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Abstract

This report explores the use of circuits as practical models for the semantics of parallel

algorithms. It is shown that circuits are useful for explaining the meaning of parallel

algorithms, just as a textual notation is useful for comprehending the algorithms underlying

circuits. The relationship between circuits and algorithms is developed to the depth where it

becomes clear that they are equivalent in expressibility. In order to express algorithms that

involve re-use of resources, the concept of the data barrier is introduced and used to

extend the algorithm-circuit relationship to cover pipelined and systolic circuits, in

particular.
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1. Introduction

This report explores the relationship between parallel algorithms and circuits, developing

the equivalence between a textual notation for one and the graphical notation for the other.

This equivalence can be approached from different directions - the path selected here,

because it has not been well explored, is the use of the circuit as a model for expressing the

meaning of parallel algorithms.

With serial computation there is really only one universally-accepted model of computation.

This, the  von Neumann model, involves a single point of control with state of computation

held in a random access memory. This is so widely accepted that it is possible to describe

algorithms in many languages with no difficulty in comprehension or portability - there

may be a babel of serial computer languages but there is only one lingua franca for meaning

(there are other models, but not so widely used). 

In contrast, with parallel algorithms there are many competing models available that are not

readily interchangeable. Some have been developed in depth over the years (e.g. Data flow

[DAVI82], SIMD [ALMA89], CSP[HOAR78]) others have been proposed in monographs

(e.g. [CHAN88], [SABO88]), with new models appearing frequently (e.g.  [FELD92]). In

order to control this proliferation there have been proposals for "bridging models" that can

stand between the expression of algorithms in programs and the details of implementation

([VALI90])

If we have read the trends correctly, it may be that the resolution of this confusion will be

to sidestep the problem when writing practical programs. A primary goal of software

development is to write programs that are easy for humans to understand. It does appear

that humans have great difficulty with understanding multiple simultaneous activity unless

it is carefully structured. There is a need for notations and models that involve explicit

synchronization of parallel processes, but humans should avoid such notations as much as

possible.1 

The practical solution for software development is to avoid expressing parallelism as much

as possible and to leave its extraction for compilers. The trend should be for programs to be

expressed serially as in the past with parallel expression restricted to data parallel operations

such as on vectors, perhaps with the occasional use of simple control barriers as the most

common form of synchronization. The trend in computer architecture to shared memory

(albeit virtual) and the move from SIMD to vector processing confirm this direction

[BELL92] as will the promulgation of programming standards such asHighly Parallel

Fortran. 

Despite the likely finessing of the practical programming problem, there is still the need for

other models at the "machine language" level where explicit synchronization must take

1 There is a good analogy with structured programming, we need languages with gotos for

implementation. Languages without enable us to express algorithms in a manner that makes them easier to

understand.
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place. There is no practical difficulty here with the existence of multiple models, just as

there are many machine languages. However, there is still a difficulty with communication

of the ideas and concepts that underlay very highly parallel algorithms and devices. For

example, before a description can be made of a new sorting algorithm, the model in which

it is described must itself be explained and understood. This report is concerned with

means for expressing highly-parallel algorithms in such a manner that the model of

computation does not become an additional burden.

It seems that there are some desiderata that a widely accepted model for explaining parallel

algorithms should conform to: 

- One is that it should be informal - it should be clear what is meant without recourse to

detailed definitions, just as a rough flow or structure diagrams may be used to explain serial

algorithms. 

- Another is that it should not involve itself with management of limited resources. With

serial algorithms we do not concern ourselves with limitations on storage when explaining

our high-level algorithms; with parallel algorithms we should in addition not use models

that require features that are concerned with shortage of processors. 

- A third, perhaps, is that the model should extend its range into the area of limited

resources simply.

These considerations lead us to explore the use of circuits as parallel algorithm model. They

can certainly be used most informally, and have the extreme characteristic that we are

looking for in relation to resources - no limitation on componentry is assumed and all

components are active continuously. Although circuits and algorithms are known to be of

the same computational power, and the relationship between algorithms and circuits has

been noted before, the analogy is a strange one to programmers and circuit designers alike.

