
The Clarens Web Service Framework for Distributed Scientific Analysis in
Grid Projects

Frank van Lingen1, Conrad Steenberg1, Michael Thomas1, Ashiq Anjum2, Tahir Azim2, Faisal

Khan2, Harvey Newman1, Arshad Ali2 , Julian Bunn1, Iosif Legrand1

1California Institute of Technology, United States

Email:{fvlingen, julian.bunn@caltech.edu} {iosif.legrand@cern.ch} {newman, conrad,
thomas@hep.caltech.edu}

2National University of Science and Technology, Pakistan

Email:{arshad.ali, ashiq.anjum, tahir, faisal.khan@niit.edu.pk}

Abstract

Large scientific collaborations are moving towards

service oriented architectures for implementation and
deployment of globally distributed systems. Clarens is
a high performance, easy to deploy Web Service
framework that supports the construction of such
globally distributed systems. This paper discusses
some of the core functionality of Clarens that the
authors believe is important for building distributed
systems based on Web Services that support scientific
analysis.

1. Introduction

Scientific collaborations are becoming more and
more geographically dispersed. Researchers from all
over the world collaborate on new scientific
discoveries and breakthroughs in many "big science"
experiments such as the Virtual Observatory [40], the
Large Hadron Collider (LHC) program [13], LIGO
[20] and Nuclear fusion [19]. Not only do these
experiments generate tera bytes to peta bytes of data.
In many cases resources for analyzing and storing
these large amounts of data are distributed on a
national or international scale.

Some of the largest scientific collaborations today,
such as CMS [21] and ATLAS [22] are building
experiments for CERN's LHC program, each
encompass 2000 physicists from 150 institutions in
more than 30 countries. Each of these collaborations
include 300-400 physicists in the US, from more than
30 universities, as well as the major US HEP
laboratories.

Realizing the scientific wealth of these science
experiments, presents new problems in data access,
processing, distribution, and collaboration across
national and international networks, on a scale
unprecedented in the history of science. [23] discusses
several of the information technology challenges
facing these “big science” experiments.

All of these challenges need to be met, so as to
provide an integrated, managed, distributed system
infrastructure that can serve "virtual organizations" on
a global scale. One technology that holds the promise
to form the basis of such an integrated, managed,
distributed system are Web Services.

The Clarens project was started in 2001 [34] to
provide a scalable Web Service framework for the
development of distributed applications. Initially
Clarens was developed as part of the CMS experiment
[21], however as Web and Grid Services became two
of the de facto standards for development of
distributed applications, Clarens became part of several
projects: Ultralight [12], HotGrid [14], Monte Carlo
Processing Service using RunJob [26], the physics
shell project (PHYSH) [7], Lambda Station [24]
project, IGUANA [6] and the Proof [8] Enabled
Analysis Center (PEAC). Development and
deployment of Clarens is also part of several large
Grid collaborations such as PPDG [41], IvdGL [43],
Griphyn [42], OSG [25] and Grid3 [44]. Clarens was
also used in the winning SuperComputing 2003
bandwidth challenge (23 Gb/s peak), in which Clarens
servers generated a peak of 3.2 Gb/s disk-to-disk
streams consisting of CMS detector events.

This paper gives an overview of Clarens. More
information about Clarens can be found in [1], [14],
[15], [16], [17], [18], and [34]. The first sections of

this paper discuss the architecture and core
functionality of the Clarens framework. This
functionality is, according to the authors essential in
providing a framework for developing distributed
service based applications for scientific collaboration
and distributed data analysis. Section 4 describes some
of the portal functionality while section 5 describes
several performance measurements of the Clarens
server. Section 6 and section 7 describe related and
future work. Section 8 finishes with conclusions.

Unless mentioned otherwise Clarens refers to both
the Python and Java implementation, JClarens refers to
the Java implementation and PClarens refers to the
python implementation.

Within this paper we use the following definitions
for Web Services and Web Service Framework: A
Web Service is a component performing a task, most
likely over a network. A Web Service can be identified
by a URI and its public interfaces and bindings are
described using WSDL. At the basis of a Web Service
call (invocation) is a protocol (frequently, but not
exclusively this is XML-RPC [3] or SOAP [5]). A
Web Service Framework is an application that
provides support for developing and deploying Web
Services.

2. Architecture

Clarens aims to provide the basis for a consistent,
high-performance, fault tolerant system of distributed
Web Services deployment and development. By
leveraging existing, widely implemented standards and
software components, including HTTP, SSL/TLS
(RFC 2246) encryption and X509 (RFC 3280)1
certificate-based authentication, and SOAP/XML RPC
data serialization, Clarens also aims to be easily
accessible to a wide variety of client implementations
with the minimum of software dependencies. This
approach lowers the barriers of entry to participate in
the service network, re-use of existing developer
skills, and a wide choice of development tools and
languages.

