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Abstract - The circular Hall plate is considered with four equal finite 

line contacts symmetrical with respect to two orthogonal axes. A proof 

is given of an approximation of the geometrical correction factor C(8,m), 

if e tends to zero. The angle e corresponds to the length of each 

contact. The parameter m depends on the magnetic field, which need not 

be small. 
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1. Introduction 

Consider a circular Hall plate with four finite contacts of equal length 

(Fig. 1). It is convenient to take the radius equal to one unit of length. 

We shall deal with an n-type semiconductor. The current I enters the sample 

B 
® 

Fig. 1 Circular Hall plate with four contacts which are equal in Zength 

Radius = 1 unit of length 

at contact 1 and leaves it at contact 3. The Hall electrodes draw no current. 

The constant magnetic induction B is directed backwards and perpendicular to 

the plane surfaces of the sample. It is assumed that the sample is homogeneous 

and has a specific resistivity p and a uniform thickness d. The last-named is 

very short with respect to the radius of the sample. As is well known[l] the 

method of conformal transformations can then be applied in order to obtain 

the potential distribution. 

We have analysed the circular structure in [2J. Let V. denote the 
J 

potential of contact j (see Fig. 1). The geometrical correction factor C(8,m) 

is defined by the relation 

c(S,m) tan S 
(1) 

where the Hall voltage V
H 

V
2 

- V4 ,B is the Hall angle, m = 2B/~ and the 

angle e corresponds to half a contact. We have proved that [2J 

c (S ,m) 
1 

sin S 

J
4

(S,m) - J
4

(S,-m) 

J
3

(S,m) 

The function J
3

(8,m) is given by 

t2 

J 
1 

J
3 

(S ,m) sgn p 

(2 ) 

(3 ) 



with 
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(Y-p) (y + ~) ~(y + tl) (y + !J Gl - y)r-
l 

~(y + t2) (y + !J(!2 - y)r 

Furthermore, the function J
4

(e,m) is defined by 

j
tl -b 

sgn P dy (tl-y) f 4(y,m) 
P 

with 

(y-p )(y + ~)~(t2 - y) (y + 

~(y + t2)(y + !J(~2 - yt
b 

In these integrals the following parameters tl' t
2

, band p occur: 

and 

where 

P 

Q 

J l (8,m)+ J l (8,-m) 
J 2(8,-m)- J 2(8,m) 

The integrals J
1 

(8,m) and J
2

(6,m) are defined by 

t z 
J 1 (8 ,m) = f dy (l_yZ) f (y ,m) 

tl 

and t2 
J 2(8,m) = j dy y f(y,m) 

tl 
respectively; where 

1+m 
2 

f(y,m) ~(y-tl) (y + t2) (!2 - y) (y + ~J f-b 

1(y+t1) h-y) (y + ~J Gl - y)fb-l 

(4) 

(5) 

(6) 

(7 ) 

(8) 

(9) 
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Note that tl and t2 are positive but less than one. The sign in formula (6) 

has to be chosen such that Ipl < 1. 

In this paper we shall derive an approximative expression for the 

geometrical correction factor C(8,m) if 8 tends to zero. It has already 

been given without proof in [2J. 

In the next section an approximation will be obtained for tl and t
2

, if 

e approaches zero. In Section 3 the integral J
1 

(8,m) will be approximated. 

Section 4 contains an analysis which provides approximations of the integral 

J
2

(8,m) and of p. We are then in a position to ascertain the behaviour of 

J
3

(8,m) and of the difference J
4

(8,m) - J
4

(8,-m) if 8 tends to zero. This 

is done in Sections 5 and 6. Finally, we shall derive an approximative 

formula for the geometrical correction factor C(8,m) in Section 7_ 

2. Approximation of tl and t 2 . 

Let 6 = e where 6 is a small positive number. Define E = t 2-t
1

- If 0 

tends to zero, then E also approaches zero. It is convenient to approximate 

C(o,m) by a simple function of £. Later on, the relationship between 0 and 

E will be used in order to obtain an approximation in o. It is easily seen 

from (5) that 

o 

Then we find 

Furthermore, 

1 
- 1 + h -

2 

1 
- 1 + 12 + 2 0 + 

o + 

h 2 3 16 0 +0(0 ) 

(0-+0) . 