It also involves a number of conceptual difficulties that we must overcome.
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2. The Circuit Model of Parallel Algorithms

"It is possible, and even tempting, to view a program as an abstract mechanism, as a

device of some sort. To do so, however, is highly dangerous." (Dijkstra, 1989)2

The circuit model defines a parallel algorithm to be the action expressed by a circuit, i.e. all

programs are indeed machines. This may seem an extreme leap to take but we will

gradually show that it isn't such a large step as it appears to be.

A circuit can be defined, formally or informally, as a collection of components connected

by wires. Wires communicate values between components - it is simple to assume that

values flow in one direction only. Circuits and components have some wires serving as

inputs and others as outputs. Components respond to changes in their inputs to perhaps

change values on their output wires. This definition allows components to be defined

atomically or to have their action expressed by circuits in turn. There is no need at this stage

for further definition or formality.

With a circuit, all components are continuously active. There is no concept of sequence

except that implied by the flow of data between components. There is thus no concept of a

circuit ever completing its execution. Instead we have the concept of external stability - if

the inputs to a circuit are held constant the circuit may eventually reach a stage where the

outputs change no further. 

The meaning of any particular circuit, in higher-level terms, must be determined by logical

reasoning. However the meaning will usually involve the state of the outputs from the

circuit when it reaches external stability. Sometimes we are interested in the relationship

between particular inputs and outputs, for example the following algorithm for adding four

numbers using components that add two numbers:

add2

add2

add2

A1

A2

A3

A4

sum

However, there are cases when the meaning of the algorithm can only be determined by

considering the history of the inputs. For example, the R-S flip/flop algorithm:

2 It must be admitted that this challenge is taken out of context [DIJK89].
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nor

nor

R

S

Qp

Qn

a

b

There are other cases where we cannot define any sensible meaning to a circuit-algorithm

because it does not reach a state of external stability ever (just as a serial algorithm may

loop endlessly), or because we cannot reason unambiguously about the output states

without invoking machine-level details of timing and delay (as in the 11 -> 00 transition on

inputs to the flip/flop).

However, the cases where the meaning is clear (which we will soon explore) are so

extensive that the circuit model is immediately useful. In fact, it is already in widespread

use informally. For example, the following circuit for sorting numbers is given in the

seminal paper by Batcher [BATC68]:

Given that it is of such use, why hasn't the model been explored further?  To start with,

graphic notation has until now been difficult to use directly for programming. The recent

spread of "wimps" has lead to increase in interest in visual programming for which the

circuit model is a natural choice [SHU88]. However, the graphic notation suffers from the

defect of being verbose and bulky, so may never be a preferred approach to practical

programming. 

In practice, we need the compactness of a familiar textual notation for expressing

algorithms in order to avoid graphic tedium when it is inappropriate. What we will do now

is develop a textual equivalent without losing the semantics or generality of the circuit

model.3

3The relationship between the circuit model and the data flow model should be made clear. Structurally, a

data flow diagram and circuit look very similar and data flow and circuit languages may be implemented in

5



3. Textual Language for Circuit-Algorithms

There have been many textual languages developed for expressing circuits [ULLM84].

However, these tend to have the goal of describing the behaviour of real circuits, including

physical details. The goal here is somewhat different, to express the algorithms that

underlay circuits in a succinct and informal manner. We will try to make the

correspondence between text and circuit as unsurprising as possible. The text notation will

be close to the Algol-Pascal style.

Variables, Expressions and Assignments

In a circuit,wires may be distinguished by means of identifiers. These names correspond to

variables in the text notation. The one variable name may correspond to different wires

when used at different places in the text. Wires carry data in one direction only which may

be indicated by arrows but will be omitted when there is no confusion caused.

Simple expressions correspond to atomic components in a circuit. Production of an output

corresponds to an assignment. The following examples make the relationship plain:

add

+

*

a b c d e f

g h i

g := a h := b+c i := d+(e*f)

Blocks

The next step is to show textually the connections between atomic elements. Rather than

assume that circuits are structured arbitrarily, which would require that all connections be

listed explicitly, the structure of the text is used to imply connections for circuits that are

themselves well-structured.  