In order to improve scalability, the PClarens server
is implemented as an extension to the Apache Web
Server [2] using the mod_python extension in the
Python byte-code compiled language. PClarens itself is
both architecture and platform independent by virtue
of using Python as an implementation language. Figure
1 shows the PClarens architecture. The Apache server
receives an HTTP POST or GET request from the
client, and invokes PClarens based on the form of the

1 For Internet Engineering Task Force Request For Comment (RFC)
documents, see http://www.ietf.org/

URL specified by the client (other URLs are handled
transparently by the Apache server according to its
configuration). Secure Sockets Layer (SSL) encrypted
connections are handled transparently by the Apache
server, with no special coding needed in PClarens
itself to decrypt (encrypt) requests (responses).

APACHE WEB
SERVER

MOD_PYTHON

VO Management

Service Management

Remote File Access

Security PKI

XML-RPC GET

Discovery

SOAP

Databases

Client

Core Services Utilities

Process Management

Clarens

INTERNET

Figure 1. PClarens Architecture

After the request has been processed, a response is
sent back to the client, which is usually encoded as an
RPC response, but may also be in the form of binary
data. GET requests return a file or an XML-encoded
error message to the client, while XML-RPC or SOAP
encoded POST requests return a similarly encoded
response error message

In response to a preference for developing not only
Python based Web Services but also Java based Web
Services, a second Java based Web Service framework
has been implemented (JClarens). The Java language
and runtime environment have several desirable
characteristics, including implementations on several
platforms, a large developer community, and mature
Web Service development tools.

The JClarens implementation is based on so-called
servlets implemented inside a commodity container, in
this case the open source Apache Tomcat server [4].
For JClarens the Tomcat server replaces the Apache
web server and mod_python module in the
architecture as depicted in Figure 1.

As mentioned in the beginning of this section,
Clarens utilizes HTTP requests. Since the HTTP
protocol does not require2 persistent connections, it is
important that session information is stored

2 In the HTTP 1.1 standard, persistend connections are the default for
performance reasons, but the protocol is still inherently stateless, as
opposed to e.g. the FTP protocol.

persistently on the server side. This has the positive
side-effect of allowing clients to survive server failures
or restarts transparently without having to re-
authenticate themselves to the server in those cases.

2. Core Services and Utilities

The architecture discussed in the previous section
can give the impression that Clarens (both the Python
and Java implementation) is very similar to for
example a Tomcat server and an Apache AXIS module
[37] (the Java implementation actually uses Tomcat
and AXIS). Both systems can be called Web Servers
that host Web Services. Some of the differences are
that the Clarens Web Service framework address
issues such as:

• Certificate based authentication when establishing

a connection.
• Access control on Web Services.
• Remote file access (and access control on files).
• Discovery of services.
• Shell service. Shell like access to remote machines

(managed by access control lists).
• Proxy certificate functionality
• Virtual Organization management.
• Multiple protocols (XML-RPC, SOAP, Java RMI

(only for JClarens), JSON-RPC [38]).

This section gives an overview of several of the

services and utilities within the Clarens framework

2.1 Virtual Organization Management

Virtual organization management allows
(geographically dispersed) users in large collaborations
to be grouped together. Using this group structure it is
easier for administrators of Grid resources to create
fine grained access control lists for different groups
and sub groups of scientists.

Each Clarens server instance manages a tree-like
Virtual Organization (VO) structure, as shown in
Figure 2, rooted in a list of administrators. This group,
named admins, is populated statically from values
provided in the server configuration file on each server
restart. The list of group members is cached in a
database, as is all VO information. The admins group
is authorized to create and delete groups at all levels.

Each group consists of two lists of distinguished
names (DNs), for the group members and
administrators respectively. Group administrators are
authorized to add and delete group members, as well as
groups at lower levels. The group structure is

hierarchical because group members of higher level
groups are automatically members of lower level
groups in the same branch. The example in Figure 2
demonstrates the top-level groups A,B, and C with
second level groups A.1, A.2, and A.3.