(0-+0) 

(0-+0) 

The integral J
1 

(8 , m) will be considered in the next section. 

( 10) 

(11 ) 

(12) 
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3. Approximation of integral J
1

(B,m) 

Let 

t2 

L(c,m,k) f k-b b-l = dy (y-t) (t -y) 
1 2 

tl 

where k is zero or a natural number. Introducing a new variable 

v = (y-t
1
)/" we obtain 

L(c,m,k) 
k , B(k+l-b,b) 

where B(x,y) is the beta function 

B(x,y) fl x-I 
= t (1-t)y-l dt (R{x}>O, R{y}>O) 

° 
The integral J

1 
(8,m) can be written in the form 

where 

g(y,m) = (1_y 2) ~(y + t 2) G2 - y) (y + !J ( 
l(y + t 1) (y + !J Ul - y) f b-l 

We now develop the function g(y,m) in a series in y-t 
1 

Using (11) and (12), an elementary calculation yields 

A(m) = 
2 + 12 

16 [ (12 12) ,2 { 1 + , "2 - b 4 + 16 5 + 12 - b (19 

2 
0(, ) 

(13) 

(14) 

(15) 

(16) 
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From (14), (15) and (16) one finds 

1 £ { - } = i/2 B(1 - b,b) + 16 (2 + 12 - b) B(1 - b,b) - (3+2/2) B(2-b,b) 

if E tends to zero. 

4. Approximation of integral J
2

(8,m) and of p 

The integral J
2

(8,m) can be rewritten as 

where 

t2 

J 2 (o,m) = f dy 

tl 

h(y,m) y 1(y+t2) (!2 - y) ~ + !J(b 

l(y+t1)(y + !J (!1 - Y)! b-l 

The function h(y,m) is developed in a series in y - tl: 

h (y ,m) 

Using (11) and (12), after some straightforward calculations we obtain 

I 1 2 12 3 
= - 1 + v 2 - "2 £ + £ 16 + 0(£ ) 

~(-5 + 12) + 0(£) 
8 

(18) 

(19) 

The value of A(m) was already obtained in the preceding section~ From (14), 

(18) and (19) it is easily seen that 

J 2 (o,m) = A(m) {corm) B(I-b,b) + 8 C
1 

(m) B(2-b,b) + 

(20) 

if £ tends to zero. 

(17) 
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From (6), (7), (17) and (20) we can derive an expression for p (note that 

Ipl < 1). Extensive but simple calculations yield 

p 
2+12 3 

- -8- (l-2b) 8 + 0(8 ) (8->{» 

5. Approximation of function J
3

(6,m) 

From (3), (8) and (9) we have 

From (17), (20), (21) and (22) We find 

sgn p 1-12 
J 3 (o,m) = 8(1-2b) -2- B(l-b,b) + 0(£) (8->{) ) 

It should be noted that J
3

(8,m) is invariant for reversal of the magnetic 

field: J
3

(8,m) = J
3

(8,-m). 

