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Abstract After the recent high precision determinations of

Vus and Vud , the first row of the CKM matrix shows more than

4σ deviation from unitarity. Two possible scenarios beyond

the Standard Model can be investigated in order to fill the gap.

If a 4th non-sequential quark b′ (a vector-like weak isosin-

glet) participates in the mixing, with |Vub′ | ∼ 0.04, then its

mass should be no more than 6 TeV or so. A different solu-

tion can come from the introduction of the gauge horizontal

family symmetry SU (3)ℓ acting between the lepton families

and spontaneously broken at the scale of about 6 TeV. Since

the gauge bosons of this symmetry contribute to muon decay

in interference with Standard Model, the Fermi constant is

slightly smaller than the muon decay constant so that uni-

tarity is recovered. Also the neutron lifetime problem, that

is about 4σ discrepancy between the neutron lifetimes mea-

sured in beam and trap experiments, is discussed in the light

of the these determinations of the CKM matrix elements.

1. The Standard Model (SM) contains three fermion fami-

lies in the identical representations of the gauge symmetry

SU (3) × SU (2) × U (1) of strong and electroweak interac-

tions. One of its fundamental predictions is the unitarity of

the Cabibbo–Kobayashi–Maskawa (CKM) matrix of quark

mixing in charged current

VCKM =

⎛

⎝

Vud Vus Vub

Vcd Vcs Vcb

Vdd Vts Vtb

⎞

⎠ . (1)

Deviation from the CKM unitarity can be a signal of new

physics beyond the Standard Model (BSM). The experimen-

tal precision and control of theoretical uncertainties in the

determination of the elements in the first row of VCKM are

becoming sufficient for testing the condition

|Vud |2 + |Vus |2 + |Vub|2 = 1. (2)

a e-mail: zurab.berezhiani@lngs.infn.it (corresponding author)

Since |Vub| ≃ 0.004 is very small, its contribution is negli-

gible and (2) reduces essentially to the check of the Cabibbo

mixing: |Vus | = sin θC , |Vud | = cos θC and |Vus/Vud | =
tan θC . In essence, this is the universality test for the W -

boson coupling (g/
√

2)W +
μ J

μ
L + h.c. to the relevant part of

the charged left-handed current

J
μ
L = VuduLγ μdL + VusuLγ μsL + νeγ

μeL + νμγ μμL

(3)

For energies smaller than W -boson mass this coupling gives

rise to the effective current × current interactions

− 4G F√
2

uL

(

VudγμdL + VusγμsL

)(

eLγ μνe + μLγ μνμ

)

(4)

which are responsible for leptonic decays of the neutron,

pions, kaons etc., as well as to the interaction

− 4G F√
2

(

eLγμνe

)(

νμγ μμL

)

(5)

responsible for the muon decay. All these couplings contain

the Fermi constant G F/
√

2 = g2/8M2
W .

Precision experimental data on kaon decays, in combina-

tion with the lattice QCD calculations of the decay constants

and form-factors, provide accurate information about |Vus |.
On the other hand, recent calculations of short-distance radia-

tive corrections in the neutron decay allow to determine |Vud |
with a remarkable precision.

In this paper we analyze the present individual determi-

nations of Vud and Vus and find significant (about 4σ ) devi-

ation from the CKM unitarity (2). We discuss two possible

BSM scenarios which can explain this deviation. In the first

one the three-family unitarity is extended to four species,

by introducing the 4th non-sequential down-type quark b′

in the form of vector-like weak isosinglet with mass of few
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TeV. The second scenario assumes the existence of horizon-

tal gauge symmetry between the lepton families which is

spontaneously broken at the scale of few TeV. The corre-

sponding flavor changing gauge bosons induce the effective

four-lepton interaction having exactly the same form as (5),

with the new Fermi-like constant GF . In this case, muon life-

time would determine Gμ = G F + GF rather than G F . In

this way, one can nicely restore the three family unitarity (2)

without introducing new quark species. We discuss implica-

tions of these scenarios for the lepton flavor violation (LFV)

and for the Standard Model precision tests. At the end, we

also discuss the problem of neutron lifetime related to the

discrepancy between its values measured using two different

(trap and beam) methods.

2. The most precise determination of |Vud | is obtained from

superallowed 0+ − 0+ nuclear β-decays which are pure

Fermi transitions sensitive only to the vector coupling con-

stant GV = G F |Vud | [1]:

|Vud |2 = K

2G2
FF t (1 + �V

R )
= 0.97147(20)

1 + �V
R

(6)

where K = 2π3 ln 2/m5
e = 8120.2776(9) × 10−10 s/GeV4

and F t is the nucleus independent value obtained from the

individual f t-values of different 0+ −0+ nuclear transitions

by absorbing in the latter all nucleus-dependent corrections,

while �V
R accounts for short-distance (transition indepen-

dent) radiative corrections. For the second step, we take F t =
3072.07(72) s [2] obtained by averaging the individual F t-

values for fourteen superallowed 0+ − 0+ transitions deter-

mined with the best experimental accuracy, and plug in the

Fermi constant as G F = Gμ = 1.1663787(6)×10−5 GeV−2

determined from the muon decay [3]. The major uncertainty

is related to the so called inner radiative correction �V
R .

The element |Vus | can be determined from the analysis of

semileptonic Kℓ3 decays (KLμ3, KLe3, K ±e3, etc.) [4]:

f+(0)|Vus | = 0.21654 ± 0.00041 (7)

where f+(0) is the K → πℓν vector form-factor at zero

momentum transfer. On the other hand, by comparing the

kaon and pion inclusive radiative decay rates K → μν(γ )

and π → μν(γ ), one obtains [5]:

|Vus/Vud | × ( fK ±/ fπ±) = 0.27599 ± 0.00038. (8)

Hence, the values |Vus | and |Vus/Vud | can be independently

determined using the lattice QCD results for the form-factor

f+(0) and the decay constant ratio fK / fπ .

3. Let us first consider the values of the CKM matrix elements

|Vus |, |Vud | and their ratio |Vus/Vud | as quoted by Particle

Data Group (PDG) review 2018 [5]:

|Vus | = 0.2238(8)

|Vus/Vud | = 0.2315(10)

Fig. 1 Upper panel: three independent |Vus | determinations A, B, C

obtained from the PDG 2018 data (9) by assuming the CKM unitarity.

The grey shaded band corresponds to the average A + B + C (with

formal error not rescaled by a factor

√

χ2
dof ). Pulls of C, B, A and A +

B are shown. Lower panel: the same for A, B, C values obtained from

the dataset (10)

|Vud | = 0.97420(21) (9)

Here |Vus | and |Vus/Vud | are obtained respectively from

Eqs. (7) and (8) using the FLAG 2017 averages of 3-

flavor lattice QCD simulations f+(0) = 0.9677(27) and

fK ±/ fπ± = 1.192(5) [6]. |Vud | is obtained from Eq. (6)

by taking �V
R = 0.02361(38) as calculated in Ref. [7].

