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Abstract

Our current defenses against IoT malware may not be ade-

quate to remediate an IoT malware attack similar to the Mirai

botnet. This work seeks to investigate this matter by systemat-

ically and empirically studying the lifecycle of IoT malware

and comparing it with traditional malware that target desktop

and mobile platforms. We present a large-scale measurement

of more than 166K Linux-based IoT malware samples col-

lected over a year. We compare our results with prior works

by systematizing desktop and mobile malware studies into a

novel framework and answering key questions about defense

readiness. Based on our findings, we deduce that the required

technology to defend against IoT malware is available, but

we conclude that there are insufficient efforts in place to deal

with a large-scale IoT malware infection breakout.

1 Introduction

The Mirai botnet set a record for the largest distributed denial

of service (DDoS) attack and drew the attention of many se-

curity professionals [1]. In the aftermath of the attack, many

new developments have shaped the IoT malware ecosystem.

Therefore, studying the threat lifecycle for IoT malware is

vital for securing IoT devices. For example, the Mirai botnet

infected devices by using default usernames and passwords,

but current IoT malware variants target unpatched vulnera-

bilities. We seek to study how the emerging IoT malware

ecosystem has evolved since Mirai and whether current de-

fenses for traditional malware can protect against it.

To investigate this matter, we need to systematically un-

derstand how IoT malware infect systems, deploy payloads,

persist on systems, abuse resources, and operate their infras-

tructure. We guide our analysis by answering two research

questions (RQ), namely RQ1: How is IoT malware differ-

ent than traditional malware? and RQ2: Are current anti-

malware techniques effective against IoT malware? To answer

RQ1, we compare the IoT malware lifecycle with traditional

malware and highlight the similarities and differences. For

RQ2, we qualitatively evaluate how traditional anti-malware

techniques work and judge their efficacy based on empirical

observations from the IoT malware ecosystem.

Answering RQ1 allows the security community to under-

stand the evolutionary trend of IoT malware and respond

accordingly. For example, how do malware adapt to infect

and persist on IoT devices? Are there trends that can allow

us to better predict the impact of IoT malware on future IoT

technologies? Compared to desktop and mobile malware, are

IoT malware capabilities bound by the device’s resources?

How does the IoT malware ecosystem impact different stake-

holders? Furthermore, RQ2 allows the security community to

gauge if there are sufficient defensive techniques to counter a

fast-evolving IoT threat.

To date, there have been several efforts to investigate IoT

malware [1]–[8]. However, these efforts either focus on in-

depth analysis of a single malware family or rely on small

malware corpora collected over short periods. Nonetheless,

these efforts provide a fascinating glimpse into the IoT threat

landscape and demonstrate the need for additional research.

Moreover, current threat frameworks are either too complex

with a focus on traditional malware, such as the MITRE

ATT&CK [9] framework, or study only the infection stage

of IoT malware [10], [11]. Our work seeks to address these

gaps with a comprehensive evaluation of the IoT malware

lifecycle. We guide our study by a principled framework that

characterizes various stages of an IoT malware’s lifecycle,

and we compare our findings with traditional malware.

Our work makes four contributions. First, we propose a

novel analysis framework that captures the threat lifecycle of

IoT malware, which considers the infection vectors, payload

properties, persistence methods, capabilities, and C&C infras-

tructure. Second, we use our framework to systematize 25

papers that study traditional malware. Third, we characterize

IoT malware by examining more than 166K samples spanning

6 different system architectures collected over a year. Fourth,

we make available the largest and most comprehensive IoT

malware corpus to date and include their analysis artifacts,

which can be found at https://badthings.info.

https://badthings.info


Our results show that IoT malware differs from traditional

malware in a few key areas including infection vectors and

C&C communication. We find signature-based detection lacks

support and coverage for many IoT malware variants and that

at least 15% of new variants utilize packing to evade detection.

Additionally, IoT malware uses various persistent methods

to overcome read-only file systems found in IoT devices by

reusing vendor-specific tools. We find a large array of capa-

bilities that have been incorporated into IoT malware such as

proxy services, device bricking, and information theft. We ob-

serve that the current IoT malware ecosystem has not reached

its full potential but may become a severe threat due to the

sheer number of IoT devices coming online. We conclude

with a set of recommendations for different stakeholders in-

cluding device owners, device vendors, and ISP operators.

2 Background and Related Work

Malware targeting embedded Linux-based systems was first

reported in 2008 with the discovery of the Hydra IRC bot [12].

Since then, several other bots have entered the scene with var-

ious capabilities. Such bots include psyb0t [13], Chuck Nor-

ris [14], Carna [15], Tsunami [16], Aidra [17], Dofloo [18],

Gafgyt [19], Elknot [20], XOR.DDoS [21], Wifatch [22], The-

Moon [23], LUABot [24], Remaiten [25], NewAidra [26],

and Moose [27]. Each family had different purposes such

as credential theft [27], cryptocurrency mining [28], device

destruction [29], internet-wide scanning [15], and cleaning

up infected devices [2], [22]. IoT malware development has

many considerations due to the heterogeneity of devices. For

example, an IP camera and a set top box can have differ-

ent processors, C libraries (uclibc, musel, glibc), and kernel

versions/features (Linux 2.6, 3.2, 4.6, etc.).

The release of Mirai’s source code and recent develop-

ments in embedded system toolchains has made it easier for

IoT malware development. Antonakakis et al. [1] note that

Mirai had a wide impact due to the fact that its small code

base runs on diverse devices, spreads efficiently, and targets

a large number of insecure IoT devices on the internet [30],

[31]. The Mirai botnet took down critical DNS infrastruc-

ture [32], disconnected over 900K internet subscribers [33],

and attacked a large cloud service provider [34]. Soon after

the release of Mirai’s code, many variants began to surface

with enhancement to its infection vector, payload obfusca-

tion, and command-and-control (C&C) communication. For

example, Satori [35], a Mirai variant, gained momentum as it

exploited a new vulnerability in Huawei routers. These recent

developments provide further motivation to understand the

IoT malware landscape.

Prior studies looked at IoT malware from different perspec-

tives. Cozzi et al. [36] investigate Linux-based malware but

only examine 10K samples, of which 35% are for x86 and

x86_64 architecture. Other studies examine specific malware

families such as Mirai [1] and Hajime [2]. More compre-

hensive studies examine individual components of the IoT

malware lifecycle. For example, several works [3], [5], [10],

[37] examine IoT malware infection tactics and the payload

properties. Other works [6], [38] look at how to detect IoT

malware by studying its binary static structural features. De

Donno et al. [11] organize IoT malware attack capabilities

into a taxonomy while Choi et al. [4] study the role that C&C

infrastructure plays in the lifecycle of IoT malware.

Additional efforts [39], [40] investigate scanners on the in-

ternet to identify if they are infected by IoT malware. Finally,

Çetin et al. [41] present a unique perspective on IoT malware

infection cleanup by combining multiple data sources and a

user study to measure remediation efforts. Our work differs

in two aspects, first we propose a five-component framework

that captures the entire lifecycle of IoT malware, which we

use to compare with desktop and mobile malware. Second,

we conduct the largest and most comprehensive empirical

measurement for more than 166K Linux-based IoT malware

samples collected over an entire year.

3 Framework and Methodology

Next, we describe the data sources, methodology, and the

framework that we use for the comparative analysis. We define

each component’s subcategories and present a summary of our

results in Table 1. Appendix A presents an extended analysis

of desktop and mobile malware from prior works.

3.1 Comparative Framework

Our framework looks at five components for malware’s lifecy-

cle. We study the infection vector, the payload properties, the

persistence methods, the capabilities, and the C&C infrastruc-

ture. For each component, we identify techniques discussed

in the literature for traditional malware (desktop/mobile) and

empirically measure it for IoT malware. The following defines

each component:

• Infection Vector is how the malware attacks a system.

• Payload is the dropped malware code after exploitation.

• Persistence is how the malware installs on a system.

• Capabilities are the functions in the malware code.

• C&C Infrastructure is how the malware communicates

with the operator.

We study 25 papers from prior works to qualitatively de-

rive subcategories under each component, which are in Ap-

pendix A. For example, we cite the work of Holz et al. [42]

to support the use of drive-by downloads in desktop malware

and their distribution networks. Moreover, we use the MITRE

ATT&CK taxonomy to derive additional subcategories that

are not found in prior work but are documented by security

companies. Table 1 summarizes the comparative analysis.



Table 1: An overview of the results from our findings comparing desktop, mobile, and IoT malware using the proposed framework.

Components Summary

Categories D
es

k
to

p

M
o

b
il

e

Io
T

Definition for each component’s subcategories

In
fe

ct
io

n

Remote Exploit ✓ ✓ Remote Exploit refers to exploiting a service or an application running on a device.

Repackaging ✓∗ ✓ Repackaging refers to benign application repackaged with malware (i.e. pirated software).

Drive-by ✓ ✓ Drive-by refers to infection by redirecting the system to a malicious resource.

Phishing ✓ ✓ Phishing refers to social engineering attacks that trick a user into getting infected.

Default Cred. ✓∗ ✓ Default Credentials refers to the use of vendor default credentials for device access.