6. Approximation of difference J
4

(8,m) - J
4

(8,-m) 

Eqn. (4) can be rewritten as 

where 

t1 

sgn p f dy {/-1 + (~- p) Y} (t
1
-y)-b .. 

p 

(21) 

(22) 

(23) 

(24 ) 

Because of the singularity of the integrand in (24) it is found to be 

necessary to split the interval of integration into four parts. Introducing 

a positive number a less than one, we have 

with 

J
41 

(o,m,a) 

sgn p {J
41 

(o,m,a)+ (i - p) J42 (o,m,a) + 

-J
43

(o,m) + J
44

(O,m,al} (25) 

(26) 
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(27) 

p 

J 43 (8,m) = fdY {y2_1 + (~_ p) Y} 
o 

and 

J 44 (8,m,a) (28) 

respectively. Since J
43

(6,m) O(E), if E tends to zero, we find 

sgn p {J41 (8,m,a) + J
41 

(8,-m,a)} + 

+ sgn p (~- p) {J42 (8,m,a) - J42 (8,-m,a)} + 

+ 0(0) (0-+0) 

Successively, the termson the right-hand side of (29) will be determined. 

The value which the number a should have in order to obtain an accurate 

approximation will be clear later on. 

6.1 Approximation of J
41 

(o,m,a) + J
41 

(o,-m,a) 

From (26) it follows that the constant term in the approximation of 

J
41 

(a,m,a) + J
41 

(o,-m,a) is 

J
41 

(O,m,a) + J
41 

(O,-m,a) , l'" '( t-l--Y')~(-:":':'l )-(-;-Y-+--;-~ l')-(-;;;~-l---;Y ) 
in which tl = - 1 + 12. By elementary integration we obtain the result 

(independent of m) 

J 41 (O,m,a) + J
41 

(O,-m,a) 
h (l-a) (l-a(3-2h)} 

In 
4 (1+a) {l+a (3-2/2)} 

The linear term in the Taylor series is evidently of the order E. 

(29) 

(30) 
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6.2 Approximation of J
42

(o,m,a) - J
42

(c,-m,a) 

From its definition (27) it is easy to see that J
42

(O,m,a) is independent 

of the magnetic field. Hence, the constant term in the Taylor series of 

J
42

(o,m,a) - J
42

(6,-m,a) is zero. In order to obtain its linear term we need 

the derivation of J
42

(o,m,a): 

aJ 42 (0 ,m,a) 

at 2 

By differentiating" (27), we find, for example 

2 
a t1 

---;;---=---;;---:.- + 
224 

(1-a ) (1-a tj ) 

in which t = 
1 

- I + /2. The variables tl and t2 are represented 

and (12) respectively. Carrying out laborious but 

as functions 

of E in ( 11 ) straightforward 

integrations, we obtain the first-order approximation 

where tl 

.. [ at l
2 

2 4 
16(a tl -I) 

- j + h. 

6.3 Approximation of J
44

(o,m,a) 

The problem of deriving an approximation of the function J
44

(8,m,a) for 

small values of 8 is very complicated. 

First, we develop the function {y2 -1 + (~- p) y} h4 (y ,m) in a Taylor 

series in the variable y - tl: 

(31 ) 
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D(m) {EO (m) + E1 (m) (y-t j ) + 

Using (11), (12) and (21), after some straightforward calculations we find 

that 

D(m) A(-m) 

EO(m) 2-212 + {4 - 312 + t (2 - 12)} 
4 

E (2b-1) 

E1 (m) 
2 + 12 {s - 212 1 5,1 } 4 + + E 4 12 -S Eb2 E(2b-1) 2 

E2 (m) 
12-712 3+612 312 
20 (2b-1) 

- --4- + 
2(2b-1) 

We refer to Section 3 for an expression for A(-m). 

Second, let 

K(o,m,a,k) = J dy 

at
1 

where k is zero or a natural number. By introducing a new variable 

1 

k k 1-bi k-b b-1 K(o,m,a,k) = (I-a) t1 x dv (I-v) (I-xv) 

o 
in which 

1 
- = 
x 

1 + E 
tj (1-a) 

It is easily seen that 

k k l-b 
K(o,m,a,k) = (I-a) t1 x * 

k 

.. L:(-l)n (~) B(n+1, I-b) F(1-b, n+1; 2-b+n; x) 

n=O 

where B(x,y) is the beta function and F(a,bicix) is the hypergeometric 

function 

F(a,b;CiX) 
f(c) 

f(b) Hc-b) 