A block is a list of statements (including blocks) analogous to the Algol block. Each block

has as inputs each variable that is used in the block but not declared to be local to the block

and as outputs all (and only) those non-locals that are assigned within the block. There are

two extreme types of blocks, the vertical and horizontal. With vertical blocks, the named

inputs to each statement are obtained from the textually closest preceding statement within

the the block, or are inputs to the block itself - this corresponds to the usual rules for data

similar ways. However, traditional dataflow is very concerned with conservation of resources which it

achieves with strict firing rules and the concept, derived from Petri nets, of tokens carrying data. Dataflow is

thereby limited in applicability - it is quite impractical to express even the well-defined meaning of real

circuits and parallel devices such as the flip/flop using dataflow. However, much of what is to follow

applies equally to the dataflow model.
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flow. These rules can be defined very formally and carefully but we will often not use

declarations when showing algorithms informally. An example:

begin {global variables a, b}
     var x, y: integer;
     x := 2*a;
     y := a+b;
     begin
          var t;
          t := x;
          x := y;
          y := t;
     end;
     a := x;
     b := y
end;

2
*

+

a b

x

y

t

x

y

a

b

ab

In the horizontal block, which we tend to flag with the keyword all, every statement inside

the block obtains its inputs from the inputs to the block. Multiple assignments to the same

variable are not permitted in a horizontal block. Example:

begin all
      a := a+b;
      b := b+c;
						c := c+a;
end;

+ + +

a b c

a b c

The use of nested blocks is adequate to express many parallel algorithms, but not all. To

allow for feedback and other connections that break the textual nesting rules, it is possible

to override the textual structure with a "from" tag on any variable coupled with labels to

indicate the source. For example, the RS flip/flop can be expressed by either of the

following algorithms4:

begin {R,S, Qp, Qn global}
      var a, b: Boolean;
						a  := Qn(from L);
      Qp := R nor a;
      b  := Qp;
      Qn := S or b;
L:end;

begin  {R,S, Qp, Qn global}
     begin all
          Qp := R nor a(from L);
          Qn := S nor b(from L);
     end;
     begin all
          a := Qn;
          b := Qp
     end
L:end;

4The correspondence here with serial algorithms is evident. The control goto and the data fromboth

allow terrible algorithms to be expressed, but we cannot rule out the from if we do have the goal of being

able to express all parallel algorithms.
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Procedures, or parameterised blocks

So far, there is a one-one relationship between the text notation and the corresponding

circuit. By parameterising blocks, giving them names, and allowing re-use, the text

notation becomes much more succinct and powerful. 

We will use the notation of Pascal for procedures, but the meaning ascribed to the use of a

procedure has to be quite different to the usual. In the circuit model we assume no shortage

of resources, hence each use of a component is a separate instance of that component.

Applying this to textual notation, we have to regard each use of a procedure as a complete

expansion of that procedure with the usual replacement of formal with actual names. For

example, the following algorithm to add four numbers (declarations reduced to a

minimum):

procedure add4(A[1:4], sum);
begin 

add2(A[1:2], sum1);  
add2(A[3:4], sum2);
sum := sum1 + sum2

end;
procedure add2(A[1:2], sum);
begin 

sum := A[1] + A[2]
end;

The parallel algorithm:

add4(B[1:4], total) 

represents exactly the algorithm:

begin 
add2(B[1:2], sum1);  
add2(B[3:4], sum2);
total := sum1 + sum2

end

which is:

begin
sum1 := B[1] + B[2];
sum2 := B[3] + B[4];
total := sum1 + sum2

end
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which is the same circuit as in the example above.

Conditionals

Conditionals are a conceptual problem if one is concerned about shortage of resources. The

condition must be evaluated first to avoid unnecessary work, yet this often doesn't give the

fastest-executing result. The interpretation of conditionals with the circuit model is plain,

however. The condition and the true and false parts correspond to circuits that are

continuously active and the result of the condition is used to select the results from either

the true or false section. The conditional is a partially horizontal and partially vertical block.

That is, if we write:

if cond(INc, c) then T(INt,OUTt) else F(INf,OUTf)

we mean:

begin
begin all cond(INc, c); T(INt,OUTt); F(INf,OUTf) end
select (c, OUTt, OUTf)

end

where "select" is an array of gates that directs through to outputs of the conditional the

outputs of the true or false section or the unchanged inputs if the true and false sections

have different outputs. That rule is pretty hard to express formally or to describe

informally, but the intention should be clear from examples5:

t

if x>0 then x := -x; if a>b then count:=count+1;

select
f

>0 -

x

x

t
select

f

> +1

count

count

a b

5One could, not too seriously, describe this behaviour, which is the opposite of lazy evaluation, as

"hyperactive evaluation".
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if p then x := a+b
     else x := 0

if p then q := t
	    else r := s+t

t
select

f

p

x

a b

+

q r

0
t

select
f

p

q

0
t

select
f

r

st

+

Optimization

As with any mechanical translation process, our rules for translation of text to circuit will

often give rise to circuits that can be greatly optimised. An optimised circuit represents a

different algorithm to the original and in practice we would be interested in defining the

meaning of “equivalent behaviour” and performing optimization in general.