By imposing the CKM unitarity (2), the three data (9)

reduce to three independent determinations of |Vus |. These

determinations shown as A, B, C in upper panel of Fig. 1 (see

also Table 1 for numerical values) are compatible within their

error-bars. Throughout this paper A is the direct determina-

tion of |Vus | obtained from Eq. (7). B and C are the values

of |Vus | obtained respectively from |Vus/Vud | and |Vud | by

assuming unitarity. Namely, B and C are almost equal while

there is a modest tension (1.4σ ) between A and B. Their

average A + B = 0.2245(6) practically coincides with the

PDG 2018 average of |Vus | [5]. By averaging all three values

we get A + B + C = 0.2248(5) with χ2
dof = 1.7. Pulls of

A, B and C relative to this average (given in Fig. 1) are com-

patible with a standard deviation. Summarizing, the dataset

(9) adopted from PDG 2018 [5] is consistent with the CKM

unitarity (2).

However, recent progress in the determination of the

CKM elements allows to test the unitarity with improved

precision. Significant redetermination of |Vud | is related to

new calculation of inner radiative corrections with reduced

hadronic uncertainties, �V
R = 0.02467(22) [8]. Employing
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Table 1 The 1st column shows

independent |Vus |
determinations A, B, C from the

PDG dataset (9) by assuming

3-family CKM unitarity (2),

their averages and total χ2 value

CKM [PDG] CKM [post 2018] CKM+ b′ CKM +F

C 0.2257(9) 0.22780(60) 0.22443(61) 0.22460(61)

B 0.2256(10) 0.22535(45) 0.22518(45) 0.22535(45)

A 0.2238(8) 0.22333(60) 0.22333(60) 0.22350(60)

A + B 0.2245(6) 0.22463(36) 0.22452(36) 0.22469(36)

A + B + C 0.2248(5) 0.22546(31) 0.22449(31) 0.22467(31)

χ2 = 3.4 χ2 = 27.7 † χ2 = 6.1 χ2 = 6.1

|Vus | 0.2248(7) 0.2255 (12)† 0.2245(5) 0.2247(5)

|Vud | 0.97440(16) 0.97424 (27)† 0.97369(12) 0.97443(12)

The last two rows show the conservative estimation of |Vus | with error-bar rescaled by

√

χ2
dof and the corre-

sponding value of |Vud |. Other columns show the same but obtained from after 2018 dataset (10) by assuming

respectively 3-family CKM unitarity (2), unitarity extended to 4th quark b′ with |Vub′ | = 0.04, and 3-family

CKM but taking Gμ/G F = 1 + δμ with δμ = 7.6 × 10−4. Mark † in 2nd column indicates that for that large

χ2 the error-rescaling by

√

χ2
dof = 3.7 does not make much sense since the data are incompatible

also the recent result f+(0) = 0.9696(18) from new 4-flavor

(N f = 2+1+1) lattice QCD simulations [9] and the FLAG

2019 four-flavor average fK ±/ fπ± = 1.1932(19) [10], one

arrives to the following:

|Vus | = 0.22333(60)

|Vus/Vud | = 0.23130(50)

|Vud | = 0.97370(14) (10)

This dataset, again by imposing the CKM unitarity, reduces

to independent |Vus | values A, B, C shown in lower panel of

Fig. 1 (numerical values are given in Table 1).

Now we see that the values A, B, C are in tensions among

each other. Namely, there is a 5.3σ discrepancy between A

and C, and 3.2σ between B and C. The tension between the

determinations A and B, both from kaon physics, is 2.7σ .

More conservatively, one can take their average A + B. The

discrepancy of the latter with C is 4.5σ . Fitting these values,

we get A + B + C = 0.22546(31) but the fit is bad, χ2
dof =

13.9. C, A and A + B have large pulls, 3.9σ , − 3.6σ and

− 2.3σ .

Let us remark that the chosen dataset (10) is rather indica-

tive since there are tensions in various determinations of |Vus |
which may disappear with more accurate lattice simulations.

In particular, we have employed the latest and most precise

result f+(0) = 0.9696(18) from 4-flavor lattice QCD sim-

ulations [9] which is perfectly compatible with the FLAG

2019 4-flavor value f+(0) = 0.9706(27) [10] which does not

include the result of Ref. [9]. Their average yields f+(0) =
0.9699(15) which would give |Vus | = 0.22326(55). How-

ever, this result from Kℓ3 decays is discordant with the

independent determination |Vus | = 0.22567(42) from Kμ2

decays recently reported in Ref. [11]. Therefore, for deter-

mination A one can take a conservative average between

these two results, |Vus | = 0.22478(69), where the errors are

quadratically combined because of their poor compatibility.

Fig. 2 The horizontal, vertical and slightly bended bands correspond

to |Vud |, |Vus | and |Vus/Vud | from (10). The best fit point (red cross) and

1, 2 and 3σ contours are shown. The red solid line corresponds to the

three family unitarity condition (2), and the dashed red line corresponds

to the “extended” unitarity (11) with |Vub′ | = 0.04

Let us remark also that the latter determination A is well

compatible with the determination B |Vus | = 0.22535(45)

deduced from |Vus/Vud | given in (10), so that for the average

A + B we get |Vus | = 0.22518(37).

Regarding the determination of |Vud |, we adopted the

result �V
R = 0.02467(22) of Ref. [8] which is mildly dif-

ferent from the value �V
R = 0.02426(32) deduced in Ref.

[12]. For being more conservative, we can average these

two results as �V
R = 0.02454(32), without reducing the

largest uncertainty. In doing so, from Eq. (6) we obtain

|Vud | = 0.97376(10)F t (10)�V
R

= 0.97376(14) which in

turn gives determination C as |Vus | = 0.22756(72). There-

fore, between the determination C and A + B remains 3 σ

tension even with more conservative treatment.

Let us analyze our dataset (10) also in a different way.

Without imposing the unitarity condition (2), we perform

a two parameter fit of the three independent values (10). In

Fig. 2 we show the gaussian hill of the probability distribution
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with the confidence level (C.L.) contours around the best fit

point (|Vus | = 0.22449, |Vud | = 0.97369), with χ2
min = 6.1.

(This χ2–value seems large for a two parameter fit, but it is

dominated by the tension between |Vus |determinations A and

B from the kaon data which may be not real as we discussed

above.) The red solid line corresponding to the three family

unitarity condition |Vud |2 + |Vus |2 = 1 − |Vub|2 = 1 −
O(10−5) is about 4.3σ away from this hill top (�χ2 = 21.6)

which means that the new (after 2018) dataset (10) disfavors

the CKM unitarity at 99.998% C.L.

4. “If the Hill does not come to the CKM, the CKM will go to

the Hill.” The unitarity line can be moved down towards the

probability distribution hill in Fig. 2 if the unitarity condition

is extended to more families.