Rem. Media ✓∗ ✓ Removable Media refers to the use of USB for infection between devices.

P
a

y
lo

a
d Packing ✓ ✓ ✓ Packing refers to the use of packers or polymorphic techniques for obfuscation.

Env. Keying ✓ ✓ ✓ Env. Keying refers to the dependence on the target’s environment artifact (i.e. HW id).

Scripting ✓∗ ✓ Scripting refers to the use of a scripting interpreter (i.e. Powershell, sh, etc.).

Cross-Arch/Plat. ✓∗ ✓ ✓
Cross-Arch/Plat. refers to using payloads for different architectures (x86, ARM, etc.) or

platforms (Windows, Android, etc.).

P
er

si
st

. Firmware ✓ ✓ Firmware refers to persisting by modifying the device’s firmware.

OS - Kernel ✓ ✓ + OS - Kernel refers to persisting as a kernel module.

OS - User ✓ ✓ + OS - User refers to persisting in user-space through configuration or process/service.

C
a

p
a

b
il

it
y

Priv. Escalation ✓ ✓ ✓ Priv. Escalation refers to exploiting OS vulnerability to elevate privilege on a device.

Defense Evasion ✓ ✓ ✓ Defense Evasion refers to actively avoiding or disabling security features on the device.

Info. Theft ✓ ✓ ✓ Info. Theft refers to profiling and exfiltrating sensitive information from the device.

Scanning ✓ ✓ Scanning refers to using the device to scan for other devices.

DDoS ✓ ✓ DDoS refers to using the infected device to orchestrate a DDoS attack.

Destruction ✓ ✓ ✓ Destruction refers to actively destroying or ransoming the device.

Resource Abuse ✓ ✓ ✓ Resource Abuse refers to using the device to run unauthorized services or applications.

C
&

C

Peer-2-Peer ✓ ✓ Peer-2-Peer refers to using peer-2-peer network protocol for managing the botnet.

Centralized ✓ ✓ ✓ Centralized refers to using a central C&C server for managing the botnet.

Email/SMS ✓ ✓ Email/SMS refers to using email or short message service for call-back to the bot master.

∗ Techniques documented by security companies. + Unified software layer that integrates OS and firmware.

3.2 Data Sources

We list all the dataset sources for our measurements in Table 2.

VirusTotal. VirusTotal (VT) is a malware analysis and shar-

ing platform that is used by hundreds of commercial secu-

rity companies and thousands of researchers. We source our

dataset from VT and assume that it provides good coverage

because of the sheer size of files submitted to the platform,

see Figure 1. We use VT to identify new binary submissions

that meet the following criteria: (1) ELF binaries, (2) never

seen by VT before, (3) machine architecture is not x86 or

x86_64, (4) ELF binary is not Android type, (5) submission is

not tagged as "shared-lib," "coredump," or "relocatable," (6)

file size is less than 30MB, and (7) has at least one anti-virus

(AV) detection. We choose this criteria based on the access

limitation (10K files/day) and the following assumptions.

First, our work studies malware that target embedded IoT

systems. The vast majority (82%) of IoT systems rely on

Linux-based OS (ELF) [43] and utilize Reduced Instruction

Set Computers (RISC) architecture [44], whereas x86 and

x86_64 are based on Complex Instruction Set Computers

(CISC) architecture that are mostly found in servers, desktops,

and laptops. We exclude x86, x86_64, and Android malware

because (1) they are well covered in prior works [45]–[49],

(2) are more likely to target mobile or traditional computing

devices (servers, desktops, and laptops), and (3) their volume

inundate our access capacity, as shown in Figure 1.

Second, we found ELF files larger than 30MB to be mostly

coredump 1, shared-lib, or relocatable 2. We found seven files,

over 30MB, detected by one or more AV engine and one file

detected by five or more AV engines 3. Third, our analysis

pipeline can analyze native ELF binaries, therefore, it does not

support Java-based Android apps, but it supports files that run

on the Android Runtime environment (native). VT classifies

files that run natively in Android (Android Runtime) as ELF

files because Android uses a tailored version of the Linux

Kernel. We found a limited number of files for Android IoT

and TV, specifically, 113 (AV labels 11 as malicious) and 57

(AV labels 6 as malicious) files, respectively.

We rely on AV detection as a way to identify possible mal-

ware, similar to prior works [50]. First, we collect files with

1A recorded state of a program during a crash
2An object file that linkers use to build an executable.
3MD5: 3c5a75bd1df81c6f355b3edf61729507, Label: BitCoinMiner
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Figure 1: The daily volume of files submitted to VT exceeds

1.5M. Our access is limited to 10K files per day.

one AV detection to stay under the daily access quota (10K/-

day, see Figure 1). Second, we filter files with less than five

AV detections to suppress false-positives, which are common

in VT [50]. These criteria filter out possible irrelevant samples

that are not likely to be IoT malware with minimal impact on

the empirical results. However, we do acknowledge this might

lead to a bias in the malware dataset since our collection relies

on AV detections that can have inherent limitations.

Active and Passive DNS. Our active DNS (aDNS) dataset

comes from the ActiveDNSProject [51], which actively re-

solves many popular zones (COM, NAME, NET, ORG, BIZ,

etc.), top sites from the Alexa Top 1M, and public blocklists

daily. The passive DNS (pDNS) is an anonymized dataset pro-

vided by a large internet service provider (ISP) based in the

US. The ISP operates a large set of geographically-distributed

local DNS resolvers that service over 40 million internet-

connected devices, which include IoT devices. We use aDNS

and pDNS to investigate IoT malware infrastructure. Our

aDNS and pDNS datasets cover the period from May 2019 up

to Jan 2020. We specifically use aDNS and pDNS to enumer-

ate relationships between observed IPs and domains. We use

pDNS data to quantify the lookup volume and the number of

anonymized clients resolving the C&C infrastructure.

Bad Packets Honeypots. Bad Packets [52] operates a set of

proprietary honeypots that monitor emerging cyber threats

targeting enterprise networks, IoT devices, and cloud com-

puting environments. We were provided an aggregate dataset

that spans the entire month of June 2019. We use the hon-

eypot dataset to identify attack characteristics observed on

the internet and quantify what devices IoT malware target.

Specifically, we use aggregate statistics about internet scans

that are classified as IoT malware by Bad Packets.

Tranco Top Site Ranking. We use Tranco’s top site rank-

ing [53] to identify and filter benign domains. Our static and

dynamic analysis yield large sets of domains and IPs, which

Table 2: List of data sources used for empirical measurement.

Data Provider Data Type Role

VirusTotal

Binaries

Metadata

AV Detection & Labels

Binary Analysis

Growth & Size

Detection

ActiveDNS Project Active DNS Internet

Large ISP Passive DNS Measurement

Bad Packets Honeypot Device Targeting

Tranco Top Website Ranking White Listing

may not be related to malware. For example, a link to the

UPX packer website is commonly found in samples that are

packed by UPX.

3.3 Analysis Methods

Figure 2 presents an overview of our analysis and measure-

ment methodology. We use static, dynamic, and network anal-

ysis. We do not claim any of the techniques as a novel contri-

bution, instead, we use them as a means to study IoT malware.

We rely on well-established approaches from prior works [36],

[54]–[56] and tailor them for our analysis.

Metadata Analysis. We use VT for AV detection, AV la-

bels, and in-the-wild names. We combine the AV labels with

AVClass [57] to consolidate the labels for each sample. This

metadata analysis provides context about the malware sam-

ples and helps us to correlate the findings from static and

dynamic analysis.

Static Analysis. The goal of static analysis is to identify

each binary’s target architecture, linking method (static vs

dynamic), anti-analysis tactics, packing, embedded domains

and IP addresses, and infection vectors. We use a set of tools

from binutils suite to perform static analysis, namely readelf,

objdump, objcopy, strings, and hexdump. The file tool parses

the binary information and identifies the target architecture,

endianness, and linking information based on the file headers.

Next, we examine the ELF binaries for anti-analysis artifacts

by using four heuristics. First, we inspect the ELF file for the

first LOAD (PT_LOAD) segment in the section headers that is

marked for read, write, and execute (RWE). This anti-analysis

trick is commonly used to hide the program’s entry point and

break analysis tools.

Second, we examine the ELF file for fake section headers

that overlap the program’s entry point by iterating through

each segment and section. For each segment, we check if

the segment overlaps the entrypoint address. If we detect

an overlap, we conclude that the sample has anti-analysis

artifacts. This well-known tactic overlays fake data and text

sections with opposite flags (switching W and X) to confuse

analysis tools by parsing the fake data sections for code. Third,

we examine the ELF file for fake dynamic symbol tables

by checking the section header for one or more dynamic

symbol tables (SHT_DYNSYM). We iterate through each
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Figure 2: Overview of analysis methodology.

segment and look for dynamic symbol tables that come after

the dynamic table (DT_SYMTAB) and check if the dynamic

symbol table overlaps the dynamic table (virtual address +

size is outside the segment). This anti-analysis technique

inserts fake dynamic symbol tables for dynamically-linked

binaries that mix up the symbols of functions.

