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The preservation of meaning between inputs and outputs is perhaps the most

ambitious and, often, the most elusive goal of systems that attempt to process

natural language. Nowhere is this goal of more obvious importance than for the tasks

of machine translation and paraphrase generation. Preserving meaning between the

input and the output is paramount for both, the monolingual vs bilingual distinction

notwithstanding. In this thesis, I present a novel, symbiotic relationship between

these two tasks that I term the “circle of meaning”.

Today’s statistical machine translation (SMT) systems require high quality

human translations for parameter tuning, in addition to large bi-texts for learning

the translation units. This parameter tuning usually involves generating translations

at different points in the parameter space and obtaining feedback against human-

authored reference translations as to how good the translations. This feedback then

dictates what point in the parameter space should be explored next. To measure

this feedback, it is generally considered wise to have multiple (usually 4) reference



translations to avoid unfair penalization of translation hypotheses which could easily

happen given the large number of ways in which a sentence can be translated from

one language to another. However, this reliance on multiple reference translations

creates a problem since they are labor intensive and expensive to obtain. Therefore,

most current MT datasets only contain a single reference. This leads to the problem

of reference sparsity—the primary open problem that I address in this dissertation—

one that has a serious effect on the SMT parameter tuning process.

Bannard and Callison-Burch (2005) were the first to provide a practical con-

nection between phrase-based statistical machine translation and paraphrase gen-

eration. However, their technique is restricted to generating phrasal paraphrases.

I build upon their approach and augment a phrasal paraphrase extractor into a

sentential paraphraser with extremely broad coverage. The novelty in this augmen-

tation lies in the further strengthening of the connection between statistical machine

translation and paraphrase generation; whereas Bannard and Callison-Burch only

relied on SMT machinery to extract phrasal paraphrase rules and stopped there, I

take it a few steps further and build a full English-to-English SMT system. This

system can, as expected, “translate” any English input sentence into a new English

sentence with the same degree of meaning preservation that exists in a bilingual

SMT system. In fact, being a state-of-the-art SMT system, it is able to generate

n-best “translations” for any given input sentence. This sentential paraphraser, built

almost entirely from existing SMT machinery, represents the first 180 degrees of the

circle of meaning.

To complete the circle, I describe a novel connection in the other direction.



I claim that the sentential paraphraser, once built in this fashion, can provide a

solution to the reference sparsity problem and, hence, be used to improve the per-

formance a bilingual SMT system. I discuss two different instantiations of the

sentential paraphraser and show several results that provide empirical validation for

this connection.
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1 Introduction

∗

I have in mind present day machines that do not possess a semantic
organ. The situation will change in the not too distant future.

–Yehoshua Bar-Hillel (1953)

NLP System: I haven’t got a semantic organ ... only probabilistic straw.
User: How can you process language if you haven’t got a semantic organ?
NLP System: I don’t know... But some systems without semantic organs

do an awful lot of processing... don’t they?
User: Yes, I guess you’re right.

–adapted from http://www.imdb.com/title/tt0032138/quotes?qt0409916

∗

The most ambitious, and often the most elusive, goal of systems that attempt

to process natural language is the preservation of meaning between input and output.

Nowhere is this goal of more obvious importance than in a machine translation sys-

tem. Such a system must, ideally, “understand” the utterance in the source language

in order to accurately translate it into a semantically equivalent and fluent utterance

in the target language. Even in the years just after its inception, it was clear that the

biggest obstacle to machine translation lay in meaning preservation which led to in-

fluential researchers calling for the explicit exhibition of semantic structure of input

sentences as sine qua non for high quality machine translation (Bar-Hillel, 1970).
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Meaning preservation is also paramount for the task of paraphrase generation. This

task has not received as much focused attention in the community, especially at the

sentence level, as the task of machine translation. The overarching goal of meaning

preservation between the input and the output remains the same, even though they

are now both in the same language. In fact, recent work has attempted to solidify

this conceptual connection between translation and paraphrasing into a tangible one

by generating paraphrases for English phrases using bilingual parallel text generally

employed for translation (Bannard and Callison-Burch, 2005).

This thesis seeks to answer several questions that will serve to carve out a

symbiotic relationship between the tasks of translation and paraphrase generation:

1. Is it possible to extend the existing work on paraphrase generation to the

sentential level by, in fact, casting this problem as one of English-to-English

translation?

2. How should this English-to-English translation model be constructed and de-

fined in order to maximize meaning preservation?

3. Modern, state-of-the-art translation systems learn to translate from multiple

reference translations for each input sentence. Given the expense of asking

humans to create these translations, most new datasets only contain a single

reference, leading to reference sparsity and, ultimately lower quality transla-

tion. Is it possible to create additional, artificial references by paraphrasing

the single reference using the paraphraser built in (1) above and improve the

translation quality?

2



Orig Alcatel added that the company’s whole year earnings would
be announced on February 4.

Para Alcatel said that the company’s total annual revenues would
be released on February 4.

Orig He was now preparing a speech concerning the US policy for
the upcoming World Economic Forum.

Para He was now ready to talk with regard to the US policies for
the forthcoming International Economic Forum.

Figure 1.1: Examples of paraphrases generated by the sentential paraphraser. Orig de-
notes the original sentence and Para its generated paraphrase. The sentences were chosen
manually.

4. What characteristics should an artificial reference have in order for the trans-

lation system to learn as effectively as it might do with a human-authored

reference translation?

Figure 1.1 shows example paraphrases that are generated by the English-to-

English translation system. Figure 1.2 shows a Chinese sentence and two possible

translations. The first was produced by a system that learned to translate by in-

specting other Chinese sentences with one human reference translation. The second

was produced by a system that learned by inspecting the same Chinese sentences

but with both the human reference and its paraphrase as generated by my senten-

tial paraphraser. For comparison, the figure also shows how a particular human

translates the same Chinese sentence.

The sections below will provide additional motivation for the thesis problems

described above in terms of two motifs —translation and paraphrase generation—

and their symbiotic connection, followed by an outline of the thesis and specific

research contributions.

3



Source 传北韩授权美国代表团走访宁边核子设施

Human North Korea Reported to Allow US Delegation to Visit Nuclear
Facilities in Yongbyon

Translation 1 Authorized by the North Korean delegation to visit the
nuclear facilities in the United States

Translation 2 US delegation has been allowed to visit the Yongbyon nuclear
facilities in North Korea

Figure 1.2: An example of how Chinese-English machine translation can be improved by
the addressing the reference sparsity problem using the automatic sentential paraphraser.
Translation 1 is produced by a system that does not use the paraphrases while Trans-

lation 2 is produced by the system that does. The sentences were chosen manually.

1.1 Motivation

Statistical Machine Translation—the approach assumed in this thesis and ab-

breviated as “Machine Translation” (or SMT)—relies heavily on machine-learning

methods. This approach to automatic translation is distinguished by the heavy use

of machine learning methods and has proven to be extremely successful. Almost all

SMT techniques apply a learning algorithm to a large body of previously translated

text, known as a parallel corpus or a bitext. It is assumed that the learner can gen-

eralize from these already translated examples and learn how to translate unseen

sentences. Almost all modern SMT methods have been influenced, in one way or

another, by the translation approach first proposed by Brown et al. (1990; 1993)

at IBM. The IBM Models, as these models are referred to collectively, represent

the earliest statistical translation models and operate at the word level. The next

iteration of SMT methods were phrase-based in that they used models that were

designed to translate contiguous sequences of words together as a unit (Marcu and

Wong, 2002; Koehn et al., 2003).

Another concomitant change was the use of discriminative translation models,
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where the posterior probability of the translation is directly modeled, instead of

the earlier generative approach. Using phrases allowed learning of local reorderings,

translations of multi-word expressions, or insertions and deletions that are sensitive

to local context. However, it was observed by Koehn et al. (2003) that phrases

longer than three words do not give any significant gains in translation performance

for training with bitexts as large 20 million words. Even though this finding did

not pass the test of time, it was felt that the data may generally be too sparse

to learn longer fully-lexicalized phrases. In addition, the challenge of finding a

good reordering of the translated phrases still remained. Chiang (2007) proposed a

solution to this problem that built directly upon the strengths of the phrase-based

approach: since phrases are good for learning reorderings of words, they can be used

to learn reorderings of phrases as well. This was achieved by the use of hierarchical

phrases, i.e., a phrase that contains placeholders that can be filled by other phrases.

Hierarchical-phrase based models represent the current state-of-the-art. For a more

comprehensive survey of contemporary SMT, the reader is referred to (Lopez, 2008)

and (Koehn, 2010).

Over the years, SMT techniques have made good progress towards the goal

of creating semantically equivalent translations. They have done so by learning a

generalized model of linguistic correspondence between the source and target lan-

guages from millions of actual meaning-preserving human translation examples. In

fact, as the translation models have become more complex, the reliance on such

examples has increased. In addition to the large bitexts that are used to extract

lexical, phrasal and hierarchical correspondence units, today’s SMT systems also

5



require additional high quality human translations for parameter tuning. Such tun-

ing is usually carried out by means of machine learning algorithms that intelligently

traverse the very large multi-dimensional parameter space (Ostendorf et al., 1991;

Och, 2003). Translations are produced for each explored point in the parameter

space and a quantitative estimate of the error in said translations is computed by

comparing them against human reference translations. The magnitude of this error

is then used to guide the search to a more useful point in the parameter space.

Since a given source sentence can be translated into the target language in

a multitude of ways, it is generally considered wise to have multiple (usually four)

reference translations; with only a single reference, it is possible that an entirely

correct translation hypothesis may be judged incorrect due to low n-gram overlaps

and, therefore, the feedback to the search process may be misguided. However,

this reliance on multiple reference translations creates a problem, because reference

translations are labor intensive and expensive to obtain. For example, produc-

ing reference translations at the Linguistic Data Consortium, a common source of

translated data for MT research, requires undertaking an elaborate process that

involves translation agencies, detailed translation guidelines, and quality control

processes (Strassel et al., 2006). Therefore, most recent datasets produced for use in

SMT tend to contain only a single reference translation. This leads to the problem

of reference sparsity—the primary open problem that I address in this thesis—one

that has a serious effect on the SMT parameter tuning process. This thesis posits

the first direct paraphrase-based solution to this problem.

Everyone is familiar with the notion of a paraphrase in its most fundamental

6



sense. The concept of paraphrasing is most generally defined by the principle of

semantic equivalence, i.e., a paraphrase is an alternative surface form in the same

language expressing the same semantic content as the original form. While the

task of automatically generating lexical, phrasal and sentential paraphrases has

been employed to improve the performance of several NLP applications, it has not

historically received as much focused attention as machine translation has. However,

the relationship between these two tasks is quite strong as obvious from the above

definition; paraphrase generation can simply be seen as a monolingual version of

machine translation.

Resnik (2004) presents a detailed treatment of the general idea that monolin-

gual semantic knowledge can be considered inherent in parallel bilingual corpora,

i.e., looking at two languages in parallel translation provides a way to “triangulate”

on semantics without having to commit to overt semantic representations. The

relationship between paraphrase generation and machine translation can be consid-

ered to be an instantiation of this idea. Bannard and Callison-Burch (2005) were

the first to provide a practical connection between phrase-based statistical machine

translation and paraphrase generation. However, their technique was restricted to

generating phrasal paraphrases. This thesis builds upon their approach and aug-

ments a phrasal paraphrase extractor into a sentential paraphraser with extremely

broad coverage. The novelty in this augmentation lies in the further strengthening

of the connection between statistical machine translation and paraphrase genera-

tion. Whereas Bannard and Callison-Burch (2005) only rely on SMT machinery to

extract phrasal paraphrase rules and stop there, this thesis takes the additional step

7



of building a full English-to-English SMT system. This system can, as expected,

“translate” any English input sentence into a new English sentence with the same

degree of meaning preservation that exists in a bilingual SMT system. In fact, as

a state-of-the-art SMT system, it is able to generate n-best “translations” for any

given input sentence.

The description above characterizes a novel one-sided connection between

translation and paraphrasing: using statistical machine translation as the basis for

constructing a sentential paraphraser. To complete the circle of meaning, this thesis

also proposes a new connection in the other direction, claiming that the sentential

paraphraser, once built in this fashion, can provide a solution to the reference spar-

sity problem and, hence, be used to improve the performance a bilingual SMT sys-

tem. The solution is simply to create multiple artificial references by paraphrasing

the available single human reference with the sentential paraphraser. Two different

instantiations of the sentential paraphraser are described. Both automatic transla-

tion metrics and human judgments are used to empirically validate this proposed

connection. Therefore, the tasks of machine translation and sentential paraphrase

generation can now be thought of as participating in a symbiotic relationship. Any

developments that improve the core SMT machinery will also help in building an

improved sentential paraphraser. An improved paraphraser can, in turn, help an

SMT system better overcome the reference sparsity problem.

8



1.2 Outline of the Dissertation

Setting the stage for the research reported in this thesis, Chapter 2 surveys

the current state of the art in corpus-based paraphrase generation techniques, sets

the current work in context and provides the first up-to-date and comprehensive

overview of the field. Over the last two decades, there has been significant research

on paraphrase generation within every NLP research community so as to improve

the specific application with which that community is concerned. This has led to a

fragmented research pattern: paraphrase generation is used in different forms and

with different names in the context of different applications (e.g., synonymous collo-

cation extraction, query expansion). This usage pattern does not allow researchers

in one community to share the lessons learned with those from other communities.

Chapter 2 brings together research on paraphrase generation from these different

sub-communities and draws broad and useful connections among researchers work-

ing on related problems. Subsequent chapters rely on this chapter as a foundation.

Chapter 3 describes the first 180 degrees of the circle of meaning: how to build

a sentential paraphraser using nothing but widely available SMT machinery. The

architecture of such a paraphraser is described along with examples and empirical

evaluations of its output.

In Chapter 4, a first attempt at completing the circle is described, i.e., ad-

dressing the reference sparsity problem for an SMT system by using the sentential

paraphraser presented in Chapter 3. Both automatic and manual evaluation results

are presented for translations produced by this SMT system for four different source
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languages. The results show that while using artificial references does lead to signif-

icant improvements in translation performance, the improvements diminish as more

and more paraphrases are used. An error analysis is provided to explain why this

is the case.

Chapter 5 presents the creation of a new version of the sentential paraphraser

that approaches the reference sparsity problem from a different angle. This para-

phraser makes very focused, targeted changes to the original reference in contrast to

the paraphraser presented in Chapter 3. Automatic and manual evaluation results

are provided for the same experimental conditions as those used in Chapter 4 and

this paraphraser is also shown to produce significant gains when used for tuning.

Furthermore, the gains are shown to increase monotonically as more paraphrases

are added.

Chapter 6 takes an overarching view of the characteristics of reference transla-

tions insofar as they are related to the SMT parameter tuning process. Three types

of reference translations are compared: human references, untargeted paraphrases

of human references computed using the approach described in Chapter 4, and tar-

geted paraphrases of human references computed using the approach described in

Chapter 5. The comparison is undertaken in terms of three qualities associated

with reference translations that are essential for effective parameter tuning: correct-

ness, reachability, and focus. An approach to measuring the degree to which a set of

reference translations possess these qualities is presented. Such a detailed character-

ization of reference translations has not previously been undertaken. This chapter

then presents possible avenues of future work and concludes with a reiteration of
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the questions posed above along with the answers that this dissertation provides.

Appendix A compares the actual translations produced by the various SMT

systems used in this dissertation and provides an intuitive picture of the empirical

gains in translations quality reported in Chapters 4 and 5.

1.3 Research Contributions

Through the research conducted in this thesis, I have made the following re-

search contributions:

• A new general sentential paraphraser architecture is developed, in the form of

an English-to-English SMT system. It is built entirely using bilingual SMT

machinery and by extending previous research on phrasal paraphrase gener-

ation. Some components of the architecture are simply adaptations of the

corresponding bilingual components whereas others are entirely novel.

• The first (ever) automatic approach to addressing the reference sparsity prob-

lem in SMT is implemented in the form of a sentential paraphraser that creates

artificial references. The solution is elegant in that it is entirely bootstrapped

using almost nothing except what is already available to the bilingual SMT

system.

• A second SMT-specific instantiation of the sentential paraphraser is developed,

wherein paraphrases are generated in a focused, targeted fashion. This second

instantiation is driven by two new additions —a targeting feature and a self-

paraphrase bias–that interact with each other. A novel search method has
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been implemented to determine the configuration of these additions that is

most effective for the paraphrasing process.

• Both instantiations of the sentential paraphraser, when used to create artificial

references for parameter tuning, are shown to induce statistically significant

gains as measured by automatic MT evaluation metrics (Madnani et al., 2007,

2008a,b). In addition, the same gains are demonstrated when Amazon Me-

chanical Turk is used to enlist human subjects to evaluate the translation

output.

• The first (ever) detailed characterization of a reference translation is under-

taken in terms of three essential qualities: correctness, reachability, and focus.

A theoretical and empirical analysis is provided wherein both human and ar-

tificial references are compared according to these qualities.

• A comprehensive overview of paraphrasing approaches and their application is

presented, wherein the hitherto fragmented research on data-driven paraphrase

generation has been brought together and broader philosophical connections

among related efforts has been drawn (Madnani and Dorr, 2010).

It has been well understood that the tasks of machine translation and para-

phrase generation are intimately connected and existing research has taken promis-

ing preliminary steps towards substantiating this connection, e.g., by showing that

it is possible to induce monolingual semantics at the phrase level from bilingual

parallel text. However, the work in this thesis takes this connection much farther

by establishing a fully symbiotic relationship between translation and paraphrase
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generation. As part of carving out this relationship, my work yields two novel and

important research contributions: (1) a general sentential paraphrasing architec-

ture, modeled as English-to-English translation and built entirely from components

usually employed to build bilingual translation systems and, (2) a direct paraphrase-

driven solution to the reference sparsity problem faced by a state-of-the-art machine

translation; one that is able to provide statistically significant improvements in the

quality of produced translations.
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2 Related Work on Data-Driven Paraphrase Generation

and its Applications

∗

Knowledge is out there.
Among bits, chunks and pieces.
It must be gathered.

–Nitin Madnani

∗

While everyone may be familiar with the notion of paraphrase in its most fun-

damental sense, there is still room for elaboration on how paraphrases may be auto-

matically generated or elicited for use in language processing applications. Moreover,

the task of automatically generating or extracting semantic equivalences for the vari-

ous units of language—words, phrases and sentences, is being increasingly employed

to improve the performance of several NLP applications. This chapter presents

a comprehensive and application-independent overview of data-driven phrasal and

sentential paraphrase generation methods is presented, while also conveying an ap-

preciation for the importance and potential use of paraphrases in the field of NLP

research. While many paraphrase methods are developed with a particular applica-

tion in mind, all methods share the potential for more general applicability. Recent

work on manual and automatic construction of paraphrase corpora is presented,
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strategies used for evaluating paraphrase generation techniques are discussed, and

future trends in paraphrase generation are explored.1

Related work on furthering the community’s understanding of paraphrases has

been done by Hirst (2003), wherein a deep analysis of the nature of paraphrase is

provided. This chapter focuses instead on delineating the salient characteristics of

the various paraphrase generation methods with an emphasis on describing how they

could be used in several different NLP applications. Both these treatments provide

different but valuable perspectives on paraphrasing. The next section formalizes

the concept of a paraphrase and scopes out the coverage of the discussion for the

remainder of this chapter. Section 2.2 provides broader context and motivation by

discussing applications in which paraphrase generation has proven useful, along with

examples. Section 2.3 briefly describes the tasks of paraphrase recognition and tex-

tual entailment and their relationship with paraphrase generation and extraction.

Section 2.4 is the core of this chapter, wherein various corpus-based techniques for

paraphrase generation are examined, organized by corpus type. Section 2.5 exam-

ines recent work done to construct various types of paraphrase corpora and to elicit

human judgments for such corpora. Section 2.6 considers the task of evaluating

the performance of paraphrase generation and extraction techniques. Finally, Sec-

tion 2.7 provides a brief glimpse of the future trends in paraphrase generation and

Section 2.8 concludes the chapter with a summary.

1The material presented in this chapter will be published as an upcoming journal article (Mad-
nani and Dorr, 2010).
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2.1 Formalization of Paraphrase and Scope of Discussion

The concept of paraphrasing is most generally defined on the basis of the

principal of semantic equivalence, i.e., a paraphrase is an alternative surface form

in the same language expressing the same semantic content as the original form.

Paraphrases may occur at several levels as itemized below:

• Lexical: Individual lexical items having the same meaning are usually referred

to as lexical paraphrases or, more commonly, synonyms, e.g., ⟨hot, warm⟩ and

⟨eat, feed⟩. However, lexical paraphrasing cannot be restricted strictly to the

concept of synonymy. There are several other forms such as hyperonyms, where

one of the words in the paraphrastic relationship is either more general or more

specific than the other, e.g. ⟨reply, say⟩ and ⟨landlady, hostess⟩.

• Phrasal: The term phrasal paraphrases refers to phrasal fragments sharing

the same semantic content. While these fragments most commonly take the

form of syntactic phrases, e.g. ⟨work on, soften up⟩ and ⟨take over, assume

control of ⟩, they may also be patterns with linked variables, e.g. ⟨Y was built

by X, X is the creator of Y ⟩.

• Sentential: Two sentences that represent the same semantic content are

termed sentential paraphrases. For example, ⟨I finished my work, I completed

my assignment⟩. While it is possible to generate very simple sentential para-

phrases by simply substituting words and phrases in the original sentence with

their respective semantic equivalents, it is significantly more difficult to gen-
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erate more interesting ones, e.g. ⟨He needed to make a quick decision in that

situation, The scenario required him to make a split-second judgment⟩.

The idea of paraphrasing has been explored in conjunction with, and employed

in, a large number of natural language processing applications. Given the difficulty

inherent in surveying such a diverse topic, an unfortunate but necessary remedy is

to impose certain limits on the scope of the discussion. In this chapter, and in the

remainder of the thesis, the discussion will be restricted to automatic acquisition of

phrasal paraphrases (including paraphrastic patterns) and on generation of senten-

tial paraphrases. More specifically, this entails the exclusion of certain categories of

paraphrasing work. However, as a compromise for the interested reader, a relatively

comprehensive list of references is included for the work that this chapter does not

cover.

For one, paraphrasing techniques that rely primarily on knowledge-based re-

sources are not discussed, e.g., those that rely on dictionaries (Wallis, 1993; Fujita

et al., 2004), hand-written rules (Fujita et al., 2007) and formal grammars (McK-

eown, 1979; Dras, 1999; Gardent et al., 2004; Gardent and Kow, 2005). Work on

purely lexical paraphrasing is not included, e.g., approaches that make use of var-

ious ways to cluster words occurring in similar contexts (Inoue, 1991; Crouch and

Yang, 1992; Pereira et al., 1993; Grefenstette, 1994; Lin, 1998; Gasperin et al., 2001;

Glickman and Dagan, 2003; Shimohata and Sumita, 2005).2 Exclusion of general

2Inferring words to be similar based on similar contexts can be thought of as the most common
instance of employing distributional similarity. The concept of distributional similarity also turns
out to be quite important for phrasal paraphrase generation and is discussed in more detail in
Section 2.4.1.
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lexical paraphrasing methods obviously implies that other lexical methods devel-

oped just for specific applications are also excluded (Bangalore and Rambow, 2000;

Duclaye et al., 2003; Murakami and Nasukawa, 2004; Kauchak and Barzilay, 2006).

Methods at the other end of the spectrum that paraphrase supra-sentential units

such as paragraphs and entire documents are also omitted from discussion (Hovy,

1988; Inui and Nogami, 2001; Power and Scott, 2005; Hallett and Scott, 2005).

Finally, the notion of near-synonymy is also not discussed in detail. Near-

synonyms are words that are almost synonyms, but not quite (Hirst, 1995; Edmonds

and Hirst, 2002). They are not fully substitutable for each other, but vary in their

shades of connotation, or in the components of semantic emphasis and grammatical

or collocational constraints. For example, the word foe emphasizes active warfare

more than enemy does and forest and woods differ in terms of a complex combination

of size, proximity to civilization, and wildness. Some applications using lexical

paraphrases (synonyms), e.g. query expansion, may be agnostic on the distinction

between synonyms and near-synonyms, yet this distinction is arguably central to

understanding the true nature of paraphrases. More recently, work has focused on

automatic elicitation of near-synonyms for database population (Inkpen and Hirst,

2006; Inkpen, 2007).

2.2 Applications of Paraphrase Generation

Before describing the techniques used for paraphrasing, it is essential to exam-

ine the broader context of the application of paraphrases. For some of the applica-
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tions discussed below, the use of paraphrases in the manner described may not yet

be the norm. However, wherever applicable, recent research is cited that promises

gains in performance by using paraphrases for these applications. Also note that

only those paraphrasing techniques are discussed that can generate the types of

paraphrases examined in this chapter: phrasal and sentential.

2.2.1 Query and Pattern Expansion

One of the most common applications of paraphrasing is automatic genera-

tion of query variants for submission to information retrieval systems or of patterns

for submission to information extraction systems. For example, one of the earli-

est approaches (Spärck-Jones and Tait, 1984) generated several simple variants for

compound nouns, in queries submitted to a technical information retrieval system.

Original : circuit details

Variant 1 : details about the circuit

Variant 2 : the details of circuits

In fact, in recent years, the information retrieval community has extensively ex-

plored the task of query expansion by applying paraphrasing techniques to generate

similar or related queries (Beeferman and Berger, 2000; Jones et al., 2006; Sahami

and Heilman, 2006; Shi and Yang, 2007; Metzler et al., 2007). The generation of

paraphrases in these techniques is usually effected by utilizing the query log (a log

containing the record of all queries submitted to the system) to determine semantic
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similarity.

Jacquemin (1999) generates morphological, syntactic as well as semantic vari-

ants for phrases in the agricultural domain. For example,

Original : simultaneous measurements

Variant : concurrent measures

Original : development area

Variant : area of growth

Ravichandran and Hovy (2002) use semi-supervised learning to induce several para-

phrastic patterns for each question type and use them in an open-domain question

answering system. For example, for the INVENTOR question type, they generate:

Original : X was invented by Y

Variant 1 : Y ’s invention of X

Variant 2 : Y , inventor of X

Riezler et al. (2007) expand a query by generating n-best paraphrases for the same

(via a pivot-based sentential paraphrasing model employing bilingual parallel cor-

pora, detailed in Section 2.4) and then using any new words introduced therein

as additional query terms. For example, for the query how to live with cat aller-

gies, they may generate the following two paraphrases. The novel words in the two
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paraphrases are highlighted in bold and are used to expand the original query:

P1 : ways to live with feline allergy

P2 : how to deal with cat allergens

Finally, paraphrases have also been used to improve the task of relation extrac-

tion (Romano et al., 2006). Most recently, Bhagat and Ravichandran (2008) collect

paraphrastic patterns for relation extraction by applying semi-supervised paraphrase

induction to a very large monolingual corpus. For example, for the relation of “ac-

quisition,” they collect:

Original : X agreed to buy Y

Variant 2 : X completed its acquisition of Y

Variant 3 : X purchased Y

2.2.2 Expanding Sparse Human Reference Data for Evaluation

A large percentage of NLP applications are evaluated by having human an-

notators or subjects carry out the same task for a given set of data and using the

output so created as a reference against which to measure the performance of the

system. The two applications where comparison against human-authored reference

output has become the norm are machine translation and document summarization.

In machine translation evaluation, the translation hypotheses output by a

21



machine translation system are evaluated against reference translations created by

human translators by measuring the n-gram overlap between the two (Papineni

et al., 2002). However, it is impossible for a single reference translation to capture

all possible verbalizations that can convey the same semantic content. This may

unfairly penalize translation hypotheses that have the same meaning but use n-

grams that are not present in the reference. For example, the system output S

below will not have a high score against the reference R even though it conveys

precisely the same semantic content:

S : We must consider the entire community.

R : We must bear in mind the community as a whole.

One solution is to use multiple reference translations which is expensive. An alter-

native solution, tried in a number of recent approaches, is to address this issue by

allowing the evaluation process to take into account paraphrases of phrases in the

reference translation so as to award credit to parts of the translation hypothesis that

are semantically, even if not lexically, correct (Zhou et al., 2006a; Owczarzak et al.,

2006).

Another way to address the lack of multiple references is to use evaluation met-

rics that possess an inherent notion of semantic equivalence, such as METEOR (Lavie

and Agarwal, 2007) which employs WordNet (Fellbaum, 1998) or TERp (Snover

et al., 2009) which uses phrasal paraphrases induced in the manner described in

Section 2.4.5. While the previous versions of METEOR only used lexical para-
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phrases from WordNet, the current version (Denkowski and Lavie, 2010) is able to

take advantage of the same set of automatically induced paraphrases that is used

by TERp.

In evaluation of document summarization, automatically generated summaries

(peers) are also evaluated against reference summaries created by human authors

(models). Zhou et al. (2006b) propose a new metric called ParaEval that leverages

an automatically extracted database of phrasal paraphrases to inform the compu-

tation of n-gram overlap between peer summaries and multiple model summaries.

2.2.3 Machine Translation

Besides being used in evaluation of machine translation systems, paraphrasing

has also been applied to directly improve the translation process. Callison-Burch

et al. (2006b); Marton et al. (2009) use automatically induced paraphrases to im-

prove a statistical phrase-based machine translation system. Such a system works

by dividing the given sentence into phrases and translating each phrase individually

by looking up its translation from a table. The coverage of the translation system

is improved by allowing any source phrase that does not have a translation in the

table to use the translation of one of its paraphrases. For example, if a given Spanish

sentence contains the phrase presidente de Brazil but the system does not have a

translation for it, another Spanish phrase such as presidente brasileño may be au-

tomatically detected as a paraphrase of presidente de Brazil ; then if the translation

table contains a translation for the paraphrase, the system can use the same trans-
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lation for the given phrase. Therefore, paraphrasing allows the translation system

to properly handle phrases that it does not otherwise know how to translate.

In a similar vein, Buzek et al. (2010) automatically identify portions of the

source sentence that are likely to be problematic for MT systems. They then elicit

paraphrases for these portions using Amazon Mechanical Turk and. Finally, all new

sentences (formed by replacing each specific portion with its paraphrase and the

combinations thereof) are translated in addition to the original sentence. Results

show that for about a sixth of the input sentences, the MT system is able to produce

better translations for one of the paraphrastic source sentences compared to the

original source. Although the percentage of sentences affected is small, the ones

that do benefit do so substantially. Further research will likely lead to even larger

performance gains.

As mentioned in Chapter 1, another important issue for statistical machine

translation systems is that of reference sparsity ; one that is the primary problem

that the work in this dissertation tries to solve. Chapters 4 and 5 will describe in

detail how automatic sentential paraphrases can be used, very effectively, to alleviate

the reference sparsity problem affecting statistical machine translation systems.

2.3 Paraphrase Recognition and Textual Entailment

A problem closely related to, and as important as, generating paraphrases

is one of assigning a quantitative measurement to the semantic similarity between

two phrases (Fujita and Sato, 2008b) or even two given pieces of text (Corley and
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Mihalcea, 2005; Uzuner and Katz, 2005). A more complex formulation of the task

would be to detect or recognize which sentences in the two texts are paraphrases of

each other (Brockett and Dolan, 2005; Wu, 2005; Marsi and Krahmer, 2005b; João

et al., 2007a,b; Das and Smith, 2009). Both of these task formulations fall under

the category of paraphrase detection or recognition. The latter formulation of the

task has become popular in recent years (Dolan and Dagan, 2005) and paraphrase

generation techniques that require monolingual parallel or comparable corpora (dis-

cussed in Section 2.4) can benefit immensely from this task. In general, paraphrase

recognition can be very helpful for several NLP applications. Two examples of such

applications are text-to-text generation and information extraction.

