of the nonlinear system (S5), the natural counterpart of the Hurwitz 

condition on A is the property that, with zero input u = 0, the origin 0 ∈ Rn is an equilibrium 

of the system ẋ = g(x, 0), that is, g(0, 0) = 0, and this equilibrium is globally asymptotically 

stable (GAS). In contrast with the linear system, the GAS property implies neither the BIBS 

nor the CICS property. For example, the scalar system ẋ = −x + x2u has the GAS property; 

however, with initial data x(0) = 1 and bounded and convergent input u : t �→ 2e−t, the system 

has the unbounded solution x : t �→ et, and thus both the BIBS and CICS properties fail to hold. 

In the nonlinear case, it is therefore natural to seek a counterpart to (S7) that implies the GAS 

property, the BIBS property, and the CICS property. This goal forms the basis of the definition 
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of input-to-state stability. In the following, comparison functions of class K, K∞, and KL play 

a key role; these function classes are defined in “Notation and Terminology”. 

Definition S1: System (S5) is input-to-state stable (ISS) if there exist γ1 ∈ KL and 

γ2 ∈ K such that, for all (x0, u) ∈ R
n 

loc[0, ∞), the unique solution x : [0, ∞) R
n is such ×L∞ →

that 

�x(t)� ≤ γ1(t, �x 0 �) + γ2 

( 
sups∈[0,t]�u(s)� 

) 
, t ≥ 0. (S8) 

The concept of ISS has an equivalent definition. 

Definition S2: System (S5) is input-to-state stable (ISS) if there exist γ1 ∈ KL and 

γ2 ∈ K such that, for all (x0, u) ∈ Rn 
loc[0, ∞), the unique solution x : [0, ∞) → Rn ×L∞ is such 

that 

�x(t)� ≤ max γ1(t, �x 0 �), γ2 sups∈[0,t]�u(s)� , t ≥ 0. (S9) 

If system (S5) is ISS, then it has the GAS, BIBS, and CICS properties. ISS admits a 

characterization in terms of a Lyapunov-like function. Specifically, the system (S5) is ISS if 

and only if there exists a smooth function V : Rn × R R and α1, α2, α3, α4 ∈ K∞ such that →

α1(�z�) ≤ V (z) ≤ α2(�z�) and �∇V (z), g(z, v)� ≤ −α3(�z�) + α4(|v|) for all z ∈ Rn and all 

v ∈ R. 

A variant of the ISS estimate (S9), namely, 

�x(t)� ≤ max γ1(�x 0 �, t), γ2 sups∈[0,t]�u(s)� + θ , t ≥ 0, (S10) 

where θ ≥ 0 is a constant, plays a role in the investigations in this article. 
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If θ = 0 in (S10), then (S9) is recovered. If θ > 0 and there exist γ1 ∈ KL and γ2 ∈ K∞ 

such that (S10) holds for all (x0, u) ∈ Rn 
loc[0, ∞), then we say that (S5) is ISS with bias × L∞ 

γ2(θ) > 0. In this case, the BIBS property continues to hold, but the CICS property fails to 

hold. However, with a converging input u(t) 0 as t → ∞, a particular asymptotic property →

of solutions is guaranteed, namely, 

lim sup 
t→∞ 

�x(t)� ≤ γ2(θ), 

and therefore, while the state might fail to approach zero asymptotically, it must approach the 

ball of radius γ2(θ) centered at 0. In other words, the asymptotic behavior of it cannot deviate 

from zero by more than the bias term γ2(θ) > 0. Note that, since γ2 ∈ K∞, if the bias parameter 

θ tends to zero, then γ2(θ) also tends to zero and thus ISS, and its attendant properties of GAS 

and CICS are guaranteed in the limit as θ 0. The concept of ISS with bias is equivalent to ↓ 

that of input-to-state practical stability discussed in [49, Definition 2.2 and Remark 1]. 
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Sidebar 4: Hysteretic Feedback Systems 

Here, we show how Corollary 16 can be used to analyze stability properties of hysteretic 

feedback systems. 

Consider the feedback interconnection shown in Figure S4, with a hysteresis operator 

F in the feedback path and a single-valued input d. In the context of hysteretic feedback 

systems, absolute stability and ISS are discussed in [19], [28], [29], [30], [32], [34], [50], [51]. 

In the following, we focus on the class of Preisach hysteresis operators. The Preisach operator 

encompasses both backlash and Prandtl operators. The Preisach operator can model complex 

hysteresis effects, for example, nested loops in input-output characteristics. A basic building 

block for these operators is the backlash operator, shown in Figure 7. The backlash operator, 

also called the play operator, is discussed in [31], [52], [53] and [54]. 