Fourth, we iterate over each segment and check the sec-

tion header fields (e_shoff, e_shentsize, e_shnum e_shstrndx

for zero values. This technique removes critical information

about the section headers making it impossible to parse. The

Linux kernel does not use the section headers when loading

and executing the ELF file, therefore removing the section

headers breaks some analysis tools that rely on section head-

ers, but does not affect the execution of the binary. Next,

we try to detect UPX packed samples by looking for UPX

sections and string artifacts. For UPX packed files, we also

check if the UPX header is zeroed out, which usually breaks

the UPX decompression utility but not the executable. We

then attempt to unpack each sample using the UPX utility.

Some files fail to unpack due to corrupt UPX headers, but

they execute in the dynamic analyzer.

Finally, we use static analysis to extract IP addresses and

domains using strings with default settings and regular ex-

pressions. For captured domains, we use tldextract, a python

library, to check for properly formed domain names. For IP

addresses, we remove all bogons and invalid IP addresses. We

also use static analysis to identify infection vectors by using

over 200 Yara signatures. We source our Yara signatures by

enumerating a set of IoT and router device vendors, crawl the

NVD [58], and identify Common Vulnerability and Exposure

(CVE) entries that have public proof-of-concept (PoC) code.

We then manually build and verify each Yara signature. For

each matched Yara signature, we verify that (1) the offset

matches the signature inside the binary and (2) the binary

offset is referenced by the code section.

Dynamic Analysis. We build architecture-specific virtual

machines that execute each sample and collect their system

call and network traffic, which we call full-system analysis.

We run each sample for 60 seconds and collect system call

traces using strace and network traces. Further, we use a

binary emulator that emulates the instructions and system

calls of an ELF file to generate system call traces, referenced

as Zelos [59] in Figure 2. The run time of a sample influences

the observed behavior as documented in prior works [60].

To account for this limitation, we measure trace divergence

between full-system and binary emulation. Binary emulation

allows us to skip over sleep system calls and fast forward

the execution of malware hence revealing possible hidden

behavior. Additionally, we use publicly available source code

from various IoT malware found online [61] and match them

with the execution traces and function symbols to identify

capabilities.

We empirically found full-system emulation traces to

match 85% of binary emulation traces for ARM. The remain-

ing 15% could not be compared due to application binary

interface (ABI) mismatch during full-system analysis or fail-

ure to run in binary emulation (missing required libraries or

incompatible architecture version). Furthermore, we found

that before 30 seconds of full-system emulation about 95%

of malware will engage in network system calls that either

block or loop infinitely. Hence, we chose 60 seconds to bal-

ance between analysis quality and performance. We count

successfully executed samples by two metrics, namely sys-

tem artifacts and network artifacts. For system artifacts we

consider a malware to be active if it creates three or more

processes in the VM or if it invokes 100 or more system calls.

These parameters were conservatively chosen by examin-

ing diverging traces from full-system and binary emulation.

For network artifacts, we collected network traffic from the

VM for 72 hours without executing any malware. We then

filter out any traffic that matches the baseline or bogon net-

works. We note that this is a modest attempt to build a dy-

namic malware analysis system for six different architectures

and we recognize the challenges that are documented by ear-

lier works [54], [55], [62]. Nevertheless, we report the results

in Table 3 and make our analysis tools public for the commu-

nity. Dynamic analysis allows us to study infection attempts,

persistence methods, exercised capabilities, and C&C com-

munication. We use these findings to empirically document

them in the lifecycle framework and compare them to desktop

and mobile malware.

Infrastructure Analysis. We use a three-tiered process to



filter and identify C&C indicators. First, we use Tranco [53]

top sites to enumerate a list of benign domains. We count the

most referenced domains and filter them using the top site

list. Second, we manually inspect the new list to remove the

remaining benign domains. Third, we build a bipartite graph

between domains and IPs to find connected components and

filter out additional benign clusters [56]. After removing all

the benign indicators, we use historical pDNS and aDNS to

expand on the malicious indicators to find common infras-

tructure. For IP addresses, we look into pDNS and aDNS to

identify associated domains. We repeat our method on the

newly identified domains and IPs until we remove all benign

nodes. We verify each node manually.

4 Measurement Results

Using the proposed lifecycle framework, this section presents

the results from our empirical measurements and observations.

We summarize the results for each subsection by takeaways

(TA) to help answer our research questions (RQ1 and RQ2).

Measurement Setup. We filter our dataset from 166,772 to

138,329 samples that are detected by five or more AV engines.

We then analyze each sample statically and dynamically to

group the results by architecture as shown in Figure 2. We use

binutils, Yara, Ghidra, and hexdump to identify the target ar-

chitecture, library linking, symbols, packing, and anti-analysis

artifacts. For packed samples, we attempt to unpack them us-

ing UPX [63]. For dynamic analysis, we use Buildroot [64]

and QEMU [65] for full-system analysis and Zelos [59] for

binary emulation. We build our full-system virtual machines

(VM) by using the results from static analysis to identify

a common set of required libraries to include in the VMs.

However, we were not able to build a VM for M68K archi-

tecture due to legacy code incompatibility, therefore, we only

considered the M68K samples for static analysis.

Table 3 summarizes our analysis results by architecture.

The VT metadata has two main columns, namely detection

and honeypot. Detection refers to the number of samples

that are detected by five or more AV engines and honeypot

refers to the number of samples seen by the VT honeypot.

The static analysis section has three columns, namely library

linking, anti-analysis, and polymorphic. The library linking

column presents the number of static and dynamic linked

samples, the anti-analysis column presents the number of

samples that break static analysis tools, and the polymorphic

column presents the number of packed samples and how many

were unpacked. Lastly, the dynamic section has two columns,

namely system and network. The system column reports the

number of samples that create three or more processes or

invoke at least 100 system calls. For the network, we report the

number of samples with DNS and outbound internet traffic.
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Figure 3: A CDF graph showing the number of AV detection

per RISC architectures considered for the IoT malware study

and a horizontal dotted line at value of five AV engines.

4.1 Detection and Labeling

In Table 4, we present the top 10 AV labels grouped by system

architectures. We use AV engines hosted by VT, which are

reported to have better detection coverage than their desktop

versions [50]. However, Figure 3 suggests that traditional

AV engines lack support and detection for IoT malware. VT

hosts over 70 AV engines, but only 55 support ELF files.

We observe 50% of the malware is detected by less than

25 AV engines and at most by 45 AV engines as shown in

Figure 3. Furthermore, AV engines appear to detect ARM

malware with better coverage, over 25% of the ARM samples

are detected by at least 2 AV engines. AV engines provide AV

label coverage for at least 97% of the detected malware.

We observe that the mirai label dominates in all system

architectures and accounts for 76% of the PPC samples. The

next most popular label is gafgyt. The ARM samples have

more diverse labels in comparison with the others. For exam-

ple, the label lotoor and dvmap are only found in the ARM

dataset. Some labels are exclusive to a set of architectures

like hajime. Herwig et al. [2] report that Hajime malware is

only built for ARM, MIPS, and MIPS-EL, which is aligned

with our findings. The inconsistencies in AV detection and

labeling are also reported in prior studies [66], [67].

TA1. Given that no host-based intrusion detection systems

(HIDS) run on IoT devices, detecting malware after an infec-

tion is not possible. However, signature-based scanners can

detect suspicious binaries forensically captured from the net-

work or the device. Our findings suggest that many AV scan-

ners lack support or have limited signature coverage (mostly

mirai labels) for IoT malware in the wild.

4.2 Infection Analysis

We observe that IoT malware use remote exploitation and

default credentials to infect devices. We present a timeline

in Figure 4 that shows the incorporation of exploits in IoT

malware based on reports from researchers. The timeline

begins right after the Mirai source code became public and

extends to the end of the malware collection period (Dec.

2019). We find nine categories of devices across 70 different

exploits [68]–[84]. We observe that the number of exploits



Table 3: An overview of the dataset statistics for the metadata analysis, static analysis, and dynamic analysis by architecture.

Arch.
Dataset

Size

VT Metadata Static Analysis Dynamic Analysis

Detection

(5+)

Honeypot Library Linking Anti-

Analysis

Polymorphic
System

Network

Coverage Static Dynamic Packed Unpacked DNS Outbound

ARM 81,152 57,484 25,406 50,117 4,797 2,570 11,464 9,124 36,660 2,939 42,765

MIPS 19,574 17,675 7,769 17,258 94 323 2,812 2,566 14,536 1,271 13,070

MIPS-EL 15,906 14,757 6,052 14,372 71 314 2,517 2,351 13,481 1,178 12,077

PPC 15,648 14,909 6,393 14,604 74 231 4,232 2,468 13,536 756 12,580

SPARC 11,650 11,218 5,197 10,904 31 283 7 0 10,344 729 9,181

SH4 11,587 11,303 6,667 11,038 67 198 6 0 9,619 414 10,772

M68K 11,255 10,983 6,578 9,420 1,342 221 7 0 - - - - - -

Total 166,772 138,329 64,062 127,713 6,476 4,140 21,045 16,509 98,176 7,287 100,445

Table 4: Top AV labels given to the collected samples by VirusTotal and AVClass.