In fact, by introducing just one additional (fourth) family

which is also involved in quark mixing, the first row unitarity

condition (2) will be modified to

|Vud |2 + |Vus |2 + |Vub|2 = 1 − |Vub′ |2. (11)

In particular, the red dashed line in Fig. 2 passing through the

best fit point on the top of the probability hill corresponds to

|Vub′ | = 0.04 (at 95% C.L. this additional mixing is limited

as |Vub′ | = 0.04 ± 0.01). Plugging this value in Eq. (11), the

dataset (10) gives the modified determinations of |Vus | for the

three cases named above as A, B and C (for numerical values

see in 3rd column of Table 1). Clearly, the case A in this list

remains the same as in 2nd column but B and especially C are

shifted down. Figure 3 shows that consistency between these

values is significantly improved compared to lower panel of

Fig. 1. The fit for A + B + C is acceptable, χ2
dof = 3. Pulls

of C and A + B are practically vanishing. There remains a

tension between A and B but it is softened to 2.4σ from 2.7σ

of Fig. 1.

In the SM the three families (i = 1, 2, 3 is the family

index) of left-handed (LH) quarks QLi = (ui , di )L and

leptons ℓLi = (νi , ei )L transform as weak isodoublets of

SU (2) × U (1) and the right-handed (RH) quarks u Ri , dRi

and leptons eRi are isosinglets. Their masses emerge from

the Yukawa couplings with the Higgs doublet φ:

Y
i j
u φ̃ QLi u R j + Y

i j

d φ QLi dR j + Y
i j
e φ ℓLi eR j + h.c. (12)

Yu,d,e being the Yukawa constant matrices and φ̃ = iτ2φ
∗.

The existence of a fourth sequential family is excluded by

the SM precision tests in combination with the lower limits

on their masses from the LHC, as well as from the LHC data

on the Higgs production via gluon fusion and and its decay in

2γ [13]. However, one can introduce additional vector-like

fermions.

Let us briefly sketch a simple picture of this type intro-

ducing just an additional vector-like couple of isosinglet

down-type quarks d4L , d4R . Since 4 species of RH quarks

d1R, d2R, d3R, d4R have identical quantum numbers, d4R can

Fig. 3 Determinations of |Vus | obtained from the dataset (10) using

Eq. (11) with |Vub′ | = 0.04

be identified as their combination which makes a mass term

M with isosinglet LH state d4L . Then, besides the standard

Yukawa terms (12) the Lagrangian should contain the addi-

tional terms

Y i4
d φ QLi d4R + Md4Ld4R + h.c. (13)

Fermion masses of three normal (chiral) families emerge

from the vacuum expectation value (VEV) of the Higgs,

〈φ0〉 = vw = 174 GeV (for a convenience, we use this

normalization of the Higgs VEV instead of “standard” nor-

malization 〈φ〉 = v/
√

2, i.e. v =
√

2vw). Without loss of

generality, the 3 × 3 Yukawa matrix Yu of up quarks can be

chosen diagonal, Yu = Y
diag
u = diag(yu, yc, yt ), in which

bases the states u1,2,3 coincide with the mass eigenstates

u, c, t so that mt = ytvw, etc. In this basis the Yukawa matrix

Y
i j

d is non-diagonal, and in addition the terms in (13) induce

the mixing of three known down quarks with the 4th species.

Thus, 4 × 4 mass matrix of all down-type quarks has a form:

M =
(

Y
i j

d vw Y i4
d vw

0 M

)

. (14)

It can be diagonalized by bi-unitary transformation M →
Mdiag = V

†
L MVR where 4 × 4 unitary matrices VL ,R con-

nect d1,2,3,4 with the mass eigenstates d, s, b, b′:

⎛

⎜

⎜

⎝

d1

d2

d3

d4

⎞

⎟

⎟

⎠

L ,R

=

⎛

⎜

⎜

⎝

V1d V1s V1b V1b′

V2d V2s V2b V2b′

V3d V3s V3b V3b′

V4d V4s V4b V4b′

⎞

⎟

⎟

⎠

L ,R

⎛

⎜

⎜

⎝

d

s

b

b′

⎞

⎟

⎟

⎠

L ,R

(15)

In the context of the SM, the mixing VR of the RH quarks

is not of interest. As for the left-handed charged current we

obtain the modified 3×4 CKM mixing matrix describing W -

boson interactions between three up quarks u, c, t and four

down quarks d, s, b, b′:

ṼCKM =

⎛

⎝

Vud Vus Vub Vub′

Vcd Vcs Vcb Vcb′

Vtd Vts Vtb Vtb′

⎞

⎠ (16)
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which in fact consists of three upper rows in 4 × 4 unitary

matrix VL (15), i.e. Vud = VL1d , Vus = VL1s etc. Then

the condition (11) regards the first row of this matrix and

it stems from the unitarity of VL . As for the first column,

we have |Vud |2 + |Vcd |2 + |Vtd |2 = 1 − |V4d |2 where V4d

is the 4th row element in matrix VL which is “deleted” for

transforming the latter into ṼCKM.

Let us discuss now in which conditions one could obtain

large enough mixing with the 4th species, |Vub′ | = 0.04 or

so. From the structure of mass matrix (14), for M ≫ vw

we have |Vub′ | ≈ Y 14
d vw/M . Then the LHC limit on extra

b′ mass M > 880 GeV [5] implies that |Vub′ | ≃ 0.04 can

be obtained if the coupling constant Y 14
d in (13) is larger

than 0.2 or so. In other words, it should be much larger than

the Yukawa constant yb of the bottom quark. In turn, by

taking |Vub′ | > 0.03 and assuming (for the perturbativity)

Y 14
d < yt ≃ 1, we get an upper limit on the extra quark

mass, M < 6 TeV or so. Thus, the mass of the extra state b′

should be in the range of few GeV.

The CKM unitarity (2) can be also corrected by intro-

ducing a 4th up quark t ′ instead of the 4th down quark b′,
or more generically by introducing both b′ and t ′ forming

in some sense a complete vector-like 4th family. In the lat-

ter case, the mixing matrix (16) would become a 4 × 4

matrix, however it will not be unitary as far as b′ and t ′

states are weak isosinglets. Interestingly, it can be shown

that introduction of a fourth vector-like isodoublet family

Q′
L ,R = (t ′, b′)L ,R can also have large enough effect for

smoothing the discrepancies between the mixing angle deter-

minations [14].

One has to remark, however, that the mixing of ordinary

quarks with 4th species induces the quark flavor changing

couplings of Z -boson at the tree-level. In the case of extra

isosinglet down quark b′ this question was discussed in Ref.

[15]. In fact, Z boson couples the neutral current of fermions

J
μ
nc =

∑

f fL ,R[I3( f ) − sin2 θW Q( f )]γ μ f where I3 and

Q are respectively weak isospin and electric charge of a

fermion f , and θW is the Weinberg angle. In the case of down

quarks d1,2,3,4 the second part proportional to Q = −1/3 is

uniform for all four states of the LH and RH chirality, and

thus it reduces to a flavor-diagonal (and vector) current also

in the mass basis d, s, b, b′, as a result of the unitarity of

the matrices VL and VR . For the RH states also the isospin

dependent part is uniform since di R , i = 1, . . . 4, all have

the same isosipns I3 = 0 and thus their mixing VR cannot

induce any flavor-changing couplings of Z in the mass basis

(d, s, b, b′)R .