However, we will not discuss optimization other than a very special case. A simple

programming optimization is compile-time evaluation of constant expressions. Because of

our definition of conditionals, the evaluation of a constant condition can allow major

optimizations by omitting the true or false section. We will refer the reduction possible after

constant expression evaluation as constant reduction and term the reduced circuit and the

original constant-equivalent.

Limited Recursion and Repetition

If the extent of recursion if limited then it is easy to give a constant-equivalent interpretation

to a recursive algorithm. For example, if we generalise the parallel summer above to:

procedure addn(A[1:2**n], sum, n);
begin 

if n=1 then sum := A[1] +A[2] else
begin
split(A[1:2**n],A1[1:2**(n-1)],A2[1:2**(n-1)])
addn(A1[1:2**(n-1)], sum1,n-1);  
addn(A2[1:2**(n-1)], sum2,n-1);
sum := sum1 + sum2
end

end;

Then addn(A[1:8], sum, 3)  is constant equivalent to:
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addn(A[1:4], sum1,2);  
addn(A[4:8], sum2,2);
sum := sum1 + sum2

which is constant equivalent to

addn(A[1:2], sum11,1);  
addn(A[3:4], sum12,1);
sum1 := sum11 + sum12
addn(A[5:6], sum21,1);  
addn(A[7:8], sum22,1);
sum2 := sum21 + sum22
sum := sum1 + sum2

which is constant equivalent to

sum11 := A[1] + A[2];
sum12 := A[3] + A[4];
sum1 := sum11 + sum12
sum21 := A[5] + A[6];
sum22 := A[7] + A[8];
sum2 := sum21 + sum22
sum := sum1+sum2
end;

which is the circuit:

+
sum11

addn 1

+
sum12

addn 1 +
sum1

addn 2

+
sum21

addn 1

+
sum22

addn 1 +
sum2

addn 2 +
sum

addn 3

A1

A2

A3

A4

A5

A6

A7

A8
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(The procedure "split" is not defined in the above example because it is assumed that it is

constant equivalent to a mere relabeling of the wires.)

The same reasoning applies to limited repetition which is equivalent to loop unrolling. Thus

the following is the algorithm for a 4-bit ripple adder:

procedure add3(a,b,c:Boolean; var sum, carry: Boolean);
begin

sum := .....;
carry := ....;

end;
ci := carryin
for i from 1 to 4 do 

begin
ci := co;
add3(A[i],B[i],ci,S[i],co)

end;
carryout := co

which is constant equivalent to the following circuit:

add3

A1 B1

S1

add3

A2 B2

S2

add3

A3 B3

S3

add3

A4 B4

S4

carryin

carryout

Unbounded Recursion and Repetition

So far the correspondence between text and circuit has been rather natural. The behaviour

that is obtained from the model is just what one would expect the text to mean. However, if

we want to give a circuit equivalent for all apparently meaningful textual algorithms, we

will have accept that it is possible for some to have quite tricky meanings.

There are certainly recursive algorithms where it is not known before execution what the

depth of the recursion will be - an example is the recursive addition program above for

which the parameter n is variable. One could approach this by defining separate expansion

and execution phases to the interpretation of the text - reintroducing the concept of dynamic

macro expansion. This seems to us to be an unfortunate choice because we wish to be able

to map parallel algorithms to circuits, not to processes for producing circuits. We take the
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alternative approach of regarding such a circuit as having an infinite extent, only part of

which has to complete for the circuit to reach external stability. Thus the algorithm:

procedure addn(A[1:*], sum, n);
begin 

if n=1 then sum := A[1] +A[2] else
begin
split(A[1:*],A1[1:*],A2[1:*])
addn(A1[1:*], sum1,n-1);  
addn(A2[1:*], sum2,n-1);
sum := sum1 + sum2
end

end;

we choose to regard as an infinitely expanded circuit as follows:

split

addn

addn
+

+

=1

A1

A2

t
se

le
ct

f
sum

-1

addn

A

n

Visualize this in three dimensions where the recursive calls are in the background and the

same size as foreground addn, or, alternatively, expand the inner calls in reduced size.