ARM MIPS PPC SPARC SH4

Label Count Label Count Label Count Label Count Label Count

mirai 37,505 (65.244%) mirai 22,602 (66.61%) mirai 11,350 (76.12%) mirai 8,305 (74.03%) mirai 8,030 (71.04%)

gafgyt 15,468 (26.91%) gafgyt 8,290 (25.56%) gafgyt 3,336 (22.36%) gafgyt 2,810 (25.04%) gafgyt 3,101 (27.44%)

NOLABEL 1,117 (1.9%) hajime 1,181 (3.64%) tsunami 149 (1.00%) tsunami 62 (0.55%) tsunami 114 (1.01%)

dofloo 893 (1.55%) NOLABEL 729 (2.24%) NOLABEL 62 (0.42%) NOLABEL 33 (0.29%) NOLABEL 51 (0.45%)

dvmap 716 (1.25%) tsunami 418 (1.29%) mirai-dl 2 wanuk 1 bricker 3

tsunami 544 (0.95%) dofloo 91 (0.28%) sshdkit 1 telnetd 1 mirai-dl 2

hajime 531 (0.92%) ddostf 50 (0.15%) linksys 1 sshdkit 1 aidra 1

ddostf 264 dnsamp 14 hydra 1 solaris 1 - -

lotoor 260 aircrack 7 hive 1 snamp 1 - -

dnsamp 28 bricker 5 healerbot 1 silex 1 - -

Table 5: Summary of the top device categories and top vul-

nerabilities within each category targeted by IoT malware.

Category Type Scans Top Vuln. in Category Scans (%)

CCTV 221,340 GoAhead login.cgi 221,340 (100)

Modem/Router 102,690 Linksys 26,239 (25.55)

DVR/NVR 40,998 Kguard DVR 24,069 (58.71)

Enterprise 18,277 Yealink VOIP 11,958 (65.43)

Smart Home 8,806 Google Chromecast 8,422 (95.64))

Web App 6,133 Apache Struts 2 6,094 (99.36)

IP Cam/Media 1,458 WIFICAM Generic 661 (45.34)

NAS 565 QNAP 565 (100)

ICS 11 Schneider U.Motion 11 (100)

increases significantly in 2019, which target new categories of

devices not seen before such as enterprise network equipment,

industrial control systems (ICS), network attached storage

(NAS), and smart home devices.

Moreover, in Table 5 we present results from the Bad Pack-

ets LLC [52] honeypot. The table shows a list of device cate-

gories targeted by IoT malware in June 2019 ranked by the

number of observed scans. We present the top vulnerability in

each category to the right and quantify the composition of the

scans per category. For example, the Kguard DVR vulnerabil-

ity makes up 58.71% of the scans in the DVR/NVR category.

We present our empirical findings in Table 6. The table shows

the vendor of the target device, CVE number, device type,

vulnerability type, device architecture, malware labels, and

the number of samples containing the exploit.

First, we observe that the exploits affect internet-facing

devices and devices behind the NAT. For example, routers

and firewalls are typically internet-facing while smart home

devices such as hubs should be behind a NAT device. Second,

we observe that most of the vulnerability types affect network

services by command injection, credential leak, or default

credentials. Third, the affected device architectures are mostly

ARM and MIPS, nevertheless, IoT malware appears to be

architecture agnostic. Finally, we observe that certain malware

families, such as minerd, xmrig, intercepter, and stealthworker

target specific devices like the Synology NAS, which suggests

that some IoT malware specializes in device targeting.

TA2. Early IoT malware (see Section 2) relied on default

credentials or a specific vulnerability to compromise internet-

facing IoT devices. Our findings suggest that IoT malware

has evolved to rely on a suite of exploits that target many

diverse device categories not seen before, which can be either

internet-facing or behind a NAT device.

TA3. Given most IoT devices are headless, lack a graphi-

cal user interface (GUI) or peripheral devices, all observed

exploits do not require user interaction. This IoT device prop-

erty allows malware to efficiently infect many devices very

quickly. Additionally, the architecture agnostic nature of IoT

malware may potentially make them more of a threat than

earlier desktop worms.
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Figure 4: A timeline of exploits for nine device types found in Mirai variants as reported by the security researchers.

Table 6: Categorization of exploits in use by IoT malware. The vast majority of exploits target internet-facing devices via

command injection (CMD Inject). There are exceptions such as media devices, hubs, and smart home devices.

Vendor CVE Dev. Type Vuln. Type Dev. Arch. AV Labels ARM MIPS PPC SPARC SH4 M68K

Huawei CVE-2017-17215 Router CMD Inject MIPS
gafgyt, ircbot,

mirai, tsunami
10,046 5,527 2,604 2,352 2,277 2,226

ZTE - - Router Default Cred MIPS
dlink, exploitscan,

gafgyt, mirai, tsunami
3,190 2,038 912 728 735 724

D-Link CVE-2014-8361 Router CMD Inject MIPS gafgyt, mirai, tsunami 2,378 1,436 656 534 530 534

GPON CVE-2018-10562 Router CMD Inject Unknown gafgyt, mirai, tsunami 2,016 1,245 539 448 443 435

Zyxel CVE-2016-10372 Modem CMD Inject MIPS gafgyt, mirai, tsunami 531 356 129 117 132 132

Juniper CVE-2015-7756 Firewall Backdoor ARM gafgyt, mirai 413 256 115 95 77 82

Multi-Vendor - - DVR CMD Inject ARM gafgyt, mirai, tsunami 326 229 74 56 68 70

D-Link CVE-2013-7471 Router CMD Inject MIPS gafgyt, mirai, tsunami 317 205 79 62 71 71

Synology CVE-2017-9554 NAS Info Leak Various
gafgyt, intercepter, minerd

mirai, stealthworker, xmrig
289 145 49 31 34 31

Zyxel CVE-2017-18368 Router CMD Inject MIPS gafgyt, mirai 191 105 48 41 43 38

Asus CVE-2018-15887 Modem CMD Inject MIPS gafgyt, mirai 166 92 40 42 53 50

NETGEAR - - NAS CMD Inject ARM mirai 112 87 25 21 26 24

HooToo CVE-2018-20841 Router CMD Inject MIPS gafgyt, mirai, tsunami 112 60 28 17 22 22

WePresent - - Router CMD Inject MIPS mirai 98 58 24 21 25 23

LG CVE-2018-17173 Display CMD Inject ARM mirai 98 58 24 21 25 23

Vera CVE-2013-4861 Hub Info Leak MIPS mirai 92 52 21 18 21 20

Belkin - - Smart Home CMD Inject MIPS mirai 88 50 20 17 20 19

Multi-Vendor - - Camera CMD Inject MIPS mirai 85 48 20 17 20 19

Multi-Vendor CVE-2017-8225 Camera Info Leak MIPS mirai 85 48 20 17 20 19

DreamBox CVE-2017-14135 Media CMD Inject PowerPC mirai 85 48 20 17 20 19

Multi-Vendor CVE-2019-3929 Router CMD Inject MIPS mirai 85 48 20 17 20 19

Oracle CVE-2019-2725 Web App CMD Inject x86_64 mirai 85 48 20 17 20 19

Schneider-Electric CVE-2018-7841 Industrial/Home CMD Inject x86 mirai 85 48 20 17 20 19

Linksys - - Router Mem Corrupt MIPS mirai 83 50 20 19 21 20

EnGenius - - Router CMD Inject MIPS mirai 68 64 13 12 14 13

4.3 Payload Analysis

We observe that IoT malware payloads use packing, environ-

ment keying, scripting, and cross-architecture binaries. Ta-

ble 3 shows that at least 15% of the malware use packing,

and we were able to unpack 78% of the packed samples. The

remaining samples used anti-analysis tricks that broke the

standard unpacker. We observe in dynamic analysis that IoT

malware payloads use environment keying before executing.

For example, we see payloads profiling the device name, CPU,

and memory to check for the right environment.

We found a set of payloads that rely on script interpreters

like Python and Lua for functionality. However, most payloads

use the system shell for system reconnaissance and persis-

tence. For example, various binaries invoke shell commands

like uname, whoami, lsof, crontab, and os-release to collect

information about the device. We observe on exploitation

that multi-architecture payloads are delivered to the device to

brute force the target system architecture. For example, if the

malware cannot identify the device’s architecture, they test

many variants of the payload for different architectures such

as ARM, MIPS, PowerPC, SPARC, SH4, and M68K.

TA4. Our analysis suggests IoT malware uses polymorphism

to evade signature-based detection. We estimate at least 15%

of the samples use packing and 3.3% use a more advanced

anti-analysis method to thwart unpacking. Also, the analysis

suggests that the device’s system shell interface is a primary

component for payload selection and infection.

4.4 Persistence Analysis

Before presenting the results, it is important to understand how

embedded devices configure their file systems. First, most

embedded devices mount their rootfs (file system) as read-



Table 7: List of observed scanning and exploit attempts from

dynamic analysis

Protocol Port Number Attack Type

Telnet 23, 2323 Dictionary Attack

ADB 5555 Android Debug Bridge Shell

HTTP
5555, 55555, 52869, 37215,

7547, 8080, 8081, 443, 80, 81
Command Injection

only (RO). This reduces wear on flash memory, eliminates

system file corruption, avoids accidental overwrites, facilitates

device update over-the-air (OTA), and eases factory reset.