However, the four LH states have different isospins,

namely d1L , d2L , d3L have I3 = −1/2 while d4L has I3 = 0.

Therefore, in the initial basis (d1, d2, d3, d4)L the isospin

part in the neutral current is represented by the matrix

Ĩ = 1
2

diag(1, 1, 1, 0). Therefore, after rotating to the mass

basis by a matrix VL , the isospin part induces non-standard

Fig. 4 The SM contribution to the muon decay mediated by W -boson

(left), and the BSM contribution mediated by the flavor-changing F–

boson (right)

couplings of Z boson to the LH states described by the matrix

VNS = V
†
L diag(0, 0, 0, 1)VL , or explicitly

VNS =

⎛

⎜

⎜

⎝

|V4d |2 V ∗
4d V4s V ∗

4d V4b V ∗
4d V4b′

V ∗
4s V4d |V4s |2 V ∗

4s V4b V ∗
4s V4b′

V ∗
4bV4d V ∗

4bV4s |V4b|2 V ∗
4bV4b′

V4d V4s V4b V4b′

⎞

⎟

⎟

⎠

L

(17)

These couplings can induce strong flavor-changing and

CP-violating effects in K 0 − K
0

system, as well as too large

decay rates for KL → μ+μ− etc. [15]. In fact, they can be

suppressed if Vcb′ and Vtb′ are much less than Vub′ , or at least

have rather small complex parts. (Accidentally, |Vub′ | ≃ 0.04

is comparable to |Vcb| and ten times larger than |Vub|.) The

picture with the 4th state b′ having a larger mixing with the

first family than with (heavier) 2nd and 3rd families looks

somewhat ad hoc, but it is not excluded by the present exper-

imental limits. The implications of a TeV scale extra vector-

like quarks b′ or t ′ with significant mixing with the three

normal families deserve careful analysis which will be given

in details elsewhere [14].

5. “But what if the Hill comes to the CKM?” Here we discuss

just the opposite possibility: instead of moving the unitarity

line to the probability distribution Hill in Fig. 2, we move the

Hill towards the unitarity line.

Namely, we consider that the Fermi constant G F in the

effective interaction (4) which is responsible for leptonic

decays of hadrons can be different from the effective con-

stant Gμ determined from the muon lifetime. We assume

that besides the SM interaction (5) mediated by charged W –

boson, there is also a new operator

− 4GF√
2

(eLγμμL)(νμγ μνe) (18)

mediated by a hypothetical lepton flavor changing neutral

gauge boson F . The respective diagrams, shown in Fig. 4,

have positive interference for the muon decay. Namely, by

Fierz transformation this new operator can be brought to the

form (5), so that the sum of these two diagrams effectively

gives the operator

− 4Gμ√
2

(

eLγμνe

)(

νμγ μμL

)

, (19)

123
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Fig. 5 The same as on Fig. 2 but with the bands of |Vud |, |Vus | and

|Vud/Vus | taken as in (21) with 1 + δμ = 1.00076. The red line corre-

sponds to 3-family unitarity (2) as in Fig. 2

the same as (5) but with the coupling constant

Gμ = G F + GF = G F (1 + δμ),
GF

G F

≡ δμ > 0. (20)

Constant Gμ = 1.1663787(6) × 10−5 GeV−2 is deter-

mined with great precision from the muon decay [3]. Now

Eqs. (6) and (7), instead of |Vud | and |Vus |, are determining

respectively the values |Vud |×G F/Gμ and |Vus |×G F/Gμ.

Instead the value of |Vus/Vud | determined from (8) remains

unchanged since the Fermi constant cancels out. Thus, under

our hypothesis, the dataset (10) should be modified to the

following:

|Vus | = 0.22333(60) × (1 + δμ)

|Vus/Vud | = 0.23130(50)

|Vud | = 0.97370(14) × (1 + δμ) (21)

Now, involving the extra parameter δμ but assuming the 3-

family unitarity (2), the fit of the above dataset has acceptable

quality, χ2 = 6.1, and the best fit point corresponds to δμ =
0.00076. This situation is shown in Fig. 5 in which the values

of |Vud | and |Vus | are determined by taking δμ = 0.00076.

By this choice of the extra parameter the fit becomes perfectly

compatible with the unitarity (2). The probability distribution

Hill is moved up so that its top now lies on the unitarity line.

By imposing the unitarity condition |Vud |2 + |Vus |2 =
1 − |Vub|2, the list (21) can be transformed in δμ depen-

dent determinations A, B, C of |Vus |. Figure 6 shows these

determinations for δμ = 0.00076. Taking into account that

G F/
√

2 = g2/8M2
W = 1/4v2

w, where vw = 174 GeV is the

weak scale, and parametrizing similarly GF/
√

2 = 1/4v2
F

,

we see that δμ = GF/G F = 0.00076 corresponds to

vF/vw = 36.3, or to the flavor symmetry breaking scale

vF = 6.3 TeV. More widely, the 1σ interval of the param-

eter δμ consistent with unitarity at the 68% C.L. is δμ =
(7.6 ± 1.6) × 10−4 which corresponds to the new scale in

the interval vF = [5.7 ÷ 7.1] TeV.

Fig. 6 Determinations of |Vus | obtained from (21)

6. The non-abelian gauge horizontal flavor symmetry G H

between the fermion families can be the key for understand-

ing the quark and lepton mass and mixing pattern [16–20].

Namely, the form of the Yukawa matrices Yu,d,e in (12) can

be determined by the G H symmetry breaking pattern, i.e.

by the VEV structure of the horizontal scalar fields (flavons)

responsible for this breaking. Then the fermion mass hierar-

chy is related to the hierarchy between these VEVs. In Refs.

[16,17] this conjecture was coined as hypothesis of horizon-

tal hierarchies (HHH). In this picture the fermion masses

emerge from the higher order operators involving, besides

the Higgs doublet φ, also flavon scalars which transfer their

VEV structure to the Yukawa matrices Yu,d,e. These so called

“projective” operators in the UV-complete renormalizable

theory can be obtained via integrating out some extra heavy

fields, scalars [18–20] or vector-like fermions [16,17]. In par-

ticular, this concept implies that the fermion masses cannot

emerge if G H symmetry is unbroken. Thus, G H cannot be

a vector-like symmetry but it should have a chiral charac-

ter transforming the LH and RH particle species in different

representations. In particular, in Refs. [16–26] the horizon-

tal symmetry G H was considered as SU (3)H with the LH

fermions of the three families transforming as triplets and

the RH ones as anti-triplets, as it is motivated by the grand

unification.