Then the circuit, although of infinite depth, is of finite width. If n is set to any definite non-

negative integer value the circuit will reach a state of external stability in finite time and only

a finite section of the circuit "matters". 

This use of infinities may seem to be unfortunate. However, we are quite happy with serial

programs that operate for an infinite amount of time. We wish to give meaning to

parallelism with no shortage of resources so it is not surprising that potential infinite time is

modelled by potentially infinite extent. Of course, if n is specified as being limited then the

circuit is finite and if n is ever set to a specific constant such as 3 then the circuit becomes

constant-equivalent to the simple example given above.

As another example of the utility of recursion when describing parallel circuit algorithms,

here is a parallel version of binary search. Searching does not usually result in interesting

parallel algorithms, but, in this case the task is to determine the location of the n-bit key

k[1:n] regarded as a binary integer (k[1] most significant) in the list of integers 0 - 2**n-1 -
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the result to be indicated by setting all bits of the array d[0:2**n-1]  and where only bit

comparisons may be performed. 

procedure bsearch(within, k[1:*], var d[0:*], n);
begin

inbot := within and (not k[1]);
intop := within and (k[1])
if n=1 then d[0:1] := inbot, intop 
else begin

bsearch(inbot,k[2:*], var d[0:*],n-1);
bsearch(intop,k[2:*], var d[2**n:*],n-1);
end;

end;

bsearch(true, k[1:3], d[0:7],3)  is clearly constant equivalent to a 3-bit tree

decoder. The first two levels of expansion would be:

bsearch
1

k[3:3]

d[7:6]

bsearch
1

d[5:4]

k[2:3]

bsearch
2

k2

bsearch
1

k[3:3]

d[3:2]

bsearch
1

d[1:0]

bsearch
2

k2

k1bsearch
3

within (=1)

Repetition

This can now be approached by regarding it as a special form of recursion:

For example: 

for i := 1 to n do body(INbi,OUTbi);
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could be regarded as:

procedure forloop(i,INli,OUTli);
begin

if i<n then begin
body(INi,OUTi);
i:=i+1;
forloop(i,INLip1,OUTip1)
end;

end;

Note that there can be two versions of a loop, horizontal or vertical. A vertical example:

sum := 0;
for i := 1 to n do sum := sum + A[i];

which is constant equivalent to:

sum := 0;
i := 1;
if i <= n then begin

sum := sum+A[i];
for i := 2 to n do sum := sum + A[i];
end

which is the circuit:

split

fori
+

<=n

f
se

le
ct

t

sum

+1

fori

A

1

sum Ai
0

1

Of course, if n is ever fixed then the general infinite circuit immediately reduces to what is

expected, eg, n=4:

+sum A1
0

+A2 +A3 +A4 sum

A

A horizontal example:

for i := 0 to n do all A[i+1] := A[i];
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which is:

i := 0;
if i<n do begin all

A[i+1] := A[i];
for i:= 2 to n do A[i+1] := A[i];
end;

Which is the circuit:

Assgn

fori

<=n

f
se

le
ct

t

+1

foriA

1
0

Merge

Ai Ai+1 

A

Again, if n is fixed this is constant equivalent to what is expected.

Arrays

We have to ascribe sensible meaning to array elements when the index cannot be expanded

to a constant. It seems reasonable to regard A[v] in such cases as a multiplexor that receives

all A and a selector v as input  but produces but one element as output. A multiplexor may

be defined in terms of simpler circuits although it may be better considered as an element. 