Text-to-text generation applications rely heavily on paraphrase recognition.

For a multi-document summarization system, detecting redundancy is a very im-

portant concern because two sentences from different documents may convey the

same semantic content and it is important not to repeat the same information in

the summary. On this note, Barzilay and McKeown (2005) exploit redundancy

present in a given set of sentences by detecting paraphrastic parts and fusing them

into a single coherent sentence. Recognizing similar semantic content is also critical

for text simplification systems (Marsi and Krahmer, 2005a).

Information extraction enables the detection of regularities of information

structure—events which are reported many times, about different individuals and in

different forms—and making them explicit so that they can be processed and used

in other ways. Sekine (2006) shows how to use paraphrase recognition to cluster

together extraction patterns to improve the cohesion of the extracted information.
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Another recently proposed natural language processing task is that of rec-

ognizing textual entailment: a piece of text T is said to entail a hypothesis H

if humans reading T will infer that H is most likely true. The observant reader

will notice that, in this sense, the task of paraphrase recognition can simply be

formulated as bidirectional entailment recognition. The task of recognizing entail-

ment is an application-independent task and has important ramifications for almost

all other language processing tasks that can derive benefit from some form of ap-

plied semantic inference. For this reason, the task has received noticeable attention

in the research community and annual community-wide evaluations of entailment

systems have been held in the form of Recognizing Textual Entailment (RTE) Chal-

lenges (Dagan et al., 2006; Bar-Haim et al., 2007; Sekine et al., 2007; Giampiccolo

et al., 2008).

Looking towards the future, Dagan (2008) proposes that the textual entailment

task provides a comprehensive framework for semantic inference and argues for

building a concrete inference engine that not only recognizes entailment but also

searches for all entailing texts given an entailment hypothesis H and, conversely,

generates all entailed statements given a text T . Given such an engine, Dagan claims

that paraphrase generation is simply a matter of generating all entailed statements

given any sentence. While this is a very attractive proposition that defines both

paraphrase generation and recognition in terms of textual entailment, there are

some important caveats. For example, textual entailment cannot guarantee that

the entailed hypothesis H captures all of the same meaning as the given text T .

Consider the following example:
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T : Yahoo’s buyout of Overture was finalized.

H1: Yahoo bought Overture.

H2: Overture is now owned by Yahoo.

While both H1 and H2 are entailed by T , they are not strictly paraphrases of T

since some of the semantic content has not carried over. This must be an impor-

tant consideration when building the proposed entailment engine. Of course, even

these approximately semantically equivalent constructions may prove useful in an

appropriate downstream application.

Of course, the relationship between paraphrasing and entailment is more tightly

entwined than it might appear. Entailment recognition systems sometimes rely on

the using paraphrastic templates or patterns as inputs (Iftene, 2009) and might

even use paraphrase recognition to improve their performance (Bosma and Callison-

Burch, 2007). In fact, examination of some RTE datasets in an attempt to quanti-

tatively determine the presence of paraphrases has shown that a large percentage of

the set consists of paraphrases rather than typical entailments (Bayer et al., 2005;

Garoufi, 2007). It has also been observed that, in the entailment challenges, it is rel-

atively easy for submitted systems to recognize constructions that partially overlap

in meaning (approximately paraphrastic) than those that are actually bound by an

entailment relation. On the flip side, work has also been done to extend entailment

recognition techniques for the purpose of paraphrase recognition (Rus et al., 2008).

Detection of semantic similarity and, to some extent, that of bidirectional

entailment are usually an implicit part of paraphrase generation. However, given the
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interesting and diverse work that has been done in both these areas, any significant

discussion beyond the treatment above merits a separate, detailed survey.

2.4 Paraphrasing with Corpora

This section explores in detail the data-driven paraphrase generation approaches

that have emerged and become extremely popular in the last decade or so. These

corpus-based methods have the potential of covering a much wider range of para-

phrasing phenomena and the advantage of widespread availability of corpora.

This section is organized by the type of corpora used to generate the para-

phrases: a single monolingual corpus, monolingual comparable corpora, monolingual

parallel corpora and bilingual parallel corpora. This form of is the most instruc-

tive since most of the algorithmic decisions made for paraphrase generation will

depend heavily on the type of corpus used. For instance, it is reasonable to assume

that a different set of considerations will be paramount when using a large single

monolingual corpus than when using bilingual parallel corpora.

However, before delving into the actual paraphrasing methods, it is useful

to explore the motivation behind distributional similarity, an extremely popular

technique that can be used for paraphrase generation with several different types of

corpora. The following section is dedicated to such an explanation.
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2.4.1 Distributional Similarity

The idea that a language possesses distributional structure was first discussed

at length by Harris (1954). The term represents the notion that one can describe a

language in terms of relationships between the occurrences of its elements (words,

morphemes, phonemes) relative to the occurrence of other elements. The name

for the phenomenon is derived from an element’s distribution—sets of elements in

particular positions that the element occurs with to produce an utterance or a

sentence.
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Figure 2.1: A general architecture for paraphrasing approaches leveraging the distribu-
tional similarity hypothesis.

More specifically, Harris presents several empirical observations to support the

hypothesis that such a structure exists naturally for language. These observations

are closely quoted here:
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• Utterances and sentences are not produced by arbitrarily putting together the

elements of the language. In fact, these elements usually occur only in certain

positions relative to certain other elements.

• The empirical restrictions on the co-occurrents of a class are respected for each

and every one of its members and are not disregarded for arbitrary reasons.

• The occurrence of a member of a class relative to another member of a different

class can be computed as a probabilistic measure, defined in terms of the

frequency of that occurrence in some sample or corpus.

• Not every member of every class can occur with every member of another class

(think nouns and adjectives). This observation can be used as a measure of

difference in meaning. For example, if the pair of words teacher and instructor

is considered to be more semantically equivalent than say, the pair teacher and

musician, then even the distributions of the first pair will be more alike than

that of the latter.

Given the above observations, it’s relatively easy to perceive the concept of

distributional similarity—words or phrases that share the same distribution, i.e., the

same set of words in the same context in a corpus, tend to have similar meanings.

Figure 2.1 shows the basic idea behind phrasal paraphrase generation tech-

niques that leverage distributional similarity. The input corpus is usually a sin-

gle or set of monolingual corpora (parallel or non-parallel). After preprocessing—

which may include tagging the parts of speech, generating parse trees and other

transformations—the next step is to extract pairs of words or phrases (or patterns)
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that occur in the same context in the corpora and hence may be considered (approx-

imately) semantically equivalent. This extraction may be accomplished by several

means, e.g., by using a classifier employing contextual features or by finding similar

paths in dependency trees. While it is possible to stop at this point and consider

this list as the final output, the list usually contains a lot of noise and may require

additional filtering based on other criteria, such as collocations counts from another

corpus (or the Web). Finally, some techniques may go even further and attempt

to generalize the filtered list of paraphrase pairs into templates or rules which may

then be applied to other sentences to generate their paraphrases. Note that gen-

eralization as a post-processing step may not be necessary if the induction process

can extract distributionally similar patterns directly.

One potential disadvantage of relying on distributional similarity is that items

that are distributionally similar may not necessarily end up being paraphrastic:

both elements of the pairs ⟨boys, girls⟩, ⟨cats, dogs⟩, ⟨high, low⟩ can occur in similar

contexts but are not semantically equivalent.

2.4.2 Paraphrasing using a Single Monolingual Corpus

This section concentrates on paraphrase generation methods that operate on

a single monolingual corpus. Most, if not all, such methods usually perform para-

phrase induction by employing the idea distributional similarity as outlined in the

previous section. Besides the obvious caveat discussed above regarding distribu-

tional similarity, the other most important factor affecting the performance of these
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methods is the choice of distributional ingredients, i.e., the features used to for-

mulate the distribution of the extracted units. Three commonly used techniques

are considered that generate phrasal paraphrases (or paraphrastic patterns) from a

single monolingual corpus but use very different distributional features in terms of

complexity. The first uses only surface-level features while the other two use fea-

tures derived from additional semantic knowledge. While the latter two methods are

able to generate more sophisticated paraphrases by virtue of more specific and more

informative ingredients, doing so usually has an adverse effect on their coverage.

Paşca and Dienes (2005) use as their input corpus a very large collection of

Web documents taken from the repository of documents crawled by Google. While

using Web documents as input data does require a non-trivial pre-processing phase

since such documents tend to be noisier, there are certainly advantages to using

Web documents as the input corpus: it does not need to have parallel (or even com-

parable) documents and can allow leveraging of even larger document collections.

In addition, the extracted paraphrases are not tied to any specific domain and are

suitable for general application.

Algorithm 1 shows the details of the induction process. Steps 3-6 extract all

n-grams of a specific kind from each sentence: each n-gram has Lc words at the

beginning, between M1 to M2 words in the middle and another Lc words at the

end. Steps 7-13 can intuitively be interpreted as constructing a textual anchor A—

by concatenating a fixed number of words from the left and the right—for each

candidate paraphrase C and storing the (anchor, candidate) tuple in H. These

anchors are taken to constitute the distribution of the words and phrases under
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inspection. Finally, each occurrence of a pair of potential paraphrases, i.e. a pair

sharing one or more anchors, is counted. The final set of phrasal paraphrastic pairs

is returned.

Algorithm 1 (Paşca and Dienes 2005). Inducing a set of phrasal paraphrase
pairs H with associated counts from a corpus of C pre-processed Web documents.
Summary. Extract all n-grams from C longer than a pre-stipulated length. Com-
pute a lexical anchor for each extracted n-gram. Pairs of n-grams that share lexical
anchors are then construed to be paraphrases.

1: Let N represent a set of n-grams extracted from the corpus
2: N ← {φ}, H ← {φ}
3: for each sentence E in the corpus do
4: Extract the set of n-grams NE = {ēi s.t (2Lc +M1) ≤ |ēi| ≤ (2Lc +M2)}},

where M1, M2 and Lc are all preset constants and M1 ≤M2

5: N ← N ∪NE

6: end for
7: for each n-gram ē in N do
8: Extract the subsequence C, such that Lc ≤ |C| ≤ (|ē| − Lc − 1)
9: Extract the subsequence AL, such that 0 ≤ |AL| ≤ (Lc − 1)

10: Extract the subsequence AR, such that (|ē| − Lc) ≤ |AR| ≤ (|ē| − 1)
11: A← AL + AR

12: Add the pair (A,C) to H

13: end for
14: for each subset of H with the same anchor A do
15: Exhaustively compare each pair of tuples (A,Ci) and (A,Cj) in this subset
16: Update the count of the candidate paraphrase pair (Ci, Cj) by 1
17: Update the count of the candidate paraphrase pair (Cj, Ci) by 1
18: end for
19: Output H containing paraphrastic pairs and their respective counts

This algorithm embodies the spirit of the hypothesis of distributional similar-

ity: it considers all words and phrases that are distributionally similar, i.e., they

occur with the same sets of anchors (or distributions), to be paraphrases of each

other. Additionally, the larger the set of shared anchors for two candidate phrases,

the stronger the likelihood that they are paraphrases of each other. After extracting

the list of paraphrases, less likely phrasal paraphrases are filtered out by using an
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appropriate count threshold.

Paşca and Dienes (2005) attempt to make their anchors even more informative

by attempting variants where they extract the n-grams only from sentences that

include specific additional information to be added to the anchor. For example,

in one variant, they only use sentences where the candidate phrase is surrounded

by named entities on both sides and they attach the nearest pair of entities to the

anchor. As expected, the paraphrases do improve in quality as the anchors become

more specific. However, they also report that as anchors are made more specific by

attaching additional information, the likelihood of finding a candidate pair with the

same anchor is reduced.

The ingredients for measuring distributional similarity in a single corpus can

certainly be more complex than simple phrases used by Paşca and Dienes. Lin and

Pantel (2001) discuss how to measure distributional similarity over dependency tree

paths in order to induce generalized paraphrase templates such as:3

X found answer to Y ⇔ X solved Y

X caused Y ⇔ Y is blamed on X

While single links between nodes in a dependency tree represent direct se-

mantic relationships, a sequence of links, or a path, can be understood to represent

indirect relationships. Here, a path is named by concatenating the dependency rela-

tionships and lexical items along the way but excluding the lexical items at the end.

3Technically, these templates represent inference rules, i.e. the RHS can be inferred from the
LHS but is not semantically equivalent to it. This form of inference is closely related to that
exhibited in textual entailment. This work is primarily to induce such rules rather than strict
paraphrases.
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In this way, a path can actually be thought of as a pattern with variables at either

end. Consider the first dependency tree in Figure 2.2. One dependency path that

could be extracted would be between the node John and the node problem. Starting

at John, the first item in the tree is the dependency relation subject that connects

a noun to a verb and so that information is appended to the path.4 The next item

in the tree is the word found and its lemma (find) is appended to the path.

found

(V)

answer

(N)

John

(N)

problem

(N)
an

the

subj obj

det

det

to

X Y

N:subj:V <- find-> V:obj:N -> answer -> N:to:N

"X found answer to Y"

(a)

solved

(V)

problem

(N)

John

(N)

the

subj obj

det

X Y

N:subj:V <- solve-> V:obj:N 

"X solved Y"

(b)

Figure 2.2: Two different dependency tree paths (a) and (b) that are considered paraphras-
tic since the same words (“John” and “problem”) are used to fill the corresponding slots
(shown co-indexed) in both the paths. The implied meaning of each dependency path is
also shown.

Next is the semantic relation object connecting a verb to a noun, so that is

4Although the first item is the word John, the words at either end are, by definition, are
considered slots and not included in the path.
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Algorithm 2 (Lin and Pantel 2001). Produce inference rules from a parsed
corpus C.
Summary. Adapt Harris’ hypothesis of distributional similarity to paths in depen-
dency trees: if two tree paths have similar distributions, i.e., they tend to link the
same set of words, then they are likely mean the same thing and together generate
an inference rule.
1: Extract paths of the form described above from the parsed corpus.
2: Initialize a hash H that stores, for each tuple of the form (p, s, w)—where p is a

path, s is one of the two slots in p and w is a word that appears in that slot—the
following two quantities:

(a) A count C(p, s, w) indicating how many times word w appeared in slot s

in path p.

(b) The mutual information I(p, s, w) indicating the strength of association
between slot s and word w in path p:

I(p, s, w) =
C(p, s, w)

∑

p′,w′ C(p′, s, w′)
∑

w′ C(p, s, w′)
∑

p′ C(p′, s, w)

3: for each extracted path p do
4: Find all instances (p, w1, w2) such that p connects the words w1 and w2.
5: for each such instance do
6: Update C(p, SlotX,w1) and I(p, SlotX,w1) in H.
7: Update C(p, SlotY, w2) and I(p, SlotY, w2) in H.
8: end for
9: end for

10: for each extracted path p do
11: Create a candidate set C of similar paths by extracting all paths from H that

share at least one feature with p.
12: Prune candidates from C based on feature overlap with p.
13: Compute the similarity between p and the remaining candidates in C. The

similarity is defined in terms of the various values of mutual information I

between the paths’ two slots and all the words that appear in those slots.
14: Output all paths in C sorted by their similarity to p.
15: end for
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appended. The process continues until the other slot (the word problem) is reached,

at which point the process terminates.5 The extracted path is shown below the

tree. Similarly, a path can be extracted for the second dependency tree. Let’s

briefly mention the terminology associated with such paths:

• The relations on either end of a path are referred to as SlotX and SlotY.

• The tuples (SlotX, John) and (SlotY, problem) are known as the two features

of the path.

• The dependency relations inside the path that are not slots are termed internal

relations.

Intuitively, one can imagine a path to be a complex representation of the pattern X

finds answer to Y, where X and Y are variables. This representation for a path is

a perfect fit for the extended distributional similarity hypothesis discussed above:

if similar sets of words fill the same variables for two different patterns, then the

patterns may be considered to have similar meaning, which is indeed the case for

the paths in Figure 2.

Lin and Pantel (2001) use newspaper text as their input corpus and create

dependency parses for all the sentences in the corpus in the pre-processing step.

Algorithm 2 provides the details of the rest of the process: Steps 1 and 2 extract

the paths and compute their distributional properties and steps 3–14 extract pairs

of paths are similar, insofar as such properties are concerned.6 At the end, there

5Any relations not connecting two content words, such as determiners and auxiliaries, are
ignored.

6A demo of the algorithm is available online at http://demo.patrickpantel.com/Content/LexSem/
paraphrase.htm.
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are sets of paths (or inference rules) that are considered to have similar meaning by

the algorithm.

The performance of their dependency path based algorithm depends heavily

on the root of the extracted path. For example, while verbs frequently tend to have

several modifiers, nouns tend to have no more than one. However, if a word has

any fewer than two modifiers, no path can go through it as the root. Therefore,

the algorithm tends to perform better for paths with verbal roots. Another issue

is that this algorithm, despite the use of more informative distributional features,

can generate several incorrect or implausible paraphrase patterns (inference rules).

Recent work has shown how to filter out incorrect inferences when using them in a

downstream application (Pantel et al., 2007).

<eat, IN, hotel> 

dine      ...
  ...    chew
lunch   ...

WordNet

cafe     ....
   tavern  ...
spa   

<eat, IN, hotel>
<eat, IN, cafe> 
<eat, IN, spa>

...

... 
<dine, IN, hotel>

...

...
<chew, IN, hotel>

...  

Overgenerated
Paraphrastic

Patterns

Translation

<eat, IN, hotel>
<吃饭, IN, 酒店> 

<eat, IN, cafe>
<吃饭, IN, 咖啡馆> 

 
<eat, IN, spa>

<吃饭, IN, 水疗> 

...

... 

Pairwise
Similarity

over 
Translations

Induction

Thresholding

<eat, IN, hotel>
<eat, IN, cafe>  

<dine, IN, hotel>
...  

Output

Bilingual

Dictionary

Figure 2.3: Using Chinese translations as the distributional elements to extract a set of
English paraphrastic patterns from a large English corpus.

Finally, there is no reason for the distributional features to be in the same

language as the one in which the paraphrases are desired. Wu and Zhou (2003)
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describe a bilingual approach to extract English relation-based paraphrastic pat-

terns of the form ⟨w1, R, w2⟩, where w1 and w2 are English words connected by a

dependency link with the semantic relation R. Figure 2.3 shows a simple example

based on their approach. First, instances of one type of pattern are extracted from

a parsed monolingual corpus. In the figure, for example, a single instance of the

pattern ⟨verb, IN, pobj⟩ has been extracted. several new, potentially paraphrastic,

English candidate patterns are then induced by replacing each of the English words

with its synonyms in WordNet, one at a time. The figure shows the list of induced

patterns for the given example. Next, each of the English words in each candidate

pattern is translated to Chinese, via a bilingual dictionary.7

Given that the bilingual dictionary may contain multiple Chinese translations

for a given English word, several Chinese patterns may be created for each English

candidate pattern. Each Chinese pattern is assigned a probability value via a simple

bag-of-words translation model (built from a small bilingual corpus) and a language

model (trained on a Chinese collocation database); all translated patterns, along

with their probability values, are then considered to be features of the particular

English candidate pattern. Any English pattern can subsequently be compared

to another by computing cosine similarity over their shared “features.” English

collocation pairs whose similarity value exceed some threshold are construed to be

paraphrastic.

The theme of a trade-off between the precision of the generated paraphrase

set— by virtue of the increased informativeness of the distributional features—and

7The semantic relation R is deemed to be invariant under translation.
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its coverage is seen in this work as well. When using translations from the bilin-

gual dictionary, a knowledge-rich resource, the authors report significantly higher

precision than comparable methods that rely only on monolingual information to

compute the distributional similarity. Predictably, they also find that recall values

obtained with their dictionary-based method is lower than those obtained by other

methods.

Paraphrase generation techniques using a single monolingual corpus have to

rely on some form of distributional similarity since there are no explicit clues avail-

able that indicate semantic equivalence. The next section looks at paraphrasing

methods operating over data that does contain such explicit clues.

2.4.3 Paraphrasing using Monolingual Parallel Corpora

It is also possible to generate paraphrastic phrase pairs from a parallel corpus

where each component of the corpus is in the same language. Obviously, the biggest

advantage of parallel corpora is that the sentence pairs are paraphrases almost by

definition; they represent different renderings of the same meaning created by dif-

ferent translators making different lexical choices. In effect, they contain pairs (or

sets) of sentences available that are either semantically equivalent (sentential para-

phrases) or have significant semantic overlap. Extraction of phrasal paraphrases can

then be effected by extracting phrasal correspondences from a set of sentences that

represent the same (or similar) semantic content. Four techniques are presented in

this section that generate paraphrases by finding such correspondences.
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The first two techniques attempt to do so by relying, again, on the paradigm

of distributional similarity: one by positing a bootstrapping distributional similarity

algorithm and the other by simply adapting the previously described dependency

path similarity algorithm to work with a parallel corpus The next two techniques

rely on more direct, non-distributional methods to compute the required correspon-

dences.
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Figure 2.4: A bootstrapping algorithm to extract phrasal paraphrase pairs from monolin-
gual parallel corpora.

Barzilay and McKeown (2001) align phrasal correspondences by attempting

to move beyond a single-pass distributional similarity method. They propose a

bootstrapping algorithm that allows for the gradual refinement of the features used

to determine similarity and yields improved paraphrase pairs. As their input cor-

pus, they use multiple human-written English translations of literary texts such as

Madame Bovary and Twenty Thousand Leagues Under the Sea that are expected

to be rich in paraphrastic expressions because different translators would use their

own words while still preserving the meaning of the original text. The parallel com-
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ponents are obtained by performing sentence alignment (Gale and Church, 1991) on

the corpora to obtain sets of parallel sentences that are then lemmatized, part-of-

speech tagged and chunked in order to identify all the verb and noun phrases. The

bootstrapping algorithm is then employed to incrementally learn better and better

contextual features that are then leveraged to generate semantically similar phrasal

correspondences.

Figure 2.4 shows the basic steps of the algorithm. To seed the algorithm, some

fake paraphrase examples are extracted by using identical words from either side of

the aligned sentence pair. For example, given the following sentence pair:

S1: Emma burst into tears and he tried to comfort her.

S2: Emma cried and he tried to console her.

(tried, tried), (her, her) may be extracted as positive examples and (tried, Emma),

(tried, console) may be extracted as negative examples. Once the seeding examples

are extracted, the next step is to extract contextual features for both the positive

and the negative examples. These features take the form of aligned part-of-speech

sequences of a given length from the left and the right of the example. For instance,

the contextual feature [⟨L1 : PRP1, R1 : TO1⟩, ⟨L2 : PRP1, R2 : TO1⟩] of length 1 can be

extracted for the positive example (tried, tried) above. This particular contextual

feature contains two tuples, one for each sentence. The first tuple ⟨L1 : PRP1, R1 : TO1⟩

indicates that, in the first sentence, the POS tag sequence the left of the word tried

is just the personal pronoun (he) and the POS tag sequence to the right of tired

is just the preposition to. The second tuple is identical for this case. Note that
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the tags of identical tokens are indicated as such by suffixes on the POS tags. All

such features are extracted for both the positive and the negative examples for

all lengths less than or equal to some specified length. In addition, a strength

value is calculated for each positive (negative) contextual feature f using maximum

likelihood estimation as follows:

strength(f) =
Number of positive (negative) examples surrounded by f

Total occurrences off

The extracted list of contextual features is thresholded on the basis of the above

strength value. The remaining contextual rules are then applied to the corpora to

obtain additional positive and negative paraphrase examples that, in turn, lead

to more refined contextual rules and so on. The process is repeated for a fixed

number of iterations or until no new paraphrase examples are produced. The list

of extracted paraphrases at the end of the final iteration represents the final output

of the algorithm. In total, about 9000 phrasal (including lexical) paraphrases are

extracted from 11 translations of 5 works of classic literature. Furthermore, the

extracted paraphrase pairs are also generalized into about 25 patterns by extracting

part-of-speech tag sequences corresponding to the tokens of the paraphrase pairs.

Barzilay and McKeown also perform an interesting comparison with another

technique that was originally developed for compiling translation lexicons from bilin-

gual parallel corpora (Melamed, 2001). This technique first compiles an initial

lexicon using simple co-occurrence statistics and then uses a competitive linking

algorithm (Melamed, 1997) to improve the quality of the lexicon. The authors
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apply this technique to their monolingual parallel data and observe that the ex-

tracted paraphrase pairs are of much lower quality than the pairs extracted by their

own method. Similar observations are presented in Section 2.4.5 which highlight

that while more recent translation techniques—specifically ones that use phrases as

units of translation—are better suited to the task of generating paraphrases than

the competitive linking approach, they continue to suffer from the same problem of

low precision. On the other hand, such techniques can take good advantage of large

bilingual corpora and capture a much larger variety of paraphrastic phenomena.

Ibrahim et al. (2003) propose an approach that applies a modified version

of the dependency path distributional similarity algorithm proposed by Lin and

Pantel (2001) to the exact monolingual parallel corpus (multiple translations of

literary works) used by Barzilay and McKeown (2001). The authors claim that

their technique is more tractable than Lin and Pantel’s approach since the sentence-

aligned nature of the input parallel corpus obviates the need to compute similarity

over tree paths drawn from sentences that have zero semantic overlap. Furthermore,

they also claim that their technique exploits the parallel nature of a corpus more

effectively than Barzilay and McKeown’s simply because their technique is the one

that uses tree paths and not just lexical information. Specifically, they propose the

following modifications to Lin and Pantel’s algorithm:

1. Extracting tree paths with aligned anchors. Rather than using a single

corpus and comparing paths extracted from possibly unrelated sentences, the

authors leverage sentence-aligned monolingual parallel corpora; the same as
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used in (Barzilay and McKeown, 2001). For each sentence in an aligned pair,

anchors are identified. The anchors from both sentences are brought into

alignment. Once anchor pairs on either side have been identified and aligned,

a breadth-first-search algorithm is used to find the shortest path between the

anchor nodes in the dependency trees. All paths found between anchor pairs

for a sentence pair are taken to be distributionally—and, hence, semantically—

similar.

2. Using a sliding frequency measure. The original dependency-based algo-

rithm (Lin and Pantel, 2001) weights all subsequent occurrences of the same

paraphrastic pair of tree paths as much as the first one. In this version, ev-

ery successive induction of a paraphrastic pair using the same anchor pair is

weighted less than the previous one. Specifically, inducing the same para-

phrase pair using an anchor pair that has already been seen only counts for

1
2n

, where n is the number of times the specific anchor pair has been seen so

far. Therefore, induction of a path pair using new anchors is better evidence

that the pair’s paraphrastic, as opposed to the repeated induction of the path

pair from the same anchor over and over again.

Despite the authors’ claims, they offer no quantitative evaluation comparing their

paraphrases with those from Lin and Pantel (2001) or from Barzilay and McKeown

(2001).

It is also possible to find correspondences between the parallel sentences using

a more direct approach instead of relying on distributional similarity. Pang et al.
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(2003) propose an algorithm to align sets of parallel sentences driven entirely by

the syntactic representations of the sentences. The alignment algorithm outputs

a merged lattice from which lexical, phrasal as well as sentential paraphrases can

simply be read off. More specifically, they use the Multiple-Translation Chinese

corpus that was originally developed for machine translation evaluation and contains

11 human-written English translations for each sentence in a news document. Using

several sentences explicitly equivalent in semantic content has the advantage of being

a richer source for paraphrase induction.
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Figure 2.5: (a) shows how the merging algorithm works for two simple parse trees to
produce a shared forest. Note that in order to preserve clarity, not all constituents are
expanded fully. Leaf nodes with two entries represent paraphrases. (b) shows the word
lattice generated by linearizing the forest in (a).

As a pre-processing step, any group (of 11 sentences) that contains sentences

longer than 45 words are discarded. Next, each sentence in each of the groups

46



is parsed. All the parse trees are then iteratively merged into a shared forest.

The merging algorithm proceeds top-down and continues to recursively merge con-

stituent nodes that are expanded identically. It stops upon reaching the leaves or

upon encountering the same constituent node expanded using different grammar

rules. Figure 2.5(a) shows how the merging algorithm would work on two simple

parse trees. In the figure, it is apparent that the leaves of the forest encode para-

phrasing information. However, the merging only allows identical constituents to

be considered as paraphrases. In addition, keyword-based heuristics need to be em-

ployed to prevent inaccurate merging of constituent nodes due to, say, alternations

of active and passive voices among the sentences in the group. Once the forest is

created, it is linearized to create the word lattice by traversing the nodes in the

forest top-down and producing an alternative path in the lattice for each merged

node. Figure 2.5(b) shows the word lattice generated for the simple two-tree forest.

The lattices also require some post-processing to remove redundant edges and nodes

that may have arisen due to parsing errors or limitations in the merging algorithm.

The final output of the paraphrasing algorithm is a set of word lattices, one for each

sentence group.

These lattices can be used as sources of lexical as well as phrasal paraphrases.

All alternative paths between any pair of nodes can be considered to be paraphrases

of each other. For example, besides the obvious lexical paraphrases, the paraphrase

pair ⟨ate at cafe, chowed down at bistro⟩ can also be extracted from the lattice in

Figure 2.5(b). In addition, each path between the START and the END nodes in the

lattice represents a sentential paraphrase of the original 11 sentences used to create
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the lattice.

The direct alignment approach is able to leverage the sheer width (number of

parallel alternatives per sentence position; 11 in this case) of the input corpus to

do away entirely with any need for measuring distributional similarity. In general,

it has several advantages. It can capture a very large number of paraphrases: each

lattice has on the order of hundreds or thousands of paths depending on the average

length of the sentence group that it was generated from. In addition, the paraphrases

produced are of better quality than other approaches employing parallel corpora for

paraphrase induction discussed so far. However, the approach does have a couple of

drawbacks:

• No paraphrases for unseen data. The lattices cannot be applied to new

sentences for generating paraphrases since no form of generalization is per-

formed to convert lattices into patterns.

• Requirement of large number of human-written translations. Each of

the lattices described above is built using 11 manually written translations of

the same sentence, each by a different translator. There are very few corpora

that provide such a large number of human translations. In recent years, most

MT corpora have had no more than 4 references, which would certainly lead to

much sparser word lattices and number of paraphrases that can be extracted.

In fact, given the cost and amount of effort required for humans to translate a

relatively large corpus, it is common to encounter corpora with only a single

human translation. With such a corpus, of course, this technique would be
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unable to produce any paraphrases. One solution might be to augment the

relatively few human translations with translations obtained from automatic

machine translation systems. In fact, the corpus used (Huang et al., 2002)

also contains, besides the 11 human translations, 6 translations of the same

sentence by machine translation systems available on the Internet at the time.

However, no experiments are performed with the automatic translations.

Finally, an even more direct method to align equivalences in parallel sentence

pairs can be effected by building on word alignment techniques from the field of

statistical machine translation (Brown et al., 1990). Current state-of-the-art SMT

methods rely on unsupervised induction of word alignment between two bilingual

parallel sentences to extract translation equivalences that can then be used to trans-

late a given sentence in one language into another language. The same methods can

be applied to monolingual parallel sentences without any loss of generality. Quirk

et al. (2004) use one such method to extract phrasal paraphrase pairs. Furthermore,

they use these extracted phrasal pairs to construct sentential paraphrases for new

sentences.