However, in the Standard Model framework one has more

possibilities. Namely, in the limit of vanishing Yukawa cou-

plings Yu,d,e → 0 in (12), the SM Lagrangian acquires a

maximal global chiral symmetry U (3)Q ×U (3)u ×U (3)d ×
U (3)ℓ ×U (3)e under which fermion species Q, u etc. trans-

form as triplets of independent U (3) groups. It is tempting to

consider that the non-abelian SU (3) factors of this maximal

flavor symmetry are related to gauge symmetries.1

1 Gauging of chiral U (1) factors is problematic because of anomalies.

In fact, one combination of U (1) factors can be rendered practicable

via the Green–Schwarz mechanism and there are fermion mass models

in which such anomalous gauge symmetry U (1)A is used as a flavor

symmetry [27–30].
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Let us concentrate on the lepton sector and discuss the

gauge symmetry SU (3)ℓ × SU (3)e [31] under which the LH

and RH lepton fields transform as

ℓLα =
(

να

eα

)

L

∼ (3ℓ, 1), eRγ ∼ (1, 3e) (22)

where α = 1, 2, 3 and γ = 1, 2, 3 are the indices of SU (3)ℓ
and SU (3)e respectively. This set of fermions is not anomaly

free. The ways of the anomaly cancellation were discussed

in Ref. [31] and in this letter we shall not concentrate on this

issue.2

For breaking SU (3)ℓ×SU (3)e we introduce flavon fields,

three triplets ηiα of SU (3)ℓ and three triplets ξiγ of SU (3)e,

i = 1, 2, 3. Then the charged lepton masses emerge from the

gauge invariant dimension–6 operator

yi j

M2
ηiαξ

γ

j φ ℓLαeRγ + h.c. (23)

where yi j are order one constants, φ is the Higgs doublet and

M is a cutoff scale. In an UV-complete theory such operators

can be induced via seesaw-like mechanism by integrating

out some heavy scalar or fermion states [16–20]. However,

concrete model building is not the scope of this paper, and for

our demonstration effective operator analysis is sufficient. As

for the neutrinos, their Majorana masses are induced by the

higher order operator

hi j

M3
ν

ηα
i η

β

j φφ ℓT
LαCℓβ + h.c. (24)

where hi j = h j i . The cutoff scale Mν of this operator is not

necessarily the same as the scale M of operator (23).

In order to generate non-zero masses of all three leptons

e, μ, τ , all three SU (3)ℓ flavons ηi as well as SU (3)e ξi

should have non-zero VEVs with disoriented directions. This

means that the VEVs 〈ηiα〉 should form a rank-3 matrix.

Without losing generality, the flavon basis can be chosen so

that the matrix 〈ηiα〉 is diagonal, 〈ηiα〉 = wiδiα , i.e. the flavon

VEVs are orthogonal:

〈η1〉 =

⎛

⎝

w1

0

0

⎞

⎠ , 〈η2〉 =

⎛

⎝

0

w2

0

⎞

⎠ , 〈η3〉 =

⎛

⎝

0

0

w3

⎞

⎠ (25)

Analogously, for ξ -flavons we take 〈ξiγ 〉 = viδiγ . After plug-

ging these VEVs into (23) we obtain the leptonic Yukawa

matrices in the SM Lagrangian (12) as

Y
i j
e = yi j

wiv j

M2
(26)

2 One could consider also the case of vector-like horizontal symme-

try SU (3)V under which both ℓL and eR (and RH neutrinos NR) all

transform as a triplet, or its SU (2) subgroup. Such a symmetry is

anomaly-free and it also has a custodial property for suppression of

flavor-changing [32] discussed in this section. However, it allows a

degenerate spectrum between the fermion families in the exact symme-

try limit, and thus does not meet the paradigm of HHH.

Since the couplings (23) should give the lepton mass hier-

archy, we consider that the latter emerges due to the VEV

hierarchy v3 ≫ v2 ≫ v1 in SU (3)e symmetry breaking, i.e.

v3 : v2 : v1 ∼ mτ : mμ : me as it is described in Ref. [31]. On

the other hand, operator (24) should give the observed neu-

trino mass pattern, m
i j
ν = hi jwiw jv

2
w/M3

ν , and in particular

the large neutrino mixing. This implies that SU (3)ℓ breaking

flavons η should have comparable VEVs, w3 ∼ w2 ∼ w1.

Gauge bosons F
μ
a of SU (3)ℓ associated to the Gell–Mann

matrices λa , a = 1, 2, . . . 8, interact as gF
μ
a Jaμ with the

respective currents Jaμ = J
(e)
aμ + J

(ν)
aμ = 1

2
eLγμλa eL +

1
2
νLγμλaνL , where g is the gauge coupling constant, eL =

(e1, e2, e3)
T
L and νL = (ν1, ν2, ν3)

T
L respectively denote the

family triplets of the LH charged leptons and neutrinos.

At low energies these couplings induce four-fermion (cur-

rent × current) interactions:

Leff = −g2

2
Jμ

a

(

M2
)−1

ab
Jbμ (27)

where M2
ab is the squared mass matrix of gauge bosons F

μ
a

which in the flavon VEV basis (25) is essentially diagonal

apart of a non-diagonal 2×2 block related to F
μ
3 - F

μ
8 mixing.

Namely, the masses of F
μ
1,2, F

μ

4,5 and F
μ
6,7 are

M2
1,2 = g2

2
(w2

2 + w2
1) = g2

2
v2
F

,

M2
4,5 = g2

2
(w2

3 + w2
1), M2

6,7 = g2

2
(w2

3 + w2
2). (28)

As for F
μ
3 and F

μ
8 they have a mass mixing and their mass

matrix reads

M2
38 = g2

2

(

w2
2 + w2

1
1√
3
(w2

1 − w2
2)

1√
3
(w2

1 − w2
2)

1
3
(4w2

3 + w2
1 + w2

2)

)

. (29)

Notice that if w1 = w2 = vF/
√

2, this matrix becomes

diagonal. In the following, for the simplicity of our demon-

stration, we analyze this case.3 Then for the gauge boson

masses we have M2
a = (g2/2)(xavF )2, where

x2
1,2,3 = 1, x2

4,5,6,7 = r + 1

2
, x2

8 = 2r + 1

3
(30)

and r = 2w2
3/v

2
F

. Then operators (27) can be rewritten as

Leff = L
eν
eff + L

ee
eff + Lνν

eff where

L
eν
eff = −2GF√

2

8
∑

a=1

(

eL γ μ λa

xa

eL

)(

νL γμ

λa

xa

νL

)

L
ee
eff = −GF√

2

8
∑

a=1

(

eL γμ

λa

xa

eL

)2

3 Similar analysis can be done also for a general case w1 = w2, along

the lines of Ref. [31] where such analysis was done for the RH gauge

sector SU (3)e .
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L
νν
eff = −GF√

2

8
∑

a=1

(

νL γμ

λa

xa

νL

)2
(31)

where 4GF/
√

2 = 1/v2
F

. Obviously, the factor g2/2 in oper-

ators cancels out and the strength of these operators is deter-

mined solely by the VEVs (25).