The use of a variable index as a destination is likewise a demultiplexor. However, the use

of a demultiplexor in a loop can give rise to some problems. For example, the following

cannot be regarded as well defined in the circuit model (although there is a sensible

interpretation possible in this particular case):

procedure reverse (A[1:*],B[1,*],n)
begin

for i from 1 to n do all
B[n+1-i] := A[i];

end;

because the lhs of the assignment is repeated on every iteration.  The versions of the above

without "all" or with the assignment reversed do have well defined meanings. For example:
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procedure reverse (A[1:*],B[1,*],n)
begin

for i from 1 to n do all
B[i] := A[n+1-i];

end;

The above, although a simple algorithm serially, and a mere wire relabelling when n is

constant, still represents a serious algorithm when regarded as expressing a general parallel

concept ( and would be expensive to implement as a circuit in practice).
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4. Relationship to Other Models

Let’s summarise where we are at present. We have a model for parallel algorithms which is

that they are circuits. We also have a textual notation for expressing such algorithms. This

gives us a compact way of describing the algorithms underlying circuits. It also allows us

to write parallel algorithms, with no constraint on resources, and have a well defined way

of figuring out what such algorithms mean.

Another way of looking at things is that we have one class of object that we are dealing

with, the algorithm-circuit say. Each algorithm-circuit may be regarded as an algorithm or

as a circuit. Some are more naturally regarded one way or the other but there is one class

only. 

Although we claim that the circuit model is useful, we are not proposing that the textual

language is a useful one in which to program in practice. It would certainly be possible to

use the language for programming (implemented in a manner similar to data flow

languages) but there would be many practical difficulties in handling the generality

involved. We may construct many circuits that appear to have properties that are too bizarre

to be algorithms, for example algorithms with values that never stop changing yet have

well-defined external stability.

From the programming point of view, the set of objects that we are dealing with is perhaps

too large. A much better behaved class of circuits are those that are called combinational.

Taking this to mean circuits that have no feedback6, it is clear that such circuits have

much more restricted properties. In particular, combinational circuit-algorithms may be

executed/simulated  in such a way that each wire is assigned a value only once.

Single Assignment Model

This relates the class of combinational circuits to the single-assigment algorithms, which

have been claimed as being particularly simple and worthy of attention [AMBL90]. A

single assignment algorithm is one that is written as if it were to be executed serially but all

calls on procedures are initiated as parallel operations. The algorithm must obey the rule

that any individual variable may be assigned to once, only. A variable may be referenced

many times but where a procedure encounters a variable that has not yet been assigned to, it

will be held pending until the variable receives its value.

For example, the insertion sort, taken from [THOR92], but expressed in an informal

notation :

6No feedback implies combinational but not the other way round (HUFF71). However, in practise there

is little use for circuits that are combinational and have feedback.
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procedure sort(A[1..n],var B[1..n]);
begin 

if n>1 then
begin 

sort(A[1..(n-1)],C[1..(n-1)]);
insert(A[n], C[1..(n-1)], B[1:n]);

end
else B[1] := A[1];

end;

procedure insert(x, A[1..m], var B[1:(m+1)])
begin 

if m=0 then B[1] := x 
else 

if x<=A[1] then B[1..m+1] := x, A[1..m] 
else begin

B[1] := A[1];
insert(x, A[2..m], B[2:m+1]);
end;

end;

The actual course of parallel execution depends on the timing involved, but if sort(A[1:3])

were to be initiated and applied to [6,5,7],  for example,  the following sequence of events

could result. Time flows from left to right and the vertical direction represents parallel

activity - each procedure is asumed to be taken in one instant to the next procedure call or to

where it is stuck waiting for an assignment (shown by ?).

[6,5,7]->A[1:3]

   sort(A[1:3],B[1:3])

      sort(A[1:2],C[1:2])

     sort(A[1:1],D[1:1])     

            6->D[1:1] 

            insert(A[2], D[1:1], C[1:2])

               ?D[1]..[5,6]->C[1:2]

      insert(A[3],C[1:2],B[1:3])

         ?C[1]..................... 5->B[1]

                                       insert(A[3],C[2:2],B[2:3])

                                          6->B[2]

                                          insert(A[3],C[2:1],B[3,3])

                                             7->B[7]

The algorithm as written may equally be regarded as a combinational algorithm circuit, for

the case of length 3 arrays, constant equivalent to:

19



sort

<

f
se

le
ct

t

insert

insert
sort

f
se

le
ct

tinsert

<

<

f
se

le
ct

t

insert

insert

sort

Although the models are poles apart, the single assignment model gives the same meaning

and also shows one of the possible ways that the circuit could be simulated reasonably

efficiently, i.e how a text algorithm with variable parameters could be executed in practice.