Let σ ≥ 0 and define bσ : R
2 → R by 

bσ (v1, v2) := max v1 − σ , min{v1 + σ, v2} 
 
 
 
 
v1 − σ, if v2 < v1 − σ, 
 
 
 
 
 

= v2, if v2 ∈ [v1 − σ, v1 + σ], 
 
 
 
 
 
 
 
 
v1 + σ, if v2 > v1 + σ . 

Let Cpm[0, ∞) denote the space of continuous piecewise monotone functions defined on [0, ∞). 

For all σ ≥ 0 and ζ ∈ R, define the operator Bσ, ζ : Cpm[0, ∞) C[0, ∞) by →
 
 
  

bσ (y(0), ζ) for t = 0 , 
(Bσ, ζ (y))(t) = 

 
 
 bσ (y(t), (Bσ, ζ (y))(ti)) for ti < t ≤ ti+1, i = 0, 1, 2, . . . , 
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where 0 = t0 < t1 < t2 < . . ., limn→∞ tn = ∞, and u is monotone on each interval [ti, ti+1]. We 

remark that ζ plays the role of an initial state. It can be shown that the definition is independent 

of the choice of the partition (ti). Figure S5 illustrates how Bσ, ζ acts. The operator Bσ, ζ extends 

to a Lipschitz continuous hysteresis operator on C[0, ∞), with Lipschitz constant L = 1, which 

is called the backlash operator and is denoted by the same symbol Bσ, ζ . 

Let ξ : [0, ∞) R be a compactly supported and globally Lipschitz function with → 

Lipschitz constant 1. Let µ be a signed Borel measure on [0, ∞) such that |µ|(K) < ∞ for 

all compact sets K ⊂ [0, ∞), where |µ| denotes the total variation of µ. Denoting the Lebesgue 

measure on R by µL, let w : R × [0, ∞) R be a locally (µL ⊗ µ)-integrable function, and let →

w0 ∈ R. The operator Pξ : C[0, ∞) → C[0, ∞) defined by 

∫ ∞ ∫ (Bσ, ξ(σ)(y))(t) 

(Pξ(y))(t) = w(s, σ)µL(ds)µ(dσ) + w0, y ∈ C[0, ∞), t ≥ 0 , (S11) 
0 0 

is called a Preisach operator. This definition is equivalent to that adopted in [53, Section 2.4], 

where it is shown that Pξ is causal and rate independent. Here rate independence means that 

Pξ(y h) = Pξ(y) h for every continuous, nondecreasing, and surjective function h : [0, ∞)◦ ◦ → 

[0, ∞) and all y ∈ C[0, ∞). 

Under the assumption that the measure µ is finite and w is essentially bounded, the 

operator Pξ is Lipschitz continuous with Lipschitz constant L = |µ|([0, ∞))�w�∞ in the sense 

that 

sup (Pξ(y1))(t) − (Pξ(y2))(t) ≤ L sup y1(t) − y2(t) , y1, y2 ∈ C[0, ∞). 
t≥0 

| |
t≥0 

| |

See [31] for details. This property ensures well-posedness of the feedback interconnection shown 

in Figure S4 with F = Pξ. 
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Setting w( , ) = 1 and w0 = 0 in (S11) yields the Prandtl operator Pξ : C[0, ∞)· · → 

C[0, ∞) defined by 

∫ ∞ 

(Pξ(y))(t) = (Bσ, ξ(σ)(y))(t)µ(dσ), y ∈ C[0, ∞) , t ≥ 0 . (S12) 
0 

Roughly speaking, a Prandtl operator is a weighted sum of backlash operators. For ξ ≡ 0 and µ 

given by µ(E) = 
E 
χ[0,5](σ)dσ, where χ[0,5] denotes the indicator function of the interval [0, 5], 

the Prandtl operator is illustrated in Figure S6. 

The next theorem identifies conditions under which the Preisach operator (S11) satisfies 

a generalized sector bound. For simplicity, we assume that the measure µ and the function w 

are nonnegative, although the theorem can be extended to signed measures µ and sign-indefinite 

functions w. 

Theorem S3: Let Pξ be the Preisach operator defined in (S11). Assume that the measure µ 

is nonnegative, a1 := µ([0, ∞)) < ∞, a2 := 
∫ ∞ 

σµ(dσ) < ∞, b1 := ess inf(s,σ)∈R×[0,∞)w(s, σ) ≥
0 

0, b2 := ess sup(s,σ)∈R×[0,∞)w(s, σ) < ∞, and set 

αP := a1b1, βP := a1b2 , θP := a2b2 + w0 . (S13) | |

Then, for all y ∈ C[0, ∞) and all t ≥ 0, 

αPy(t) − θP ≤ (Pξ(y))(t) ≤ βPy(t) + θP , y(t) ≥ 0, (S14) 

and 

βPy(t) − θP ≤ (Pξ(y))(t) ≤ αPy(t) + θP , y(t) ≤ 0. (S15) 

Furthermore, for every δ > 0, 

(αP − δ)y 2(t) ≤ (Pξ(y))(t)y(t) ≤ (βP + δ)y 2(t), |y(t)| ≥ θP/δ. (S16) 
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For example, the Prandtl operator illustrated in Figure S6 satisfies the hypotheses of 

Theorem S3. The proof of Theorem S3 can be found in the section “Proofs”. 