Mathematically, their approach to sentential paraphrase generation may be

expressed in terms of the typical channel model equation for statistical machine

translation:

E
∗
p = argmax

Ep

P (Ep|E) (2.1)

The equation denotes the search for the optimal paraphrase Ep for a given sentence
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E. This may be rewritten using Bayes’ Theorem as follows:

E
∗
p = argmax

Ep

P (Ep) P (E|Ep)

where P (Ep) is an n-gram language model providing a probabilistic estimate of the

fluency of a hypothesis Ep is and P (E|Ep) is the translation, or more appropriately

for paraphrasing, the replacement model providing a probabilistic estimate of what

is essentially the semantic adequacy of the hypothesis paraphrase. Therefore, the

optimal sentential paraphrase may loosely be described as one that fluently captures

most, if not all, of the meaning contained in the input sentence.

It is important to provide a brief description of the parallel corpus used here

since unsupervised induction of word alignments typically requires relatively large

number of parallel sentence pairs. The monolingual parallel corpus (or more accu-

rately, quasi-parallel since not all sentence pairs are fully semantically equivalent) is

constructed by scraping online news sites for clusters of articles on the same topic.

Such clusters contain the full text of each article and the dates and times of publi-

cation. After removing the mark-up, they discard any pair of sentences in a cluster

where the difference in the lengths or the edit distance is larger than some stipulated

value. This method yields a corpus containing approximately 140, 000 quasi-parallel

sentence pairs {(E1,E2)}, where E1 = e11e
2
1 . . . e

m
1 , E2 = e12e

2
2 . . . e

n
2 .

The examples below show that the proposed method can work well:

S1: In only 14 days, US researchers have created an artificial bacteria-eating virus
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Algorithm 3 (Quirk, Dolan, and Brockett 2004). Generate a set M of phrasal
paraphrases with associated likelihood values from a monolingual parallel corpus C.
Summary. Estimate a simple English to English phrase translation model from C

using word alignments. Use this model to create sentential paraphrases as explained
later.
1: M ← {φ}
2: Compute lexical replacement probabilities P (e1|e2) from all sentence pairs in C

via IBM Model 1 estimation
3: Compute a set of word alignments {a} such that for each sentence pair (E1,E2)

a = a1a2 . . . am

where ai ∈ {0 . . . n},m = |E1|, n = |E2|
4: for each word-aligned sentence pair (E1,E2)a in C do
5: Extract pairs of contiguous subsequences (ē1, ē2) such that:

(a) |ē1| ≤ 5, |ē2| ≤ 5

(b) ∀i ∈ {1, . . . , |ē1|} ∃j ∈ {1, . . . , |ē2|}, e1,i
a
∼ e2,j

(c) ∀i ∈ {1, . . . , |ē2|} ∃j ∈ {1, . . . , |ē1|}, e2,i
a
∼ e1,j

6: Add all extracted pairs to M .
7: end for
8: for each paraphrase pair (ē1, ē2) in M do

9: Compute P (ē1|ē2) =
∏

e
j
1
∈ē1

∑

ek
2
∈ē2

P (ej1|e
k
2)

10: end for
11: Output M containing paraphrastic pairs and associated probabilities
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from synthetic genes.

S2: An artificial bacteria-eating virus has been made from synthetic genes in the

record time of just two weeks.

S1: The largest gains were seen in prices, new orders, inventories and exports.

S2: Sub-indexes measuring prices, new orders, inventories and exports increased.

For more details on the creation of this corpus, the reader is referred to (Dolan

et al., 2004) and, more generally, to Section 2.5. Algorithm 3 shows how to generate

a set of phrasal paraphrase pairs and compute a probability value for each such pair.

In Step 2, a simple parameter estimation technique (Brown et al., 1993) is used to

compute, for later use, the probability of replacing any given word with another.

Step 3 computes a word alignment (indicated by a) between each pair of sentences.

This alignment indicates for each word ei in one string that word ej in the other

string from which it was most likely produced (denoted here by ei
a
∼ ej). Steps 4-

7 extract, from each pair of sentences, pairs of short contiguous phrases that are

aligned with each other according to this alignment. Note that each such extracted

pair is essentially a phrasal paraphrase. Finally, a probability value is computed

for each such pair by assuming that each word of the first phrase can be replaced

with each word of the second phrase. This computation uses the lexical replacement

probabilities computed in Step 2 are used.

Now that a set of scored phrasal pairs has been extracted, these pairs can

be used to generate paraphrases for any unseen sentence. Generation proceeds by
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creating a lattice for the given sentence. Given a sentence E, the lattice is populated

as follows:

1. Create |E|+ 1 vertices q0, q1 . . . q|E|

2. Create N edges between each pair of vertices qj and qk (j < k) such that N

= number of phrasal paraphrases for the input phrase e(j+1)e(j+2) . . . ek. Label

each edge with the phrasal paraphrase string itself and its probability value.

Each such edge denotes a possible paraphrasing of the above input phrase by

the replacement model.

3. Add the edges {(qj−1, qj)} and label each edge with the token sj and a constant

u. This is necessary to handle words from the sentence that do not occur

anywhere in the set of paraphrases.

Figure 2.6 shows an example lattice. Once the lattice has been constructed, it is

straightforward to extract the 1-best paraphrase by using a dynamic programming

algorithm such as Viterbi decoding and extracting the optimal path from the lattice

as scored by the product of an n-gram language model and the replacement model.

In addition, as with SMT decoding, it is also possible to extract a list of n-best

paraphrases from the lattice by using the appropriate algorithms (Soong and Huang,

1990; Mohri and Riley, 2002).

Quirk et al. borrow from the statistical machine translation literature so as to

align phrasal equivalences as well as to utilize the aligned phrasal equivalences to

rewrite new sentences. The biggest advantage of this method is its SMT inheritance:

it is possible to produce multiple sentential paraphrases for any new sentence. and
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he

ate lunch at a cafe

near

Paris

the man
dined bistro

restaurant

diner

close to

Figure 2.6: A paraphrase generation lattice for the sentence He ate lunch at a cafe near

Paris. Alternate paths between various nodes represent phrasal replacements. The prob-
ability values associated with each edge are not shown for the sake of clarity.

there is no limit on the number of sentences that can be paraphrased.8 However,

there are certain limitations:

• Monotonic Translation. It is assumed that a phrasal replacement will occur

in the exact same position in the output sentence as that of the original phrase

in the input sentence, i.e., reorderings of phrasal units are disallowed.

• Naive Parameter Estimation. Using a bag-of-words approach to parameter

estimation results in a relatively uninformative probability distribution over

the phrasal paraphrases.

• Reliance on edit-distance. Relying on edit distance to build the training

corpus of quasi-parallel sentences may exclude sentences that do exhibit a

paraphrastic relationship but differ significantly in constituent orderings.

All of the above limitations combined lead to paraphrases that, while grammatically

sound, contain very little variety. Most sentential paraphrases that are generated

involve little more than simple substitutions of words and short phrases. In Sec-

8However, if no word in the input sentence has been observed in the parallel corpus, the para-
phraser simply reproduces the original sentence as the paraphrase.
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tion 2.4.5, other approaches will be discussed that also find inspiration from statis-

tical machine translation and attempt to circumvent the above limitations by using

a bilingual parallel corpus instead of a monolingual parallel corpus.

2.4.4 Paraphrasing using Monolingual Comparable Corpora

While it is clearly advantageous to have monolingual parallel corpora, such

corpora are usually not very easily available. The corpora usually found in the real

world are comparable instead of being truly parallel: parallelism between sentences

is replaced by just partial semantic and topical overlap at the level of documents.

Therefore, for monolingual comparable corpora, the task of finding phrasal corre-

spondences becomes harder since the two corpora may only be related by way of

describing events under the same topic. In such a scenario, possible paraphrasing

methods either (a) forgo any attempts at directly finding such correspondences and

fall back to the distributional similarity workhorse or, (b) attempt to directly in-

duce a form of coarse-grained alignment between the two corpora and leverage this

alignment.

This section describes three methods that generate paraphrases from such com-

parable corpora. The first method falls under category (a): here the elements whose

distributional similarity is being measured are paraphrastic patterns and the distri-

butions themselves are the named entities, with which the elements occur in various

sentences. In contrast, the next two methods fall under category (b) and attempt to

directly discover correspondences between two comparable corpora by leveraging a
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novel alignment algorithm combined with some similarity heuristics. The difference

between the two latter methods lies only in the efficacy of the alignment algorithm.

Shinyama et al. (2002) use two sets of 300 news articles from two different

Japanese newspapers from the same day as their source of paraphrases. The com-

parable nature of the articles is ensured because both sets are from the same day.

During pre-processing, all named entities in each article are tagged and dependency

parses are created for each sentence in each article. The distributional similarity

driven algorithm then proceeds as follows:

1. For each article in the first set, the most “similar” article is found from the

other set, based on a similarity measure computed over the named entities

appearing in the two articles.

2. From each Japanese sentence in each such pair of articles, extract all depen-

dency tree paths that contain at least one named entity and generalize them

into patterns wherein the named entities have been replaced with variables.

Each class of named-entity (e.g., Organization, Person, Location etc.) gets its

own variable. For example, the following sentence:9

Vice President Kuroda of Nihon Yamamura Glass Corp. was promoted

to President.

may yield the following two patterns, among others:

⟨PERSON⟩ of ⟨ORGANIZATION⟩ was promoted

9While the authors provide motivating examples in Japanese (transliterated into romaji) in
their paper, English is chosen here, for the sake of clarity.
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⟨PERSON⟩ was promoted to ⟨POST⟩

3. Find all sentences in the two newswire corpora that match the above patterns.

When a match is found, attach the pattern to the sentence and link all variables

to the corresponding named entities in the sentences.

4. Find all sentences that are most similar to each other (above some preset

threshold), again based on the named entities they share between them.

5. For each pair of similar sentences, compare their respective attached patterns.

If the variables in the patterns link to the same or comparable named en-

tities (based on the entity text and type), then consider the patterns to be

paraphrases of each other.

At the end, the output is a list of generalized paraphrase patterns with named

entity types as variables. For example, it may generate the following two patterns

as paraphrases:

⟨PERSON⟩ is promoted to ⟨POST⟩

the promotion of ⟨PERSON⟩ to ⟨POST⟩ is decided

As a later refinement, Sekine (2005) makes a similar attempt at using distributional

similarity over named entity pairs in order to produce a list of fully lexicalized phrasal

paraphrases for specific concepts represented by keywords.

The idea of enlisting named entities as proxies for detecting semantic equiv-

alence is interesting and has certainly been explored before (vide the discussion

regarding (Paşca and Dienes, 2005) in Section 2.4.2). However, it has some obvious
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disadvantages. The authors manually evaluate the technique by generating para-

phrases for two specific domains: arrest events and personnel hirings and find that

while the precision is reasonably good, the coverage is very low primarily due to

restrictions on the patterns that may be extracted in Step 2 above. In addition, if

the average number of entities in sentences is low, the likelihood of creating incorrect

paraphrases is confirmed to be higher.

Consider the altogether separate idea of deriving coarse-grained correspon-

dences by leveraging the comparable nature of the corpora. Barzilay and Lee (2003)

attempt to do so by generating compact sentence clusters in template form (stored

as word lattices with slots) separately from each corpora and then pairing up tem-

plates from one corpus with those from the other. Once the templates are paired up,

a new incoming sentence that matches one member of a template pair gets rendered

as the other member, thereby generating a paraphrase. They use as input a pair of

corpora: the first (C1) consisting of clusters of news articles published by Agence

France Presse (AFP) and the second (C2) consisting of those published by Reuters.

The two corpora may be considered comparable since the articles in each are related

to the same topic and were published during the same time frame.

Algorithm 4 shows how some details of their technique works. Steps 3–18 show

how to cluster topically related sentences, construct a word lattice from such a cluster

and convert that into a slotted lattice—basically a word lattice with certain nodes

recast as variables or empty slots. The clustering is done so as to bring together

sentences pertaining to the same topics and having similar structure. The word
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Algorithm 4 (Barzilay and Lee 2003). Generate set M of matching lattice pairs
given a pair of comparable corpora C1 and C2.
Summary. Gather topically related sentences from C1 into clusters. Do the same
for C2. Convert each sentence cluster into a slotted lattice using a multiple-sequence
alignment (MSA) algorithm. Compare all lattice pairs and output those likely to
be paraphrastic.

1: Let WC1
and WC2

represent word lattices obtained from C1 and C2 respectively

2: M ← {φ}, WC1
← {φ}, WC2

← {φ}
3: for each input corpus Ci ∈ {C1, C2} do
4: Create a set of clusters GCi

= {GCi,k} of sentences based on n-gram overlap
such that all sentences in a cluster describe the same kinds of events and share
similar structure.

5: for each cluster GCi,k do
6: Compute an MSA for all sentences in GCi,k by using a pre-stipulated scoring

function and represent the output as a word lattice WCi,k

7: Compute the set of backbone nodes Bk for WCi,k, i.e., the nodes that are
shared by a majority (>= 50%) of the sentences in GCi,k

8: for each backbone node b ∈ Bk do
9: if no more than 30% of all the edges from b lead to the same node then

10: Replace all nodes adjacent to b with a single slot
11: else
12: Delete any node with < 30% of the edges from b leading to it and

preserve the rest
13: end if
14: end for
15: Merge any consecutive slot nodes into a single slot
16: WCi

← WCi
∪ {WCi,k}

17: end for
18: end for
19: for each lattice pair (WC1,j,WC2,k) ∈ WC1

×WC2
do

20: Inspect clusters GC1,j and GC2,k and compare slot fillers in the cross-corpus
sentence pairs written on the same day

21: if comparison score > a prestipulated threshold δ then
22: M ←M ∪ {(WC1,j,WC2,k)}
23: end if
24: end for
25: Output M containing paraphrastic lattice pairs with linked slots
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lattice is the product of an algorithm that computes a multiple-sequence alignment

(MSA) for a cluster of sentences (Step 6). A very brief outline of such an algorithm,

originally developed to compute an alignment for a set of 3 or more protein or DNA

sequences,10 is as follows:

1. Find the most similar pair of sentences in the cluster according to a similarity

scoring function. For this approach, a simplified version of the edit-distance

measure (Barzilay and Lee, 2002) is used.

2. Align this sentence pair and replace the pair with this single alignment.

3. Repeat until all sentences have been aligned together.

The word lattice so generated now needs to be converted into a slotted lattice to

allow its use as a paraphrase template. Slotting is performed based on the following

intuition: areas of high variability between backbone nodes, i.e., several distinct

parallel paths, may correspond to template arguments and can be collapsed into

one path leading to a slot that can be filled by these arguments. However, multiple

parallel paths may also appear in the lattice because of simple synonymy and those

paths must be retained for paraphrase generation to be useful. To differentiate

between the two cases, a synonymy threshold s is used, set to 30%. It is used in the

algorithm as shown in Steps 8–14. The basic idea behind the threshold is that as

the number of sentences increases, the number of different arguments will increase

faster than the number of synonyms. Figure 2.7 shows how a very simple word

lattice may be generalized into a slotted lattice.

10For more details on MSA algorithms, refer to (Gusfield, 1997; Durbin et al., 1998).
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Once all the slotted lattices have been constructed for each corpus, Steps 19–

24 try to match the slotted lattices extracted from one corpus to those extracted

from the other by referring back to the sentence clusters from which the original

lattices were generated, comparing the sentences that were written on the same day

and computing a comparison score based on overlap between the sets of arguments

that fill the slots. If this computed score is greater than some fixed threshold value

δ, then the two lattices (or patterns) are considered to be paraphrases of each other.

He

ate

feast-

ed

dined

in

cafe

diner

bistro

near ParisStart End

He in near ParisStart EndSlot1
Slot2

(a)

(b)

lunch

-ed

eater

-y

Figure 2.7: An example showing the generalization of the word lattice (a) into a slotted
lattice (b). The word lattice is produced by aligning 7 sentences. Nodes having in-degrees
> 1 occur in more than one sentence. Nodes with thick incoming edges occur in all
sentences.

Besides generating pairs of paraphrastic patterns, the authors go one step

further and actually use the patterns to generate paraphrases for new sentences.

Given such a sentence S, the first step is to find an existing slotted lattice from

either corpus that aligns best with S, in terms of the previously mentioned alignment
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scoring function. If some lattice is found as a match, then all that remains is to take

all corresponding lattices from the other corpus that are paired with this lattice and

use them to create multiple rewritings (paraphrases) for S. Rewriting in this context

is a simple matter of substitution: for each slot in the matching lattice, both the

argument from the sentence that fills it and the slot in the corresponding rewrite

lattice are known.

As far as quality of acquired paraphrases is concerned, this approach easily

outperforms almost all other sentential paraphrasing approaches described in this

chapter. However, a paraphrase is produced only if the incoming sentence matches

some existing template which leads to a strong bias favoring quality over coverage.

In addition, construction and generalization of lattices may become computationally

expensive when dealing with much larger corpora.

Barzilay and Lee’s work can be compared and contrasted with the work from

Section 2.4.3 that seems most closely related: that of Pang et al. (2003). Both

take sentences grouped together in a cluster and align them into a lattice using

a particular algorithm. Pang et al. have a pre-defined size for all clusters since

the input corpus is an 11-way parallel corpus. However, Barzilay and Lee have to

construct the clusters from scratch since their input corpus has no predefined notion

of parallelism at the sentence level. Both approaches use word lattices to represent

and induce paraphrases since a lattice can efficiently and compactly encode n-gram

similarities (sets of shared overlapping word sequences) between a large number of

sentences. However, the two approaches are also different in that Pang et al. use

the parse trees of all sentences in a cluster to compute the alignment (and build the
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lattice) whereas Barzilay and Lee use only surface level information. Furthermore,

Barzilay and Lee can use their slotted lattice pairs to generate paraphrases for novel

and unseen sentences whereas Pang et al. cannot paraphrase new sentences at all.

Shen et al. (2006) attempt to improve Barzilay and Lee’s technique by trying

to include syntactic constraints in the cluster alignment algorithm. In that way, it

is doing something similar to what Pang et al. do but with a comparable corpus

instead of a parallel one. More precisely, whereas Barzilay and Lee use a relatively

simple alignment scoring function based on purely lexical features, Shen et al. try to

bring syntactic features into the mix. The motivation is to constrain the relatively

free nature of the alignment generated by the MSA algorithm—which may lead to

the generation of grammatically incorrect sentences—by using informative syntactic

features. In their approach, even if two words are a lexical match—as defined by

Barzilay and Lee (2003)—they are further inspected in terms of certain pre-defined

syntactic features. Therefore, when computing the alignment similarity score, two

lexically matched words across a sentence pair are not considered to fully match

unless their score on syntactic features also exceeds a preset threshold.

The syntactic features constituting the additional constraints are defined in

terms of the output of a chunk parser. Such a parser takes as input the syntactic

trees of the sentences in a topic cluster and provides the following information for

each word:

• Part-of-speech tag

• IOB Tag. This is a notation denoting the constituent covering a word and
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its relative position in that constituent (Ramshaw and Marcus, 1995). For

example, if a word has the tag I-NP, it can be inferred that the word is covered

by an NP and located inside that NP. Similarly, B denotes that the word is at

the beginning and O denotes that the word is not covered by any constituent.

• IOB chain. A concatenation of all IOB tags going from the root of the tree

to the word under consideration.

With the above information and a heuristic to compute the similarity between two

words in terms of their POS and IOB tags, the alignment similarity score can be

calculated as the sum of the heuristic similarity value for the given two words and

the heuristic similarity values for each corresponding node in the two IOB chains.

If this score is higher than some threshold and the two words have similar positions

in their respective sentences, then the words are considered to be a match and can

be aligned. Given this alignment algorithm, the word lattice representing the global

alignment is constructed in an iterative manner similar to the MSA approach.

Shen et al. present evidence from a manual evaluation that sentences sampled

from lattices constructed via the syntactically informed alignment method receive

higher grammaticality scores as compared to sentences from the lattices constructed

via the purely lexical method. However, they present no analysis of the actual

paraphrasing capacity of their, presumably better aligned, lattices. Indeed, they

explicitly mention that their primary goal is to measure the correlation between the

syntax-augmented scoring function and the correctness of the sentences being gener-

ated from such lattices, even if the sentences do not bear a paraphrastic relationship
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to the input. Even if one were to assume that the syntax-based alignment method

would result in better paraphrases, it still wouldn’t address the primary weakness of

Barzilay and Lee’s method: paraphrases are only generated for new sentences that

match an already existing lattice, leading to lower coverage.

2.4.5 Paraphrasing using Bilingual Parallel Corpora

In the last decade, there has been a resurgence in research on statistical ma-

chine translation (SMT). There has been also been an accompanying dramatic in-

crease in the number of available bilingual parallel corpora due to the strong interest

in SMT from both the public and private sectors. Recent research in paraphrase

generation has attempted to leverage these very large bilingual corpora. This section

looks at such approaches that rely on the preservation of meaning across languages

and try to recover said meaning by using cues from the secondary language.

Using bilingual parallel corpora for paraphrasing has the inherent advantage

that sentences in the other language are exactly semantically equivalent to sentences

in the intended paraphrasing language. Therefore, the most common way to gener-

ate paraphrases with such a corpus exploits both its parallel and bilingual natures:

align phrases across the two languages and consider all co-aligned phrases in the

intended language to be paraphrases. The bilingual phrasal alignments can simply

be generated by using the automatic techniques developed for the same task in the

SMT literature. Therefore, arguably the most important factor affecting the perfor-

mance of these techniques is usually the quality of the automatic bilingual phrasal
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Algorithm 5 (Bannard and Callison-Burch 2005). Generate set M of mono-
lingual paraphrase pairs given a bilingual corpus C.
Summary. Extract bilingual phrase pairs from C using word alignments and stan-
dard SMT heuristics. Pivot all pairs of English phrases on any shared foreign phrases
and consider them paraphrases. The alignment notation from Algorithm 3 is em-
ployed.

1: Let B represent the bilingual phrases extracted from C

2: B ← {φ}, M ← {φ}
3: Compute a word alignment a for each sentence pair (E,F) ∈ C

4: for each aligned sentence pair (E,F)a do
5: Extract the set of bilingual phrasal correspondences {(ē, f̄)} such that:

(a) ∀ei ∈ ē : ei
a
∼ fj → fj ∈ f̄ , and

(a) ∀fj ∈ f̄ : fj
a
∼ ei → ei ∈ ē

6: B ← B ∪ {(ē, f̄)}
7: end for
8: for each member of the set {⟨(ēj, f̄k), (ēl, f̄m)⟩ s.t. (ēj, f̄k) ∈ B

∧ (ēl, f̄m) ∈ B

∧ f̄k = f̄m} do
9: M ←M ∪ {(ēj, ēl)}

10: Compute p(ēj|ēl) =
∑

f̄ p(ēj|f̄m)p(f̄m|ēl)
11: end for
12: Output M containing paraphrastic pairs and associated probabilities
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(or word) alignment techniques.

(0,0) x (1,1) ➔ <人口, population>

(1,1) x (0,0) ➔ <快, fast>
(2,2) x (2,3) ➔ <增长, growth rate>
...

...

(4,5) x (6,7) ➔ <有效 遏制, effectively contained>

...

...

Extracted phrases

(0,1) x (0,0) ➔ <他 对, he>
(6,7) x (1,1) ➔ <者 表示, told>
(2,3) x (2,2) ➔ <高峰 会, summit>
...

...

(8,9) x (6,7) ➔ <有效 遏制, under control>
...

...

Extracted phrases

he

told

summit

participants

it

is

under

他 对 高峰 会 与会

control

的 者 表示 有效 遏制
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Figure 2.8: Extracting consistent bilingual phrasal correspondences from the shown sen-
tence pairs. (i1, j1) × (i2, j2) denotes the correspondence ⟨fi1 . . . fj1 , ei2 . . . ej2⟩. Not all
extracted correspondences are shown.

One of the most popular methods leveraging bilingual parallel corpora is that

proposed by Bannard and Callison-Burch (2005). This technique operates exactly

as described above by attempting to infer semantic equivalence between phrases in

the same language indirectly with the second language as a bridge. Their approach

builds on one of the initial steps used to train a phrase-based statistical machine

translation system (Koehn et al., 2003). Such systems rely on phrase tables—a tab-

ulation of correspondences between phrases in the source language and phrases in

the target language. These tables are usually extracted by inducing word align-

ments between sentence pairs in a training corpus and then incrementally building

longer phrasal correspondences from individual words and shorter phrases. Once
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such a tabulation of bilingual phrasal correspondences is available, correspondences

between phrases in one language may be inferred simply by using the phrases in the

other language as pivots.

Algorithm 5 shows how monolingual phrasal correspondences are extracted

from a bilingual corpus C by using word alignments. Steps 3–7 extract bilingual

phrasal correspondences from each sentence pair in the corpus by using heuristically

induced bidirectional word alignments. Figure 2.8 illustrates this extraction process

for two example sentence pairs. For each pair, a matrix shows the alignment between

the Chinese and the English words. Element (i, j) of the matrix is filled if there is

an alignment link between the ith Chinese word and the jth English word ej. All

phrase pairs consistent with the word alignment are then extracted. A consistent

phrase pair can intuitively be thought of as a sub-matrix where all alignment points

for its rows and columns are inside it and never outside. Next, steps 8–11 take all

English phrases that all correspond to the same foreign phrase and infer them all to

be paraphrases of each other.11 For example, the English paraphrase pair ⟨effectively

contained, under control⟩ is obtained from Figure 2.8 by pivoting on the Chinese

phrase 有效 遏制, shown underlined for both matrices.

Using the components of a phrase-based SMT system also makes it easy to

assign a probability value to any of the inferred paraphrase pairs as follows:

p(ēj|ēk) =
∑

f̄

p(ēj, f̄ |ēk) ≈
∑

f̄

p(ēj|f̄)p(f̄ |ēk)

11Note that it would have been equally easy to pivot on the English side and generate paraphrases
in the foreign language instead.
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where both p(ēj|f̄) and p(f̄ |ēk) can both be computed using maximum likelihood

estimation as part of the bilingual phrasal extraction process, e.g.,

p(ēj|f̄) =
number of times f̄ is extracted with ēj

number of times f̄ is extracted with any ē

Once the probability values are obtained, the most likely paraphrase can be chosen

for any phrase.

Bannard and Callison-Burch are able to extract millions of phrasal paraphrases

from a bilingual parallel corpus. Such an approach is able to capture a large variety

of paraphrastic phenomena in the inferred paraphrase pairs but is seriously limited

by the bilingual word alignment technique. Even state-of-the-art alignment meth-

ods from SMT are known to be notoriously unreliable when using them for aligning

phrase pairs. The authors find via manual evaluation that the quality of the phrasal

paraphrases obtained via manually constructed word alignments is significantly bet-

ter than that of the paraphrases obtained from automatic alignments.

It has been widely reported that the existing bilingual word alignment tech-

niques are not ideal for use in translation and, furthermore, improving these tech-

niques does not always lead to an improvement in translation performance. (Callison-

Burch et al., 2004; Ayan and Dorr, 2006; Lopez and Resnik, 2006; Fraser and Marcu,

2007). More details on the relationship between word alignment and SMT can be

found in the comprehensive SMT survey recently published by Lopez (2008) (par-

ticularly Section 4.2). Paraphrasing done via bilingual corpora relies on the word

alignments in the same way as a translation system would and, therefore, would
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be equally be susceptible to the shortcomings of the word alignment techniques.

To determine how noisy automatic word alignments affect paraphrasing done via

bilingual corpora, a sample of paraphrase pairs were inspected for this thesis. These

were extracted when using Arabic—a language significantly different from English—

as the pivot language.12 This study found that the paraphrase pairs in the sample

set could be grouped into the following three broad categories:

(a) Morphological variants. These pairs only differ in the morphological form

for one of the words in the phrases and cannot really be considered paraphrases.

Examples: <ten ton, ten tons>, <caused clouds, causing clouds>.

(b) Approximate Phrasal Paraphrases. These are pairs that only shared

partial semantic content. Most paraphrases extracted by the pivot method

using automatic alignments fall into this category. Examples: <were exiled,

went abroad>, <accounting firms, auditing firms>.

(c) Phrasal Paraphrases. Despite unreliable alignments, there were indeed a

large number of truly paraphrastic pairs in the set that are semantically equiv-

alent. Examples: <army roadblock, military barrier>, <staff walked out,

team withdrew>.

Besides there being obvious linguistic differences between Arabic and English,

the primary reason for the generation of phrase pairs that lie in categories (a) and

12 The bilingual Arabic-English phrases were extracted from a million sentences of Arabic
newswire data using the freely available and open source Moses SMT toolkit (http://www.statmt.
org/moses/). The default Moses parameters were used. The English paraphrases were generated by
simply applying the pivoting process described above to the bilingual phrase pairs.
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(b) is due to incorrectly induced alignment between the English and Arabic words,

and hence, phrases. Therefore, most subsequent work on paraphrasing using bilin-

gual corpora, as discussed below, usually focuses on using additional machinery or

evidence to cope with the noisy alignment process. Before continuing, it would be

useful to draw a connection between Bannard and Callison-Burch’s work and that

of Wu and Zhou (2003) as discussed in Section 2.4.2. Note that both of these tech-

niques rely on a secondary language to provide the cues for generating paraphrases

in the primary language. However, Wu and Zhou rely on a pre-compiled bilin-

gual dictionary to discover these cues whereas Bannard and Callison-Burch have an

entirely data-driven discovery process.

In an attempt to address some of the noisy alignment issues, Callison-Burch

(2008) recently proposed an improvement that places an additional syntactic con-

straint on the phrasal paraphrases extracted via the pivot-based method from bilin-

gual corpora and showed that using such a constraint leads to a significant im-

provement in the quality of the extracted paraphrases.13 The syntactic constraint

requires that the extracted paraphrase be of the same syntactic type as the original

phrase. With this constraint, estimating the paraphrase probability now requires

the incorporation of syntactic type into the equation:

p(ēj|ēk, s(ek)) ≈
∑

f̄

p(ēj|f̄ , s(ek))p(f̄ |ēk, s(ek))

where s(e) denotes the syntactic type of the English phrase e. As before, maximum

13The software for generating these phrasal paraphrases along with a large collection of already
extracted paraphrases is available at: http://www.cs.jhu.edu/~ccb/howto-extract-paraphrases.html
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likelihood estimation is employed to compute the two component probabilities, e.g.,

p(ēj|f̄ , s(ek)) =
number of times f̄ is extracted with ēj and type s(ek)

number of times f̄ is extracted with any ē and type s(ek)

If the syntactic types are restricted to be simple constituents (NP, VP etc.),

then using this constraint will actually exclude some of the paraphrase pairs that

could have been extracted in the unconstrained approach. This leads to the familiar

precision-recall tradeoff: it only extracts paraphrases that are of higher quality but

the approach has a significantly lower coverage of paraphrastic phenomena that are

not necessarily syntactically motivated. To increase the coverage, complex syntactic

types such as those used in Combinatory Categorial Grammars (Steedman, 1996) are

employed, which can help denote a syntactic constituent with children missing on the

left and/or right hand sides. An example would be the complex type VP/(NP/NNS)

which denotes a verb phrase missing a noun phrase to its right which, in turn, is

missing a plural noun to its right. The primary benefit of using complex types is

that less useful paraphrastic phrase pairs from different syntactic categories such

as <accurately, precise>, that would have been allowed in the unconstrained pivot-

based approach, are now disallowed.