The combinational circuit algorithm and the single assignment language are of the same

extent. However, it is somewhat easier in our notation to express algorithms in a natural

form. For example, the body of the sort example could be expressed as:

                                    

for i := 2 to n do insert(A[i],A[1..(i-1)],A[1..i]);

With further massaging, the whole recursive algorithm is identical to:

for i := 2 to n do 
{insert A[i] in A[1..(i-1)]}

begin 
X:=A;
for j from i-1 downto 1 do

X[j..i] := select( A[i]<A[j], 
(A[i],A[j..i-1]),
X[j..i]);

A:=X;
end;

So the recursive form of [THOR92] has an inherently sequential aspect as a circuit, a rather

slow O(nxn) algorithm.  No doubt the single assignment model could be adapted to allow

expression in a similar form but it is doubtful whether it would be regarded as being the

identical algorithm.

However, because the circuit model does not need to rely on recursion, it could express a

parallel insertion sort as a better and more straightforward algorithm as follows:
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for i := 2 to n do 
{insert A[i] in A[1..(i-1)]}

begin
for j from 1 to i-1 do

cond[j] := A[i]<A[j];{cond[0] initlzed to false}
for j from 1 to i-1 do

if cond[j] then  
A[j] := (if cond[j-1]  then A[j-1] else A[i]);

end;

In this case the fully expanded inner loops have no connections between the iterations so the

algorithm is clearly O(n), when n is a constant (ignoring fan-in and fan-out).

Functional Programming

Another model of parallel algorithms is functional evaluation [HUDA89]. With this the

example above would have to be expressed something like:

function sort(A[1..n]):B[1..n]; 
select( n>1, insert(A[n], sort(A[1..(n-1)]), B[1:n]),A[1];

function insert(x, A[1..m]):B[1:(m+1)];
select( m=0,

x 
select( x<=A[1],

[x, A[1..m]], 
[A[1],insert(x, A[2..m], B[2:m])]))

The semantics here is that all arguments are evaluated in parallel, called recursively, until

finally a value is obtained. Whenever an array is encountered as an argument or a result of a

function an entire array is assigned.

It is pretty clear that any functional program may be modelled as one of our circuits;  our

circuits, like the course of functional evaluation, may be infinite in extent7. Although the

functional notation is fairly restrictive it could be extended to give means of expression like

can be used with circuits and single assignment. So it does appear that the functional

model, single assignment, and combinational ciruit-algorithms have the same expressive

power (as does the general data flow model).

The functional and circuit models are, in a sense, extremely pure in that they ascribe

meaning but do not prescribe how a program is to be executed in practice. The single

assignment model seems, like dataflow, to be much more oriented towards efficient

7We haven’t considered the complications that arise when unevaluated functions are passed as arguments,

but these also can be forced into line by extending circuits in a similar manner.
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execution. This, presumably, is a plus in some circumstances, but it does mean that the

model is limited in its range of applicability.

The other advantage of single assignment is that sequentiality not implied by data flow is

inherent. With the other models it is difficult to ensure sequential behaviour (though with

our textual notation, and similar notations for dataflow, one can regard an algorithm as

being serial in order to aid understanding with no loss of meaning other than to

considerations related to implied performance).
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5. Barrier Circuits

This leads us to dealing with the main deficiency of the circuit-algorithm model. Although it

is great for expressing parallel ideas when there is no shortage of resources, or where time

is not involved, the model is of little help when encountering real limitations. Just as in

practice there is a need to introduce a new element, the latch, to describe synchronous

circuits, we need to also extend our model.

There are many aways that we could extend the model. However, it would be nice to have

an extension that is close to extensions made for serial programming as well as close to the

way that circuits are extended in practice. This leads us to consider the data barrier which

is the analogue of the control barrier and also analogous to the latch point.

Informal Definition

We introduce to our notation the concept of a data barrier. In the circuit this is shown as a

line, perhaps labelled, across which some wires may pass. The corresponding text notation

is straightforward. 