The first term L
eν
eff contains operator (18) which con-

tributes to the muon decay μ → eνμν̄e as Gμ = G F + GF .

It is induced by exchange of gauge bosons F
μ
1 and F

μ
2 , or

more precisely by the combination (F
μ
1 ± iF

μ
2 )/

√
2, as in

second diagram of Fig. 4. As it was pointed out in the pre-

vious section, for restoring the CKM unitarity one needs

δμ = GF/G F = (vw/vF )2 to be around 7 × 10−4 which

corresponds to the flavor scale vF = 6 ÷ 7 TeV.

The similar operators in L
eν
eff mediated by the gauge

bosons F
μ

4,5 and F
μ
6,7 contribute to the taon leptonic decays

τ → eντ ν̄e and τ → μντ ν̄μ which rates are well consistent

with the SM predictions [33]. Then, in the case w1,2,3 ∼ vF

but w1 = w2, the branching ratio Ŵ(τ → μντ ν̄μ)/Ŵ(τ →
eντ ν̄e) can have order GF/G F ∼ δμ deviation from the

SM prediction which can be experimentally testable. For a

comparison, the present experimental value of this ratio is

0.9762(28) [5], which is 1.3σ larger than the SM predicted

value 0.9726. In addition, the terms in L
eν
eff with the diago-

nal generators λ3 and λ8 give rise to non-standard neutrino

interactions with leptons. But respective coupling constants

are of the order of GF = δμG F , and hence well below the

experimental constraints.

The last term Lνν
eff in (31) contains the non-standard inter-

actions between neutrinos, but present experimental limits on

the neutrino self-interactions are very weak. However, sec-

ond term L
ee
eff in (31) containing charged leptons in principle

is testable for the scale vF of few TeV.

Interestingly, if the flavor eigenstates e1, e2, e3 are the

mass eigenstates e, μ, τ , the terms (31) do not contain

any LFV operators inducing processes like μ → 3e,

τ → 3μ etc. However, the lepton flavor-conserving con-

tact operators − 4π

�2
L

(eLγμeL)2, − 2π

�2
L

(eLγ μeL)(μLγμμL),

etc. are restricted by the ‘compositeness’ limits �−
L (eeee) >

10.3 TeV and �−
L (eeμμ) > 9.5 TeV. Comparing these oper-

ators with the corresponding terms in (31) and taking into

account the relations (30), the ‘compositeness’ scales can be

expressed in terms of the scale vF . Hence, we obtain the limit

vF >

(

r + 1

r + 0.5

)1/2

× 2.1 TeV. (32)

Here the r–dependent pre-factor approaches 1 when r ≫ 1

and it becomes
√

2 in the opposite limit r ≪ 1. Thus, the

strongest limit emerges in the latter case, vF > 3 TeV or

so, which is anyway fulfilled for our benchmark range vF ≃
(6 ÷ 7) TeV.

The flavor eigenstates e1, e2, e3 coincide with the mass

eigenstates e, μ, τ , if the Yukawa matrix Y
i j
e in (26) is diag-

onal. This can be achieved by imposing some additional dis-

crete symmetries between the flavons ηi and ξi of SU (3)ℓ and

SU (3)e sectors which would forbid the non-diagonal terms

yi j in operator (23). However, in general case the initial fla-

vor basis of the LH leptons is related to the mass basis by the

unitary transformation
⎛

⎝

e1

e2

e3

⎞

⎠

L

= UL

⎛

⎝

e

μ

τ

⎞

⎠

L

=

⎛

⎝

U1e U1μ U1τ

U2e U2μ U2τ

U3e U3μ U3τ

⎞

⎠

⎛

⎝

e

μ

τ

⎞

⎠

L

(33)

Then, in the basis of mass eigenstates, the operators L
ee
eff read

as in (31) but with the substitution λa/xa → U †(λa/xa)U .

Interestingly, in the limit r = 1, i.e. when the VEVs w1,2,3

are equal and so xa = 1, all flavor bosons F
μ
a have equal

masses, and the substitution λa → U †λaU is simply a basis

redetermination of the Gell-Mann matrices. Therefore, no

LFV effects will emerge in this case since the global SO(8)ℓ
symmetry acts as a custodial symmetry. Namely, by Fierz

transformations, using also the Fierz identities for the Gell-

Mann matrices, we obtain

− GF√
2

8
∑

a=1

(

eLγμλa eL

)2 = −4

3

GF√
2

(

eLγμeL

)2
(34)

Obviously, the latter expression is invariant under the unitary

transformation (33).

In general case r = 1, the mixing (33) gives rise to the

LFV operators as e.g. the one inducing μ → 3e decay:

−4Gμeee√
2

(

eLγ μμL

)(

eLγ μeL

)

+ h.c.,

4Gμeee√
2

= C(r)

2v2
F

[

1 + 1 − r

r
|U3e|2

]

U∗
3eU3μ, (35)

where the function C(r) = (r − 1)r
[

(r + 1)(r + 0.5)
]−1

is

limited as |C(r)| < 1, reaching the maximal value at r ≫ 1,

and it vanishes at r = 1. Then, taking |U3e| ≪ 1, we obtain

for the branching ratio of μ → 3e decay

Ŵ(μ → eeē)

Ŵ(μ → eνμν̄e)
= 1

2

∣

∣

∣

∣

Gμeee

G F

∣

∣

∣

∣

2

= 1

8

(

δμC(r)|U∗
3eU3μ|

)2

(36)

The experimental upper bound on this branching ratio is

10−12 [5]. Taking δμ = (vw/vF )2 = 7 × 10−4, the limit

δμ|CU∗
3eU3μ|/

√
8 < 10−6 translates into |CU∗

3eU3μ| <

0.4 × 10−2 which is nicely satisfied if the lepton mixing

angles in (33) are comparable with the CKM mixing angles

in (1) or even larger. E.g. if the VEV ratio is in between

r = 0.5÷1.5, then |C(r)| < 1/7 so that |U∗
3eU3μ| < (1/6)2

or so would suffice for properly suppressing the μ → 3e

decay rate. This means that in this case the matrix elements

|U3μ| and |U3e| can be almost as large as the Cabibbo angle
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sin θC = Vus . The experimental limits on other LFV effects

as e.g. τ → 3μ are weaker, and following the lines of Ref.

[31] one can show that in our model with vF ≃ 6 TeV or

so, they are fulfilled even for whatever large mixings in (33).

Once again, for r = 1 all LFV effects are vanishing owing

to custodial symmetry, see Eq. (34).

7. Let us discuss briefly how the hypothesis Gμ = G F could

affect the SM precision tests. In the SM, at tree level, the weak

gauge boson masses are MW = gvw/
√

2 = evw/
√

2 sin θW

and MZ = MW / cos θW where θW is the weak angle. For

precision tests the radiative corrections are important which

depend also on the top quark and Higgs mass.