The biggest advantage of this approach is the use of syntactic knowledge as

one form of additional evidence in order to filter out phrase pairs from categories

(a) and (b) as defined in the context of the manual inspection of pivot-based para-

phrases above. Indeed, the authors conduct a manual evaluation to show that the

syntactically constrained paraphrase pairs are indeed better than the those pro-
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duced without such constraints. However, there are two additional benefits of this

technique:

1. The constrained approach might allow induction of some new phrasal para-

phrases in category (c) since now an English phrase only has to compete with

other pivoted phrases of similar syntactic type and not all of them.

2. The effective partitioning of the probability space for a given paraphrase pair

by syntactic types can be exploited: overly specific syntactic types that occur

very rarely can be ignored and a less noisy paraphrase probability estimate

can be computed, which may prove more useful in a downstream application

than its counterpart computed via the unconstrained approach.

Note that requiring syntactic constraints for pivot-based paraphrase extraction re-

stricts the approach to those languages where a reasonably good parser is available.

Kok and Brockett (2010) present a novel take on generating phrasal para-

phrases with bilingual corpora. As with most approaches based on parallel corpora,

they also start with phrase tables extracted from such corpora along with the cor-

responding phrasal translation probabilities. However, instead of performing the

usual pivoting step with the bilingual phrases in the table, they take a graphical

approach and represent each phrase in the table as a node leading to a bipartite

graph. Two nodes in the graph are connected to each other if they are aligned to

each other. Now, in order to extract paraphrases, they simply follow a path of even

length from any English node to another. Note that the traditional pivot step is

directly equivalent to following a path of length two: one English phrase to the
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foreign pivot phrase and then to the potentially paraphrastic English phrase. By

allowing paths of lengths longer than two, this graphical approach can find more

paraphrases for any given English phrase.

Furthermore, instead of restricting themselves to a single bilingual phrase ta-

ble, they take as input a number of phrase tables, each corresponding a different

pair of 6 languages. Similar to the single table case, each phrase in each table is

represented as a node in graph that is no longer bipartite in nature. By allowing

edges to exist between nodes of all the languages if they are aligned, the pivot can

now even be a set of nodes rather than a single node in another language. For

example, one could easily find the following path in such a graph:

ate lunch → aßen zu ittag (German) → aten een hapje (Dutch) → had a bite

Each edge is associated with a weight corresponding to the bilingual phrase

translation probability. Then random walks are sampled from the graph such that

only paths of high probability end up contributing to the extracted paraphrases.

Obviously, the alignment errors discussed in the context of simple pivoting will

also have an adverse effect on this approach. In order to prevent this, the authors

add special feature nodes to the graph in addition to regular nodes. These feature

nodes represent domain-specific knowledge of what would make good paraphrases.

For example, nodes representing syntactic equivalence classes of the start and end

words of the English phrases are added. This indicates that phrases that start

and end with the same kind of words (interrogatives or articles) are likely to be

paraphrases.

The authors extract paraphrases for a small set of input English paraphrases
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and show that they are able to generate a larger percentage of correct paraphrases

compared to the syntactically constrained approach proposed by Callison-Burch

(2008). They conduct no formal evaluation of the coverage of their approach but

show that in a limited setting, it is higher than the syntactically constrained ap-

proach. However, they do perform no comparisons of their coverage with the origi-

nal pivot-based approach (Bannard and Callison-Burch, 2005). Astute readers will

make the following two observations about the syntactic feature nodes used by the

authors:

• Such nodes can be seen as an indirect way of incorporating a limited form of

distributional similarity.

• By including such nodes essentially based on lexical equivalence classes, the

authors are, in a way, imposing weaker forms of syntactic constraints that

(Callison-Burch, 2008) uses but without requiring a parser.

2.5 Building Paraphrase Corpora

This section examines recent work on constructing paraphrase corpora, in

preparation for a later discussion about techniques for evaluating paraphrase gener-

ation (Section 2.6 below). As part of this work, human subjects are generally asked

to judge whether two given sentences are paraphrases of each other. A detailed

examination of this manual evaluation task illuminates the nature of paraphrase in

a practical, rather than a theoretical, context. In addition, it has obvious implica-
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tions for any method, whether manual or automatic, that is used to evaluate the

performance of a paraphrase generator.

Dolan and Brockett (2005) were the first to attempt to build a paraphrase

corpus on a large scale. The Microsoft Research Paraphrase (MSRP) Corpus is a

collection of 5801 sentence pairs, each manually labeled with a binary judgment as

to whether it constitutes a paraphrase or not. As a first step, the corpus was created

using a heuristic extraction method in conjunction with an SVM-based classifier that

was trained to select likely sentential paraphrases from a large monolingual corpus

containing news article clusters. However, the more interesting part of the task was

the subsequent evaluation of these extracted sentence pairs by human annotators

and the set of issues encountered when defining the evaluation guidelines for these

annotators.

It was observed that if the human annotators were instructed to mark only

the sentence pairs that were strictly semantically equivalent or that exhibited bidi-

rectional entailment as paraphrases, then the results were limited to uninteresting

sentence pairs such as the following:

S1: The euro rose above US$1.18, the highest price since its January 1999 launch.

S2: The euro rose above $1.18 the highest level since its launch in January 1999.

S1: However, without a carefully controlled study, there was little clear proof that

the operation actually improves people’s lives.
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S2: But without a carefully controlled study, there was little clear proof that the

operation improves people’s lives.

Instead, they discovered that most of the complex paraphrases—ones with al-

ternations more interesting than simple lexical synonymy and local syntactic changes—

exhibited varying degrees of semantic divergence, e.g.,

S1: Charles O. Prince, 53, was named as Mr. Weill’s successor.

S2: Mr. Weill’s longtime confidant, Charles O. Prince, 53, was named as his

successor.

S1: David Gest has sued his estranged wife Liza Minelli for beating him when she

was drunk.

S2: Liza Minellis estranged husband is taking her to court after saying she threw

a lamp at him and beat him in drunken rages.

Therefore, in order to be able to create a richer paraphrase corpus, one with

many complex alternations, the instructions to the annotators had to be relaxed;

the degree of mismatch accepted before a sentence pair was judged to be fully se-

mantically divergent (or “non-equivalent”) was left to the human subjects. It is also

reported that, given the idiosyncratic nature of each sentence pair, only a few formal

guidelines were generalizable enough to take precedence over the subjective judg-

ments of the human annotators. Despite the somewhat loosely defined guidelines,

the inter-annotator agreement for the task was 84%. However, a Kappa score of 62

indicated that the task was overall a difficult one (Cohen, 1960). At the end, 67%
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of the sentence pairs were judged to be paraphrases of each other and the rest were

judged to be non-equivalent.14

While the MSRP Corpus is a valuable resource and its creation provided valu-

able insight into what constitutes a paraphrase in the practical sense, it does have

some shortcomings. For example, one of the heuristics used in the extraction pro-

cess was that the two sentences in a pair must share at least three words. Using

this constraint rules out any paraphrase pairs that are fully lexically divergent but

still semantically equivalent. The small size of the corpus, when combined with this

and other such constraints, precludes the use of the corpus as training data for a

paraphrase generation or extraction system. However, it is fairly useful as a freely

available test set to evaluate paraphrase recognition methods.

On a related note, Fujita and Inui (2005) take a more knowledge-intensive

approach to building a Japanese corpus containing sentence pairs with binary para-

phrase judgments and attempt to focus on variety and on minimizing the human

annotation cost. The corpus contains 2031 sentence pairs each with a human judg-

ment indicating whether the paraphrase is correct or not. To build the corpus, they

first stipulate a typology of paraphrastic phenomena (e.g., rewriting light-verb con-

structions) and then manually create a set of morpho-syntactic paraphrasing rules

and patterns describing each type of paraphrasing phenomenon. A paraphrase gen-

eration system (Fujita et al., 2004) is then applied to a corpus containing Japanese

news articles and example paraphrases are generated for the sentences in the corpus.

14The MSR paraphrase corpus is available at: http://research.microsoft.com/en-us/downloads/

607d14d9-20cd-47e3-85bc-a2f65cd28042/.
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These paraphrase pairs are then handed to two human annotators who create binary

judgments for each pair indicating whether or not the paraphrase is correct. Using

a class-oriented approach is claimed to have a two-fold advantage:

1. Exhaustive Collection of Paraphrases. Creating specific paraphrasing

rules for each class manually is likely to increase the chance of the collected

examples accurately reflecting the distribution of occurrences in the real world.

2. Low Annotation Cost. Partitioning the annotation task into classes is

expected to make it easier (and faster) to arrive at a binary judgment given

that an annotator is only concerned with a specific type of paraphrasing when

creating said judgment.

The biggest disadvantage of this approach is that only two types of paraphrastic

phenomena are used: light-verb constructions and transitivity alternations (using

intransitive verbs in place of transitive verbs). The corpus indeed captures almost

all examples of both types of paraphrastic phenomena and any that are absent can

be easily covered by adding one or two more patterns to the class. The claim of

reduced annotation cost is not necessarily borne out by the observations. Despite

partitioning the annotation task by types, it was still difficult to provide accurate

annotation guidelines. This led to a significant difference in annotation time—with

some annotations taking almost twice as long as others. Given the small size of

the corpus, it is unlikely that it may be used as training data for corpus-based

paraphrase generation methods and, like the MSRP corpus, would be best suited to

evaluate paraphrase recognition techniques.
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Cohn et al. (2008) describe a different take on the creation of a monolingual

parallel corpus containing 900 sentence pairs with paraphrase annotations that can

be used for both development and evaluation of paraphrase systems. These para-

phrase annotations take the form of alignments between the words and sequences

of words in each sentence pair; these alignments are analogous to the word- and

phrasal-alignments induced in Statistical Machine Translation (SMT) systems that

were illustrated in Section 2.4.5. As is the case with SMT alignments, the para-

phrase annotations can be of different forms: one-word-to-one-word, one-word-to-

many-words as well as fully phrasal alignments.15

The authors start from a sentence-aligned paraphrase corpus compiled from

three corpora that were already described in Sections 2.4.3 and 2.5: (a) The sen-

tence pairs judged equivalent from the MSRP Corpus; (b) The Multiple Translation

Chinese (MTC) corpus of multiple human-written translations of Chinese news sto-

ries used by Pang et al. (2003); and (c) Two English translations of the French

novel Twenty Thousand Leagues Under The Sea, a subset of the monolingual par-

allel corpus used by Barzilay and McKeown (2001). The words in each sentence

pair from this corpus are then aligned automatically to produce the initial para-

phrase annotations that are then refined by two human annotators. The annotation

guidelines required that the annotators judge which parts of a given sentence pair

were in correspondence and to indicate this by creating an alignment between those

parts (or correcting already existing alignments, if present). Two parts were said to

15The paraphrase-annotated corpus can be found at: http://www.dcs.shef.ac.uk/~tcohn/paraphrase_
corpus.html
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correspond if they could be substituted for each other within the specific context

provided by the respective sentence pair. In addition, the annotators were instructed

to classify the created alignments as either sure (the two parts are clearly substi-

tutable) or possible (the two parts are slightly divergent either in terms of syntax

or semantics). For example, given the following paraphrastic sentence pair:

S1: He stated the convention was of profound significance.

S2: He said that the meeting could have very long term effects.

the phrase pair ⟨the convention, the meeting⟩ will be aligned as a sure correspondence

whereas the phrase pair ⟨was of profound significance, could have very long term

effects⟩ will be aligned as a possible correspondence. Other examples of possible

correspondences could include the same stem expressed as different parts-of-speech

(such as ⟨significance, significantly⟩) or two non-synonymous verbs (such as ⟨this

is also, this also marks⟩). For more details on the alignment guidelines that were

provided to the annotators, the reader is referred to (Callison-Burch et al., 2006a).

Extensive experiments are conducted to measure inter-annotator agreements

and obtain good agreement values but that are still low enough to confirm that it

is difficult for humans to recognize paraphrases even when the task is formulated

differently. Overall, such a paraphrase corpus with detailed paraphrase annotations

is much more informative than a corpus containing binary judgments at the sen-

tence level such as the MSRP Corpus. As an example, since the corpus contains

paraphrase annotations at the word as well as phrasal levels, it can be used to build

systems that can learn from these annotations and generate not only fully lexi-
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calized phrasal paraphrases but also syntactically motivated paraphrastic patterns.

To demonstrate the viability of the corpus for this purpose, a grammar induction

algorithm (Cohn and Lapata, 2007) is applied—originally developed for sentence

compression—to the parsed version of their paraphrase corpus and show that they

can learn paraphrastic patterns such as:

S

NP ADVP

RB

also

VP
⇔

S

ADVP

RB

moreover

COMMA

,

NP VP

Most recently, research has been done on using Amazon Mechanical Turk to

collect either human-authored phrasal paraphrases (Buzek et al., 2010) or human

judgments for automatically generated paraphrases (Denkowski et al., 2010). Both

approaches produce these resources not for the sake of building paraphrase corpora

but rather only as a step towards improved statistical machine translation systems.

However, there is no reason why the same resources could not be used to develop

and evaluate automatic paraphrase systems.

In general, building paraphrase corpora, whether it be done at the sentence

level or at the sub-sentential level, is extremely useful to foster further research and

development in the area of paraphrase generation.
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2.6 Evaluation of Paraphrase Generation

While other language processing tasks such as Machine Translation and Doc-

ument Summarization usually have multiple annual community-wide evaluations

using standard test sets and manual as well as automated metrics, the task of au-

tomated paraphrasing does not. An obvious reason behind this disparity could be

that paraphrasing is not an application in and of itself. However, the existence of

similar evaluations for other tasks that are not applications, such as dependency

parsing (Buchholz and Marsi, 2006; Nivre et al., 2007) and word sense disambigua-

tion (Senseval), suggests otherwise. The view adopted in this thesis is that, over

the years, paraphrasing has been employed in an extremely fragmented fashion.

Paraphrase extraction and generation are used in different forms and with differ-

ent names in the context of different applications (e.g., synonymous collocation

extraction, query expansion). This usage pattern does not allow researchers in one

community to share the lessons learned with those from other communities. In fact,

it may even lead to research being duplicated across communities.

However, more recent work—some of it discussed in this chapter—on extract-

ing phrasal paraphrases (or patterns) does include direct evaluation of the para-

phrasing itself: the original phrase and its paraphrase are presented to multiple

human judges, along with the contexts in which the phrase occurs in the original

sentence, who are asked to determine whether the relationship between the two

phrases is indeed paraphrastic (Barzilay and McKeown, 2001; Barzilay and Lee,

2003; Ibrahim et al., 2003; Pang et al., 2003). A more direct approach is to substi-
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tute the paraphrase in place of the original phrase in its sentence and present both

sentences to judges who are then asked to judge not only their semantic equiva-

lence but also the grammaticality of the new sentence (Bannard and Callison-Burch,

2005; Callison-Burch, 2008). Motivation for such substitution-based evaluation is

discussed in (Callison-Burch, 2007): the basic idea being that items deemed to be

paraphrases may behave so in only some contexts and not others. Szpektor et al.

(2007) posit a similar form of evaluation for textual entailment wherein the human

judges are not only presented with the entailment rule but also with a sample of

sentences that match its left hand side (called instances), and then asked to assess

whether the rule holds under each specific instance.

Sentential paraphrases may be evaluated in a similar fashion without the need

for any surrounding context (Quirk et al., 2004). An intrinsic evaluation of this

form must employ the usual methods for avoiding any bias and for maximizing

inter-judge agreement. In addition, given the difficulty of task even for human

annotators, adherence to strict semantic equivalence may not always be a suitable

guideline and intrinsic evaluations must be very carefully designed. In contrast, a

number of these techniques also perform extrinsic evaluations, in addition to the

intrinsic one, by utilizing the extracted or generated paraphrases to improve other

applications such as machine translation (Callison-Burch et al., 2006b) and others

as described in in the beginning of this chapter.

Another option when evaluating the quality of a paraphrase generation method

is that of using automatic measures. The traditional automatic evaluation measures

of precision and recall are not particularly suited to this task because in order to
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use them, a list of reference paraphrases has to be constructed against which these

measures may be computed. Given that it is extremely unlikely that any such

list will be exhaustive, any precision and recall measurements will not be accurate.

Therefore, other alternatives are needed. Since the evaluation of paraphrase is

essentially the task of measuring semantic similarity or of paraphrase recognition,

all of those metrics, including the ones discussed in Section 2.3, can be employed

here.

Most recently, Callison-Burch et al. (2008a) discuss ParaMetric, another auto-

matic measure that may be used to evaluate paraphrase extraction methods. This

work follows directly from the work done by the authors to create the paraphrase-

annotated corpus as described in the previous section. Recall that this corpus con-

tains paraphrastic sentence pairs with annotations in the form of alignments between

their respective words and phrases. It is posited that to evaluate any paraphrase

generation method, one could simply have it produce its own set of alignments for

the sentence pairs in the corpus and precision and recall could then be computed

over alignments instead of phrase pairs. These alignment-oriented precision (Palign)

and recall (Ralign) measures are computed as follows:

Palign =

∑

⟨s1,s2⟩
|NP (s1, s2) ∩NM(s1, s2)|
∑

⟨s1,s2⟩
|NP (s1, s2)|

Ralign =

∑

⟨s1,s2⟩
|NP (s1, s2) ∩NM(s1, s2)|
∑

⟨s1,s2⟩
|NM(s1, s2)|

where ⟨s1, s2⟩ denotes a sentence pair, NM(s1, s2) denotes the phrases extracted
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via the manual alignments for the pair ⟨s1, s2⟩ and NP (s1, s2) denotes the phrases

extracted via the automatic alignments induced using the paraphrase method P

that is to be evaluated. The phrase extraction heuristic used to compute NP and

NM from the respective alignments is the same as that employed by (Bannard and

Callison-Burch, 2005) and illustrated in Figure 2.8.

While using alignments as the basis for computing precision and recall is a

clever trick, it does require that the paraphrase generation method be capable of

producing alignments between sentence pairs. For example,the methods proposed

by Pang et al. (2003) and Quirk et al. (2004) for generating sentential paraphrases

from monolingual parallel corpora and described in Section 2.4.3, do produce align-

ments as part of their respective algorithms. Indeed, Callison-Burch et al. provide a

comparison of their pivot-based approach—operating on bilingual parallel corpora—

with the two monolingual approaches just mentioned in terms of ParaMetric since

all three methods are capable of producing alignments.

However, for other approaches that do not necessarily operate at the level

of sentences and cannot produce any alignments, falling back on estimates of tra-

ditional formulations of precision and recall is suggested, computed as explained

above.

There has also been some preliminary progress toward using standardized test

sets for the intrinsic evaluations. A test set containing 20 AFP articles (484 sen-

tences) about violence in the Middle East that was used for evaluating the lattice-

based paraphrase technique in (Barzilay and Lee, 2003) has been made freely avail-
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able.16 In addition to the original sentences for which the paraphrases were gener-

ated, the set also contains the paraphrases themselves and the judgments assigned

by human judges to these paraphrases. The paraphrase-annotated corpus discussed

in the previous section would also fall under this category of resources.

As with many other fields in NLP, paraphrase generation also lacks serious

extrinsic evaluation (Belz, 2009). As described above, many paraphrase genera-

tion techniques are developed in the context of a host NLP application and this

application usually serves as one form of extrinsic evaluation for the quality of the

paraphrases generated by that technique. However, as yet there is no widely agreed

upon method of extrinsically evaluating paraphrase generation. Addressing this de-

ficiency should be a crucial consideration for any future community-wide evaluation

effort.

An important dimension for any area of research is the availability of forums

where members of the community may share their ideas with their colleagues and

receive valuable feedback. In recent years, a number of such forums been made avail-

able to the automatic paraphrasing community (Inui and Hermjakob, 2003; Tanaka

et al., 2004; Dras and Yamamoto, 2005; Sekine et al., 2007) which represent an ex-

tremely important step toward countering the fragmented usage pattern described

above.
16The corpus is available at http://www.cs.cornell.edu/Info/Projects/NLP/statpar.html.
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2.7 Future Trends

This section looks to the future of paraphrasing and examines general trends

for the corresponding research methods. Several such trends are identified in the

area of paraphrase generation that are gathering momentum.

The Influence of the Web. The web is rapidly becoming one of the most im-

portant sources of data for natural language processing applications, which should

not be surprising given the phenomenal rate of growth. The (relatively) freely

available web data, massive in scale, has already had a definite influence over data-

intensive techniques such as those employed for paraphrase generation (Paşca and

Dienes, 2005). However, availability of such massive amounts of web data comes with

serious concerns for efficiency and has led to the development of efficient methods

that can cope with such large amounts of data. Bhagat and Ravichandran (2008)

extract phrasal paraphrases by measuring distributional similarities over a 150GB

monolingual corpus (25 billion words) via locality sensitive hashing, a randomized

algorithm that involves the creation of “fingerprints” for vectors in space (Broder,

1997). Since vectors that are more similar are more likely to have similar finger-

prints, vectors (or distributions) can simply be compared by comparing their finger-

prints leading to a more efficient distributional similarity algorithm (Charikar, 2002;

Ravichandran et al., 2005). The view adopted in this thesis is that the influence

of the web will extend to other avenues of paraphrase generation. For example,

Fujita and Sato (2008a) propose evaluating phrasal paraphrase pairs, automatically

generated from a monolingual corpus, by querying the web for snippets related to
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the pairs and using them as features to compute the pair’s “paraphrasability”.

Combining Multiple Sources of Information. Another important trend

in paraphrase generation is that of leveraging multiple sources of information to de-

termine whether two units are paraphrastic. For example, Zhao et al. (2008) improve

the sentential paraphrases that can be generated via the pivot method by leveraging

five other sources in addition to the bilingual parallel corpus itself: (1) a corpus of

web queries similar to the phrase, (2) definitions from the Encarta dictionary, (3) a

monolingual parallel corpus, (4) a monolingual comparable corpus, and (5) an auto-

matically constructed thesaurus. Phrasal paraphrase pairs are extracted separately

from all six models and then combined in a log-linear paraphrasing-as-translation

model and that is described in this thesis in subsequent chapters (Madnani et al.,

2007). A manual inspection reveals that using multiple sources of information yields

paraphrases with much higher accuracy. Such exploitation of multiple types of re-

sources and their combination is an important development. Zhao et al. (2009) fur-

ther increase the utility of this combination approach by incorporating application

specific constraints on the pivoted paraphrases, e.g., if the output paraphrases need

to be simplified versions of the input sentences, then only those phrasal paraphrase

pairs are used where the output is shorter than the input.

Use of SMT Machinery. In theory, statistical machine translation is very

closely related to paraphrase generation since it also relies on finding semantic equiv-

alence, albeit in a second language. Hence, there have been numerous paraphrasing

approaches that have relied on different components of an SMT pipeline (word align-

ment, phrase extraction, decoding/search) as seen above in Section 2.4.5. Despite

89



the obvious convenience of using SMT components for the purpose of “monolin-

gual translation,” doing so usually requires additional work to deal with the added

noise due to the nature of such components. This thesis adopts the view that that

SMT research will continue to influence research in paraphrasing; both by provid-

ing ready-to-use building blocks and by necessitating development of methods to

effectively use such blocks for the unintended task of paraphrase generation.

Domain-specific Paraphrasing. Recently, work has been done to generate

phrasal paraphrases in specialized domains. For example, in the field of health liter-

acy, it is well known that documents targeted at health consumers are not very well-

targeted to their purported audience. Recent research has shown how to generate

a lexicon of semantically equivalent phrasal (and lexical) pairs of technical and lay

medical terms from monolingual parallel corpora (Elhadad and Sutaria, 2007) as well

as monolingual comparable corpora (Deléger and Zweigenbaum, 2009). Examples

include pairs such as <myocardial infarction, heart attack>and <leucospermia,

increased white cells in the sperm>. In another domain, Max (2008) proposes

an adaptation of the pivot-based method to generate rephrasings of short text spans

that could help a writer revise a text. Since the goal is to assist a writer in making

revisions, the rephrasings do not always need to bear a perfect paraphrastic relation-

ship to the original; a scenario suited for the pivot-based method. Several variants

of such adaptations are developed that generate candidate rephrasings driven by

fluency, semantic equivalence and authoring value respectively.

The view adopted in this thesis is that a large-scale annual community-wide

evaluation is necessary to foster further research in, and use of, paraphrase extraction
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and generation. While there have been recent workshops and tasks on paraphrasing

and entailment as discussed in Section 2.6, this evaluation would be much more

focused, providing sets of shared guidelines and resources, in the spirit of the recent

NIST MT Evaluation Workshops (NIST, 2008).

2.8 Summary

Over the last two decades, there has been a lot of research on paraphrase

extraction and generation within every research community in natural language

processing in order to improve the specific application with which that community

is concerned. However, a large portion of this research can be easily adapted for

more widespread use outside the particular community and can provide significant

benefits to the whole field. Only recently have there been serious efforts to conduct

research on the topic of paraphrasing by treating it as an important natural language

processing task independent of a host application.

This chapter has presented a comprehensive survey of paraphrase extraction

and generation motivated by the fact that paraphrases can help in a multitude of

applications such as machine translation, text summarization and information ex-

traction. The aim was to provide an application-independent overview of paraphrase

generation, while also conveying an appreciation for the importance and potential

use of paraphrases in the field of NLP research. A large variety of paraphrase gener-

ation methods have been described, each with a very different set of characteristics,

in terms of both its performance and its ease of deployment. While most of the
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methods in this chapter can be used in multiple applications, the choice of the

most appropriate method depends on how well the characteristics of the produced

paraphrases match the requirements of the downstream application in which the

paraphrases are being utilized.

The next chapter describes one of the primary components of the work done

in this thesis: extending the work done by Bannard and Callison-Burch (2005)—

presented in 2.4.5 above—to the sentence level and building a general sentential

paraphrasing architecture that casts the problem of paraphrase generation as one of

English-to-English translation that leverages a well-defined, extensible and entirely

data-driven model.
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3 The First 180 Degrees: Sentential Paraphrasing via SMT

∗

Find another way
to say what you and I say.
Make the machine learn.

–Nitin Madnani

∗

This chapter describes the design and implementation of a sentential para-

phraser using SMT machinery. The statistical machine translation framework that

is used to construct the paraphraser is first briefly presented. The induction of a

monolingual translation model using this formalism is then shown. Two alternative

methods are presented and compared that the induction process can use to compute

the probabilities for the paraphrases. A few examples of the paraphrases that the

system can generate by using parallel corpora with different foreign languages are

also shown. Finally, a small-scale intrinsic evaluation of the paraphrases that are

generated by this paraphraser is presented. It is observed from this evaluation that

they are relatively noisy and not directly useful to humans in any way. In the next

chapter, however, a large-scale extrinsic evaluation is conducted and it is found that

these paraphrases prove to be extremely useful when employed appropriately in a

bilingual SMT pipeline.
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3.1 Background

The paraphrasing techniques described in this thesis makes use of a hierar-

chical SMT framework (Chiang et al., 2005; Chiang, 2007). Such a framework is

formally based on a weighted synchronous context-free grammar (SCFG), containing

synchronous rules of the form:

X → ⟨f̄ , ē, φk
1)⟩ (3.1)

where X is a symbol from the non-terminal alphabet, and ē and f̄ can contain both

words (terminals) and variables (non-terminals) that serve as place-holders for other

phrases. In the context of SMT, where phrase-based models are frequently used,

these synchronous rules can be interpreted as pairs of hierarchical phrases. The

underlying strength of a hierarchical phrase is that it allows for effective learning of

not only the lexical re-orderings, but phrasal re-orderings as well. Each φ denotes a

feature function defined on the pair of hierarchical phrases.1 Several different kinds

of feature functions can be used but some of the most common features are con-

ditional and joint co-occurrence probabilities over the hierarchical paraphrase pair.

Given a synchronous context-free grammar consisting of these translation rules, the

actual translation process is simply equivalent to parsing with this grammar. Any

given source sentence is parsed using the source side of the synchronous grammar.

A target-language derivation is generated simultaneously via the target side of the

same rules, and the yield of that hypothesized derivation represents the hypothesized

1Currently only one non-terminal symbol is used in a hierarchical phrase.
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translation string in the target language.

The actual translation model defined over the set of synchronous derivations

is a log-linear model of the form:

P (D) ∝ exp

(
∑

i

λiφi(X → ⟨ē, f̄⟩)

)

(3.2)

where each λi represents the weight for the respective feature φi.

The hierarchical translation framework allows learning grammars and feature values

from parallel corpora, without requiring syntactic annotation of the data. Briefly,

training such a model proceeds as follows:

• One-to-many word alignments for each sentence pair are induced on the par-

allel corpus in both directions (source→ target and target→ source) by using

a tool like Giza++ (Och and Ney, 2000). The two sets of word alignments

are then combined into one set of many-to-many word alignments by using an

alignment refinement heuristic.

• Initial phrase pairs are identified following the procedure typically employed in

phrase-based systems (Koehn et al., 2003; Och and Ney, 2004). The extraction

of such initial phrase pairs was discussed in Chapter 2 and an example shown

in Figure 2.8.

• Grammar rules in the form of Equation 3.1 are induced by “subtracting” out

hierarchical phrase pairs from these initial phrase pairs. This subtraction

process is defined by a set of constraints that restrict the size of the extracted
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grammar. The constraints are described in detail by Chiang (2007, Sec. 3.2).

• Fractional counts are assigned to each produced rule:

c(X → ⟨f̄ , ē⟩) =
m∑

j=1

1

njr

(3.3)

where m is the number of initial phrase pairs that give rise to this grammar

rule and njr is the number of grammar rules produced by the jth initial phrase

pair.

• Feature functions φk
1 are calculated for each rule using either the accumulated

co-occurrence fraction counts from the previous step or other characteristics

of the source and target sides of the rule.

Once a translation grammar has been extracted, an algorithm based on Powell’s

method of grid-based line minimization is used to find the optimal values for the

parameters λi (Ostendorf et al., 1991; Och, 2003). The tuning algorithm is described

in more detail in Chapter 4. Finally, with the feature weights (parameters) deter-

mined, the process of decoding—searching for the derivation with the highest model

score—takes place using a CKY synchronous parser with beam search, augmented

to permit efficient incorporation of language model scores (Chiang, 2007).

3.2 Induction of Monolingual Translation Model

The paraphraser described in this chapter approaches sentence-level para-

phrasing as a problem of English-to-English translation, constructing the model
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using English-F translation, for a second language F , as a pivot. Following Ban-

nard and Callison-Burch (2005) as described in Section 2.4.5, first English-to-F

correspondences are identified, and then English to English correspondences are ob-

tained by following translation units from English to F and back. Then, generalizing

this approach, those mappings are used to create a well defined English-to-English

hierarchical translation model. The parameters of this model are tuned using a nor-

mal parameter optimization process, and then the model is used in an (unmodified)

statistical MT system, yielding sentence-level English paraphrases by means of de-

coding input English sentences. The remainder of this section presents this process

in detail.

3.2.1 Pivoting Bilingual Translation Rules

This thesis employs the same strategy as Bannard and Callison-Burch (2005)

for the induction of the required monolingual translation grammar. First, the SMT

system is trained in standard fashion on a bilingual English-F training corpus.