+ +

+

a b c d

e f

g

x

begin
   e := a+b;
   f := c+d;
   barrier x(e,f);
   g := e+f;
end

Informally, the meaning of a barrier can be explained in terms of the circuit becoming

externally stable with no signals being allowed to cross any barrier. Once the circuit has

become stable the outputs may be recorded, then values may cross barriers and the inputs

may be changed. Then barrier crossings are inhibited and circuit is allowed to become

stable again, etc. In a sense, the barriers divide the circuit into regions  that operate

autonomously. The meaning of the circuit is extended to involve the effect of sequences of

input values over time. In the above example groups of four numbers will be summed in

two stages. 

The introduction of barriers brings both sequentiality in time and memory. With barriers

feedback may be given meaning where it otherwise would be undefined. For example, the
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following algorithm will produce as outputs the running sums of the sequence of inputs,

assuming that the sum is initialised to zero.

+

I

B

begin
   barrier B(S from L);
   S := I + S;
   L:
end  

S

Precise definition

The informal definition is adequate for many purposes but it is incomplete in that there may

well be circuits that have feedback both through barriers and within regions. The concept of

a region is very ill defined. It is also distasteful in that it requires that we be able to

recognise stability before changing inputs - the model without barriers does not guarantee

stability in any limited time and it is dificult to determine external stability8. 

The solution that we propose for defining the meaning precisely is to replace sequence in

time with sequence in space. A circuit is expanded into three dimensions and a barrier

represents a connection from a lower to a higher level. The effect obtained by a sequence of

inputs over time to the barrier circuit is replaced by constant inputs made to successive

levels. The sequence of outputs over time corresponds to the outputs at successive levels

when the three dimensional circuit reaches stability. The diagram overleaf illustrates the

idea. 

The complexity of the situation has been greatly diminished. It is possible for the circuit on

any level to not be stable internally but still have a well defined meaning. If, as is usual, the

circuit, without barrier crossings, is combinational, the meaning of a circuit that involves

barriers as memory elements has been explained in a combinational (single assignment,

functional) form.

8It sounds like an unsolvable problem given that circuits may reach external stability yet be continually

changing internally.
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Reuse of resources via Data Barriers

 

Data barriers can be used to introduce memory and to impose sequentiality. They also

provide a means of expressing algorithms that are designed to re-use resources. It is clear

that pipelined algorithms can be written with barriers. A more interesting application is to

express systolic arrays [KUNG82] in a manner that relates them to the underlying  parallel

algorithms. 

Lets take as an example the old faithful bubble sort. For a length-5 array we could express

this serially as follows, where sort2 is a procedure that compares and conditionally swaps

its two inputs :

for j from 4 downto 1 do
     for i from j to 4 do
          A[i],A[i+1] := sort2(A[i],A[i+1])

Regarding this as a serial expression of a parallel algorithm it represents the following

circuit:
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Without going into details, one can immediately adapt such a circuit by inserting barriers so

that each region has many independent operations.  Once the barriers are in place it is

possible to assign the work to processors to create a systolic algorithm. In the following

diagram the data barriers are the horizontal lines. With the assignment of work to

processors as shown by the dashed lines this represents an algorithm where the data is

presented to the first processor serially and the results appear in parallel at the outputs of the

processors:
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This would require the connections between the processors to be made as follows:

sort2
(1,2)

sort2
(3,4)

sort2
(5,*)

The same algorithm can be assigned to processors in a different fashion:
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This requires the following interconnection:

sort2
(1,2)

sort2
(3,4)

sort2
(5,*)

It is perhaps surprising that this is the parallel odd-even sort. The fact that it would be

equivalent to a bubble sort is not immediately obvious.
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6. Conclusion

  

We came into this study knowing that algorithms could often be very useful in describing

circuits [DORA74}. We are now also convinced that circuits can be very useful for

describing highly parallel algorithms. We have pushed the relationship of circuits as

algorithms further than in the past by seeing how any circuit may be regarded as an

algorithm and vice versa. It is gratifying that we can take the relationship so far, even if it

does require us to accept potentially infinite circuits. It is also reassuring that the well-

behaved subset of circuits that are combinational seem to be the same set of algorithms that

have been scoped by other models.

It is also interesting that we seem to have a natural meaning for an algorithmic analogue of

the latch, which is the data barrier. This has been defined simply and is clearly useful in a

number of circumstances. However, we have yet to explore the extent to which the data

barrier can be applied. It would be nice to be able to use it to express simply algorithms

(such as the dining philosophers) that are quite easy to express by more conventional

means, but we have not made much progress in this direction yet.     
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