Let Pξ be a Preisach operator satisfying the hypotheses of Theorem S3. Let αP , βP and 

θP be given by (S13) and define Φ ∈ UR by 
 

Φ(v) := 

 
 
 [αPv − θP , βPv + θP ], v ≥ 0, 

(S17) 
 
 
 [βPv − θP , αPv + θP ], v < 0. 

In view of (S14) and (S15), 

(Pξ(y))(t) ∈ Φ(y(t)), y ∈ C[0, ∞), t ≥ 0. (S18) 

We note that, for δ > 0 and K := [−θP/δ , θP/δ], 

(αP − δ)v 2 ≤ Φ(v)v ≤ (βP + δ)v 2 , v ∈ R\K, 

Let the linear system (A, b, c), with transfer function G, be stabilizable and detectable. 

Write 

α := αP − 2δ, β := βP + 2δ (S19) 

and assume that (1+βG)(1+αG)−1 is positive real. Then the hypotheses of Corollary 16 hold 

with Φ given by (S17). Moreover, it can be shown that the bias parameter θ, defined by (35), is 

given by θ = θP . Therefore, we can invoke Corollary 16 to conclude properties of solutions of 

the functional differential equation 

ẋ(t) = Ax(t) + b d(t) − (Pξ(c ∗ x))(t) , x(0) = x 0 . (S20) 

By arguments similar to those adopted in [32], it can be shown that, for each x0 Rn and ∈

loc[0, ∞), (S20) has a unique global solution x. By (S18), x also satisfies d ∈ L∞ 

ẋ(t) − Ax(t) ∈ b ∆(t) − Φ(c ∗ x(t)) , x(0) = x 0 , 
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where ∆(t) = {d(t)}. Now an application of Corollary 16 yields the existence of constants 

ε, g1, g2 > 0 such that, for every x0 Rn ,∈

�x(t)� ≤ g1e 
−εt �x 0 � + g2 

( 
�d�L∞[0,t] + θP 

) 
, t ≥ 0. (S21) 

Example S4: Consider the mechanical system with damping coefficient γ > 0 and 

hysteretic restoring force in the form of backlash, with real parameters σ > 0 and ζ , given 

by 

ÿ(t) + γẏ(t) + (Bσ, ζ (y))(t) = d(t). (S22) 

Since (Bσ, ζ (y))(t) ∈ [y(t)− σ, y(t) + σ] for every y ∈ C[0, ∞) and every t ∈ [0, ∞), it follows 

that, for every δ > 0 and every (t, y) ∈ [0, ∞) × C[0, ∞) such that |y(t)| ≥ σ/δ, 

(1 − δ)y 2(t) ≤ 
( 
Bσ, ζ (y) 

) 
(t)y(t) ≤ (1 + δ)y 2(t). 

Of course, this fact is also a consequence of Theorem S3, since the backlash operator Bσ, ζ is a 

special case of the Preisach operator with αP = βP = 1 and θP = σ, in the notation of Theorem 

S3. 

As in (S19), set α := αP −2δ = 1−2δ and β := βP +2δ = 1+2δ. The transfer function 

G is given by G(s) = 1/(s2 + γs), and thus, 

1 + βG 4δ 
= 1 + . 

1 + αG s2 + γs + 1 − 2δ 

For all δ > 0 sufficiently small, (1 + βG)(1 + αG)−1 is positive real. Setting x := (y, ẏ), it 

follows that there exist constants ε, g1, g2 > 0 such that, for every x0 := (y(0), ẏ(0)) ∈ R2, (S21) 

holds with θP = σ. 