Still, there are processes on the device that need write-access

for passwords, configurations, and keys. Embedded devices

designate a non-volatile data region and a volatile temporary

file system region on the flash memory. The data region is

used by processes and services to store their configurations.

Malware have to consider these file system constraints to

persist on the device.

We observe in dynamic analysis that IoT malware attempt

to persist on the device’s firmware. We must clarify that

firmware refers to the IoT device’s OS, which is a customized

embedded Linux instance (unified layer, see Table 1). In many

IoT devices, services run as root, which means if exploited

by malware then they will gain root access on the device.

We observe that IoT malware use many persistent methods

by installing themselves as either a service, a startup script,

a system module, or a backdoor. Some samples attempt to

remount the file system with read-write permissions to persist

on the rootfs. For example, using the command mount -o re-

mount, malware can remount the file system with read-write

permissions. In several instances, we observe malware using

vendor-specific tools such as /bin/cfgmtd that target Ubiquiti

devices to add an SSH backdoor.

Even with volatile memory regions, we observe IoT mal-

ware using tmpfs paths to persist. On system reboot, the tmpfs

paths will be wiped, which will remove the IoT malware.

However, to prolong the infection, we notice that IoT mal-

ware will disable the watchdog process on devices. A watch-

dog process on an embedded device is a privileged process

that mitigates software faults by forcing a device to reboot

into a clean state. If malware causes the system to become

unstable, the watchdog process will reboot the device and

consequently remove the malware. For example, IoT mal-

ware will disable the watchdog process by writing the "Magic

Close" to /dev/FTWDT101_watchdog, /dev/misc/watchdog,

or /dev/watchdog.

TA5. The results suggest forensic identification of infections

on a device may be difficult because malware can persist in

many locations. Although IoT devices mount their file system

as read-only, there appears to be many methods to overcome

this limitation, which can worsen infection cleanup.

4.5 Capability Analysis

Initial variants of IoT malware discussed in Section 2 focused

on DDoS and scanning capabilities. Our analysis shows an

expanded set of capabilities found in modern IoT malware.

Using dynamic analysis, we observe aggressive evasion by

disabling firewall processes, access control modules, ISP re-

mote administration, unblocking restricted domains, deleting

access logs, history logs, service access logs, and modifying

timestamps on files. Moreover, we observe privilege escala-

tion attempts targeting the Android Runtime environment. We

also observe data theft attempts that look for Sybase database

files, collect device profiles, harvest device configurations,

and enumerate system files. Perhaps the most prevalent ca-

pabilities are network scanning and spreading. Table 7 is a

summary of the observed scanning and exploitation attempts,

which includes a subset of the vulnerabilities found in Table 6.

We do not observe direct DDoS attacks, but through static

analysis, we find DDoS capabilities in the malware. We iden-

tify a set of DDoS attack functions using function symbols in

the analyzed samples and match them with public malware

source code. Table 8 presents a list of the DDoS functions

found in IoT malware.

Table 8: List of DDoS attacks found through static analysis

by correlating function symbol names and public malware

source code.

DDoS Type Function Symbol Name

TCP

attack_tcp_syn, attack_tcp_ack,

attack_tcp_stomp, attack_method_tcp,

attack_tcp_ysynack, attack_tcp_nfo,

attack_method_tcpfrag, attack_method_tcpall,

attack_method_tcpusyn, attack_method_asyn,

attack_tcp_lynx, attack_method_tcpxma

UDP

attack_udp_generic, attack_udp_vse,

attack_udp_dns, attack_udp_plain,

attack_method_udpgame

GRE attack_gre_ip, attack_gre_eth

APP
attack_app_http, attack_method_ovh

attack_method_miscdestruct, attack_app_cfnull

GENERIC
attack_method_std, attack_method_generic,

attack_method_misckill

In addition to these capabilities, we observe from dynamic

analysis device destruction attempts by IoT malware. Mal-

ware will try to delete the root directory of the file system,

dbus devices, zero out MMC memory, remove configured de-

vices on general purpose IO pins, and delete the Linux device

table. Lastly, we observe IoT malware abuse device resources

for cryptocurrency mining and proxy services. Malware will

download open-source miners such as cgminer and attempt

to lock out the device owner by removing restore tools, dis-

abling device upgrade, and hardcoding an IP address to a

specific mining pool server. We also observe attempts to set



up a proxy service that configures network traffic forwarding

on high ports (i.e. 44781 and 57775).

TA6. Infected devices can degrade or damage IoT services

not only for device owners but also for network operators and

device vendors. Additionally, they can facilitate criminal ac-

tivities by tunneling malicious traffic through infected devices

or eavesdropping on local network traffic.

4.6 C&C Analysis

We observe from dynamic and static analysis that IoT mal-

ware can use P2P and centralized infrastructure for C&C

communication. For example, Hajime [2] uses the Kademlia

overlay network, which is a P2P protocol. We also observe

some malware using the Tor network either for C&C call-

back or for connecting to a cryptocurrency mining pool. For

centralized infrastructure, we find that IoT malware rely on

hard-coded IPs rather than domains, as shown in Table 3. We

only observe 7K samples with DNS lookups, which accounts

for less than 7% of the network active samples. From network

traces, we gather 306 unique domains and 10,895 IPs, which

have a very small overlap. This reinforces that IoT malware

rely mostly on hard-coded IP addresses for C&C call-back.

Lastly, we observe that some IoT malware attempt to hide

their DNS IP address resolution by using DNS TXT records.

We investigate the domains and IP addresses using the

pDNS dataset. Table 9 presents the top six malware families

based on the infrastructure analysis described in Section 3.

We rank the rows by the number of unique client IDs found

in the pDNS dataset. The columns are as follows, Labels is

the AV family, Clients is the number of unique client IDs,

FQDN is the number of unique fully-qualified C&C domains,

IP is the number of unique C&C IPs, e2LD is the number of

effective second-level C&C domains, Days is the number of

distinct days the C&C was queried, Samples is the number

of malware, and Cluster is the number of C&C clusters per

family. We observe that the mirai samples are the most active

with 874 clients, 144 e2LD, 151 unique clusters, and 2,607

associated samples. The next largest is gafgyt, which shares

63 clusters with mirai. Also, Figure 5a and Figure 5b present

the malware activity as seen from pDNS. We observe that

the lookup volumes are sporadic throughout the year, then for

the period from November to January, there is an uptick in

lookup volume especially for the tsunami family.

Table 9: Top IoT malware labels ranked by client IDs.

Labels Clients FQDN IP e2LD Days Samples Cluster

mirai 874 229 369 144 269 2607 151

gafgyt 687 121 146 69 269 2727 73

chachaddos 300 2 7 2 253 2 1

hajime 156 4 3 3 265 2 3

NOLABEL 132 44 158 24 269 41 29

tsunami 112 41 48 18 268 263 34

TA7. Network detection of malware communication can

prove to be difficult with P2P channels and evasive DNS

resolutions. However, the use of hard-coded IP addresses

make IoT botnets less resilient to take downs. IoT malware

network activities can be difficult to measure on the internet

using DNS since very few samples rely on DNS.

5 In-Depth Case Studies

Motivated by our empirical results in Section 4, we take a

closer look at how IoT malware reuses Mirai’s code to provide

more insightful answers to our research questions.

5.1 Code Reuse and Evolution

Bugs in the Source. During our dynamic analysis, we no-

ticed a number of IoT malware samples failed to run in the

full-system emulation. Further investigation showed that the

samples would crash at the beginning of execution. These

samples had their function symbols stripped and only affected

the MIPS-EL and ARM architecture. We tracked down the is-

sue to a set of faulty compilers that are used in the build script

of the leaked Mirai code. These compilers were specifically

for ARMv6 and MIPS-EL architecture. To reproduce the bug,

we compiled a test program with the faulty compilers and ran

them, but they did not crash. However, when we passed the

“strip" flag to the compiler, the binaries crashed on execution.

This bug was found in over 8,000 ARM samples from our

dataset. Moreover, we reproduced this bug on real hardware

by running the test program on two physical devices, namely

a Raspberry Pi 3 (ARM) and a GLiNet 300M (MIPS) router.

The physical hardware exhibited the same behavior as our

full-system emulation.

Investigating additional malware samples that failed in the

dynamic analyzer, we found a set of traces that crash in the

middle of execution. We analyzed the crash files and found

that a segmentation fault is generated when the malware at-

tempts to hide its process name. A snippet of the code is

shown at the top of Figure 6 based on Mirai’s code. However,

other samples did not have this bug, which used a different

version of the code shown at bottom of Figure 6. The bug is

caused by a fixed length buffer used to store the process name,

which only supports a maximum of 20 bytes including the

path of the binary. The newer code fixes this issue by using a

variable-length buffer as shown in the lower portion on line

three of Figure 6.

TA8. Mirai’s original code has distinct bugs that transcend

into newer variants, but some samples fix them. Although this

evolution overall improves the stability of IoT malware, many

samples use Mirai’s code as a template, which can make them

easier to detect by signature-based techniques.

Corrupted DNS Resolutions. We found a large number of

malformed DNS packets from our dynamic analysis, which
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Figure 5: DNS measurement of domains for the top IoT malware family clusters as seen from our pDNS dataset.