Then, for each existing production in the resulting bilingual grammar, multiple

new English-to-English productions are created by pivoting on the foreign hierar-

chical phrase in the rule. For example, assume that the following rules are present
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in an English-Chinese bilingual grammar:

X → ⟨X1建 X2, X1 to build X2⟩

X → ⟨X1建 X2, X1 to construct X2⟩

X → ⟨X1建 X2, X1 to establish X2⟩

X → ⟨X1建 X2, X1 to formulate X2⟩

Note that the non-terminals representing the same sub-phrases on either side of the

rule are co-indexed. If the Chinese hierarchical phrase X1建 X2 is used as a pivot,

then the following two distinct English-to-English rules can be extracted:

X → ⟨X1 to build X2, X1 to construct X2⟩

X → ⟨X1 to construct X2, X1 to build X2⟩

from the first pair of bilingual rules. In a similar fashion, pivoting on the same

phrase for other bilingual rules will produce the following rules (the corresponding

rules in the other direction are not shown):

X → ⟨X1 to build X2, X1 to establish X2⟩

X → ⟨X1 to build X2, X1 to formulate X2⟩

X → ⟨X1 to construct X2, X1 to establish X2⟩

X → ⟨X1 to construct X2, X1 to formulate X2⟩

X → ⟨X1 to establish X2, X1 to formulate X2⟩
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To limit noise during pivoting, only the top 25 source language pivots for

any English hierarchical phrase are used, as determined by the bilingual fractional

counts.

3.2.2 Feature Functions for Paraphrase Rules

Each synchronous rule production in the bilingual grammar is weighted by

several feature values. The most commonly used features are usually probabilistic

in nature and are computed from the fractional counts assigned to that rule during

extraction. Examples of such probabilistic features include the maximum likelihood

estimates of the conditional probabilities p(f̄ |ē) and p(f̄ |ē), where f̄ and ē are the

source and target sides of the rule respectively. In order to perform accurate pivoting,

these feature functions must be recomputed for the newly created English-to-English

grammar. Two ways of computing these feature functions from the bilingual feature

functions are used:

• Derived Fractional Counts. In this method, induced fractional counts

are derived for the pivoted paraphrases from the fractional counts of the two

participating bilingual phrases and then maximum likelihood estimates are

computed for the probabilistic features from these induced counts. Calculating

the proposed features is complicated by the fact that the counts for English-

to-English rules don’t exist; there is no English-to-English parallel corpus.
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Instead, the fractional count for a monolingual rule is estimated as follows:

c(X → ⟨ē1, ē2⟩) =
∑

f̄

c(X → ⟨f̄ , ē1⟩) ∗ c(X → ⟨f̄ , ē2⟩) (3.4)

An intuitive way to think about the formula above is by using an example at

the corpus level. Assume that, in the given bilingual parallel corpus, there are

m sentences in which the English phrase ē1 co-occurs with the foreign phrase f̄

and n sentences in which the same foreign phrase f̄ co-occurs with the English

phrase ē2. The problem can then be thought of as defining a function g(m,n)

that computes the number of sentences in a hypothetical English-to-English

parallel corpus wherein the phrases ē1 and ē1 co-occur. For this paper, g(m,n)

is defined to be the upper bound mn.

Given this definition, the probabilistic features for all pivoted rules in the

English-to-English grammar can then be computed. First, the joint probability

of the two English hierarchical paraphrases e1 and e2 can be calculated as:

p(ē1, ē2) =
c(X → ⟨ē1, ē2⟩)

∑

ē1′,ē2′
c(X → ⟨ē1′, ē2′⟩)

(3.5)

=
c(X → ⟨ē1, ē2⟩)

c(X)
(3.6)

where the numerator is the fractional count of the rule under consideration and

the denominator represents the marginal count over all the English hierarchical

phrase pairs.
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Next, the conditionals p(ē1|ē2) and p(ē2|ē1) can be defined as follows:

p(ē1|ē2) =
c(X → ⟨ē1, ē2⟩)

∑

ē1′
c(X → ⟨ē1′, ē2⟩)

(3.7)

p(ē2|ē1) =
c(X → ⟨ē1, ē2⟩)

∑

ē2′
c(X → ⟨ē1, ē2′⟩)

(3.8)

• Derived Features. Here, instead of inducing fractional counts in the count

space, probabilistic features for the monolingual rules are computed directly

from the corresponding feature values for the bilingual rules. First, the con-

ditionals p(ē1|ē2) and p(ē2|ē1):

p(ē1|ē2) =
∑

f̄

p(ē1|f̄ , ē2) ∗ p(f̄ |ē2) (3.9)

≈
∑

f̄

p(ē1|f̄) ∗ p(f̄ |ē2) (3.10)

p(ē2|ē1) =
∑

f̄

p(ē2|f̄ , ē1) ∗ p(f̄ |ē1) (3.11)

≈
∑

f̄

p(ē2|f̄) ∗ p(f̄ |ē1) (3.12)

where the two constituent bilingual probabilities are the bilingual rule features.

And now the joint probability of the two English hierarchical paraphrases e1

and e2 can be computed as:

p(ē1, ē2) = p(ē1|ē2) ∗ p(ē2) = p(ē2|ē1) ∗ p(ē1) (3.13)

where the marginals p(ē1) and p(ē2) are computed from the bilingual fractional
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counts.

Figure 3.1 shows a simple example which illustrates the difference between the two

ways of computing the probabilistic feature functions for each paraphrase rule. Note

that both way of computing the paraphrase probability features are approximations:

the derived-counts method computes maximum likelihood estimates from counts

induced based on a hypothetical English-to-English parallel corpus; the derived-

features method is not actually estimating the actual paraphrase likelihood but

rather the relative probability of different paraphrases of the same phrase, under

the assumption that all of the alignments in the bilingual parallel data are correct.

In Section 3.2.4, some experiments are described that were conducted to determine

which of the feature computation methods produces better paraphrases.

For all induced rules, a feature given by exp(−T (ē2)) is also calculated, where T (ē2)

just counts the number of terminal symbols in ē2. This feature allows the monolin-

gual translation model to learn whether it should produce shorter or longer para-

phrases. In addition to the above features that are estimated from the training data,

a trigram language model is also used. Since the production of English sentences is

done via regular decoding, the same language model that is employed in a standard

SMT setting can be and is used here.

3.2.3 Tuning Model Parameters

Since the sentential paraphraser is based on an English-to-English log-linear

translation model, it also requires its own tuning of feature weights just as the bilin-
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X → 〈f1,e1〉 4
X → 〈f1,e2〉 5
X → 〈f2,e1〉 100
X → 〈f2,e3〉 10
X → 〈f2,e4〉 20
X → 〈f3,e1〉 1000
X → 〈f3,e2〉 40
X → 〈f3,e3〉 20

p(f2|e1) = c(e1,f2)/c(e1) = 100/1104 = 0.090579
p(e1|f2) = c(e1,f2)/c(f2) = 100/130 = 0.7692307
p(f2|e4) = c(e4,f2)/c(e4) = 20/20 = 1.0
p(e4|f2) = c(e4,f2)/c(f2) = 20/130 = 0.153846

p(e4|e1) = p(e4|f2) * p(f2|e1) 
         = 0.153846 * 0.090579 = 0.013935
p(e1|e4) = p(e1|f2) * p(f2|e4) 
         = 0.7692307 * 1.0 = 0.7692307
p(e1,e4) = p(e1|e4) * p(e4) 
         = 0.7692307 * 20/1199 = 0.0128312
         = p(e4|e1) * p(e1) 
         = 0.013935 * 1104/1199 = 0.0128308

N = 2*(40020 + 21000 + 2000 + 800 + 200) = 128040
p(e1,e4) = c(e1,e4)/N 
         = 2000/128040 = 0.0156201
p(e4|e1) = c(e4,e1)/c(e1) 
         = 2000/(40020+21000+2000) = 0.0317359
p(e1|e4) = c(e1,e4)/c(e4) 
         = 2000/(2000+200) = 0.909091

(a) Bilingual Counts

X → 〈e1,e2〉 4*5 + 40*1000 = 40020
X → 〈e2,e1〉 40020
X → 〈e1,e3〉 100*10 + 1000*20 = 21000
X → 〈e3,e1〉 21000
X → 〈e1,e4〉 100*20 = 2000 
X → 〈e4,e1〉 2000
X → 〈e2,e3〉 40*20 = 800
...

(b) Induced Monolingual Counts

(c) Features for bilingual rules X	  →〈f2,e1〉and X	  →〈f2,e4〉 

(e) Derived Features: Features for monollngual rule  X	  →〈e1,e4〉

(d) Derived Counts: Features for monollngual rule  X	  →〈e1,e4〉

Figure 3.1: A toy example illustrating the two methods of computing features for pivoted
monolingual translation or paraphrase rules. (a) the bilingual translation rules that are
extracted from the parallel corpus along with associated fractional counts. For simplicity,
f̄1 is denoted as f1 and so on; (b) these fractional counts may be converted into counts for
the various pivoted paraphrase rules; (c) the probabilistic features for two of the bilingual
rules X → ⟨f̄2, ē1)⟩ and X → ⟨f̄2, ē4)⟩; (d) the derived-counts method of computing the
feature values for the paraphrase rule X → ⟨ē1, ē4)⟩; (e) the derived-features method
for computing the feature values for the same rule as in (d).
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gual SMT system does. However, the tuning setup for the paraphraser is straight-

forward: regardless of how the paraphrasing model will be used, it is possible to

use any existing set of English paraphrases as the tuning set for English-to-English

translation. Given such a set of paraphrases, one sentence can be randomly chosen

as the source sentence, and the remainder as the “reference paraphrases” for the

purpose of finding the optimal feature weights. The optimization is then carried out

exactly as it would be for tuning the weights for features in a bilingual translation

system. The details of the actual tuning algorithm used are described in Chapter 4.

3.2.4 Evaluating Feature Computation Methods

Two methods of computing the feature values for the pivoted monolingual

translation rules were proposed. In order to determine which of these methods pro-

duces better paraphrases, a simple manual evaluation was conducted using Amazon

Mechanical Turk. To set up the experiment, a bilingual grammar was first extracted

using approximately 1 million sentences of Chinese-English parallel newswire data.

Two pivoted monolingual grammars were then constructed using the methodology

described in the preceding sections: one where the features were computed using the

derived-counts method and the other where the derived-features method was used.

For tuning the parameters in both cases, the set of reference translations from the

2002 NIST MT evaluation exercise (hereafter referred to as NIST MT02) was used

to find the optimal feature weights for the paraphraser. This set consists of 4 sets

of translations written by humans for 878 Chinese source sentences and, therefore,
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Figure 3.2: This figure shows the percentage of Turkers that rated a paraphrase as one
that retains all of the meaning in the original sentence, most of the meaning or little to
none of the meaning. Two different types of paraphrases were shown to the Turkers: the
first type were generated with features computed using the derived-counts method and the
second with features computed using the derived-features method.

may be considered to be a set of paraphrases.

Once any English-to-English translation model, represented by the paraphrase

grammar, has been induced, it can be used within the SMT decoder, just as a bilin-

gual translation model would be used, to paraphrase (translate) new sentences. As

the input to the two paraphrasers, 100 sentences were randomly chosen from the

NIST MT03 set and two sets of paraphrases were generated. 10 Human Intelligence

Tasks (HITs) were created on Amazon Mechanical Turk such that each task con-

tained 10 of the original English sentences along with the corresponding paraphrase

from one of the paraphrasers. In each HIT, the Turkers were asked to read each of

the 20 sentences and its corresponding paraphrase and choose one of the following
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options:2

- All meaning expressed in the first sentence appears in the second sentence.

- Most of the meaning expressed in the first sentence appears in the second sentence.

- Little to none of the meaning expressed in the first sentence appears in the second

sentence.

Note that each HIT was redundantly processed by three different Turkers and the

final rating for each sentence was chosen by taking the majority of the three ratings.

Figure 3.2 summarizes the results of these HITs. First, note that the two methods

seem to produce relatively similar paraphrases even though it looks like the para-

phrases produced with the derived-features method generally tend to retain more

of the original meaning on average. Another important observation is that a large

percentage of the sentential paraphrases, for either method, are not always fully se-

mantically equivalent. This is not entirely unexpected due to the noisy nature of the

word alignments for the bilingual parallel corpus. Based on these experiments, the

derived-features method is chosen as the default method for computing the mono-

lingual rule features heretofore. Figure 3.3 shows some examples of paraphrases

produced with rules whose features were computed using this method.

The next chapter shows that despite being unsuitable for direct use by humans,

the paraphrases produced by the sentential paraphraser as described in this chapter,

2In the first version of the HITs, five options were chosen instead of three but it was observed
that with a larger list of choices, Turkers—who are entirely untrained—could not make the requisite
fine distinctions. They always tended to pick one of the middle options and avoided committing
to the extrema.
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Orig Alcatel added that the company’s whole year earnings would be announced on
February 4.

Para Alcatel said that the company’s total annual revenues would be released on
February 4.

Orig He was now preparing a speech concerning the US policy for the upcoming
World Economic Forum.

Para He was now ready to talk with regard to the US policies for the forthcoming
International Economic Forum.

Orig Tibet has entered an excellent phase of political stability, ethnic unity and
people living in peace.

Para Tibetans have come to cordial political stability, national unity and lived
in harmony.

Orig Its ocean and blue-sky scenery and the mediterranean climate make it world’s
famous scenic spot.

Para Its harbour and blue-sky appearance and the border situation decided it world’s
renowned tourist attraction.

Figure 3.3: Example paraphrases with Chinese as the pivot language. Orig denotes the
original sentence and Para its generated paraphrase. The sentences were chosen manually.

prove to be extremely useful for addressing the reference sparsity problem in a

bilingual SMT system, thereby completing the circle of meaning.
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4 The Next 180 Degrees: Improved SMT via Paraphrasing

∗

Desire translation?
Show me how you would do it.
Not once but four times.

–Nitin Madnani

∗

In this chapter, the following question is explored: assuming that only a single

good reference translation is available for each item in the development set used for

parameter tuning, how well can this reference sparsity be offset by augmenting that

single reference with artificial references produced by the sentential paraphraser de-

scribed in Chapter 3? This question is important for a number of reasons. First, with

a few exceptions—notably NIST’s annual MT evaluations—most new MT research

data sets are provided with only a single reference translation. Second, obtaining

multiple reference translations in rapid development, low-density source language

scenarios (e.g. (Oard, 2003)) is likely to be severely limited (or made entirely im-

practical) by limitations of time, cost, and ready availability of qualified translators.
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4.1 The Tuning Algorithm

Recall that the SMT system used in this dissertation uses a log-linear model

employing several features to assign scores to any candidate translation. A log-linear

model generally models the posterior probability of a candidate target language

translation directly, i.e., for any given source sentence f :1

P (e|f) =
exp

(
∑N

m=1 λmφm(e, f)
)

∑

e’
exp

(
∑N

m=1 λmφm(e′, f)
) (4.1)

where the φ’s are the feature functions defined over the source and target language

strings and the λ’s are the weights for these features. The most likely candidate

translation can then be obtained by the search—or decoding—process as given by:

ê = argmax
e’

P (e’|f) (4.2)

As part of training this translation model, it is standard practice to tune the set of

feature weights λ (or parameters) for such a model. While such tuning can certainly

be carried out in the usual manner to maximize likelihood, it has been shown that

a more effective method used for tuning these parameters is a multidimensional op-

timization technique wherein the objective is to directly minimize the translation

error—measured over n-best lists of translation candidates against a set of refer-

ence translations—for held-out “development” source sentences paired with their

1Technically, the model scores derivations and not target language strings. However, without
any loss of generality, it is assumed that such a score can be computed for the target language
string—a linearization of a candidate derivation—as well.
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corresponding reference translations (Och, 2003).

The learning process seeks to minimize the error over the entire development set F

which is simply the sum of the errors for each individual source sentence in the set:

Err(F ) = Err(ê1, E
R
1 ) + Err(ê2, E

R
2 ) + · · ·+ Err(ê∥F∥, E

R
∥F∥) (4.3)

where ER
k represents the set of reference translations for the kth source sentence. The

set of tuned parameters minimize the above translation error on the development

set, i.e.,:

→

λoptimal= argmin
→

λ

Err(F ) (4.4)

Notice that this construction of the optimization problem has an argmax embedded

inside an argmin (via the search process for the best candidate in Equation 4.2

above). Therefore, no gradient-based optimization methods can be utilized. Given

these circumstances, a globally optimal solution is not guaranteed. However, a

heuristic is generally used to find a good locally optimal solution (Och, 2003). This

heuristic is described below.

Ignoring the normalization constant in Equation 4.1, the unnormalized score

of a candidate translation can be written as:

scr(e|f) = λ1φ1(e, f) + λ2φ2(e, f) + · · ·+ λNφN(e, f) (4.5)

Notice that since the feature functions are being evaluated at a particular source

sentence and a particular candidate translation, their values are essentially constant.
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Assuming that the values of all parameters except one, say λ1, are held fixed, then

this score can be easily seen to be linear in λ1:

scr(e|f) = λ1 φ1(e, f)
︸ ︷︷ ︸

constant

+λ2φ2(e, f) + · · ·+ λNφN(e, f)
︸ ︷︷ ︸

constant

(4.6)

= mλ1 + c (4.7)

Therefore, all candidate translations from the n-best list for a given source sentence

can be represented as a line, in an N-dimensional space (N being the number of fea-

ture functions) spanned by the feature weight λ’s, with properly defined slope and

intercept. The next step, then, is to find the intersection points between all such

lines. Once the intersection points are found, they yield a number of intervals along

each of which the error remains constant, given solely by the line (candidate) that

contributed to that interval. As mentioned earlier, the total error over the entire de-

velopment set is deemed to be additive in nature and so by combining all such lines

for all the source sentences, a piecewise-linear approximation to the actual error sur-

face can be computed. All that remains to be done then is to traverse the intervals

along this function to find the one with the lowest error value and finally, determine

the optimum value of the one non-constant feature by reverse mapping. This line

minimization procedure is then carried out for each of the remaining parameters.

After each parameter value has been determined, one iteration of the tuning process

is deemed to have been carried out. Successive iterations may be necessary depend-

ing on pre-stipulated convergence criteria which are usually defined either in terms
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(a)

(b)

(c)

(d)

(e)

Figure 4.1: A visual depiction of the line minimization procedure that is at at the heart of
the minimum error rate training procedure. In (a), the scores for the candidate translations
for a given source sentence can be drawn as lines in λi with all other parameters held
constant. Intersection points are then found in order to find intervals where the error
remains constant. The intervals are shown in (b). The same procedure is then repeated
for a different source sentence in (c) and (d). Assuming that the development set consists of
only these two source sentence, an accumulated piecewise-linear error function can then be
computed in (e). The optimal value of λi can then be found by simply finding the interval
with the lowest error and mapping back to the X-axis to find the parameter value, usually
taken to be that corresponding to the midpoint of the interval. This same procedure is
repeated for each parameter value to optimize it in isolation. This figure is reproduced
from (Lopez, 2008).

of how much the parameter values change and the diversity contained in the n-best

lists. Figure 4.1, reproduced here from (Lopez, 2008), provides a visual depiction of

the line minimization procedure.

For the sake of completeness, it should be mentioned that the method for

finding an optimal point in a multidimensional parameter space using n-best hy-

pothesis lists was originally proposed in the 1990s for automatic speech recognition

systems (Ostendorf et al., 1991). The algorithm used there is Powell’s method (Pow-

112



ell, 1965; Press et al., 1986), which iteratively optimizes the weights in successive

conjugate directions. The primary algorithmic difference between the two methods

is that the one using Powell’s method can be used with arbitrary scoring criteria

since it relies on standard grid-based line minimization for each conjugate direction.

In contrast, the method described above and proposed by Och (2003) derive an

exact line optimization technique specifically for log-linear models. However, both

techniques are susceptible to local optima and heuristics such as multiple starting

points and random restarts usually have to be employed.

Och (2003) also showed that the translation system achieves its best perfor-

mance on unseen data when parameters are tuned using the same objective function

that is used for evaluating the system. Since BLEU is the most commonly used eval-

uation metric, systems are generally tuned to maximize the translation quality of

the system on the development set as measured by BLEU.2 As with Equation 4.3,

the BLEU scores are computed against a set containing multiple reference transla-

tions. Since BLEU is based on n-gram overlap between hypotheses and reference

translations, it is most accurate when computed with as many distinct reference

translations (usually four) as possible. Intuitively this makes sense: if there are al-

ternative ways to phrase the meaning of the source sentence in the target language,

then the translation quality criterion should take as many of those variations into

account as possible. To do otherwise is to risk the possibility that the criterion

might judge good translations to be poor when they fail to match the exact wording

2Since translation quality is inversely related to translation error, line maximization is employed
to tune each parameter in isolation.
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within the reference translations that have been provided.

However, this reliance on multiple reference translations creates a problem be-

cause reference translations are labor intensive and expensive to obtain. For exam-

ple, producing reference translations at the Linguistic Data Consortium, a common

source of translated data for MT research, requires undertaking an elaborate process

that involves translation agencies, detailed translation guidelines, and quality con-

trol processes (Strassel et al., 2006). Therefore, most current MT development sets

only come with a single reference translation, leading to reference sparsity. The view

adopted in this thesis is that this sparsity can be effectively, and cheaply, addressed

by using the sentential paraphraser from Chapter 3 to create additional references in

an artificial manner and using them for the BLEU-driven parameter tuning process.

An alternate view that deserves mention is that of using a different MT met-

ric for tuning; one that has an inherent notion of semantic equivalence, such as

METEOR or TERp. Using one of these metrics does alleviate the effects of refer-

ence sparsity and, as such, they are being increasingly employed for MT evaluation.

However, BLEU still remains the most commonly accepted evaluation metric and,

therefore, the best translation performance is achieved by using BLEU for param-

eter tuning as well. In addition, tuning with METEOR or TERp is accompanied

by additional issues that will need to be worked out before they can be used as

replacements for BLEU.
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4.2 Experimental Questions

At a finer level of granularity, the answer to this chapter’s primary question—

how well can we do armed with an automatic paraphraser and a single human

reference?—can be deemed as a combination of answers to more specific questions

that are listed below:

1. If only a single reference translation is available for tuning, does adding its

best sentential paraphrase reference into the tuning process provide significant

gains?

2. Can k-best paraphrasing, instead of just 1-best, lead to better optimization,

and how does this compare with using additional human references transla-

tions?

3. Given the claim that the paraphraser provides additional n-gram diversity,

can the paraphraser be useful in situations where the tuning criterion does

not depend heavily on such overlap?

4. To what extent are the gains obtained from this technique contingent on the

quality of the human references that are being paraphrased, if at all?

5. Are the paraphrased references are equally useful with larger tuning sets that

can be created simply by borrowing from the parallel bitext?

Answering these questions will make it possible to characterize the utility of paraphrase-

based optimization in real-world scenarios, and and how best to leverage it in those
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scenarios where it does prove useful. The answers to the first two questions are

described next in Sections 4.3.1 and 4.3.2 in terms of results of translation exper-

iments and indicate the general utility of the paraphraser for multiple source lan-

guages. The answers to the remaining three, more specific, questions are presented

in Sections 4.4, 4.5 and 4.6 respectively.

4.3 Translation Experiments and Results

Here, we address the experimental questions as to whether significant gains

are obtained by including the 1-best (or even the k-best) sentential paraphrases into

the tuning process when only one single reference translation is available. Machine

translation experiments are described that use the sentential paraphraser to cre-

ate additional references for parameter tuning and the results are compared to the

results of baseline experiments that only use that one reference translation for tun-

ing. Two kinds of results are presented for each set of experiments. The first kind

compares translation systems to each other using automatic machine translation

evaluation metrics BLEU and TER and the second compares them using human

judgments.

4.3.1 Chinese-English

The first set of experiments is for Chinese-English translation with the following

details:

1. Training Data. The Chinese-English parallel data used for this set of ex-
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periments consist of approximately 2.5 million newswire segments. Both the

translation and the paraphrase rules are generated using this data. Besides the

parallel data, approximately 8 billion words of English text are used for lan-

guage model (LM) training (3.7B words from the LDC Gigaword corpus, 3.3B

words of web-downloaded text, and 1.1B words of data from CNN archives).

These data are used to train two language models: a trigram LM used in

decoding, and an unpruned 5-gram LM used in reranking both the SMT and

the paraphraser n-best lists. Modified Kneser-Ney smoothing was applied to

the n-grams in both cases (Chen and Goodman, 1998).

2. Decoders. Both the SMT and paraphrase decoders (Shen et al., 2010) use a

state-of-the-art hierarchical phrase-based translation model where the transla-

tion (or paraphrasing) rules form a synchronous context free grammar (SCFG).

3. Tuning Set. As the tuning set, the NIST MT03 Chinese set containing

919 sentences is used. This dataset actually comes with 4 human authored

reference translations per item and a tuning set is simulated in which only a

single reference translation is available.3 One way to create such a simulated

set is simply to choose one of the 4 reference sets, i.e., all the translations with

the same system identifier for all source documents in the set. However, for the

NIST sets, each of the reference sets is typically created by a different human

translator. In order to imitate a more realistic scenario where multiple human

translators collaborate to produce a single set of reference translations, instead

3The reasons for choosing a set with 4 references will become clearer in the subsequent para-
graphs.
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of multiple sets, it is essential to normalize over any translator idiosyncrasies so

as to avoid any bias. Therefore, the simulated single-reference set is created

by choosing, at random, for each source document in the set, one of the 4

available reference translations.

4. Validation Set. The validation set is the NIST MT04+05 set which contains

both NIST MT04 and NIST MT05 sets. The total number of sentences in this

set is 2870. No changes are made to the number of references in the validation

set. Only the tuning sets differ in the number of references across different

experiments.

As the baseline, the simulated single-reference set (1H=1 Human) is used to

tune the parameters of the SMT system and evaluate on the MT04+05 validation

set The simulated set is then paraphrased, the 1-best paraphrase extracted as an

additional reference, and the MT system tuned on this new 2 reference tuning set

(1H+1P=1 Human, 1 Paraphrase). The results, shown in Figure 4.2, confirm that

using a paraphrased reference when only a single human reference is available is

extremely useful and leads to huge gains in both the BLEU and TER scores on the

validation set.4

Since the paraphraser is an English-to-English SMT system, it can generate

k-best hypothesis paraphrases from the chart for each input reference. An obvious

extension to the above experiment then is to see whether using k-best paraphrase

hypotheses as additional reference translations, instead of just the 1-best, can alle-
4BLEU and TER are calculated on lowercased translation output. For each experiment, BLEU

scores shown in bold are significantly better (Koehn, 2004) than the appropriate baselines for that
experiment (p < 0.05).
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BLEU TER
1H 37.65 56.39
1H+1P 39.32 54.39

Figure 4.2: BLEU and TER scores are shown for MT04+05. 1H=Tuning with 1 human
reference, 1H+1P=Tuning with the human reference and its paraphrase. Lower TER
scores are better.

viate the reference sparsity to a larger extent during the optimization process. For

this experiment, the top 1, 2 and 3 paraphrases for the MT03 simulated single ref-

erence set are used as additional references; three tuning sets 1H+1P, 1H+2P and

1H+3P respectively. As points of comparison, the tuning sets 2H, 3H and 4H are

also constructed from MT03 in the same simulated fashion5 as the single reference

tuning set 1H. The results for this experiment are shown in Figure 4.3.

The graph shows that starting from the simulated single reference set, adding

one more human reference translation leads to a significant gain in BLEU score, and

adding more human references provides smaller but consistent gains at each step.

With paraphrased references, gains continue up to 3 references, and then drop off;

presumably beyond the top two paraphrases or so, n-best paraphrasing adds more

noise than genuine diversity (one can observe this drop off in provided diversity6 in

the example shown in Figure 4.4). Crucially, however, it is important to note that

only the performance difference with four references—between the human and the

paraphrase condition— is statistically significant.

5By randomly choosing a sufficient number of random reference translations from the available
4 for each source document.

6This lack of diversity is found in most forms of n-best lists used in language processing systems
and has been documented elsewhere in more detail (Langkilde, 2000; Mi et al., 2008).
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Untargeted Paraphrases

# tuning refs
Human Paraphrased

BLEU TER BLEU TER
1 (1H+0) 37.65 56.39 37.65 56.39
2 (1H+1) 39.20 54.48 39.32 54.39
3 (1H+2) 40.01 53.50 39.79 53.71
4 (1H+3) 40.56 53.31 39.21 53.46

Figure 4.3: A graph showing the BLEU scores for the set NIST MT04+05 as human
and paraphrased reference translations are added to a single human authored reference
translation for the tuning set (NIST MT03). Note that the BLEU score for this validation
set is measured against 4 human references in each case. Only the number of references for
the tuning set is varied. The corresponding TER scores are shown in the accompanying
table.

In addition to results with automatic metrics, it would also be worthwhile to

get actual human judgments indicating whether the translations produced by the

system augmented with paraphrases are significantly better than those produced

by the baseline system that is tuned with the single human-authored reference.

To obtain such judgments, two sets of experiments were conducted on Amazon

120



O (Hong Kong, Macau and Taiwan) Macau passed legalization to avoid
double tax.

P1 Macao adopted bills to avoidance of double taxation (Hong Kong,
Macao and Taiwan).

P2 (Hong Kong, Macao and Taiwan) Macao adopted bills and avoidance of
double taxation.

P3 (Hong Kong, Macao and Taiwan) Macao approved bills and avoidance of
double taxation.

Figure 4.4: The 3-best paraphrase hypotheses for the original sentence O with Chinese
as the pivot language. The amount of n-gram diversity decreases with each successive
hypothesis.
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Figure 4.5: When translating Chinese sentences, human subjects on Amazon Mechanical
Turk prefer–to a statistically significant extent—the translations produced by the MT
system that was tuned with the paraphrase as additional, artificial references (1H+1P)
compared to the system that used only the single human-authored reference (1H). The
relatively lower performance with the noisy 3-best paraphrases (1H+3P), although still
significantly better than the baseline, is also evident in these preference judgments.

Mechanical Turk:

• 1H vs 1H+1P. 100 sentences were randomly chosen from the NIST MT04+05

Chinese validation set. 10 HITs were then created, each containing 10 of the
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100 source sentences along with: (a) the corresponding reference translations

(b) translation outputs from a system tuned with the single human-authored

reference and, (c) translation outputs from a system tuned with the single

human-authored reference and its 1-best paraphrase.

• 1H vs 1H+3P. 100 sentences were randomly chosen from the NIST MT04+05

Chinese validation set. 10 HITs were then created, each containing 10 of the

100 source sentences along with: (a) the corresponding reference translations

(b) translation outputs from a system tuned with the single human-authored

reference and, (c) translation outputs from a system tuned with the single

human-authored reference and its 3-best paraphrases instead of just the 1-

best.

The instructions in each HIT for both sets of experiments above told the

participating Turkers to pick the translation output that they thought was more

correct. A third option indicating that there was no difference between the two

was also provided. Answers from Turkers were validated by embedding a control

question in each HIT for which the correct answer was known before hand. If the

answer given by a Turker for this control question did not match the known answer,

her answers for that HIT were discarded. Each sentence was annotated three times

and the final answer for each sentence was picked by a simple majority vote. If

the final answer for a sentence was the no-difference option, then that sentence was

excluded from consideration.
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The results for both of these sets of experiments are shown in Figure 4.5. It

is clearly evident from the preference judgments obtained from the Turkers that us-

ing the paraphrases as artificial references yields significantly improved translation

output when compared to the baseline system that was only tuned with a single ref-

erence. Assuming that choosing the system augmented with paraphrases is deemed

as “success”, the null hypothesis is that success and failure are equally likely with

a probability of 0.5. Using a two-sided exact binomial test with these judgments

shows that they are not in agreement with the null hypothesis and that the success

is more likely than failure with p-values as shown in the figure.7 95% confidence in-

tervals are also shown. As with the automatic metrics, using the 3-best paraphrases

tends to lead to lower performance for the MT system due to the decreased n-gram

diversity and increased noise.