For numerical simulation, assume the data 

γ = 5, σ = 1, ζ = 0, y(0) = 10, ẏ(0) = 0. 
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The evolution of the norm �x(t)� of the solution is depicted in Figure S7 in the case of zero 

forcing d = 0, and in Figure S8 in the case of sinusoidal forcing d(t) = sin t. ♦ 

Returning to the non-specific setting given by (S20), we emphasize that estimate (S21) 

does not guarantee that d(t) → 0 as t → ∞ implies convergence of x(t) as t → ∞. To 

see this, consider again the mechanical example (S22). Then, for each γ > 0, there exist 

constants ε, g1, g2 > 0 such that (S21) holds with x(t) = (y(t), ẏ(t)) and θP = σ. However, 

we know from [34, Example 4.8] that, if d = 0 and γ ∈ (1, 2), then, for all initial conditions, 

lim supt→∞ y(t) = σ and lim inft→∞ y(t) = −σ, equivalently, y has omega-limit set [−σ, σ], and 

so x(t) = (y(t), ẏ(t)) does not converge as t → ∞. 
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d (A, b, c) 

F 

y 
+ 

− 

Figure S4. Hysteretic Lur’e system. Feedback interconnection of the linear system (A, b, c) in 

the forward path, a hysteresis operator F in the negative feedback path, and exogenous input d. 
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Bσ,ζ (y) 

y 
−σ 

σ 

Figure S5. Backlash hysteresis revisited. This diagram shows how the backlash operator Bσ, ζ 

acts. If, for example, ζ = σ/2, y(0) = 0 and y is strictly increasing with limt→∞ y(t) > 3σ/2, 

then Bσ, ζ (y) (t) = ζ = σ/2 for 0 ≤ t ≤ tσ and Bσ, ζ (y) (t) = y(t) − σ for t > tσ , where tσ 

is the unique positive number such that y(tσ) = 3σ/2. 
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Figure S6. Example of Prandtl hysteresis. Consider the Prandtl operator Pξ defined in (S12) 

with ξ = 0 and measure µ given by µ(E) = 
E 
χ[0,5](σ)dσ, where χ[0,5] is the indicator function 

of the interval [0, 5]. The plots depict the response P0(y) to a continuous, piecewise linear input 

y. 
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Figure S7. System response for Example S4. Consider Example S4 with parameter values 

γ = 5, σ = 1, ζ = 0, initial data y(0) = x1(0) = 10, ẏ(0) = x2(0) = 0, and zero disturbance 

d = 0. This plot shows the evolution of the norm �x(t)�, and suggests that limt→∞ �x(t)� = 

θP = σ = 1. However, the theory predicts only the existence of a positive constant g2 such that 

lim supt→∞ �x(t)� ≤ g2θP = g2σ = g2, see (S21). 
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Figure S8. System response for Example S4. Consider Example S4 with parameter values 

γ = 5, σ = 1, ζ = 0, initial data y(0) = x1(0) = 10, ẏ(0) = x2(0) = 0, and sinusoidal 

disturbance d : t �→ sin t. This plot shows the evolution of the norm �x(t)�, and suggests that 

lim supt→∞ �x(t)� < 2. However, the theory predicts only the existence of a positive constant 

g2 such that lim supt→∞ �x(t)� ≤ g2(�d�L∞ + θP) = 2g2, see (S21). 
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Sidebar 5: Filippov’s Selection Theorem 

Let I be an interval and let U be a set-valued function defined on I with nonempty values 

contained in Fm. A function u : I F
m is a measurable selection of U if u is measurable and →

u(t) ∈ U(t) for a.a. t ∈ I . 

Of particular significance in applications to control theory is Theorem S5 below, a 

measurable selection result involving the composition of a function and a set-valued function. 

This theorem is frequently referred to as Filippov’s selection theorem. For a proof of Theorem 

S5, see [55, p. 72]. 

Theorem S5: Let I be an interval, let U be a measurable set-valued function defined on 

I with nonempty closed values contained in Fm, and let g : I × Fm Fp be a function such →

that, for each t ∈ I , the function v �→ g(t, v) is continuous and, for each v ∈ Fm, the function 

t �→ g(t, v) is measurable. If z : I Fp is a measurable selection of the set-valued function → 

t �→ {g(t, v) : v ∈ U(t)}, then there exists a measurable selection u : I → Fm of U such that 

g(t, u(t)) = z(t) for a.a. t ∈ I . 

In the proofs of theorems 5, 13 and 15, Theorem S5 is used as follows. Let x : [0, T ) Fn →

be a maximal solution of the differential inclusion (3) with Φ ∈ UF and ∆ ∈ DF. Defining 

U(t) := ∆(t)− bΦ(c ∗ x(t)) for all t ∈ [0, T ) and g(t, v) := Ax(t)+ bv for all (t, v) ∈ [0, T )×F, 

the functions U and g satisfy the assumptions imposed in Theorem S5 with m = 1 and p = n. 

Furthermore, ẋ is a measurable selection of the set-valued function 

∗ t �→ {g(t, v) : v ∈ U(t)} = Ax(t) + b∆(t) − bΦ(c x(t)). 

Consequently, by Theorem S5, there exists a measurable selection u : I F of U such that → 

121 



g(t, u(t)) = ẋ(t) for a.a. t ∈ I , or, equivalently, ẋ(t) = Ax(t) + bu(t) for a.a. t ∈ I . 
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