(32) 

(33 ) 

(34) 
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if b > 0, c-b > 0 and \x\ < 1. It is known that [3] 

with 

F(p,q;p+q;X) 
1 

B(p,q) 
i=O 

(P)i(q)i 

(il> 2 

i 
(I-x) f. (p,q,x) 

~ 

(j l-x\ < 1) 

f. (p,q,x) = 2 .(i+l) - .(p+i) - .(q+i) - In(l-x) 
~ 

, 
.(z) = r (z)/f(x) 

(P)i = r(p+i)/r(p) for i=I,2,3 ... ; (p)O=I. 

(35 ) 

Third, using the above results, we shall now determine an approximation for 

J
44

(o,m,a). From (28), (32) and (33) we obtain 

It is assumed here that (i-a) is a small positive number. Applying (35) in 

(34), we find after some straightforward calculations that 

1+12 
K(o,m,a,O) = .(1) - .(I-b) - In I-a - In £ + 

Note that we used the relation 

.(z+l) - .(z) 
1 
z 

(36) 

and that the term with index i in (35) is of the order of O(£i).In the same way 

the functions K(6,m,a,1) and K(o,m,a,2) have been approximated, viz. 

K(o,m,a,1) 

2 + 0(£ In£) 

l-b 
I-a 

/ 
{ 

l-b 
(1-a) (-1+ 2) 1 + --

I-a 
(1+12)£ In £ + 

(1 +12) {-.(2) + .(2-b) + In -- + 1+12}J} 
I-a 
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and 

K(o,m,a,2) 
2 (I-a) (3-212) 

2 

Let a ::::: 0.9. Then, from (36) we obtain after straightforward 

calculations 

J
44

(6,m,0.9) 
0.20711 

2b-l 
In E 
--+ 

E 

+ {O. 79077 + 0.20711 Iji (l-b)} -,'1:-,-.,...,- + 
E (2b-l) 

0.14017 
+ 2.64276 - l-b + 

1 { 0.14017} 
+ 2b-l - 2.39956 + l-b + 

+O(EInE) (E+O) 

Note that for a <0.9 the approximation of J
44

(o,m,a) by three terms (see 

(36» may not be accurate enough (see (34». 

7. Approximation of the geometrical correction factor 

In this section an approximation for the geometrical correction factor 

C(8,m) will be derived. From (37) it is easily seen that 

From (30) we obtain 

0.20711 
E(2b-l) 

+ 5.28552 

{Iji(l-b) - Iji(b)} + 

(E+O) 

J 41 (6 ,m, 0.9) + J 41 (6 ,-m, 0.9) = - 1.15108 + OrE) (E+O) 

From (21) and (31) it is shown that 

Furthermore, from (29), (38), (39) and (40) it is found that 

(37 ) 

( 38) 

(39) 

(40) 

[
0.20711 

- J 4 (6,-m) = sgn p e(I-2b) + O. 70687J (41 ) 

Next, we. derive from (2), (23) and (41) that 
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C (8 ,m) 1 + 
3.41304 (1-2b)E 

ljJ (b) - ljJ (l-b) 

Since ljJ(b) - ljJ(l-b) = TI tan(S) and £ 8(4-2/2) + 0(0 3 ), if 0 tends to 

zero,we finally obtain 

C (0 ,m) 1 - 0.8103 8 cotan (8) 0 (8"* 0) 

Herewith we have found an important formula for the geometrical correction 

factor C(6,m} if 8 tends to zero. Data on the accuracy of formula (42) 

have been given in Section 5 of [2J. 

8. Conclusion 

(42) 

It has been shown that the geometrical correction factor C(8,m) can be 

approximated by a simple analytical expression if the angle e tends to zero. 

For the accuracy of the approximation reference is made to [2J. 

Acknowledgements. The work has been carried out in the Electronic DeviceS 
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