4.3.2 French-English, German-English and Spanish-English

In addition to showing the applicability of the sentential paraphraser for tuning

in Chinese-English, it would also be very useful to show the same for a language

pair for which there is only a single reference available and no simulation is required.

Of course, for such a scenario, it would be impossible to compare the performance

of the artificial, paraphrased references to actual human references. In this section,

machine translation experiments from three different European languages—French,

German and Spanish—into English are presented with the following details:

1. Training Data. For these sets of experiments, mainly bitexts extracted

7 The binomial test was carried out in R using the command binom.test.
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from the proceedings of the European parliament (Koehn, 2005) are used;

specifically, 1.7 million sentences for French-English, 1.6 million sentences for

German-English and 1.7 million sentences for Spanish-English. In addition to

these data, the smaller news commentary data for each language containing

respectively 82K, 75K and 74K sentences for French-English, German-English

and Spanish-English is also used. As the language model training data, the

same data as the Chinese-English experiments were used.

2. Decoders. Both the SMT and paraphrase decoders are SCFG-based decoders

using hierarchical phrase-based translation models.

3. Tuning Set. As the tuning set, the test set from the 2008 workshop on ma-

chine translation (Callison-Burch et al., 2008c) which contains 2, 051 sentences

is used. This is in-domain data that was gathered from the same news sources

as the validation set described below. Note that this set only contains a single

human authored English reference translation.

4. Validation Set. The validation set is the newstest2009 set which contains

2, 525 sentences also with a single English reference translation.

Figure 4.6 shows the BLEU and TER results for the validation sets for each

of the three language pairs. These results confirm that the benefits from the para-

phrased references are able to generalize across multiple language pairs. However,

as more paraphrases are added, the noise inherent in the paraphrases starts to over-

whelm the benefits. One important thing to note about this set of results is that
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the improvements in the BLEU scores are much smaller than in the case of Chi-

nese. The most likely reason for this is that the BLEU scores are being measured

only against a single reference whereas in the case of Chinese-English translation,

they were being measured against 4 reference translations that were available for

the validation set.

To confirm whether human judgments of translation outputs would agree with

the automatic metrics, experiments identical to the Chinese-English case were con-

ducted on Amazon Mechanical Turk. Figure 4.7 shows the results of these experi-

ments for the three European languages.

4.4 The Role of the Tuning Metric

This section addresses the question of whether the additional diversity pro-

vided by the paraphraser is useful in situations where the turning criterion does not

depend heavily on such overlap.

Although BLEU is generally the most widely used metric for parameter tuning

in SMT, other metrics may also be employed in different scenarios. For example, a

genre that has recently gained in popularity is the weblog genre. Previous experience

with this genre has shown that if BLEU is used as the tuning criterion for this

genre, the TER scores on held-out validation sets tend to be disproportionately

worse. It has been shown that a good criterion to use is a hybrid TER-BLEU
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# refs
French-English German-English Spanish-English
BLEU TER BLEU TER BLEU TER

1H+0 25.40 56.14 20.13 60.80 26.11 55.32
1H+1 26.18 55.47 20.77 60.17 27.03 54.44
1H+2 26.33 55.26 20.87 60.06 27.17 54.31
1H+3 26.14 55.40 20.74 60.18 26.90 54.55

Figure 4.6: Graph showing the BLEU scores for the set newstest2009 as paraphrased
reference translations are added to a single human authored reference translation for the
tuning set (newstest2008). Note that the BLEU score for this validation set is measured
against one reference translation. The corresponding TER scores are shown in the table.
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Figure 4.7: Just like Chinese-English translations, human subjects—when asked to judge
translations for European languages—have a significant preference for outputs produced
by an SMT system augmented with paraphrases (1H+1P and 1H+3P) as compared to
baseline translation output (1H). Clockwise from top to bottom: French-English, German-
English and Spanish-English.

measure (Matsoukas et al., 2009) given by:

TERBLEU = 0.5 ∗ TER + 0.5 ∗ (1− BLEU)

The same measure is used for tuning the MT system in this experiment in order to

test how the use of a criterion that is not as heavily dependent on n-gram diversity

as BLEU affects the utility of the paraphraser in a real-world scenario.

In order to test how the paraphrase approach works in that genre, both the MT
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system and the paraphraser are trained on 600, 000 sentences of weblog data. Note

that this is substantially smaller than the amount of newswire text that was used to

train the paraphraser for previous experiments. As the tuning set, an actual weblog

data set is used with only a single reference translation and containing approximately

800 sentences. As the validation set, a second weblog data set (WEB) containing

767 sentences is used, also with a single reference translation. The results are shown

in Figure 4.8.

BLEU
TER

Prec. BP
1H 16.85 0.90 68.35
1H+1P 17.25 0.88 68.00

Figure 4.8: BLEU and TER scores on the WEB validation set when using paraphrases
for tuning an SMT system used to translate the weblog genre. The tuning metric used is
TERBLEU instead of BLEU.

Since the validation set has a single reference translation, the 4-gram precision

and brevity penalty components of BLEU scores can be separated out. It is im-

portant to focus on the precision which is directly affected by the increased n-gram

diversity supplied by the paraphrase. For this experiment, it is seen that while there

seem to be improvements in both the 4-gram precision and TER scores, they are

statistically insignificant. In order to isolate whether the lack of improvement is due

to the relatively small size of the training data or the metric mismatch, the same

experiment is run with BLEU as the tuning criterion instead of TERBLEU.

The results, shown in Figure 4.9, indicate a significant gain in both the 4-gram

precision and the overall BLEU score. Therefore, to answer the question, using
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BLEU
TER

Prec. BP
1H 17.05 0.89 70.32
1H+1P 18.30 0.87 69.94

Figure 4.9: BLEU and TER scores on the WEB validation set when using paraphrases for
tuning an SMT system used to translate the weblog genre. The tuning metric used here is
BLEU. A significant gain in BLEU is achieved only when the tuning criterion for the MT
system can take advantage of the diversity.

a tuning criterion that doesn’t benefit from added n-gram diversity can certainly

hamper the paraphraser’s effectiveness in addressing reference sparsity.

4.5 Impact of Human Translation Quality

This section addresses the question as to the extent to which the gains obtained

from the paraphrase-based technique are contingent on the quality of the human

references that are being paraphrased.

Each of the 4 sets of references translations in the Chinese-English MT03

dataset was created by a different human translator. Since human translators are

likely to vary significantly in the quality of translations that they produce, it is

important to gauge the impact of the quality of a reference on the effectiveness of

using its paraphrase, at least as produced by our proposed sentential paraphraser, as

an additional reference. To do this, each of the 4 reference sets from MT03 is chosen

in turn to create the simulated single-reference set (1H).8 It is then paraphrased and

the 1-best paraphrase used as an additional reference to create a 2-reference tuning

set (1H+1P). Each of these 8 tuning sets is then used to tune the SMT system and

8Note that these per-translator simulated sets are different from the bias-free simulated set
created in Sections 4.3.
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BLEU
#1 #2 #3 #4

1H 37.56 35.86 38.39 38.41
1H+1P 39.19 37.94 38.85 38.90

TER
#1 #2 #3 #4

1H 57.23 60.55 54.50 54.12
1H+1P 54.21 56.42 53.40 53.51

Figure 4.10: BLEU and TER scores computed for MT04+05 for cases where tuning em-
ploys reference translations (created by different human translators) and their correspond-
ing paraphrases. Tuning usefulness of human translations vary widely (e.g., Refset #2 vs
Refset #4) and, in turn, impact the utility of the paraphraser.

the BLEU and TER scores are computed for the validation set MT04+05.

Figure 4.10 shows these results in graphical form. These results yield two very

interesting observations:

• The human reference translations do vary significantly in quality. This is

clearly seen from the significant differences in the BLEU and TER scores

between the 1H conditions, e.g., the third and the fourth human reference

130



Tuning Set # of Sentences
Base (MT03) 919
T1 (Base+600) 1519
T2 (T1+500) 2019
T3 (T2+500) 2519

Figure 4.11: Creating larger single reference tuning sets by adding sentences from the
training corpus to the single reference base tuning set (MT03).

translations seem to be better suited for tuning than, say, the second refer-

ence. Note that the term “better” does not necessarily refer to a more fluent

translation but to one that is closer to the output of the MT system.

• The quality of the human reference has a significant impact on the effective-

ness of its paraphrase as an additional tuning reference. Using paraphrases

for references that are not very informative, e.g. the second one, leads to sig-

nificant gains in both BLEU and TER scores. On the other hand, references

that are already well-suited to the tuning process, e.g., the fourth one, show

much smaller improvements in both BLEU and TER on MT04+05.

4.6 Effect of Larger Tuning Sets

This section addresses the question of whether the paraphrased references are

equally useful with larger tuning datasets. More precisely, it answers the question of

whether using a larger set of sentences (with a single human reference translation)

be as effective as using the sentential paraphraser to produce additional artificial

reference translations.

Given that creating additional human reference translations is so expensive,
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the most realistic and cost-effective option of scaling to larger tuning sets is to simply

take the required number of sentences from the training data and add them to the

tuning set (Zhang and Vogel, 2004). The parallel nature of the training corpus

facilitates the use of the same corpus as a tuning set with a single human-authored

reference translation.

In order to replicate this scenario, the single reference Chinese-English MT03

bias-free tuning set is chosen as the starting point. A block of sentences is then

chosen from the MT training corpus9 and is then added to the baseline MT03 tuning

set in three steps to create three new tuning sets as shown in Figure 4.11.

Once the larger tuning sets are created, each them is used to tune the param-

eters of the SMT system (which is trained on a training corpus that excluded this

block of sentences) and score the MT04+05 validation set. To see how this compares

to the paraphrase-based approach, each of the tunings sets is paraphrased and the

paraphrases are used as additional reference translations for tuning the MT system.

Figure 4.12 shows these results in graphical form.

The most salient observation that can be made from the results is that doubling

or even tripling the tuning set by adding more sentences from the training data

does not lead to statistically significant gains. However, adding the paraphrases of

the corresponding human reference translations as additional references for tuning

always leads to significant gains, irrespective of the size of the tuning set.

9It has been verified that these sentences do not overlap with the paraphraser training data.
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1H Tuning Set
1H+1P Tuning Set

BLEU
Base T1 T2 T3

1H 36.40 36.85 36.95 37.00
1H+1P 38.25 38.59 38.60 38.55

TER
Base T1 T2 T3

1H 56.17 58.23 58.60 59.03
1H+1P 54.20 55.43 55.59 55.77

Figure 4.12: BLEU and TER scores for the validation set MT04+05 vary as the tuning
set is enlarged—by adding sentences from the training data. The effectiveness of the
paraphraser remains strong despite the larger size of the tuning set.

4.7 Summary

At this point, the circle of meaning can be deemed to be complete in the man-

ner that it had been motivated in Chapter 1. An automatic sentential paraphraser

was constructed entirely from SMT machinery in Chapter 3 (the first 180 degrees of

the circle). In this chapter, both automatic and manual evaluation results showed

that the same sentential paraphraser can provide an extremely effective solution

for the reference sparsity issue that afflicts current state-of-the-art SMT systems.
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However, the behavior of the sentential paraphraser is undesirable in one aspect:

in contrast to human reference translations, adding any paraphrases beyond the

1-best actually degrades the system performance. In the next chapter, an improved

instantiation of the sentential paraphraser is described that does not exhibit this

behavior.

This chapter also answered some additional questions pertaining to the utility

of the paraphraser in providing a solution to the reference sparsity problem that

affects start-of-the-art SMT systems. It showed that if the tuning metric used to

find the parameters of the SMT system cannot benefit directly from the n-gram

diversity that is supplied by additional reference translations, then the utility of the

paraphraser is limited. Results also showed that the impact that the paraphrases can

have as references is contingent on the quality of the human-authored reference that

is being paraphrased and that such references can vary widely in quality. Finally,

experiments also showed that the utility of the paraphrases as reference translations

is not diminished simply by increasing the size of the tuning set by borrowing from

the training data.
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5 Beyond the 1-best: A Targeted Sentential Paraphraser

∗

Changes without bounds.
Limited utility.
Perhaps, some focus?

–Nitin Madnani

∗

Chapter 4 described how the pivot-based sentential paraphraser could be used

to create multiple, artificial reference translations by paraphrasing an existing good

quality, human reference translation. It also showed that using the 1-best artificial

reference so produced, combined with the already existing human reference, for

tuning the parameters of a statistical machine translation system yields significant

gains. Therefore, using the pivot-based paraphraser in such a fashion is a viable

method to address the problem of reference sparsity that affects current statistical

machine translation systems.

However, using more than just the 1-best output from the sentential para-

phraser as additional references for tuning does not yield any further improvements.

In fact, doing so causes the performance to degrade as shown in Figure 5.1 repro-

duced from Chapter 4. This degradation is a direct result of the increased noise in

the paraphrase output as one goes down the n-best list. As detailed in Section 2.4.5,
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the bilingual phrasal correspondences extracted via commonly used word alignment

methods are already noisy. The process of pivoting, a process relying on an equiva-

lence relationship between these noisy correspondences that is approximate at best,

only serves to introduce additional noise into the generated monolingual paraphras-

tic correspondences and, therefore, into the generated sentential paraphrases as well.

Hence, including the top k-best (k <= 3) instead of just the 1-best adds so many

noisy n-grams into the mix that the noise overwhelms any benefits from the addi-

tional diversity of the small number of useful n-grams. This chapter describes a

new SMT-specific instantiation of the sentential paraphraser that overcomes this

behavior.1
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Figure 5.1: Adding k-best sentential paraphrases does not yield the same benefits as adding
multiple human references.

Of course, to make the paraphraser more useful, one could try to control for the

1There are other ways in which the noise in the paraphrase pairs induced via pivoting can be re-
duced: (a) the syntactically constrained pivoting method proposed by Callison-Burch (2008)—and
as described in Section 2.4.5 and, (b) using Amazon Mechanical Turk to filter out the noisy para-
phrase pairs (Denkowski et al., 2010). However (a) leads to decreased coverage for the paraphraser
and (b) requires humans intervention.
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noise directly. This is certainly a reasonable option and one that will be attempted

later in the chapter. However, there is a another, more serious problem with the

sentential paraphraser as it exists at this point: there are absolutely no constraints

imposed on the paraphrasing process. The paraphraser is free to paraphrase any

and every n-gram in the input sentence with any n-gram that the pivoting process

has declared to be equivalent to it. The result of such unconstrained paraphrasing

is that there is no guarantee that the paraphrased reference will match the trans-

lation output for that particular source sentence. It is basically a crap shoot; by

allowing the paraphraser free rein, the hope is that at least some of the new n-grams

brought into the mix via the paraphrased references will prove useful to the tuning

algorithm. However, due to the noisy alignment and pivoting process, it is observed

that the likelihood of this event decreases as more paraphrased references are added.

Therefore, a more useful approach might be one that ensures that the paraphrasing

is performed in a constrained manner, wherein the constraints are designed to in-

crease the likelihood of the paraphrased reference matching the translation output.

One way of constraining the paraphrasing is by “targeting” it, in some fashion, to-

wards the translation output. The rest of this chapter describes how such targeting

can be incorporated into the sentential paraphraser and what such incorporation

entails. For convenience, the unconstrained sentential paraphraser, as described in

Chapters 3 and 4, is heretofore termed as the “untargeted” paraphraser.
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5.1 Learning from HTER

Rather than coming up with an entirely new method for targeting the para-

phrasing to the translation output, it is more prudent to base the heuristic on an

already existing and successful example of such targeting in the SMT literature. The

example used here is one that has been used in the world of machine translation

evaluation where a recent trend has been to move from automatic metrics such as

BLEU and TER to human-in-the-loop measures. The following paragraphs describe

this trend in more detail and provide an intuitive explanation of how it fits with the

targeting that is required for the paraphraser.

Translation Edit Rate (TER) is one of the most popular metrics used to mea-

sure the quality of the translation output produced by a machine translation system.

TER is computed as the minimum number of edits needed to change a hypothesis

so that it exactly matches one of the references, normalized by the average length

of the references. Since the process is concerned with the minimum number of edits

needed to modify the hypothesis, only the number of edits to the closest reference

(as measured by the TER score) is measured. Possible edits include the insertion,

deletion, and substitution of single words as well as shifts of word sequences.

However, the acceptability of a translation hypothesis cannot be entirely indi-

cated by the TER score, which ignores notions of semantic equivalence. Therefore,

a translation hypothesis containing the phrase rise in unemployment could be un-

fairly penalized even if the corresponding phrase in the reference is the semantically

equivalent phrase increase in joblessness. This is where HTER (Human-targeted
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Translation Edit Rate), a modified version of TER that employs human annotation

enters the picture. HTER is the official evaluation measure used for the GALE re-

search program (Olive, 2005) and has been shown to yield higher correlations with

human judgments than BLEU (Snover et al., 2006). HTER involves a procedure

for creating targeted references. In order to accurately measure the number of edits

necessary to transform the translation hypothesis into a fluent target language sen-

tence with the same meaning as the references, one must find the closest possible

reference to the hypothesis from the space of all possible fluent references that have

the same meaning as the original references.

To compute HTER, human annotators—who are fluent speakers in the target

language—start from the original, untargeted reference and edit it to make it closer

to the given translation hypothesis, without losing its original meaning. TER is then

computed against this targeted reference and is referred to as the HTER score of

the translation output.2

Given this description of the HTER computation process, the analogy between

an HTER annotator and the sentential paraphraser is obvious. The annotator is

essentially a “manual” sentential paraphraser; one that paraphrases the original ref-

erence by targeting to the translation output. The result is a new, semantically

equivalent reference that has a higher likelihood of matching that output. By using

this reference in place of the original reference, the translation output will not be

unfairly penalized for using words that mean the same thing as the original refer-

2Usually the HTER instructions ask the annotator to do the reverse: edit the translation
hypothesis to make it fluent and have the same meaning as the original reference; however, the
process is essentially symmetric.
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ence but are different on the surface. Therefore, it would be a reasonable strategy

to fashion the sentential paraphraser to target the translation output in a similar

manner. That is, the goal—of making the n-gram matching process of the parameter

tuning algorithm fairer by providing additional references—would be better served

by creating targeted paraphrases of the original reference, that are guaranteed to

be closer to the translation output, rather than creating untargeted (and, in a way,

random) paraphrases and hoping that they turn out to be useful.

5.2 Targeting Implementation

This section describes various details that must be taken into account when

determining how to implement targeting for the sentential paraphraser. First, it

presents modifications that need to be made to the way in which the sentential

paraphraser is employed as part of the SMT tuning loop. Similar modifications need

to be made to the way in which the paraphrases are generated for use in tuning.

Next, the actual formulation of the targeting is outlined as it is implemented in the

paraphraser and used in the rest of this thesis. Finally, other considerations are

described that are important for the targeted paraphraser to function effectively.

In previous chapters, the paraphraser was not part of the tuning loop but

instead only used as an offline component: the original human reference was para-

phrased externally and the (untargeted) paraphrased references were added to rel-

evant files of the tuning set. However, for a paraphraser that needs to target the

translation output, the paraphrasing needs to happen online, i.e., during the pa-
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rameter tuning. Here are several important changes that need to be made to the

paraphraser and its role in the tuning process:

1. Given that the paraphraser is targeting to the translation output, the output

itself needs to be passed as input to the paraphraser in addition to the original

reference.

2. In almost all SMT systems (including the one used throughout this thesis),

the output of the decoder when translating a given source sentence is an n-

best list instead of a single hypothesis. In a way, each of the translation

hypotheses in the n-best list can be considered to be a “different” translation

output. The targeting implementation must be capable of handling all of

these outputs. Therefore, each translation output must be separately targeted,

i.e., for each sentence, the paraphraser must create a different paraphrased

reference targeted to each of the hypotheses in the n-best list.

3. Usually, the algorithm that is used to tune the parameters of an SMT system

is run for multiple iterations until some pre-stipulated convergence criterion is

met. The tuning algorithm is described in detail in Chapter 3 but I reiterate

here for the purpose of exposition. Each iteration of the tuning algorithm con-

sists of (a) decoding the source sentences from the tuning set with the weights

chosen at the end of the previous iteration, (b) scoring the n-best list against

the references3 (using BLEU) and, (c) performing a guided search over the

space of weights to find the set of weights that maximizes the chosen objective

3While it is certainly possible to use other automatic metrics for the purpose of parameter
tuning, BLEU remains the most commonly used metric and one that is used in this thesis.
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function over the tuning set. It is obvious that the n-best list of translation

outputs (the targets) will differ from iteration to iteration. Therefore, the

paraphraser needs to be incorporated into the iterative loop of the tuning al-

gorithm so that it can produce new targeted references during each tuning

iteration.

The most optimal way to implement targeting for the sentential paraphraser

is to leverage the log-linear nature of the paraphrasing model. Chapter 3 defined

the paraphraser as essentially an English-English translation model and since the

translation model is log-linear, targeting can simply be implemented as a feature in

that model. A targeting feature is defined as follows:

h(êh,T; er, f) =
∑

w∈êh ∧w ̸∈T

1 (5.1)

where êh is a complete paraphrase hypothesis, er is the original reference that is

being paraphrased and T is the translation output for the source sentence f . The

value of the targeting feature for a complete paraphrase hypothesis, as defined, is

simply the number of words that are in the paraphrase hypothesis but that are

not in the translation output (for that particular source sentence). Of course, this

feature cannot be pre-computed for any translation rules (or phrase pairs) and is

computed by the decoder as the paraphrase hypothesis is being constructed. Note

also that given this definition of the feature, its weight must be negative in order to

elicit targeting behavior.

Now that the formulation of the targeting feature has been described, the next
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question that must be answered is how the weight for this feature will be computed.

An obvious answer may be that the weight for this feature should be computed in

the same way as the weights for the other paraphraser features were determined

in Chapter 3. If the reader will recall, the weights were tuned by, once again,

cleverly leveraging the fact that the sentential paraphraser is nothing more than an

English-English SMT system. A tuning set was chosen for which there were four

reference translations available, each created by a different human translator. One

of the reference translations was randomly chosen to be the “source” (the English

sentence to be paraphrased) and the other three as “reference paraphrases”. Once

this setup was complete, the exact same tuning algorithm and tuning criterion used

in a bilingual SMT system could be employed for the monolingual SMT system, i.e.,

the paraphraser. However, as shown below, this strategy will not carry over to the

targeted paraphraser even though targeting is realized as simply another feature in

the model.

Recall that the objective of the tuning algorithm is to find the set of feature weights

that maximize the BLEU score of the tuning set against the provided reference

translations (paraphrases). In non-quantitative terms, the objective is to produce

translations (paraphrases) as close to the reference translations (paraphrases) as

possible. Therefore, the tuning algorithm has no reason to learn a non-zero weight

for the targeting feature that is, in fact, designed to create paraphrases that are closer

to an altogether different utterance: the translation output. One could, perhaps,

modify the tuning criterion to be a weighted linear interpolation of two quantities:

a measure of closeness to the reference paraphrases and a measure of closeness to
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the translation output. However, this solution is less than ideal and, instead, I

have designed and implemented a different method for choosing the weight for the

targeting feature. This method, along with the rationale behind it, is discussed in

Section 5.2.3. The experimental results obtained and presented later in this chapter

validate the method.

The final issue that must be examined is one pertaining to the original human-

authored reference translation that is the input to the paraphraser. For HTER

computation, the original reference would be discarded and the human-targeted

reference, created by the annotator, would be used in its place for computing the

TER score. That scenario guarantees that the targeted reference translation will

be better than the original translation because there is a trained annotator that

creates it in accordance with strict guidelines. This new reference has, by virtue of

real human annotation on it, all the “good” (already matching) n-grams from the

original reference and none of the “bad” (semantically equivalent to the translation

output but not matching on the surface) n-grams.

However, when using the targeted paraphraser, one cannot have the same level of

confidence in the targeted reference because of the simple fact that the automatic

paraphraser is less then perfect. Therefore, it is too risky to discard the original

reference and, therefore, the targeted reference must be used in combination with

the latter for tuning purposes.4

At this point, a reasonable method exists for incorporating targeting into the

4Looking at this from another angle, even if the original reference was made entirely redun-
dant by the targeted reference, including it for tuning would have no significant impact on the
computational effort involved.
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sentential paraphraser and creating targeted paraphrased references for the tuning

algorithm, instead of the untargeted paraphrased references employed in Chapter

4. However, the picture is not complete because one crucial aspect of the HTER

computation process has not been addressed! The targeted reference created by

an HTER annotator must be semantically equivalent to the original reference, i.e.

it must have the same meaning as the original reference even if it uses the words

from the translation output. Are there any guarantees that the paraphraser, in its

targeted incarnation, also preserves the meaning of the original reference that it

paraphrases? The next section answers this question in detail.

5.2.1 Preserving Semantic Equivalence More Strongly

This section presents a theoretical and empirical examination of whether the

targeted sentential paraphraser is sufficiently equipped to retain the meaning of the

original reference. To reason about this, Figure 5.2 clearly illustrates the differences

between the untargeted and the targeted scenarios using “meaning diagrams”.

Figure 5.2(a) shows the untargeted paraphrasing scenario. In this scenario,

there is an explicit meaning preserving link between the original reference and the

untargeted paraphrase, i.e., the paraphraser attempts to preserve the meaning of

the original reference. The color of the node representing the untargeted paraphrase

indicates the now understood fact that the paraphraser is only marginally successful

at preserving the original meaning, given the noisy paraphrase induction process.

There is also an implicit link between the original reference and the translation
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output since they are both renderings of the same source language utterance. Note,

however, that there is no link between the paraphrase and the translation output.

In the targeted paraphrasing scenario, as represented by Figure 5.2(b), the

other links are the same as in the untargeted scenario except that there is now

an additional, explicit link between the generated paraphrase and the translation

output due to the targeting. As the color of the paraphrase node indicates, the

targeted paraphrase is now semantically related to both the original reference and

the translation output, albeit via different mechanisms. However, I investigate the

following hypothesis:

Hypothesis. The existing semantic link between the original reference and the

targeted reference—obtained via the application of pivoted paraphrase rules—is no

longer adequate with the incorporation of the targeting feature.

Empirical results are presented in the next paragraph that validate the above

hypothesis but a logical argument is presented first. In the untargeted scenario, the

paraphrase generation process and the translation process are completely indepen-

dent. Therefore, the additional artificial references, while extremely noisy, do not

bias the tuning process in any way. However, in the targeted scenario, the existence

of an explicit link between the paraphrase and the translation output provides an

opportunity for the introduction of a systematic bias into the tuning process; the

targeted paraphrases use words from the translation output but are also used as ad-

ditional references against which the translation output is matched. Given the noisy

nature of the existing semantic link between the original reference and paraphrase,

it will not be adequate to counter this systematic bias.
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Figure 5.2: Meaning diagrams illustrating the differences between the (a) untargeted and
(b) targeted paraphrasing scenarios.

At this point, empirical results are provided that confirm the above logical rea-

soning and validate the hypothesis. To do so, the targeted paraphraser is used—with

only the previously motivated pivot-based semantic link between the paraphrase and

the original reference—for tuning the weights of an SMT system and it is shown that

the obtained results point to a biased tuning process.

Before the targeted paraphraser is used for tuning, a weight for the targeting

feature must be chosen. Since a principled method by which choice must be made
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has not yet been introduced, the weight is chosen manually for this experiment.

As this is simply an experiment designed to show that using a “sufficiently well-

targeted” paraphraser for parameter tuning will lead to biased results, choosing the

weight manually is a reasonable option. To choose the targeting feature weight,

consider the histogram shown in Figure 5.3. Each bar in this histogram corresponds

to a different targeting feature weights and represents the TER value for the 1-

best targeted paraphrases for 100 randomly chosen sentences from the NIST MT03

Chinese dataset. The TER values are computed against the translation output

generated by an SMT system whose parameters were tuned using only the original

reference.
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Figure 5.3: A histogram showing the TER values for the 1-best targeted paraphrases of
100 randomly chosen sentences from the Chinese NIST MT03 dataset. The TER values
are computed against the translation output for the same sentences, that were also the
corresponding targets. Lower TER values indicate more effective targeting.

The TER value corresponding to each weight can be thought to represent

148



how effective that weight is for targeting: stronger feature weights lead to more

targeted paraphrases and, hence, lower TER values. For comparison, the graph also

shows the TER values of the original reference and the 1-best untargeted paraphrase

against the MT output. For the paraphrases to be “sufficiently well-targeted,” the

TER value must be significantly lower than the untargeted paraphraser as well as

the original reference. Therefore, the weights of -10 and -20 are good choices for the

proposed tuning experiment.

Figure 5.4 shows the results of the experiment using the targeted paraphraser

with weights for parameter tuning chosen to be -10 and -20 for Chinese-English

translation. The paraphraser was used in the fashion as described in Section 5.2 and

the 1-best targeted paraphrase was used as an additional reference, in combination

with the original reference.

The graph shows two sets of curves, one each for the two different targeting

weights. Each set contains two curves: one showing the BLEU score obtained for the

tuning set after each iteration of tuning and the other showing the BLEU score for

the validation set. The tuning set used for these experiments was, as before, NIST

MT03 (919 sentences) and the validation set was NIST MT04+05 (2870 sentences).

For both feature weights, the curves verify the above hypothesis. The BLEU score

on the tuning set obviously increases given that one of the references is designed

to look like the translation output. However, since this increase is motivated more

by a biased reference than by an improved set of feature weights for the translator,

the BLEU score on the validation set degrades after each iteration of the tuning

process. Note that the degradation is self-sustaining: as poorer sets of weights
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Figure 5.4: A graph showing the BLEU score for each iteration of the tuning algorithm
employing targeted paraphrased references generated by using two different targeting fea-
ture weights. For each weight, the BLEU score curves for the tuning set (MT03) and the
validation set (MT04+05) are shown.

are chosen based on a biased match, the translation output produced is worse in

quality and, therefore, the targeted references retain even less of the meaning of

the original reference. Had the set of references been completely independent of

the translation output—as is generally the case—the tuning process would have

automatically detected the worsening quality of the translation output and tried to

move away from that part of the parameter space. However, given the strong link

between the targeted references and the translation output, the tuning algorithm is

unable to break the feedback loop.
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Therefore, it is now clear that the existing semantic link between the original

reference and the targeted paraphrases is not sufficient to counter the bias that

may be introduced into the tuning process if the targeted paraphrases were used as

additional references. A stronger explicit mechanism to retain the meaning of the

original reference is necessary. The next section describes such a mechanism.

5.2.2 The Self-Paraphrase Bias

In this section, a mechanism is described wherein the automatic paraphrases

of the human-authored reference are able to better retain its original meaning in

the targeted scenario. The crux of the mechanism is that of redistribution of prob-

ability mass so that a pre-stipulated portion of the probability mass is devoted

to “self-paraphrasing”. In other words, a probabilistic bias is introduced into the

paraphrasing process such that in the space of all possible paraphrases for a given

human-authored reference, a fixed amount of probability mass is reserved for that

paraphrase which is identical to the input, hence retaining all of its meaning. The

following paragraphs describe the mathematical details of this bias.