1 // Hide argv0 - Fixed Length Name (Bug)

2 name_buf_len = ((rand_next() % 4) + 3) * 4;

3 rand_alphastr(name_buf, name_buf_len);

4 name_buf[name_buf_len] = 0;

5 util_strcpy(args[0], name_buf);

1 // Hide argv0 - Variable Length Name

2 name_buf_len = (rand_next() % (20 -

util_strlen(args[0]))) + util_strlen(args[0]);

3 rand_alphastr(name_buf, name_buf_len);

4 name_buf[name_buf_len] = 0;

5 util_strcpy(args[0], name_buf);

Figure 6: Original Mirai’s buggy code (top) and evolved fixed

code (bottom).

we initially assumed to be a misconfiguration in our analyzer.

We came across a set of samples that attempt to resolve a

domain but created malformed DNS packets. These samples

had very similar system traces to the original Mirai code. We

investigated Mirai’s code and found an initialization bug that

causes DNS queries to be malformed. Specifically, the code

does not initialize the buffer where the DNS query is stored,

which can contain random bytes from the device’s memory as

padding. We found this bug to affect all Mirai variants [61] in

our study, and it appears to contribute to IoT malware reliance

on IPs instead of DNS for C&C call-back.

TA9. Since DNS resolution is unreliable for samples seen

in the wild, this may explain the use of hard-coded IP ad-

dresses for C&C call-back. Furthermore, given the evolution-

ary trends observed in other components of Mirai’s code, a

fix for the DNS resolution function can make new variants

more resilient to detection, blocking, and mitigation.

5.2 Payload Hosting

Having identified the DNS bug in the Mirai code, we wanted

to understand how some samples used domains. We study the

lifecycle of two different IoT malware C&C infrastructure,

specifically, we pick iwantallthesmoke.club and str3sser.com

from the top clusters identified from Section 4.6. We manually

investigate these domains using DomainTools and VT.

Str3sser Domain. The str3sser.com domain was registered

by Namecheap on 2018-06-29 and was inactive for almost

six months. On 2018-12-27, the domain records changed

to point to Cloudflare. There were two A (104.27.181.96

and 104.27.181.96) and two NS records (liz.ns.cloudflare.com

and jobs.ns.cloudflare.com) created. We speculate that these

records were for initial testing before going live because of the

low DNS lookup volume (average 16 lookups). After 79 days,

the domain’s A (35.241.225.135 and 35.205.247.152) and

NS records (dns1.registrar-servers.com and dns2.registrar-

servers.com) change to point to Google cloud.

Approximately 50 minutes later, based on pDNS first seen

resolution, the domain is detected and reported to URLHaus.

The domain remained active based on a screenshot captured

nine days later but after 14 days the A records changed to a

residential IP address (72.5.65.111). Finally, after two days,

the owner created five child labels (cuteguyss, est1976, ap-

neager, chivethethrottle, and aq) pointing to OpenDNS infras-

tructure (146.112.61.107) before the domain went offline.

We base the shutdown evidence on the abrupt change in

pDNS lookups from hundreds a day (average 350 lookups)

to zero. The domain remained dormant with no lookups seen

by pDNS sensors until it expired. The domain was used for

hosting the IoT malware payload, which is downloaded after

exploitation. The malware sample associated with this do-

main checks-in with the C&C server using the hard-coded IP

address 35.242.254.121 on port TCP/443 (not TLS). In this

case, the payload domain operated for approximately 16 days.

IWantAllTheSmoke domain. The iwantallthesmoke.club

domain was registered by Namecheap on 2019-01-10. A day



later, one A record (185.141.24.211) is added to point to a

virtual private server (VPS) (Host Sailor Ltd.). Two days later,

a screenshot of the domain’s front page reads “me nah wan

go jail." On day three, 11 lookups are seen by pDNS and the

domain goes dormant with no activity for five days. Then, on

2019-01-21 the domain updated the A record (89.46.223.195)

to point to another VPS (Zare.com). Approximately 50 min-

utes later, the domain is reported to URLHaus. The domain’s

DNS lookups increased to an average of 10 lookups per day,

but three days later the lookups stopped. On the seventh day,

the domain was no longer available and only operated for six

days before going offline.

However, this domain is one of five domains associated

with the payload hosting server. Using pDNS data, we ob-

served four additional domains that were used throughout the

year (Jan’19 to Jul’19) pointing to IP address 89.46.223.195

and hosting similar payloads, suggesting a rotation of pay-

load domains. The malware sample checks-in with the C&C

server using the same IP address on port TCP/9285, but in-

stead of resolving any of the five domains the sample uses

the hard-coded IP address. The domains are only used in

the initial exploitation followed by payload download. These

observations suggest that malware using domains for pay-

load download rely on the device’s DNS resolution instead

of Mirai’s code. Recall, many of the exploits in Section 4.2

rely on the device’s system shell to download and run the

payload, hence the DNS resolution is done by the device, not

the malware code.

TA10. IoT malware uses domains for payload hosting and

rarely for C&C call-back. Although payload hosting domains

are short-lived (i.e. six and 15 days), their lifespan is sufficient

for IoT malware operation because the malware can efficiently

infect many devices. This suggests that domain takedowns

only affect malware spreading but not the botnet itself.

6 Summary and Discussion

Recall, RQ1 seeks to identify the similarities and differences

between desktop, mobile, and IoT malware, while RQ2 seeks

to qualitatively assess current defensive techniques against

IoT malware.

6.1 RQ1: Similarities and Differences

First, we observe that the majority of IoT malware is based

on Mirai’s code. This is vastly different from traditional desk-

top and mobile malware, where there are hundreds if not

thousands of desktop and mobile malware families. This ob-

servation suggests that offline IoT malware detection (TA1)

may be relatively easier than traditional malware because a

large majority of samples in the wild stem from a shared code

base. However, similar to traditional malware, polymorphism

and anti-analysis (TA1) found in IoT malware can be effec-

tive in evading signature-based detection. Although we only

observe 3.3% of the samples to use anti-analysis methods, we

can only claim a lower bound.

The infection analysis (TA2 and TA3) suggests that IoT

malware can be a bigger threat than traditional malware. For

example, desktop malware has more categories of infection

(drive-by, phishing, etc.), however, remote exploitation and

default credentials for IoT malware apply to a larger set of

architecture-agnostic internet-facing devices. Furthermore,

we predict as IoT devices advance, repackaging, drive-by,

phishing, and removable media will all be practical infection

vectors that IoT malware may abuse. The payload analysis

results (TA4) show that IoT malware has already incorpo-

rated advanced polymorphic and anti-analysis tactics, which

suggests that we may see a wide adoption in the near future

similar to desktop and mobile malware. One difference from

traditional malware, which can be used against IoT malware,

is the reliance on the device’s system shell, which can be

disabled or limited (i.e. seccomp).

Persistent analysis (TA5) shows that IoT malware has to

deal with file system constraints not found on desktop or mo-

bile systems. Yet, the unification of user-space, kernel-space,

and firmware removes layered protections found in traditional

platforms, which can allow IoT malware to have privileged

access to the device’s hardware. This suggests that although

current persistent methods are limited, direct access to a de-

vice’s hardware can enable stealthier persistence tactics that

may require device replacement to remediate. The capabil-

ity results (TA6) present a spectrum of abuse that can range

from infecting devices by scanning and exploitation to more

sophisticated such as information theft and network traffic

hijacking. The results in Table 6 show that some IoT malware

families target specific devices, which suggests that we may

see more tailored IoT device targeting based on the malware’s

capabilities (rise of specialization). This is analogous to desk-

top malware that specializes in financial crime, ransomware,

and credential theft, for example.

Furthermore, IoT malware C&C communication results

(TA7) show a mix of P2P and centralized control infrastruc-

ture. Based on the abrupt IoT botnet activity observed on ISP

networks, botnet operators may shift to implement a simi-

lar layered C&C communication approach to the Storm bot-

net [42] to achieve scalability, stability, and resilience. How-

ever, IoT malware reliance on Mirai’s code may have hin-

dered its potential due to inherited bugs (TA8 and TA9). This

is further evident by the fact that IoT malware operators use

DNS mostly for payload hosting (TA10). It appears based on

the infrastructure analysis in Section 5, IoT malware opera-

tors have adapted to register multiple domains for payload

hosting. Since IoT malware uses a very noisy internet-wide

scanning and infection approach, the payload domains are

quickly detected and blocked. On the other hand, it seems

that short-lived payload domains provide sufficient time for

the botnet to spread (TA10).



6.2 RQ2: Stakeholders and Defenses

We identify three primary stakeholders, namely device own-

ers, device vendors, and ISP operators.

Device Owners. Device owners have limited options for de-

tecting and removing IoT malware infections. Device owners,

whenever possible, should disable internet-facing services,

change default credentials, and segment their network to miti-

gate some of the risk of infection. Most device owners would

reboot their device if it becomes unresponsive or the quality

of service degrades, which is also applicable to IoT malware

infections. Although most IoT malware may be cleaned up

with a simple reboot, we have observed several instances of

IoT malware using more persistent methods (TA5). Moreover,

re-imaging the device with a trusted firmware may not be

possible, is technically difficult, or can damage the device.