The world averages of experimentally measured masses

of Z and W reported by PDG 2018 are [5]:

M
exp
Z = 91.1876(21) GeV,

M
exp
W = 80.379(12) GeV, (37)

while the SM global fit yields to the following values:

MSM
Z = 91.1884(20) GeV,

MSM
W = 80.358(4) GeV. (38)

Hence, the theoretical and experimental values of Z -mass are

in perfect agreement while for W -boson the two values have

about 1.6σ discrepancy:

M
exp
W − MSM

W = (21 ± 13) MeV (39)

In the SM the mass of W -boson, including radiative cor-

rections, is determined as

MW = A0

ŝZ (1 − �r̂W )1/2
(40)

where A0 = (πα/
√

2G F )1/2 = 37.28039(1) GeV taking

G F = Gμ, the factor 1 − �r̂W = 0.93084(8) includes

the main radiative corrections and ŝ2
Z = 1.0348(2)s2

W is

the corrected value of sin2 θW (MZ ) by including the top

and Higgs mass dependent corrections. The theoretical mass

MW = 80.358(4) GeV (38) is then obtained by substituting

in (40) the value ŝ2
Z = 0.23122(3) obtained from the SM

global fit [5]. In our scenario, however, G F = Gμ. Should

we just set in A0 instead of G F = Gμ the “corrected” value

G F = (1+ δμ)−1Gμ, then A0 should be rescaled by a factor

(1 + δμ)1/2, and correspondingly the “theoretical” value of

MW (40) too. In particular, for δμ = 7 × 10−4 we would get

MW = 80.386 GeV, right in the ball-park of the experimental

values (38). However, this is not the right thing to do.

In the global fit of SM MZ is one of the input parame-

ters with smallest experimental errors, along with the fine

structure constant α and the “muon” Fermi constant Gμ.

Essentially, this is the main reason of the good coincidence

between M
exp
Z and MSM

Z . In fact, the SM implies the relation

MZ = MW

ĉZ ρ̂1/2
= A0

ŝZ ĉZ (1 − �r̂W )1/2ρ̂1/2
(41)

where ρ̂ = 1 + ρt + δρ = 1.01013(5) includes the

weak isospin breaking effects, dominantly from the quadratic

mt dependent corrections ρt = 3G F m2
t /8

√
2π2. There-

fore, taking the experimental value of Z -mass (37), Eq.

(41) can be used for determination of ŝ2
Z parameter, ŝ2

Z =
0.23123(3). This, in turn, from MW = MZ ρ̂1/2ĉZ gives

MW = 80.357(4)SM GeV, i.e. practically the same as the

global fit result (38). This is because the determination of the

parameter ŝ2
Z in the SM global fit is dominated by the results

of Z -pole measurements.

However, in our scenario rescaling A0 → A0(1 +
δμ)1/2 changes the value of ŝ2

Z . In particular, taking δμ =
(7.6 ± 1.6) × 10−4, we get ŝ2

Z = 0.23148(3)SM(5)δμ .

Then, again from MW = MZ ρ̂1/2ĉZ , we get MW =
80.344(4)SM(3)δμ GeV. Thus, unfortunately, while the effect

is there, in reality it goes right to the opposite direction. So,

our determination of MW differs from MSM
W , MSM

W − Mour
W =

(13 ± 3) MeV. Thus, with MSM
W already being in tension

with the experimental value (37), our result has more tension:

M
exp
W − Mour

W = (35 ± 13) MeV (2.7σ ).4 If the tension will

increase with future precision, this would mean that one has

to admit at least some minimal step beyond the SM. The rela-

tion between W and Z masses can be improved by increasing

of ρ-parameter via e.g. the VEV ∼ 1 GeV of a scalar triplet

of the electroweak SU (2)×U (1), or by diminishing Z mass

by few MeV e.g. via its mixing with some extra gauge bosons

like Z ′ at the TeV scale or perhaps also with the flavor gauge

bosons considered in the previous section.

8. The value |Vud | can be extracted also from free neutron

decay by combining the results on the measurements of the

neutron lifetime τn with those of the axial current coupling

constant gA. The master formula reads (see e.g. in a recent

review [34]):

|Vud |2 = K/ ln 2

G2
FFnτn (1 + 3g2

A)(1 + �V
R )

= 5024.46(30) s

τn(1 + 3g2
A)(1 + �V

R )
(42)

where Fn = fn(1 + δ′
R) is the neutron f -value fn =

1.6887(1) corrected by the long-distance QED correction

δ′
R = 0.01402(2) [35]. This equation, taking the values

τn = 880.2 ± 1.0 s, gA = 1.2724 ± 0.0023 adopted in

PDG 2018 [5], and �V
R = 0.02361(38) [7], would give the

value

|Vud | = 0.97577(55)τn (146)gA
(18)�V

R
= 0.97577(157)(43)

which has an order of magnitude larger error than |Vud | =
0.97420(10)F t (18)�V

R
= 0.97420(21) obtained from (6)

and used in (9), due to large uncertainties in τn and gA.

4 Let us remark that the tension with the latest results of ATLAS

MATL
W = 80.370(19) is much weaker (1.3σ ), MATL

W − Mour
W =

(26 ± 20) MeV.
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Fig. 7 The red band shows the precision relation (44) between gA and

τn . Black triangles with horizontal error bars show values of gA reported

in Refs. [37–39] and vertical grey band corresponds to their average

(45). Green circles show values of τn reported by trap experiments [42–

50] with respective error bars and horizontal green band shows their

average (47). Blue squares and blue horizontal band show the the same

for beam experiments [51,52]

However, rather than for determination of |Vud |, Eq. (42)

can be used for a consistency check. Namely, by comparing

it with Eq. (6) we get a relation between τn and gA [36]:

τn = 2F t

ln 2 Fn(1 + 3g2
A)

= 5172.0(1.1) s

1 + 3g2
A

(44)

In Fig. 7 this relation is shown by the red band. This formula

is very accurate since the common factors in Eqs. (6) and

(42) including the Fermi constant and radiative corrections

�V
R cancel out.

For the axial current coupling gA, the PDG 2018 quotes

the value gA = 1.2724 ± 0.0023. However, the results

of the latest and most accurate experiments [37–39] which

measured β-asymmetry parameter using different techniques

(the cold neutrons in PERKEO II and PERKEO III experi-

ments [37,39] and ultra-cold neutrons in the UCNA experi-

ment [38]), are in perfect agreement among each other, and

their average determines the axial current coupling gA with

impressive (better than one per mille) precision:

gA = 1.27625 ± 0.00050. (45)

Figure 7 shows the results of Refs. [37–39] and their average

(vertical grey band). For gA in this range Eq. (44) gives the

Standard Model prediction for the neutron lifetime

τSM
n = 878.7 ± 0.6 s (46)

From the experimental side, the neutron lifetime is mea-

sured in two types of experiments. The trap experiments

measure the disappearance rate of the ultra-cold neutrons

(UCN) by counting the survived neutrons after storing them

for different times in the UCN traps and determine the neu-

tron decay width Ŵn = τ−1
n . The beam experiments are the

appearance experiments, measuring the width of β-decay

n → peν̄e, Ŵβ = τ−1
β , by counting the produced protons in

the monitored beam of cold neutrons. In the Standard Model

the neutron decay should always produce a proton, and so

both methods should measure the same value Ŵn = Ŵβ .