As described in Chapter 3, the sentential paraphraser works by applying hier-

archical paraphrase rules. The paraphrase rules are generated by pivoting bilingual

hierarchical rules that are extracted from a parallel corpus. Each paraphrase rule,

like each translation rule, has feature values associated with it, computed either as

part of the pivoting process from the corresponding features of the bilingual rule or

based on either the length or the content of the paraphrastic phrases themselves.
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Out of such features, the three primary probabilistic features are:

1. The probability of the paraphrastic phrase given the original phrase, p(e2|e1)

2. The probability of the original phrase given the paraphrastic phrase, p(e1|e2)

3. The joint probability of the original and the paraphrastic phrase, p(e1, e2)

Chapter 3 describes how each of these values is computed along with examples.

Since the pivoting process yields proper probability distributions, some probability

mass is obviously already assigned to self-paraphrasing. This mass can be computed

by the following formula:

p(e1|e1) = 1−
∑

e′ ̸=e1

p(e′|e1) (5.2)

The point of the self-paraphrase bias is to rescale this probability such that for every

original English phrase in the corpus, the same specified amount of probability mass

is devoted to self-paraphrasing. The process by which the conditional and marginals

are so rescaled is explained below using an example.

Let the English phrase that is to be paraphrased be e1 and assume that as part

of the pivoting process the self-paraphrase probability is p(e1|e1) = 0.05. Say that

the self-paraphrase bias is designed to be 0.5, i.e., among all possible paraphrases of

e1, 50% of the probability mass should be devoted to the self-paraphrase e1. Then,

the conditional is simply rescaled as follows:

prescaled(e1|e1) = p′(e1|e1) = p(e1|e1) ∗
0.5

0.05
= 0.5 (5.3)
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Obviously, since the self-paraphrase probability is being increased, the probability

values for all the other paraphrases, excluding the self-paraphrase, must be corre-

spondingly scaled down. Considering the total probability mass that the pivoting

process assigns to all phrases other than the self-paraphrase e1:

p(e2|e1) + p(e3|e1) + · · ·+ p(ek|e1) = 1− p(e1|e1) = 1− 0.05 = 0.95 (5.4)

After the introduction of the self-paraphrase bias and the rescaling of the conditional

as in Equation 5.3, the mass devoted to all phrases other than the self-paraphrase

is:

p′(e2|e1) + p′(e3|e1) + · · ·+ p′(ek|e1) = 1− p′(e1|e1) = 1− 0.5 = 0.5 (5.5)

Therefore, all the other conditional paraphrase probabilities can be rescaled simply

as:

p′(e|e1) =
0.5

0.95
∗ p(e|e1), ∀e ̸= e1 (5.6)

To determine the rescaling factors for the joint probabilities, the marginal distribu-

tion p(e1) must first be considered. Bayes’ rule states that:

p(e2|e1) = p(e1|e2) ∗
p(e2)

p(e1)

Since the only quantity being changed is the self-paraphrase probability of the phrase

e1, it stands to reason that the quantities p(e1|e2) and the marginal p(e2) are not
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affected. Therefore, the only changed quantity in the Bayes law expression is the

marginal p(e1). One can also think of this another way: since the conditional

probability that e1 is produced by paraphrasing e1 is being increased, the marginal

must also increase. Denote this new marginal by prescaled(e1) or p′(e1), as was done

for the conditional. Given this, Equation 5.5 now becomes:

p(e1|e2) ∗
p(e2)

p′(e1)
+ p(e1|e3) ∗

p(e3)

p′(e1)
+ · · ·+ p(e1|ek) ∗

p(ek)

p′(e1)
= 0.5 (5.7)

By similarly expanding Equation 5.4 and some simple algebraic manipulation, the

following ratio between the rescaled marginal and the original marginal can be ob-

tained:

p′(e1) = p(e1) ∗
0.95

0.5
(5.8)

Given these rescaling factors for the conditional and the marginal distributions, it is

easy to compute the scaling factors for the joint distribution with the self-paraphrase

e1:

p′(e1, e1) = p′(e1|e1) ∗ p
′(e1) =

0.5

0.05
∗
0.95

0.5
∗ p(e1, e1) =

0.95

0.05
∗ p(e1, e1) (5.9)

and for the joint distribution with all the other paraphrases e ̸= e1:

p′(e1, e) = p′(e|e1) ∗ p
′(e1) =

0.5

0.95
∗
0.95

0.5
∗ p(e1, e1) = p(e1, e) (5.10)

At this point, the self-paraphrase biasing procedure for the phrase e1 is complete.
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To be applicable at a global level, the rescaling process is carried out for all English

phrases.

To determine whether adding this self-paraphrase bias has any effect on the

generated paraphrases, a 25% self-paraphrase bias is added to the targeted para-

phraser (with a sufficiently effective targeting feature weight, say, -12) and the re-

sulting paraphrases are examined.5 Figure 5.5 shows the 1-best targeted paraphrase

generated with these attributes, for a particular human-authored reference and com-

pares it to the paraphrase without any self-paraphrase bias. It is clearly evident that

the inclusion of the self-paraphrase bias leads to paraphrases that retain more of the

original meaning as expected.

Original Reference
Around the site of the explosion, 40 shops and 15 cars
were damaged.

Translation Output The blast destroyed 40 shops and 15 cars in the vicinity.

Untargeted Paraphrase
Close to the place of the bomb, 40 stores and 15 vehicles
have been ruined.

Targeted Paraphrase
In the vicinity of the site of the explosion, 40 shops
and 15 cars were damaged.

Figure 5.5: Showing the difference between the 1-best untargeted paraphrase and the 1-
best targeted paraphrase for the original reference. It is clear that the targeted paraphrase
with incorporated self-paraphrase bias not only retains more of the meaning of the original
reference but is also closer to the MT output. The sentence was manually chosen from
NIST MT03 for illustration purposes.

5While it may seem like these values are chosen randomly, they are actually chosen by the
method described in the next section.
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5.2.3 Finding the Balance: Self-paraphrase Bias vs Targeting

Now that a procedure has been outlined that allows explicit preservation of

more of the meaning in the original reference, it must be pointed out that the two

primary mechanisms involved in targeted paraphrases—the targeting feature and the

self-paraphrase bias—are at odds with each other. The goal of the targeting feature

is to change the original reference by using words from the translation output. On

the other hand, the goal of the self-paraphrase bias is to retain as many of the words

in the original reference as possible. At first this tension might seem like a problem.

However, in this section, a technique is described—one that actually leverages this

tension—to determines the targeting feature weight and the self-paraphrase bias

value.

Before this technique is described, picture the original reference and the trans-

lation outputs as points in the vast space of possible “reference” translations that

can be produced for a given source sentence. If the SMT system were perfect, then

the translation output would be a perfectly valid reference translation. However, as

it stands, it is not a very useful reference translation since it is obviously not correct.

Obviously, the original reference is a good reference in that it is correct. However, it

has no a priori likelihood of matching the translation output even if the output may

be correct. Therefore, in this sense, the original reference is also not a very useful

reference translation. The point of paraphrasing the original reference is to try and

come up with more useful references that lie in this space of reference translations.

If untargeted and targeted paraphrasing of the original references are compared in
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the context of this picture, it can be inferred that:

• Untargeted paraphrasing results in reference points that are “random,” i.e.,

they are created by changing words and phrases in the original with no regard

to the translation output. The only reason a new reference point is useful

is due to the sheer number of changes: a large percentage of the words in

the original reference are changed and some of them happen to match the

words in the translation output. Indeed, the noisy nature of the changes

overwhelms any utility as more and more of these new reference points are

used for tuning. Similar to the original reference, the untargeted paraphrases

have no a priori reason to be closer to the MT output since it does not influence

the paraphrasing in any way.

• Targeted paraphrasing, on the other hand, is designed to produce reference

points that are closer to the translation output but, at the same time, do

not sacrifice the meaning of the original reference. This form of paraphras-

ing comes closer to achieving the true goal of using paraphrasing to create

additional reference translations.

With this picture in mind, the concept of “distance” in this space of reference trans-

lations can be introduced. All the new reference points that are created via para-

phrasing (untargeted or targeted) can be assumed to be at some distance from both

the original reference and the translation output, that are themselves points in this

space. Note that this space is more conceptual than Euclidean. Therefore, this

proposed distance is only required to satisfy a simple mathematical requirement: a
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lower distance between two points should indicate that they are semantically closer

and a larger value should indicate the opposite. Note that such a measure has been

used earlier in this section when determining which targeting weights are the most

effective at targeting: TER. Therefore, the distance measure between the points in

this space will simply be the TER value.

Two such distances in this space of reference translations are most important:

1. The distance (in terms of TER) from the original reference (dref), and

2. The distance (in terms of TER) from the MT output (dmt).6

These two distances can be used to verify the claim about untargeted para-

phrasing not producing references that are closer to the MT output. 100 sentences

are randomly sampled from the NIST MT03 Chinese data set and run through the

untargeted paraphraser to generate the n-best lists of paraphrase hypotheses for

these 100 sentences (here n=300). The two TER values mentioned above are com-

puted for this n-best list. Figure 5.6 puts these distances in context by also showing

the same distances for the starting point in the space—the original reference. As

seen in this figure, the original reference is about 65 TER points away from the

MT output. When run it through the paraphraser though, the new paraphrased

reference is not only very far away from the original reference (indicating the sheer

number of changes made) but also further away from the MT output than the

starting point.

6Note that this “distance” has already been used in Figure 5.3 albeit for a different purpose.
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.

Original
Reference

.
Untargeted
Paraphrase

.
dref: 0.0, dmt: 65.0

.
dref: 55.2, dmt: 74.4

.

Figure 5.6: A picture illustrating that the untargeted paraphraser not only makes a lot
of changes to the original reference (dref goes from 0 to 55) but also produces references
that are further away from the MT output (dmt goes from 65 to 74). The distance (TER)
values are computed for 100 randomly chosen sentences from the NIST MT03 Chinese
dataset.

These same two distances can be used to find the balance that is sought be-

tween the targeting and the self-paraphrasing. The nature of this balance must

be such that while the latter disallows many changes to the original reference, any

changes that are allowed should create new points in the reference space that are

closer to the MT output. In terms of these two distances, this requirement can

be stated as follows: the magnitude of the movement of the new reference point

away from the original reference (i.e., the positive change in dref) should be approx-

imately equal to the magnitude of the movement of the reference point towards the

MT output (i.e., the negative change in dmt). At this point, it would be worth-

while examining whether this behavior is actually even exhibited by the targeted

paraphraser. Figure 5.7 represents such an examination. For this examination, it is

again stipulated that all that is required is that the paraphraser be sufficiently well-

targeted; a weight of -10 for the targeting feature weight satisfies this requirement,

according to Figure 5.3. This figure shows four different points in the reference space

each created with the same targeting feature weight (-10) but with four different

self-paraphrasing bias values. For each point, values are also shown for dref, dmt

and the respective changes in those values (shown in parentheses) compared to the
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original reference. It can be seen that while the changes in the two distances are

certainly not equal, they do seem to approach each other as the bias value increases.

.
.

Original
Reference

.
Targeted

Paraphrase

.
Targeted

Paraphrase

.
Targeted

Paraphrase

.
Targeted

Paraphrase

.
dref: 0.0, dmt: 65.0

.
dref: 23.2 (+23.2)
dmt: 51.4 (-13.6)

.
dref: 20.5 (+20.5)
dmt: 52.9 (-12.1)

.
dref: 15.8 (+15.8)
dmt: 56.5 (-8.9)

.
dref: 8.8 (+8.8)
dmt: 59.5 (-5.5)

.

.bias: 5%, wt: -10

.bias: 10%, wt: -10

.bias: 25%, wt: -10

.bias: 50%, wt: -10

Figure 5.7: A picture illustrating that the targeted paraphraser can create useful new
points in the reference space starting from the original reference. Points are useful if they
are not too far away from the original reference (indicated by the change in dref) but also
move closer to the MT output by approximately the same amount (indicated by the change
in dmt). Using a fixed but effective targeting weight of -10 in combination with 4 different
bias values, it is seen that this behavior is indeed exhibited, to an extent.

Since the targeted paraphraser can likely be configured to behave the way

as desired in the reference space, all that remains is a way to determine precisely

what the optimal configuration should be. Note that this desired configuration is a

combination of two quantities—the targeting feature weight and the self-paraphrase

bias—and, therefore, the obvious search technique that can be applied to this prob-

lem is a grid search. For this search, the targeting feature weight is varied along one

dimension and the self-paraphrasing bias along the other. For each pair of values,

an n-best paraphrase list is generated and the difference D = |∆dmt−∆dref| is com-

puted. In this expression, ∆dref represents how much further away the new point
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in the reference space (as represented by the output of the paraphraser instantiated

with that specific feature weight and that specific self-paraphrase bias) is from the

original reference. Similarly, ∆dmt represents how much the new point has moved

closer to the translation output. As mentioned before, the ideal scenario would

be that all movement away from the reference is converted to movement towards

the MT output. Therefore, the optimal point on the grid would be one where this

expression would be closer to zero.

Figure 5.8 shows the grid search process for Chinese. For each point [p, w]

on the grid—a specific targeted paraphraser configuration with -w as the targeting

feature weight and p as the self-paraphrasing bias—D is computed over the para-

phrase n-best list for 100 randomly chosen sentences from the NIST MT03 dataset.

Given that the ideal point is one with D as close to 0 as possible, the point on the

grid that best matches that criterion is (25, 14).

• Why not choose the point (50,10)? Technically speaking, the point on

the grid with the lowest value of D is actually (50, 10). However, that point is

not ideal since the targeted paraphrases produced with that configuration will

hardly be any different from the original references themselves (as indicated

by the value of ∆dref). They will certainly not be targeted enough to the

translation output (as indicated by the value of ∆dmt).

• Why restrict the targeting feature weight to the range [10, 20]? This

decision is simply based on observing the targeting behavior of the paraphraser

for the tuning set. It was observed that for any weight weaker than -10, the
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Figure 5.8: A color-mapped surface plot showing the grid search for 100 random sentences
chosen from the NIST MT03 dataset. This plot is useful because it is able to convey
multiple information elements for a single grid point. For each combination of targeting
feature weight and self-paraphrasing bias, the quantity plotted is D = |∆dmt−∆dref|. The
color of the plot indicates the magnitude of D. In addition, each grid point is annotated
with the tuple [∆dref, ∆dmt]. Given the definition of a useful point in the reference space,
the ideal combination is the grid point (25,14).

targeting was not very effective. Similarly, at the other end of the interval,

it was noted that for any weight stronger than -20, the targeting overwhelms

any attempts at maintaining semantic equivalence.

• Why only 100 sentences? A subset of 100 randomly chosen sentences was

used for the search as opposed to the entire set for two reasons: (a) using
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a randomly chosen held out set seems less biased than using the entire set

for analysis, and (b) paraphrasing (decoding) 100 sentences instead of 1000

sentences (the size of NIST MT03) is much faster. This is a useful amount of

time reduction given that 36 different points on the grid are being explored.

• Why not use an actual held out set? A randomly chosen subset of the

actual set that is to be paraphrased is used rather than another completely

different held out set. The reason is simple: measurements need to be made

for this specific set in order to paraphrase it usefully. If the search process

were more sophisticated than a simple grid-based parameter sweep—a definite

avenue for future research—perhaps the parameters chosen based on an actual

held out set could be general enough to be used for the set to be paraphrased.

5.3 Putting It All Together

At this point, all the pieces are available for incorporating the notion of tar-

geting into the sentential paraphraser: a reasonably good implementation of the

targeting feature, the self-paraphrase biasing mechanism required to offset any sys-

tematic bias that may result from using targeted references and, finally, a technique

that finds the right balance between these two opposing mechanisms. All that is

required now is to put all of these pieces together to achieve improved parameter

tuning.

Before the actual tuning process is discussed, it is important to mention the

stages of the pipeline that need to be completed before the paraphraser can be
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used in tuning. First, five sets of paraphrase rules are generated from the parallel

corpora by using the pivoting process; one each for the 5 self-paraphrase bias values

of 5%, 10%, 15%, 25%, 40% and 50%. 100 sentences are then randomly chosen from

the set T that is to be used for SMT parameter tuning. The grid search process

is then carried out, as described in the previous section, to determine the optimal

combination of the targeting feature weight and the self-paraphrasing bias. The

configuration for the paraphraser is now fully determined. The resulting targeted

paraphraser can now be used for SMT parameter tuning.

The actual setup is shown in Figure 5.9. During each iteration of tuning, the

source sentences from T are translated with an SMT decoder (whose weights have

been tuned with just the original human reference) to produce an n-best list of trans-

lation hypotheses. Each hypothesis is then used as the target to produce an n-best

list of targeted paraphrases for the corresponding original reference. At this point,

rather then choosing the 1-best targeted paraphrases from this list, a reranking pro-

cess is applied that reranks the various hypotheses in the n-best list, using some

additional features. One of these features is the probability score assigned to each

targeted paraphrase hypothesis by a higher order—and thus, more informative—

n-gram language model (5-gram). Usually such higher order language models are

used for reranking an n-best list rather than during the actual decoder search due to

more demanding memory requirements.The other feature used by the reranker is the

word error rate (WER) between the target (the specific translation hypothesis) and

the paraphrase hypothesis.7 The reranking process can help by moving to the top

7An even more useful reranking feature would be the TER between the targeted paraphrase
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of the n-best list the targeted paraphrases that are both more fluent (and, possibly,

more meaningful) and better targeted. Once reranking is done, the 1-best targeted

paraphrase is extracted from the reranked n-best list. This targeted paraphrase is

then combined with the original reference and this pair now represents the new set

of references for that specific translation hypothesis. The SMT parameter tuning

algorithm will now use this new set of references in its search process. Although the

figure only focuses on a single source sentence and a single translation hypothesis,

new sets of references are actually generated for each translation hypothesis of each

source sentence. Furthermore, this entire process is repeated for each iteration of

the tuning process with the learned parameters in iteration k feeding forward into

iteration (k+1). Generally, about 6-7 iterations of tuning are used. At the end of

the last iteration, the learned parameters are taken and used to decode a validation

set which is then scored against its own set of human-authored references.

Generally, the complete process would take an inordinately long time—3 weeks—

to finish since the paraphraser needs to run for every single translation hypothesis.

However, in its current state, it has been factored to run efficiently on a computer

cluster containing several hundred nodes and only takes about 36 hours to complete

7 iterations of tuning and decode and score the validation set at the end.

The process of using the sentential paraphraser in a targeted fashion for pa-

rameter tuning has now been fully described. In the next section, actual translation

hypothesis and the target. However, note that this feature needs to be computed for each para-
phrase hypothesis for each translation hypothesis for each source sentence. Using 300-best lists
for both the SMT decoder and the paraphraser and the NIST MT03 Chinese set containing about
1000 source sentences, this would require computing 300 ∗ 300 ∗ 1000 or 90 million TER values!
Given that computing TER is much slower than computing WER, TER was not used.
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experiments and results are presented. These confirm that incorporating targeting

into the paraphraser indeed makes it more useful for parameter tuning.

5.4 Translation Experiments & Results

In this section, machine translation experiments are described that use the

targeted paraphraser to create additional references for parameter tuning. Their

results are then compared to results from previous experiments that used either

just the original human reference or additional references created by the untargeted

paraphraser. Just as in Chapter 3, two kinds of results are shown for each set of

experiments. The first compares translation systems to each other using automatic

machine translation evaluation metrics BLEU and TER and the second compares

them using human judgments.

5.4.1 Chinese-English

The first experiment is for Chinese-English translation. Most of the details

of the experiment are identical to the experiments conducted in Chapter 4 but are

reproduced here:

1. Training Data. The Chinese-English parallel data used for this set of ex-

periments consist of approximately 2.5 million newswire segments. Both the

translation and the paraphrase rules are generated using these data. Besides

the parallel data, approximately 8 billion words of English text are used for lan-

guage model (LM) training (3.7B words from the LDC Gigaword corpus, 3.3B

167



words of web-downloaded text, and 1.1B words of data from CNN archives).

These data are used to train two language models: a trigram LM used in

decoding, and an unpruned 5-gram LM used in reranking both the SMT and

the paraphraser n-best lists. Modified Kneser-Ney smoothing was applied to

the n-grams in both cases (Chen and Goodman, 1998).

2. Decoders. As with previous experiments, both the SMT and paraphrase

decoders (Shen et al., 2010) use a state-of-the-art hierarchical phrase-based

translation model where the translation (or paraphrasing) rules form a syn-

chronous context free grammar (SCFG).

3. Tuning Set. As the tuning set, the NIST MT03 Chinese set containing

919 sentences is used. The MT03 set actually comes with 4 human authored

reference translation. In order to simulate a set with only a single reference,

one of the 4 reference translations is randomly chosen for each document in

the set.

4. Validation Set. The validation set is the NIST MT04+05 set which contains

both NIST MT04 and NIST MT05 sets. The total number of sentences in this

set is 2870.

The BLEU and TER results for the validation set are shown in Figure 5.10. It is

clearly evident from this figure that translations produced by SMT systems that use

the targeted sentential paraphraser are significantly better than those produced by

systems that use the untargeted paraphraser. For obvious reasons, the performance
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of systems that use only the human authored reference translations forms the upper

bound for both the paraphrasers.

Similar to the human judgment experiments presented in Chapter 4, exper-

iments were conducted to compare the translation outputs produced by an SMT

system augmented with 3-best targeted paraphrases of the original human-authored

reference to outputs produced by the baseline system using only the single human

reference and also to those produced by a system augmented with its 1-best untar-

geted paraphrase.8 The experiments were designed using Amazon Mechanical Turk

in a similar fashion as those described in Chapter 4 and the results are shown in

Figure 5.11.

5.4.2 French-English, German-English and Spanish-English

In this section, experiments and results for translating from three European

languages—French, German and Spanish—into English are presented. The details,

first described in Chapter 4, are reproduced below:

1. Training Data. For these sets of experiments, the training data from the

shared translation task of 2009 workshop on machine translation (Callison-

Burch et al., 2009) were used. The parallel training data for this task con-

sist mainly of bitexts extracted from the proceedings of the European par-

liament (Koehn, 2005): 1.7 million sentences for French-English, 1.6 million

sentences for German-English and 1.7 million sentences for Spanish-English.

8We compare to the system using the 1-best untargeted paraphrase instead of the 3-best targeted
paraphrases because, as shown in Chapter 4, doing so yields better performance and, therefore,
represents a stronger baseline for the targeted scenario.
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# tuning refs
Human Untargeted Targeted

BLEU TER BLEU TER BLEU TER
1 (1H+0) 37.65 56.39 37.65 56.39 37.65 56.39
2 (1H+1) 39.20 54.48 39.32 54.39 39.01 54.88
3 (1H+2) 40.21 53.50 39.58 53.87 39.93 53.71
4 (1H+3) 40.69 53.31 39.21 54.19 40.22 53.43

Figure 5.10: A graph showing the BLEU scores for the set NIST MT04+05 as different
types of additional reference translations are added to a single human authored reference
translation for the tuning set (NIST MT03). Note that the BLEU score for this validation
set is measured against 4 human references in each case. Only the number of references for
the tuning set is varied. The corresponding TER scores are shown in the accompanying
table.

170



11

89

33

67

p < 0.0001 p < 0.05

1H+3P'1H 1H+3P'1H+1P

P
re

fe
re

n
ce

 P
er

ce
n

ta
g

e

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Figure 5.11: When translating Chinese sentences, human subjects on Amazon Mechanical
Turk prefer–to a statistically significant extent—the translations produced by the MT
system that was tuned with 3-best targeted paraphrases (1H+3P’) as additional, artificial
references when compared to a system that just uses the human-authored reference (1H).
Similarly, they prefer the same system over one that uses untargeted paraphrases as the
additional, artificial references (1H+1P).

In addition, the smaller news commentary data for each language containing

respectively 82K, 75K and 74K sentences for French-English, German-English

and Spanish-English was also used. As the language model training data, the

same data as the Chinese-English experiments were used.

2. Decoders. Both the SMT and paraphrase decoders are SCFG-based decoders

using hierarchical phrase-based translation models.

3. Tuning Set. As the tuning set, the test set from the 2008 workshop on

machine translation (Callison-Burch et al., 2008c) containing 2, 051 sentences

was used. This is in-domain data that was gathered from the same news
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sources as the validation set described below. Note that this set only contains

a single human authored English reference translation.

4. Validation Set. The validation set is the newstest2009 set which contains

2, 525 sentences also with a single English reference translation.

Figure 5.12 shows the BLEU and TER results for the validation sets for each of

the three language pairs. Recall from Chapter 4 that adding untargeted paraphrases

beyond the 1-best contributes more noise than diversity. These results confirm that

the benefits from the paraphrased references are able to generalize across multiple

language pairs. The targeted paraphraser behaves in a much better fashion than

the untargeted paraphraser; it provides performances gain as more paraphrases are

added.

Figure 5.13 shows the results for the human judgment experiments for these

three European languages as conducted on Amazon Mechanical Turk. These results

confirm that the targeted paraphrase are more useful for SMT parameter tuning

than using the untargeted paraphrases.

5.5 Afterword: Self-paraphrase Bias and Untargeted Paraphrasing

This section addresses an obvious question that follows from the discussion in

the previous sections: given that the self-paraphrase bias is designed to strengthen

the semantic link between the paraphrase and the original reference, couldn’t it also

be used to improve the untargeted paraphraser?
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Untargeted Targeted
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1H+0 25.40 56.14 25.40 56.14

1H+1 26.18 55.47 26.04 55.59

1H+2 26.33 55.26 26.42 55.28

1H+3 26.14 55.40 26.53 55.12

# refs
Untargeted Targeted
BLEU TER BLEU TER

1H+0 20.13 60.80 20.13 60.80

1H+1 20.77 60.17 20.66 60.31

1H+2 20.87 60.06 20.98 59.97

1H+3 20.74 60.18 21.04 59.86

# refs
Untargeted Targeted
BLEU TER BLEU TER

1H+0 26.11 55.32 26.11 55.32

1H+1 27.03 54.44 26.82 54.64

1H+2 27.17 54.31 27.21 54.23

1H+3 26.90 54.55 27.40 54.01

Figure 5.12: Graphs showing the BLEU scores for the set newstest2009 as different types of
paraphrased reference translations are added to a single human authored reference trans-
lation for the tuning set (newstest2008). Note that the BLEU score for this validation
set is measured against one reference translation. From top to bottom: French-English,
German-English and Spanish-English. The corresponding TER scores are shown in the
accompanying tables.
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Figure 5.13: Just like Chinese-English translations, human subjects—when asked to judge
translations for European languages—have a significant preference for outputs produced
by an SMT system augmented with targeted paraphrases (1H+3P’) as compared to two
baselines: a system that only uses the human reference (1H) and one that is augmented with
1-best untargeted paraphrase (1H+1P). Clockwise from top to bottom: French-English,
German-English and Spanish-English.

To answer this question, two self-paraphrasing bias values are chosen (25% and

50%) and applied to the untargeted paraphraser from Chapter 4 to create two new

instances of the untargeted paraphraser. The Chinese-English SMT experiments

described in Chapter 4 and Section 5.4 are then repeated with the regular unbiased

targeted paraphraser and these two new biased untargeted paraphrasers. Figure 5.14

compares the results of these experiments for the MT04+05 validation set.

The curve for the untargeted paraphraser with 25% self-paraphrasing bias indicates

that:
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Figure 5.14: A graph showing the BLEU scores for the set NIST MT04+05 as different
types of additional reference translations are added to a single human authored reference
translation for the tuning set (NIST MT03).

• The gain from using only the 1-best paraphrase, while still significant, is not

as large as the gain from using the unbiased untargeted paraphraser.

• The curve seems to follow the same trend as the curve for the unbiased para-

phraser, albeit the losses are not as sharp.

On the other hand, the curve for the paraphraser with 50% bias indicates

that there are no significant gains when its paraphrases are used for tuning. To see

why this would be the case, paraphrases produced by this paraphraser are inspected.

Figure 5.15 shows the top 10 paraphrases for an input sentence from the NIST MT03
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tuning set. This shows that the paraphrases are almost identical to the original

reference. In fact, there is little or no n-gram diversity in the top 3 paraphrases

and, therefore, the additional artificial references are of almost no use in tuning.

Reference
Robert Redford calls on independent filmmakers to help protect
freedom of speech.

Paraphrases

Robert Redford calls on independent filmmakers to help protect
freedom of speech.
Robert Redford calls on independent artists to help protect
freedom of speech.
Robert Redford calls on independent directors to help protect
freedom of speech.
Robert Redford calls on independent filmmakers to help guarantee

freedom of speech.
Robert Redford calls on independent filmmakers to safeguard

freedom of speech.
Robert Redford calls on independent filmmakers to protect
freedom of speech.
Robert Redford calls on independent producers to help protect
freedom of speech.
Robert Redford calls on independent productions to help protect
freedom of speech.
Robert Redford called independent filmmakers to help protect
freedom of speech.
Robert Redford calls on independent filmmakers to ensure

freedom of speech.

Figure 5.15: The top 10 untargeted paraphrases for a given reference as output by an un-
targeted paraphraser incorporating 50% self-paraphrasing bias. Words in each paraphrase
that differ from the reference are shown in bold.

The above analysis for the paraphraser with 50% bias case also sheds light

on the 25% bias case. Recall the assertion from Chapter 4 the main reason the

1-best untargeted paraphrase helps tuning is because it makes a large number of

changes and some of those changes just happen to match the translation output. As

more and more untargeted paraphrases are added, such fortuitous matches become

less and less likely. However, the main problem with the untargeted paraphraser
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is not just that it makes too many changes. The problem is that it makes too

many potentially useless changes, i.e., it replaces n-grams in the original reference

with other n-grams that have a small a priori likelihood of matching the translation

output.9 Therefore, the solution cannot be to simply reduce the probability of

making any changes to the original reference, which is what the self-paraphrase bias

achieves. Instead, the right solution must be to increase the number of useful changes

made to the original reference and that is precisely what the targeted paraphraser

is designed to do. The best way to understand the purpose of the self-paraphrase

bias is to imagine the analogy with the HTER computation process, which is what

the targeted paraphraser is designed to emulate. The goal for HTER is to make

the smallest number of (semantically equivalent) changes such that the reference is

closer to the translation output. Note that if a human were creating the targeted

reference (as is done for HTER computation), any explicit self-paraphrase bias would

be unnecessary.

The next chapter expands upon some of the points above with a more detailed

analysis and some paths for future work. Taking an overarching view of the reference

sparsity problem, I argue that reference translations must possess three qualities

in order to be useful for parameter tuning. An approach to measuring how the

various types of reference translations used in this dissertation—human, untargeted

paraphrases of a human reference and targeted paraphrases of a human reference—

compare in terms of these qualities is also presented.

9Of course, given noisy word alignments, it is possible that the n-gram being replaced has no
semantic overlap with its replacement. In that case, the change could be useless and detrimental.
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6 Discussion & Future Work

This chapter takes an overarching view of the characteristics of reference trans-

lations insofar as they are related to the SMT parameter tuning process; it first uses

a simple analogy as an expositional device such that the reader can gain an intu-

itive understanding of the various solutions discussed in this thesis for the reference

sparsity problem. Secondly and more formally, it posits the exact qualities that a ref-

erence should possess in order to prove useful for the tuning process. The three types

of references encountered in the previous chapters of this thesis—human, untargeted

paraphrases of human references and targeted paraphrases of human references—are

then compared in terms of these qualities, both theoretically as well as empirically.