We believe the impact of this problem is much more serious

than reported in prior work [41]. Specifically, we speculate

that the current reinfection rates are much higher than what

was measured in 2017/2018 (only 5%).

Device Vendors. Device vendors have end-to-end visibility

that can provide early detection and remediation of IoT mal-

ware infections. For example, device telemetry can help detect

system anomalies, device firmware can limit system shell in-

teraction, containerization can limit cross-process interaction,

process whitelisting can allow only trusted processes to run,

remote attestation via trusted execution can guarantee a clean

state, and client-server design can limit the exposed services

on the network, therefore reducing the attack surface. These

approaches may not all be cost-effective for vendors, but some

features can be implemented as default protections for embed-

ded Linux to boost the overall security of Linux-based IoT

devices. Moreover, as vendors innovate in the IoT space, they

must be mindful of future attack surfaces. For example, future

IoT devices may incorporate more human interactions, which

can inherit all the attacks from traditional malware such as

phishing, drive-by download, and application repackaging.

More precisely, incorporating a browser in an IoT device al-

lows IoT malware to reuse attack tactics that are found in

traditional malware.

ISP Operators. ISP operators can play an important role in

IoT malware infection cleanup as documented by Çetin et

al. [41]. Besides using a walled garden for infected customers,

ISPs can hinder the infection by deploying IP blocking and

redirection for known IoT C&C or payload hosting servers.

A more active approach would be for ISPs to intercept pay-

load delivery or C&C communication and instead deliver a

therapeutic payload that cleans up and disables vulnerable

services transparently without the user involvement. However,

this approach requires careful planning and engineering to

scale to large networks. Current defenses at the ISP level can

disrupt IoT malware infection breakouts, but this requires

close monitoring and measurements to detect such events.

7 Conclusion

This work provides a large-scale empirical measurement of

the current IoT malware threat landscape. By analyzing over

166K Linux-based IoT malware, we uncovered important

insights that compare and contrast traditional desktop and

mobile malware to IoT malware. We find that IoT malware

evolution follows a similar lifecycle trend to traditional mal-

ware by using exploits for infection, packing its payload to

avoid detection, using specialized capabilities based on device

resources, and leveraging P2P and centralized infrastructure

for C&C call-back. We speculate that IoT malware will be

a much more serious threat because of the number of new

IoT devices that come online and the unrealized potential of

IoT malware development. Based on our findings, we believe

that the required technology to defend against IoT malware is

available. However, we do not think there are sufficient prepa-

ration efforts to proactively deal with a large-scale breakout.

In effort to support this ongoing research in the IoT malware

space, we release the largest IoT malware corpora to date

and make our tools, analysis artifacts, and results available at:

https://badthings.info.

8 Acknowledgment

We thank the anonymous reviewers for their help in improv-

ing this work. We thank Bad Packets LLC for sharing their

data. This work is supported in part by the US Department

of Defense grant no. FA8750-17-C-0016. Any opinions, find-

ings, and conclusions or recommendations expressed in this

material are those of the authors and do not necessarily reflect

the views of the U.S. Department of Defense (DoD).

References

[1] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein, J. Cochran, Z.

Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis, D. Kumar, C. Lever,

Z. Ma, J. Mason, D. Menscher, C. Seaman, N. Sullivan, K. Thomas, and Y.

Zhou, “Understanding the mirai botnet,” in Proceedings of the 26th USENIX

Security Symposium (Security), Vancouver, BC, Canada, Aug. 2017.

[2] S. Herwig, K. Harvey, G. Hughey, R. Roberts, and D. Levin, “Measurement

and analysis of hajime, a peer-to-peer iot botnet,” in Proceedings of the 2019

Annual Network and Distributed System Security Symposium (NDSS), San

Diego, CA, 2019.

[3] J. Choi, A. Anwar, H. Alasmary, J. Spaulding, D. Nyang, and A. Mohaisen,

“Iot malware ecosystem in the wild: A glimpse into analysis and exposures,”

in Proceedings of the 4th ACM/IEEE Symposium on Edge Computing, 2019.

[4] J. Choi, A. Abusnaina, A. Anwar, A. Wang, S. Chen, D. Nyang, and A. Mo-

haisen, “Honor among thieves: Towards understanding the dynamics and in-

terdependencies in iot botnets,” in 2019 IEEE Conference on Dependable and

Secure Computing (DSC), 2019.

[5] P.-A. Vervier and Y. Shen, “Before toasters rise up: A view into the emerg-

ing iot threat landscape,” in Proceedings of the 21st International Symposium

on Research in Attacks, Intrusions and Defenses (RAID), Crete, Greece, Sep.

2018.

[6] H. Alasmary, A. Khormali, A. Anwar, J. Park, J. Choi, A. Abusnaina, A.

Awad, D. Nyang, and A. Mohaisen, “Analyzing and detecting emerging in-

ternet of things malware: A graph-based approach,” IEEE Internet of Things

Journal, 2019.

https://badthings.info


[7] H. Alasmary, A. Anwar, J. Park, J. Choi, D. Nyang, and A. Mohaisen, “Graph-

based comparison of iot and android malware,” in International Conference

on Computational Social Networks, 2018.

[8] A. Anwar, H. Alasmary, J. Park, A. Wang, S. Chen, and D. Mohaisen, “Stat-

ically dissecting internet of things malware: Analysis, characterization, and

detection,” in International Conference on Information and Communications

Security, 2020.

[9] The MITRE Corporation, MITRE ATT&CK, https://attack.mitre.org/,

Online; accessed 25 January 2020.

[10] F. Dang, Z. Li, Y. Liu, E. Zhai, Q. A. Chen, T. Xu, Y. Chen, and J. Yang, “Un-

derstanding fileless attacks on linux-based iot devices with honeycloud,” in

Proceedings of the 17th Annual International Conference on Mobile Systems,

Applications, and Services, 2019.

[11] M. De Donno, N. Dragoni, A. Giaretta, and A. Spognardi, “Ddos-capable iot

malwares: Comparative analysis and mirai investigation,” Security and Com-

munication Networks, 2018.

[12] IADMIN, Hydra IRC bot, the 25 minute overview of the kit, https://web.

archive.org/web/20190617034526/http://insecurety.net/hydra-

irc-bot-the-25-minute-overview-of-the-kit/, Online; accessed 25

January 2020, 2018.

[13] nenolod, Network Bluepill - stealth router-based botnet has been DDoSing

dronebl for the last couple of weeks, https://web.archive.org/web/

20191223213657/https://www.dronebl.org/blog/8, Online; accessed

25 January 2020, 2009.
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Appendices

A Detailed Comparative Analysis

This section provides an extended analysis of malware threats

for desktop and mobile platforms to compare with IoT mal-

ware. Table 10 summarizes our extended systematization of

25 prior studies on traditional malware.

A.1 Infection Comparison

Desktop Infection Vectors. In Table 10, we see desktop

malware pioneered many of the infection techniques. Moore

et al. [85] document the SQL Slammer worm that exploited

vulnerable SQL services on the internet. Although no large

academic study explored desktop malware use of repackag-

ing, default credentials, and removable media, there are ample

instances from security companies documenting these tech-

niques [104]–[106]. Desktop malware rely more on infection

vectors like drive-by download and phishing. Provos et al [93]

present an extensive study on drive-by downloads, and sev-

eral prior works measure [42], [93], [97], [100] and propose

defenses [94], [95], [99] for them.

For phishing, Abu Rajab et al. [87] present a multi-

dimensional measurement into botnets. Their work documents

how botnets leverage phishing emails for spreading. Holz et

al. [42] and Kotzias et al. [46] empirically show that phishing

is a common infection vector affecting desktop users. Desk-

top malware continued to evolve and make up a large portion

of the threats on the internet. The key insight is that desktop

malware initially used remote exploitation and default cre-

dentials to automatically spread but has evolved to depend on

user interaction. Currently, desktop malware’s most common

infection techniques require user interaction such as phish-

ing (email), drive-by download (browsing), removable media

(physical interaction), and repackaging (pirated software).

Mobile Infection Vectors. Similar to our study, Zhou et

al. [47] look at Android mobile malware and characterize the
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Table 10: A comparison between desktop, mobile, and IoT malware using the proposed framework.

Components Summary Desktop Mobile IoT

Categories D
es

k
to

p

M
o
b
il

e

Io
T

M
oo

re
03

[8
5]

K
ru

eg
05

[8
6]

A
bu

R
a0

6
[8

7]
B

ar
fo

07
[8

8]
A

bu
R

a0
7

[8
9]

D
ag

on
07

[9
0]

H
ol

z0
8

[4
5]

P
ol

yc
08

[9
1]

K
an

ic
08

[9
2]

H
ol

z0
8

[4
2]

P
ro

vo
08

[9
3]

S
to

ne
09

[9
4]

L
u1

0
[9

5]
C

ho
10

[9
6]

L
in

do
11

[6
0]

S
hi

n1
1

[9
7]

R
os

so
12

[9
8]

In
ve

r1
4

[9
9]

K
w

on
15

[1
00

]
G

an
an

15
[1

01
]

K
ot

zi
19

[4
6]

Z
ho

u1
2

[4
7]

L
ev

er
13

[1
02

]
L

in
do

14
[4

8]
T
am

17
[1

03
]

In
fe

ct
io

n

Remote Exploit ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

S
ec.