However, there is tension between the results obtained

using these two methods, which was pointed out in Refs.

[40,41]. Figure 7 clearly demonstrates the discrepancy.

Namely, by averaging the presently available results of eight

trap experiments [42–50] one obtains:5

τtrap = 879.4 ± 0.6 s, (47)

which is compatible with τSM
n (46). In particular, this value

of τn together with new gA (45) and new value �V
R =

0.02467(22) [8], determines |Vud | with the precision more

than 3 times better than in (43):

|Vud | = 0.97327(33)τn (32)gA
(10)�V

R
= 0.97327(47). (48)

This is compatible with |Vud | = 0.97370(10)F t (10)�V
R

=
0.97370(14) from supeallowed 0+ − 0+ decays used in (10)

but has 3 times larger error than the latter. For making it

competitive with the latter determination, the neutron life-

time should be measured with precision of 0.1 s and gA with

precision 3 times better than in (45), which can be realistic

in future experiments.

On the other hand, the beam experiments [51,52] yield

the value

τbeam = 888.0 ± 2.0 s (49)

which is 4.4σ away from the SM prediction (46). Therefore, it

is more likely that the true value of the neutron lifetime is the

one measured by trap experiments (47) which is consistent

with the SM prediction (46).

About 1 per cent deficit of produced protons in the beam

experiments [51,52] might be due to some unfixed system-

atic errors. Alternatively, barring the possibility of uncon-

trolled systematics and considering the problem as real, a

new physics must be invoked which could explain about one

per cent deficit of protons produced in the beam experiments.

One interesting possibility can be related to the neutron–

mirror neutron (n − n′) oscillation [53–55], provided that

ordinary and mirror neutrons have a tiny mass difference 300

neV or so [56]. Then in large magnetic fields (5 Tesla) used

in beam experiments n − n′ conversion probability can be

resonantly enhanced to about ∼ 0.01, and the corresponding

fraction of neutrons converted in mirror neutrons will decay

5 The PDG 2018 average τn = 880.2±1.0 s includes the results of five

trap experiments [42–47] and two beam experiments [51,52]. The error

enlarged by a factor

√

χ2
dof ≈ 2, essentially for a loose compatibility

between the data obtained from the trap and the beam experiments. This

average does not include the results of three recent trap experiments

[48–50] published in 2018.
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in an invisible (mirror) channel without producing ordinary

protons.

Concluding this section, let us remark that the recent accu-

rate calculations of the short-range radiative corrections �V
R

[8,12] and respective redetermination of Vud has no influ-

ence on the determination of τn (46) obtained from Eq. (44).

In fact, the latter equation directly relates the neutron life-

time to the value F t accurately measured in superallowed

0+ − 0+ nuclear transitions and to the value gA obtained

from accurate measurements of β-asymmetry. Notice that

the relation (44) remains valid also in the presence of non-

standard vector GV or axial G A coupling constants (which

can be the case if some non-standard interactions mediated

by new vector bosons also contribute to the neutron decay)

since the value GV (independently whether it is equal to

G F |Vud | or not) anyway cancels out [57]. Hence, only the

ratio gA = G A/GV remains relevant which is accurately

determined from the measurements of β-asymmetry. In par-

ticular, Eq. (44) remains valid in our model with G F = Gμ

discussed in previous section.

9. In this paper we discussed the CKM unitarity problem.

The present experimental and theoretical accuracy in the

determination of the first row elements in the CKM matrix

(1) indicates towards 4.3σ deviation from the unitarity (2).

We investigated two new physics scenarios which could set-

tle the problem. The respective results are summarized in

Table 1.

The first, rather straightforward possibility is related to the

existence of extra weak isosinglet down-type quark b′ with

the mass of few TeV which should have a rather large mix-

ing with the first family, |Vub′ | ≃ 0.04. However, apart of the

persistent question “who has ordered that?”, this scenario has

some unnatural features related to the flavor-changing phe-

nomena. In particular, given that |Vub′ | ≃ 0.04, then b′ will

induce too large effects in K 0−K
0

system etc. unless its mix-

ings with 2nd and 3rd families Vcb′ and Vtb′ are rather small.

Perhaps such a situation is possible by some conspiracies,

but a priori it looks rather weird.

As another possibility for restoring unitarity, one can intro-

duce additional effective operator contributing to the muon

decay in positive interference with the Standard Model con-

tribution. In this case the Fermi constant would be slightly

different from muon decay constant, G F = Gμ/(1 + δμ),

where δμ ≃ 7×10−4 would suffice for unitarizing the CKM

matrix. Namely, the values of Vus and Vud (which are nor-

mally extracted by assuming G F = Gμ) are shifted by a

factor 1 + δμ while their ratio is not affected. The needed

effective operator can be mediated by a flavor changing boson

of a gauge horizontal symmetry SU (3)ℓ between the three

lepton families which is spontaneously broken at the scale of

few TeV.

The scenario with gauge inter-family symmetry SU (3)ℓ×
SU (3)e acting on left-handed and right-handed leptons can

give a natural understanding of the mass hierarchy among

charged leptons and large mixing of neutrinos as a conse-

quence of spontaneous breaking pattern of this symmetry.

Interestingly, despite the fact that these gauge bosons have

flavor-changing couplings with the leptons, their exchanges

do not induce dramatic LFV effects as e.g. μ → 3e, τ → 3μ

decays etc. since these effects can be kept under control

thanks to approximate custodial symmetry.

Analogously, one can consider the inter-family gauge

symmetry SU (3)Q × SU (3)u × SU (3)d between the quarks.

Its breaking pattern can be at the origin of the quark mass and

mixing spectrum. Interestingly, the flavor-changing gauge

bosons of SU (3)Q can contribute to the hadronic decays of

kaons, hyperons, etc. In supersymmetric extension of the SM,

the chiral gauge symmetries SU (3)ℓ × SU (3)e for leptons

and SU (3)Q × SU (3)u × SU (3)d for quarks can be also

motivated as a natural tool for realizing the minimal flavor

violation scenario [58–60].

There is the interesting possibility that these flavor gauge

symmetries are common symmetries between particles of

ordinary and mirror sectors, which is also motivated by the

possibility of cancellation of triangle anomalies of gauge

SU (3) factors between the ordinary and mirror fermions

[61]. Mirror matter is also a viable candidate for dark mat-

ter (see e.g. reviews [62–64]). Since flavor gauge bosons are

messengers between the two sectors, they can mediate new

flavor violating phenomena such as muonium–mirror muo-

nium, kaon–mirror kaon oscillations, etc. [31] and also can

give a possible portal for direct detection of mirror matter

in dark matter detectors [65,66]. Cosmological implications

and limits were discussed in Ref. [31].
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