This analysis proves to be extremely valuable since it is able to explain, e.g., exactly

why targeted paraphrases tend to prove more useful for tuning than untargeted

paraphrases. Thirdly, a comparison to other MT-related paraphrasing approaches

is provided. Finally, the conclusions reached in this thesis are presented along with

several avenues of future research.

6.1 A Dartboard Analogy

This section presents an analogy of the n-gram matching process that lies at

the heart of the parameter tuning algorithm. This analogy should serve to provide
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the reader with an intuitive understanding of the effect of reference sparsity on this

n-gram matching process and the fundamental contribution of the various solutions

that attempt to address this sparsity.

For this analogy, imagine that matching an n-gram from the translation output

against one in the reference is like trying to hit the bulls-eye on a dartboard.1 The

difficulty of hitting the bulls-eye should directly evoke the sparsity encountered by

the tuning algorithm with a single reference. One possible solution for the reference

sparsity is to use multiple (usually 4) human-authored reference translations and, in

the dartboard analogy, this may be considered equivalent to scaling the dartboard

four times which leads to a bulls-eye that is four times as large and, hence, four times

easier to hit. In terms of the solutions proposed in this thesis, using untargeted

paraphrases as artificial references can be considered equivalent to the situation

wherein the bulls-eye is still scaled but it is broken into pieces that are scrambled all

over the dartboard. This represents the fact that using the untargeted paraphrases

still increase the chance of matching an n-gram but not a whole lot due to the

inherent noise. Finally, for the case of using the targeted paraphrases, the bulls-eye

is still scaled to a larger size and still broken and scrambled (albeit not as much due

to the self-paraphrase bias) but now instead of throwing a dart, one can use a dart

rifle with a scope (indicating the targeting).

1The parameter tuning algorithm almost always involves matching more than a single n-gram
but the board only has a single bulls-eye. However, one could simply assume that a new dartboard
is generated for every n-gram to be matched in the translation output and the analogy carries
through.
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6.2 What’s in a (Tuning) Reference?

In this section, I argue that a reference (or set of references) must possess

three qualities in order to be effective when used with the algorithm that tunes the

parameters of an SMT system:

1. Correctness. The reference should be correct, i.e., it should possess exactly

the same meaning as the corresponding source sentence in the tuning set. This

is important since the goal of the tuning is to try to encourage the MT system

to produce translations that look like the reference translation. It is reasonable

to state that a more correct reference would be more useful for tuning.

2. Reachability. It is important that reference translation that the system

is being tuned to has phrases that are possible to produce from the source

sentence using the MT system. To the extent that part of a reference may not

be reachable, that reference only provides a fixed error rate and is not helpful

in tuning because the MT system cannot be coaxed to give that answer just by

changing the parameters or feature weights. The point is that if the translation

output can be changed to match the reference during the tuning process, then

the reference is considered reachable. Note that it was previously mentioned

that the translation output for the tuning set can itself be seen as points in

a space of references, i.e., a set of reference translations. Obviously, these

references are not correct but are 100% reachable.

3. Focus. It is easiest to understand focus with the help of an example. Assume
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that a typical translation output in a tuning set has about 10 errors relative

to a human reference. With the help of the tuning algorithm, say that 2 out

of the 10 errors are fixed. However, it is quite possible that probably half

(say 5) of the purported “errors” are actually not errors but paraphrases that

didn’t happen to match on the surface.2 Therefore, out of the 2 errors that

are fixed during tuning, it is likely that one of them is actually not an error

at all. Having focus would mean knowing which errors actually need fixing,

so that the tuning process can concentrate on the real errors.

6.3 Comparing References

This section compares the three references that have been used for parameter

tuning in this thesis in terms of the three qualities that were described in Section

6.1. Given that the process of constructing the two types of artificial references

(untargeted and targeted paraphrases) is well understood and described in detail in

the earlier chapters of this thesis, a simple theoretical comparison of the references

can prove to be sufficiently convincing. However, for the sake of completeness, this

section also provides empirical quantitative measurements that provides additional

evidence for the theoretical comparison. Note that the goal is not necessarily to

measure the intended quality perfectly but in a reasonably correct manner so as to

produce a useful comparison of the various types of reference translations used in

this thesis.
2If HTER were to be computed for this sentence, it will be easily seen which of the 5 errors

that are actually errors.
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Figure 6.1: Human subjects on Amazon Mechanical Turk were shown the 1-best untar-
geted and the 1-best targeted paraphrases for 100 randomly chosen human references from
the tuning sets of 4 languages. They were then instructed to choose the more correct
paraphrase. The subjects preferred the targeted paraphrase compared to the untargeted
one almost 9 out of 10 times. This is expected since the targeted paraphrases, by design,
retain more of the words from the original reference and, hence, more of the meaning. All
are significant at p < 0.0001.

1. Correctness. It is very likely that human-authored reference translations

are fully correct although, when translating between very different languages

(such as Chinese and English), this is not always guaranteed. It is definitely

more likely that the human references are more correct than their untargeted

paraphrases (that have been shown to be only approximately paraphrastic)

and even the targeted paraphrases. However, between the two types of para-

phrases, the targeted ones are created by a paraphraser that is explicitly de-

signed to retain more of the original meaning (by virtue of the self-paraphrase

bias), and therefore they are more likely to be correct than the untargeted
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ones. Note that in all results shown in Chapters 5, using multiple human ref-

erences yielded better results on the validation set (although not statistically

significantly better in all cases) since all human references are usually correct

and are able to provide more n-gram diversity than the targeted paraphrases

of a single human reference.

In order to confirm whether these assertions are true, a simple experiment was

conducted on Amazon Mechanical Turk. 100 human references were chosen at

random from the respective Chinese-English, French-English, German-English

and Spanish-English tuning sets that have been described in detail in Chap-

ters 4 and 5. 10 HITs were then created, each containing 10 of the 100 human

references along with their 1-best untargeted and 1-best targeted paraphrases.

The instructions in each HIT told the participating Turkers to pick the para-

phrase that they thought was more correct. A third option indicating that

there was no difference between the two was also provided. Each sentence

from each language was judged three times. The final answer for each case

was picked by a simple majority vote.3 If the final answer for a sentence was

the no-difference option, then that sentence was excluded from consideration.

Results for this experiment are shown in Figure 6.1. The fact that the Turkers

deemed the targeted paraphrase to be more correct almost 9 out of 10 times

for each of the 4 languages validates the assertion. Note that the instructions

to the Turkers stated that a paraphrase may be more correct i.e., retained

3Like Mechanical Turks experiments described in earlier chapters, answers were validated by
embedding a control question in each HIT for which the correct answer was known before hand.
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more of the semantic concepts of the original reference, without being fluent.

2. Reachability. Although human-authored references maximize correctness,

they are very often not reachable, i.e., it is not possible for the MT system

to actually produce the reference n-grams in its translations. One possible

way of increasing the reachability is to simply use several distinct human

references which can be considered equivalent to manually paraphrasing a

single reference.4 However, there are no guarantees since it is still possible for

the other references to contain n-grams that cannot be produced by the MT

system.

Automatically paraphrasing a single human reference is another way to in-

crease reachability, assuming that the n-grams used to create the paraphrases

are reachable.5 With the sentential paraphraser described in this thesis, this is

certainly the case; all the English phrases that compose the paraphrase rules

are learned, via pivoting, from the same bitext that is used to train the MT

system. Obviously, this means that the untargeted paraphrases—produced

by a paraphraser designed to replace as many n-grams in the original refer-

ence with reachable, partially semantically equivalent counterparts—are more

reachable than the targeted paraphrases that only make a small number of

focused and targeted changes. Note that the reachability of both types of

4Note that, in practice, each reference is created by asking humans to translate the source
sentence rather than by paraphrasing an already existing reference. However, the two processes
can be considered theoretically equivalent since each one is presumably fully meaning preserving
in nature.

5 Using another sentential paraphraser from Chapter 2 that is not guaranteed to paraphrase
with more reachable n-grams is the same as adding more human reference translations albeit the
automatic paraphrases are less likely to be fully correct.
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paraphrases increases as 2-best and the 3-best paraphrases are included in the

reference set. However, in the untargeted case, the noise also increases signif-

icantly with k-best paraphrases and overwhelms any advantages of increased

reachability.

Reachability can be measured by examining how much the tuning process is

able to move the translation output towards a reference. So, for example, if

the MT system is tuned against a human reference, the new (tuned) output

will presumably be closer to the human reference used which can be measured

by computing the BLEU score of the tuned translation output against the

human reference. Similarly, if the system is tuned using 1 human reference

and its 1-best untargeted paraphrase, then even though the original MT output

does not match the untargeted paraphrased reference very well, perhaps after

tuning, the MT output matches this untargeted paraphrase much better—

possibly almost as well as it would match a second human reference. Again,

this can be measured computing the BLEU score of the tuned output against

the untargeted reference alone. In order to compute these numbers, three

tuning experiments were performed; the first experiment used two human

references (say A and B) for each source sentence, the second used A and its 1-

best untargeted paraphrases, and the last experiment used A and the its 1-best

targeted paraphrases (in the same manner as described in Chapter 5). For each

of these experiments, the BLEU score before and after tuning was measured

against the both references. Figure 6.2 shows these measurements. Column C
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shows that the gain in the BLEU score for the untargeted paraphrase reference

against the MT output indeed is the largest compared to both the second

human reference and targeted paraphrases, indicating higher reachability as

predicted above.

3. Focus. The targeted paraphraser creates references that are in the direction

of HTER references since it is designed to crudely emulate an HTER annota-

tor. It identifies words and phrases that were already (likely to be) correct,

because they could be produced paraphrasing a correct reference. Hence, they

increase the focus by allowing the tuning process to ignore these “errors” and

focus on other ones. Human references are not focused since they are created

without any information about the translation output. Neither are untargeted

paraphrases of human references.

Focus can be measured simply by looking at how many of the words or phrases

in the original translation output appear to be different from the set of ref-

erences. This is given by the BLEU score of the original MT output against

the references. Column A shows that the targeted paraphrases have the high-

est value for this BLEU score, which means they are more focused on the

remaining differences than either the human or the untargeted references.

6.4 Comparison to other MT-related Techniques

This section provides a comparison of the thesis research to two other research

efforts. These could not be presented in the earlier Related Work section (Chapter
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Type of For second reference Gain on Total
second reference Pre-tune (A) Post-tune (B) Gain (C) first reference Gain

Human 20.4 22.3 2.1 2.3 4.4
Untargeted 19.6 22.5 2.9 2.0 4.9
Targeted 21.7 24.0 1.8 2.1 3.9

Figure 6.2: Various BLEU measurements for three different Chinese-English tuning ex-
periments that all use the same set of human references as the first reference and one of
three different types as the second reference: (a) a different set of human references (b)
untargeted paraphrases of the first set of references and, (c) targeted paraphrases of the
first set of references.

2) because the inner workings of the parameter tuning algorithm and the details of

the targeting implementation needed to be described first, before the comparison

would be accessible to the reader.

First, the idea of using the translation output to influence the reference has

also been explored by Kauchak and Barzilay (2006). However, their work differs sig-

nificantly from the ideas presented in this dissertation. One difference is that they

create one paraphrase for the sole purpose of obtaining a more informative automatic

evaluation score for the final translation output of an already tuned SMT system.

This thesis creates multiple paraphrases, for the purpose of addressing reference

sparsity in the SMT parameter tuning process. Another difference is that, although

used for evaluating SMT output, their paraphrasing technique relies on machinery

entirely unrelated to the translation. They paraphrase words in the reference by

replacing them with synonyms from WordNet that might occur in the translation

output. In contrast, this thesis creates a fully data-driven sentential paraphraser

entirely from SMT machinery. Finally, the work of Kauchak and Barzilay (2006)

shows that, by using this alternative reference in place of the original human ref-
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erence for computing BLEU, better correlation with human judgments is obtained.

The human judgments they used are manually assigned ratings on a 1 to 5 scale

reflecting only the adequacy of the translation output but disregarding its fluency.

This thesis shows that by using the targeted sentential paraphraser in addition to

the human reference, parameter tuning can be improved significantly as measured

both in terms of automatic metrics as well as human preference judgments. Past

experience with annotations of human judgments of SMT output has shown that

human raters have difficulty in consistently assigning absolute scores—such as those

for adequacy—to MT system output, due to the large number of possibly correct

translations. Callison-Burch et al. (2008b) showed that preference judgments are

considerably easier to make and, therefore, more reliable.

More recently, researchers have demonstrated the feasibility of human-in-the-

loop tuning of SMT parameters (Zaidan and Callison-Burch, 2009). This idea is

related to the work presented in this thesis since it is concerned with the same stage

of the SMT pipeline: parameter tuning. However, the motivation for their work

is derived from a different, extrinsic problem associated with the SMT parameter

tuning process rather than the intrinsic problem of reference sparsity. As described

in this thesis, parameters of most SMT systems are tuned using BLEU. However,

when evaluating the translations produced by these systems, a recent trend is to use

a metric with a human component like HTER. Therefore, the authors propose a new

metric, Ratio of Yes nodes in the Parse Tree (RYPT), which takes human judgments

into account thereby lengthening the tuning process and requiring significantly more

human effort. However, the metric only requires human input to build a database
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that can be reused over and over again, hence eliminating the need for human input

at tuning time. The authors show that their metric is a better predictor of human

judgment of translation quality as compared to BLEU. Amazon Mechanical Turk is

used to create the above database in a cost-effective manner. Although unexplored

by the authors, this work could also have implications for the reference sparsity

problem in that since the tuning algorithm is now driven by a human in the loop

providing judgments of the translation quality, there may be no need for reference

translations at all.6

6.5 Future Work

There are several possible avenues in which the work presented in this disser-

tation can be improved:

1. Exploiting Monolinguality. Despite the intimate relationship between the

sentential paraphraser and an SMT system, one aspect of the sentential para-

phraser radically differentiates it from an MT system: the fact that the source

and the target languages are the same. The monolingual nature of the para-

phrase generation task can be still further exploited than it has been in this

thesis. This can be achieved by developing features and incorporating addi-

tional knowledge—much more easily than for a bilingual MT system—that can

substantially improve the performance of the paraphraser and make it even

6The authors collect two types of human judgments when building the database: (a) those
elicited by showing both the source sentence, the translation output and a single reference trans-
lation of the source and (b) those elicited by showing only the source sentence and the translation
output. The results show that even for judgments where no reference was shown, their metric
remains a better predictor of quality compared to BLEU.
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more useful in scenarios where it may not yet perform up to its potential. For

example, features could be developed that are more informative than the sim-

ple probabilistic features that are currently used to drive the paraphraser. One

potentially useful feature could be derived from English synonyms that were

automatically obtained from the English side of the bitext via distributional

similarity techniques described in Chapter 2. Other English resources such

as WordNet, CatVar (Habash and Dorr, 2003) and LCS lexicons (Jackendoff,

1987, 1990) can also prove useful.

2. Improving Paraphraser Architecture. There are several possible ways in

which the general sentential paraphraser architecture proposed in Chapter 3

could be improved.

(a) The noise inherent in pivoted monolingual translation rules could be re-

duced by using multiple pivot languages to generate several sets of para-

phrasing rules and then averaging over them. This approach was indeed

explored by Bannard and Callison-Burch (2005) and is a definite item of

future work. Another possibility is to retain only those rules that lie at

the intersection of these sets of paraphrases obtained from multiple lan-

guages. An obvious disadvantage of this approach is that the increased

precision comes at the cost of decreased coverage. Finally, one could also

keep the rules that are not in the intersection but weight them lower than

the other rules that are more likely to be correct.

(b) Another way to reduce the pivoting noise is to perform the pivoting in
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fully lexicalized space, i.e., starting with the initial phrases as described

previously in Section 2.4.5 and then converting the fully lexicalized mono-

lingual rules into the corresponding hierarchical versions.

(c) Another possibility is to define a more sophisticated targeting feature

that counts the number of undesirable n-grams instead of words so that

the targeting behavior can be made even more effective than it already

is.

3. Doing Away With Separate Tuning Sets. The results presented in this

thesis point in a more ambitious direction: doing away entirely with any hu-

man translations beyond those already a part of the training bitext already

expected by statistical systems. If the quality of the translations in the train-

ing set are good enough—or if a high quality subset can be identified—then

the paraphrasing techniques presented here may suffice to obtain multiple ref-

erence translations with the qualities needed to tune statistical MT systems

effectively.

4. Tuning The Paraphraser. Another area that merits consideration is the

tuning metric used for the paraphrasers. Currently the feature weights for

the paraphraser features are tuned as described in Chapter 3 similarly to how

weights are tuned for an SMT system, i.e., by iteratively “translating” a set of

source paraphrases, comparing the answers to a set of reference paraphrases

according to the BLEU metric and updating the feature weights to maximize

the BLEU value in the next iteration. While this is not unreasonable, it is
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not optimal or even close to optimal: in addition to striving for semantic

equivalence, an automatic paraphraser should also aim for lexical diversity

especially if said diversity is required in a downstream application. However,

the BLEU metric is designed to reward larger n-gram overlap with reference

translations. Therefore, using BLEU as the metric for the tuning process might

actually lead to paraphrases with lower lexical diversity. Metrics recently

proposed for the task of detecting paraphrases and entailment (Dolan et al.,

2004; João et al., 2007a,b) might be better suited to this task.

5. Finding the Ideal Tuning Reference. Finally, there is much more work

that can be done to determine what would be the ideal tuning reference and

whether it is something that can actually be obtained automatically using the

techniques described in this thesis. How would this ideal reference be defined?

Human-authored references are correct but not fully reachable and certainly

not at all focused. References created by untargeted paraphrasing are fully

reachable but not correct and not focused. Targeted paraphrasing creates

references that are very focused but less reachable and not always correct

due to the noisy interaction between pivoting and targeting. Even HTER

references cannot be considered ideal since they can simply be thought of as a

special case of the targeted paraphrases where the targeting is carried out by

a human; the low reachability is still retained.

So, what would constitute the ideal tuning reference? In theory, all possible

paraphrases of the reference must be considered along with all possible (likely)
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translations of the source sentence. The intersection of these two sets that has

the highest translation model score and the highest paraphrase model score—

indicating that it is possible for the decoder to get this answer with a high score

and that it is not too far away from the reference, semantically speaking—

yields our ideal answer. Note that the implementation of targeting in this

thesis does try to approximate this: first the n-best MT outputs (sorted by

translation model score) are found, and then for each one, a paraphrase of the

reference that has a high paraphrase model score is created. One shortcoming

of this approach is that using n-best lists is not a good enough source of diverse

alternatives, an idea that has been explored in the literature (Langkilde, 2000;

Mi et al., 2008). One could use packed representations, such as full lattices,

to represent each of the sets, which would complicate the tuning process but

make it easier to find the ideal tuning reference.

To the extent that a targeted paraphrases does well at matching the MT

output, it represents a good tuning reference. However, it might be more

useful to find and use those n-grams that are reachable by the system, rather

than just those that have already been reached in existing translation output.

6.6 Conclusions

Chapter 1 posed the questions that are central to establishing the the symbiotic

relationship that is at the heart of the thesis. These questions have now been fully

answered:
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1. Is it possible to extend the existing work on paraphrase generation to the sen-

tential level by, in fact, casting this problem as one of English-to-English trans-

lation? Chapter 3 showed that it is indeed possible to build such a translation

system by building on top of the phrasal paraphrasing work done by Bannard

and Callison-Burch (2005) which works well and is able to generate n-best

paraphrases for any given input sentence. It also showed that while the para-

phrases are not perfectly semantically equivalent, they might be quite suitable

for use in another downstream application which could take advantage of the

partial semantic equivalence, such as statistical machine translation.

2. How should this English-to-English translation model be constructed and de-

fined in order to maximize meaning preservation? Chapter 3 showed that the

translation model used to build the paraphraser is a novel, extensible and

well-defined log-linear model that can incorporate several different kinds of

features. One of the most important advantages of using such a model is that

since the same model is also used in bilingual translation, almost all of the

machinery to train the model also carries over except for a few small parts

that were adapted for use in a monolingual setting.

3. Given the expense of asking humans to create these translations, most new

datasets only contain a single reference leading to reference sparsity and, ulti-

mately lower quality translation. Is it possible to create additional, artificial

references by paraphrasing the single reference using the paraphraser built in

(1) above and improve the translation quality? Chapter 4 showed that using
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the paraphrases of a single human-authored reference translation as additional

references for parameter tuning provides significant gains in translation qual-

ity over the baseline case of using just that reference. These significant gains

are demonstrated not only in terms of automatic MT evaluation metrics but

also in terms of human preference judgments. However, one drawback of us-

ing the paraphraser is that, since it is basically a translation system, it is

designed to “translate” or paraphrase all the words in the original reference.

Therefore, the primary reason that it helps address reference sparsity is due

to the sheer volume of changes in that some of them turn out to be useful,

i.e., match the translation output. However, as more paraphrases from the

n-best paraphrase list are added, the fraction of useful changes decreases and

the behavior diverges from that obtained by using multiple human reference

translations. Chapter 5 takes a step back and creates a new SMT-specific in-

stantiation of the paraphraser that is a priori more likely to make only useful

changes. Results show that using this version of the paraphraser to create

additional, artificial references as described in Chapter 5 leads to significant

gains in translation quality not only over the human-only baseline but also

over the change-everything paraphraser approach presented in Chapter 4.

4. What characteristics should an artificial reference have in order for the trans-

lation system to learn as effectively as it might do with a human-authored

reference translation? In addition to presenting empirical gains in Chapters 4

and 5 as indicators of the utility of the paraphrased references, this chapter
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also discusses three qualities that a reference translation should have in order

to be useful for tuning SMT parameters. A comparison of the various types

of references used in this dissertation is presented in terms of these qualities,

both intuitively and empirically. This comparison illuminates how the two

different instantiations of the paraphraser implemented in this thesis operate

at a fundamental level.

Through the research conducted in this thesis, I have made several significant

research contributions: (a) a new general sentential paraphraser architecture that is

built entirely using bilingual SMT machinery and by extending previous research on

phrasal paraphrase generation (b) the first automatic solution that directly addresses

the reference sparsity problem in SMT by using the above sentential paraphraser

to create artificial references. The solution is successful in that these additional

references are shown to lead to statistically significant gains in translation quality

as measured both by automatic MT evaluation metrics as well as human prefer-

ence judgments (c) the first detailed characterization of a reference translation in

terms of three qualities of reference translations: correctness, reachability, and focus,

along with a theoretical and empirical analysis and, (d) a comprehensive overview of

paraphrasing approaches that brings together fragmented research on data-driven

paraphrase generation and draws broad philosophical connections among related

efforts.
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A Translation Examples

SRC N’empêche qu’il existe suffisamment de raisons de se procurer un lecteur indépendant.
REF In spite of this, there are many reasons to get a separate MP3 player.
BSN Despite that it sufficiently exists of reason for providing an independent player.
UNT* But there are plenty of reasons to get an independent player.
SRC Alors que les dettes au premier chef ont à peine bougé, les cours des prêts de second

plan fléchissent.
REF Whereas senior debts are hardly moving, junior bonds are dropping more significantly.
BSN While the debts of the first leader have not moved, the ready courses the of minor

plan bend.
UNT* While the debts have barely budged, loans from second warehouses been dropping.
SRC New York dispose de centaines d’avenues, de boulevards, de rues et d’autres

routes parallèles, certaines célèbres, d’autres uniquement fonctionnelles.
REF New York City has thousands of avenues, boulevards, streets and other byways, some

famous, others merely utilitarian.
BSN N.Y arranges of hundreds of avenue, of boulevards, of streets and others parallel roads,

famous, of the other simply functional.
UNT* New York has hundreds of avenues, boulevards, streets and other parallel roads, some

well-known, others merely functional.
SRC Il doit obligatoirement informer les autorités s’il désire aller à l’étranger pour plus

de trois jours.
REF He must give the authorities notice if he wishes to travel abroad for more than three days.
BSN* He must compulsorily inform the authorities if he wants to go abroad more than three

days.
UNT It must inform the authorities if it wants to go abroad to more from three days.
SRC De ces racines européennes naîtra un des visages glorieux du rêve américain.
REF From these European roots were born the glorious faces of the American dream.
BSN* Of these European roots were born a glorious faces of the American Dream.
UNT Of these European roots into a glorious visages the American dream.

Figure A.1: Examples of translations produced for randomly chosen French (SRC) sen-
tences. UNT is the translation produced by the SMT system tuned using untargeted

paraphrases and BSN is the one produced by the baseline translation system tuned using
the single human-authored reference. The references (REF) are also shown for comparison.
[*] denotes the translation preferred by Turkers.
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SRC Obama est vraiment culotté & il croit qu’il gagnera la plus haute fonction
d’une nation qui compte en tout, deux gouverneurs et cinq sénateurs noirs !"

REF Obama is being cheeky & he thinks he can win the highest position in a country
which has had in total two governors and five senators that were black!"

BSN Obama is really rich & it believes that it will build the leadership of a
nation which in all, two governors and five senators black!

TRG* Obama is really cheeky & he believes he would win the highest office of a nation
that has a total of two governors and five senators are black!

SRC Malgré ce pitoyable échec électoral, les têtes ne sont pas encore tombées, et le
débat sur les questions personnelles aux sommets du CSU bavarois a été ajourné.

REF Despite ignominious election failure heads have not rolled yet, personal issues
are adjourned temporarily at the Bavarian CSU summits.

BSN Despite this pitiful election, the warheads are not yet fallen, and the debate on
the personal questions heights of Bavarian CSU was delayed.

TRG* Despite this pitiful failure, electoral heads have not yet rolled, and debate on
issues of personal summits at Bavarian CSU has been postponed.

SRC L’il à facettes de l’abeille joue un rôle primordial, puisqu’il est capable de voir
dans toutes les directions, dans un angle de 300 degrés.

REF The compound structure of bees’ eye plays a significant role, which makes the bees
able to see in all directions, at an angle of 300 degrees.

BSN The it to facets of the bee plays a role, because it is able to see in many
directions, in a corner of 300 degrees.

TRG* The faceted eye of the bee plays an important role, since it can see in all
directions in angle of 300 degrees.

SRC Celui qui croît en Dieu ressent-il moins la douleur ?
REF Does it hurt less if you believe in God?
BSN Anyone believes in God has less pain?
TRG* Whoever believes in God, does he feel less pain?
SRC Aujourd’hui, a débuté, à Paris, le Sommet Européen pour l’Égalité des chances,

dont l’hôte est la France, comme représentant de la présidence actuelle de
l’Union Européenne.

REF The European Equality Summit has been opened today in Paris, which is organized
by France this year, representing the Presidency-in-office of the European Union.

BSN* Today has started, in Paris, the European summit for Equal Opportunities, whose
host is France, as a representative of the current presidency of the European Union.

TRG Today started in Paris for the European Equal Opportunities, with host as France,
representing the current presidency of the European Union.

Figure A.2: Examples of translations produced for randomly chosen French (SRC) sen-
tences. TRG is the translation produced by the SMT system tuned using targeted para-
phrases and BSN is the one produced by the baseline translation system tuned using the
single human-authored reference. The references (REF) are also shown for comparison.
[*] denotes the translation preferred by Turkers.
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SRC Ich wohne am Rand Tokios in Richtung Kawasaki und fahre 40 Minuten mit dem Zug
zur Tachibana Highschool.

REF I live at the edge of Tokyo, towards Kawasaki, and the train ride to Tachibana High
School is 40 minutes.

BSN I live in Tokyo direction Kawasaki and take 40 minutes with the train to Tachibana
Highschool.

UNT* I live on the Tokyo edge towards Kawasaki and move 40 minutes by train to
Tachibana Highschool.

SRC Eine Ratte oder eine Schabe flieht bei Gefahr heißt das, dass sie auch Furcht
empfindet?

REF When in danger, a rat or roach will run away. Does it mean they experience fear, too?
BSN A rat or a Schabe flees by danger that means that they also feel fears?
UNT* A rat or a cockroach is fleeing when in danger, that means that they felt fear?
SRC Auch die neue, durch die Lega eingebrachte Gesetzgebung gegen Einwanderung

und zur schnelleren Ausweisung der illegalen Einwanderer wird als Zeichen des
Klimawandels in Italien angeführt.

REF Even the new legislation from the League that tightens the brakes on immigration
and facilitates the expulsion of illegal immigrants is advanced
as a paradigm of the change in climate in Italy.

BSN Also the new brought in through the Lega legislation against immigration and to fast
expulsion of the illegal immigrants as signs of the transformation in Italy.

UNT* The new legislation put forward against immigration to speed up the
deportation of illegal immigrants is seen as sign of climate change in Italy.

SRC Die Liste der von den Fruchtsäften gehemmten Wirkstoffe ist lang.
REF The list of active principles inhibited by grapefruit and other fruit juices is very long.
BSN* The list of the hinder from the fruit juices agents is long.
UNT The list of the fruit juices bad agents.
SRC Zum ersten Mal in der Geschichte des Palazzo Chigi gibt es drehbare Türen

für die Ein- und Ausgänge der Beamten
REF It has never happened in all the history of the Chigi Palace that there

were revolving doors at the employee entrance and exit.
BSN* To first time in the history of the Palazzo Chigi there are doors for the

entering and exiting of employees.
UNT For the first time in the history of the Palazzo Chigi are there drehbare

doors for the import and exits of officials.

Figure A.3: Examples of translations produced for randomly chosen German (SRC) sen-
tences. UNT is the translation produced by the SMT system tuned using untargeted

paraphrases and BSN is the one produced by the baseline translation system tuned using
the single human-authored reference. The references (REF) are also shown for comparison.
[*] denotes the translation preferred by Turkers.
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SRC Nach dem steilen Abfall am Morgen konnte die Prager Börse die Verluste
korrigieren.

REF After a sharp drop in the morning, the Prague Stock Market corrected its losses.
BSN After the steep waste at tomorrow the Prague stock exchange cannot correct the

losses.
TRG* After the steep waste in the morning, the Prague Stock Exchange losses corrected.
SRC Trotz allem gibt es genügend Gründe dafür, warum man sich einen eigenständigen

Player zulegen sollte.
REF In spite of this, there are many reasons to get a separate MP3 player.
BSN Despite that it sufficiently exists of reason for providing an independent player.
TRG* In spite of everything, there are plenty of reasons why an MP3 player can be

independent.
SRC Hören Sie sich die vier Versionen der neuen tschechischen Nationalhymne an.
REF Listen to the four renderings of the new version of the Czech national anthem.
BSN The four versions of the new Czech national anthem listen to you.
TRG* Listen to the four versions of the new Czech national anthem.
SRC Doch dieses Mal ist Elena als seine Freundin mit dabei, und so sei alles anders,

sagt er.
REF But this time, he brought along his girlfriend Elena, and that changes everything,

he says.
BSN Yes this time Elena as his friend with in addition to, and so differently all,

he says.
TRG* But this time, Elena as his girlfriend with it, and so was everything else

changed, he says.
SRC Kongress macht Zugeständnis: US-Regierung darf 700 Milliarden Dollar in die

Banken pumpen
REF Congress yields: US government can pump 700 billion dollars into banks
BSN* Congress makes concession: American government can pump 700 billion dollars

in the bank
TRG Congress makes concession: United States government allowed 700 billion U.S. dollars

in the bank pumps

Figure A.4: Examples of translations produced for randomly chosen German (SRC) sen-
tences. TRG is the translation produced by the SMT system tuned using targeted para-
phrases and BSN is the one produced by the baseline translation system tuned using the
single human-authored reference. The references (REF) are also shown for comparison.
[*] denotes the translation preferred by Turkers.
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