4
.2

Repackaging ✓* ✓ ✓

Drive-by ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Phishing ✓ ✓ ✓ ✓ ✓ ✓

Default Cred. ✓* ✓ ✓

Rem. Media ✓* ✓ ✓

P
a
y
lo

a
d Packing ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ S

ec.
4
.3

Env. Keying ✓ ✓ ✓ ✓ ✓ ✓

Scripting ✓* ✓ ✓

Cross-Arch/Plat. ✓* ✓ ✓ ✓ ✓

P
er

si
st

. Firmware ✓ ✓ ✓ ✓

S
ec.

4
.4

OS - Kernel ✓ ✓ + ✓ ✓ ✓ ✓

OS - User ✓ ✓ + ✓ ✓ ✓

C
a
p

a
b
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it

y

Priv. Escalation ✓ ✓ ✓ ✓ ✓ ✓

S
ec.

4
.5

Defense Evasion ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Info. Theft ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Scanning ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

DDoS ✓ ✓ ✓ ✓ ✓ ✓

Destruction ✓ ✓ ✓ ✓ ✓ ✓

Resource Abuse ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

C
&

C

Peer-2-Peer ✓ ✓ ✓ ✓ ✓ ✓ ✓

S
ec.

4
.6

Email/SMS ✓ ✓ ✓ ✓

Centralized ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

∗ Techniques documented by security companies. + Unified software layer that integrates OS and firmware.

infection techniques. Their work shows that many Android

malware use repackaging, drive-by download, and phishing to

propagate as shown in Table 10. Lindorfer et al. [48] identify

removable media propagation techniques in their large-scale

study. The key insight is that unlike desktop malware, mobile

malware is dependent on user interaction. Automated spread-

ing has not been documented for the mobile platform. While

worm-based malware for the Android platform do exist, they

require users to visit a link to get infected.

A.2 Payload Comparison

Desktop Payload Properties. In Table 10, we see that all

the payload categories apply to desktop malware. Kruegel et

al. [86] predicted the rise of polymorphic payloads and pro-

posed a way to detect them offline. Later, Barford et al. [88]

studied the operation of several desktop family bots, such as

GT bot, SpyBot, SDBot, and Agobot, and identified polymor-

phic payload obfuscation using XOR encoding. Moreover,

Holz et al. [42] show that the payloads for the Storm botnet

are polymorphic and change every minute, which ensures

the payload has different static features to evade detection.

Rossow et al. [98] studied downloaders, which are bots that

download other malware or unwanted programs. Their work

identified more than eight different packer techniques in use

by downloaders. These findings suggest that desktop malware

payloads have to adopt the use of polymorphism to success-

fully evade detection.

On the defense side, Invernizzi et al. [99] propose a tech-

nique to detect polymorphic payloads in large networks by

augmenting networking information such as URI and counts.

In addition to packing, environmental keying [60], [107] and

scripting [108] are key components for desktop malware to

bypass network and host defenses. For scripting, the payload

is in the form of a text file that is executed by an interpreter

such as Powershell, Python, Lua, or sh. Moreover, desktop

malware makes use of cross-architecture and platform pay-

loads for banking malware [48]. These observations suggest

that the packaging of cross-architecture and platform pay-

loads introduce a novel infection approach by crossing from

trusted devices such as mobile phones and desktops.

Mobile Payload Properties. Zhou et al. [47] observe poly-

morphic and environmental keying behavior in Android apps.

They identify malware samples that adopt the use of polymor-

phic techniques in the Android environment by using code

reflection. They also identify malware samples that check the

integrity of their code to ensure that the code is not tampered

with. Similar to desktop malware, Lindorfer et al [48] ob-

serve Android malware embedding Windows malware with

autorun features that execute once the phone is plugged into

a desktop. This advanced behavior leads to cross-architecture

and platform infection from trusted devices giving attackers

further reach. The key insight is that mobile malware use

the same techniques as desktop malware but have limited

script-based payloads. Script payloads for mobile devices can

be invoked from installed applications, WebView, or exposed

services like Android Debug Bridge (ADB), which requires

the malware to be already present on the device.



A.3 Persistence Comparison

Desktop Malware Persistence. Table 10 shows that desktop

malware use all levels of persistence. Provos et al. [93] and

Polychronakis et al. [91] identify bots that persist through user-

space and kernel modules, respectively. Additionally, Stone-

Gross et al. [94] document torpig’s botnet and the mebroot

infector, which both modify the Master Boot Record (MBR)

entry on a hard drive’s partition allowing them to run before

the OS. Desktop malware demonstrate the capability to persist

on machines at many levels from the user-space all the way

down to the firmware, which are outside the visibility of

security tools making them hard to detect and remove.

Mobile Malware Persistence. Mobile malware by default

installs and persists as a mobile app on devices unless re-

moved by users or security software. Mobile malware can

request background service permissions, subscribe to activ-

ities, and broadcast receivers giving it multiple entry points

for execution. Researchers [47], [48], [103] show that mobile

malware leverage all these entry points for persistence on

the Android platform. For example, if malware subscribes

to a broadcast receiver for SMS, the malware can execute a

specific code that reads the SMS content. The key insight

is that the event-driven nature of mobile applications pro-

vide a unique persistence method for malware. Detecting

event-driven methods is more challenging because it requires

anti-malware tools to know the triggering event ahead of time,

which can be difficult when the malware is obfuscated.

A.4 Capability Comparison

Desktop Malware Capability. In Table 10 we find that

desktop malware exhibit all of the listed capabilities. Moore

et al. [85] document the capabilities in the Slammer worm,

which other botnets also borrow [46], [87], [88], [91], [97].

Several works [92], [94], [96], [101] identify information theft

and resource abuse (cryptocurrency mining, click fraud, proxy

services, spam, etc.) as a common use of infected devices by

desktop malware. Additionally, more recent activities include

ransoming devices [46] and DDoS attacks [87] for hire.

Another aspect of desktop malware capabilities is the fact

that it can escalate privileges [91] by exploitation or key-

logging, and they can evade detection by disabling security

tools [60], [98]. The key insight is that desktop malware have

diverse capabilities, and malware families specialize based

on the intended target and the attacker’s goal. For example,

remote access can be a specialized capability that targets pay-

roll processing systems. Moreover, the amount of sensitive

information and compute resources (i.e. GPU) found on desk-

top platforms may make them a desirable target for ransom,

information theft, extortion, and compute intensive abuse.

Mobile Malware Capability. Table 10 shows that mobile

malware has the same abusive capabilities as desktop mal-

ware with the exception of scanning and DDoS attacks. Zhou

et al. [47] identify malware that root mobile devices, evade

detection through dynamic code reflection, steal sensitive in-

formation, and abuse SMS services by sending messages to

premium numbers. Lindorfer et al. [48] present similar find-

ings, but in addition they find ransomware capabilities that

lock devices in exchange for payment. Mobile malware im-

plement a subset of the capabilities found in desktop malware,

which may be correlated with the features found on each plat-

form. Unlike desktops, mobile devices generally have lower

bandwidth, lower compute resources, are energy conservative,

and support a single-user profile.

A.5 Command & Control Comparison

Desktop Malware C&C. Table 10 shows that desktop mal-

ware use all of the listed methods for C&C communication.

Polychronakis et al. [91] show that desktop malware rely

on email for C&C call-back. Moreover, Kanich et al. [92]

and Holz et al. [42] study the Storm botnet P2P network to

analyze the spam campaigns and estimate the botnet size.

They identify a complex layered infrastructure of hierarchy

of workers, proxies, and master nodes based on the Kademlia

DHT protocol. They speculate that this complex infrastruc-

ture allows the botnet to scale and be resilient to takedowns.

However, Rossow et al. [98] found from a large-scale study

that centralized infrastructure was more prevalent than P2P.

For centralized C&C infrastructure to be more resilient,

malware use domain generation algorithms (DGA) [94], [99],

multi-tier centralized topology [96], fast-flux [45], and bullet-

proof or hacked [101] servers. The key insight is that desktop

malware enhances the scalability and resilience of their in-

frastructure by organizing into specific topologies or by incor-

porating pseudo-randomness in their domains. For example,

Holz et al. [45] note content delivery networks (CDNs) and

round-robin DNS (RRDNS) provide resilience to legitimate

internet applications, which desktop malware mimics by using

fast-flux services.

Mobile Malware C&C. Lindorfer et al. [48] found that even

though the majority of malware use centralized C&C servers,

some mobile malware use SMTP to send sensitive information

by email. Most empirical measurements [47], [48], [102] iden-

tify that mobile malware does not use the same sophistication

for C&C call-back found in desktop malware. Furthermore,

Lever et al. [102] compared mobile malware domains with

desktop malware domains and found no major differences.

The key insight is that mobile malware may not use sophisti-

cated C&C infrastructure because of their network mobility

property. For example, if a mobile device is connected to a

network that blocks its C&C server (mobile network opera-

tor), the device will eventually connect to another network

(coffee shop WiFi) as it changes its physical location, which

may allow connections to the C&C server.
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