DN1, DN2, …
Members

Group: Admins

DN1, DN2, …

DN1, DN2, …
Members

Admins

Group A

DN1, DN2, …

DN1, DN2, …
Members

Admins

Group B

DN1, DN2, …

DN1, DN2, …
Members

Admins

Group C

DN1, DN2, …

DN1, DN2, …
Members

Admins

Group A.1

DN1, DN2, …

DN1, DN2, …
Members

Admins

Group A.2

DN1, DN2, …

DN1, DN2, …
Members

Admins

Group A.3

Figure 2. Clarens Virtual Organization Diagram

A further optimization, the hierarchical information
in the DNs may also be used to define membership, so
that only the initial significant part of the DN need to
be specified in defining members of a group. DNs are
structured to include information on the country (C),
state/province (ST), locality/city (L), organization (O),
organizational unit (OU), common name (CN), and
(Email). An example DN issued by the DOE Science
Grid CA for individuals is:

/O=doesciencegrid.org/OU=People/CN=Jo
hn Smith 12345

For servers a DN could look like:

/O=doesciencegrid.org/OU=Services/CN=
host/www.mysite.edu for servers.

To add all individuals to a particular group, only
/O=doesciencegrid.org/OU=People need to
be specified as member DN

2.2 Access Control Management

Access control management enables administrators
to deny or allow groups (virtual organizations) of
using resources. For example certain services have
methods that are used for administration of the service
by persons other than the local site administrator. You

do not want to give everybody access to these
methods. Access Control Lists (ACLs) allow you to
prevent and manage that.

Execution of Web Service methods as well as
mapping of certificate DNs to users on the server
system is controlled by a set of hierarchical ACLs in a
similar fashion to the VO structure described in the
previous sub section, and modelled after the access
control (.htaccess) files used by Apache.

Methods have a natural hierarchical structure.
Clarens places no arbitrary restrictions on the depth of
this hierarchy, but a depth of two or three levels is
most common, e.g. module.method or
module.submodule.method.

An ACL consists of an evaluation order
specification (allow, deny or deny, allow) followed by
a list of DNs allowed, groups allowed, DNs denied and
groups denied access. A DN or group granted access to
a higher level method automatically has access to a
lower level method, unless specifically denied at the
lower level. The ACL specification is therefore
evaluated from the lowest applicable level to the
highest.

2.3 Remote File Access

In many “big science” experiments data is stored in
files rather than in databases. As storage resources will
be geographically distributed the data (thus the files)
will be too. Scientists should be able to access remote
data using well known interfaces (e.g. UNIX file
system). Furthermore scientists should be able to deny
or allow read or write access on these remote files, to
groups of collaborators. The Clarens file service
enables scientists to manage their remote data and
create ACLs for it.

Clarens serves files in two different ways: in
response to standard HTTP GET requests, as well as
via a file.read() service method. A virtual server
root directory can be defined for each of the above via
the server configuration file which may be any
directory on the server system. The file.read()
method takes a filename, an offset and the number of
bytes to return to the client. Error messages are
returned as serialized RPC responses. Network I/O is
handed off to the web server, which uses the zero-copy
sendfile() system call where available to
minimize CPU usage and increase throughput.

Other file access methods include file.ls() to
obtain director listings, file.stat() to obtain file
or directory information, and file.md5() to obtain
a hash file for checking file integrity.

Just as with methods, files (and directories) can be
subject to ACLs using the same structure as described
in the previous sub section. The ACLs specification for
files extend the method ACLs with two extra fields:
read and write.

2.4 Dynamic Service Discovery

Within a global distributed service environment
services will appear, disappear, and be moved in a
unpredictable manner. It is virtually impossible for
scientists, and applications to keep track of these
changes. The discovery service allows scientists and
applications to query for services and retrieve up to
date information on the location and interface of a
service. Using the discovery service, applications (and
this include other services) can make service calls that
are location independent by virtue of the discovery
service. Binding to a location can than occur in real
time. Such a discovery environment needs to scale to
large numbers of servers and users without incurring
prohibitively large amounts of administrative
overhead.

CS

SS

DS

CL

MonALISA JINI
Network

Station
Servers

Clarens Discovery
Servers/JINI Clients

Clarens
Servers

Clients

SS SS

DS

CL CL

CS CS CS

Figure 3. The MonALISA-based service

discovery architecture.

The MonALISA[11] framework provides a scalable
distributed monitoring service system using
JINI/JAVA [35] and WSDL/SOAP technologies At
the time of writing MonALISA was monitoring more
than 90 sites and network connections. The sites range
from 1 PC to dozens of computing farms with 100s of
compute nodes3. Each MonALISA server acts as a
dynamic service system and provides the functionality
to be discovered and used by any other services or
clients that require such information.

3 You can access this information by downloading the monitoring
client: http://monalisa.caltech.edu/dl_jClient.html

Information provided to MonALISA is usually
arranged roughly as described by the so-called GLUE
[36] schema, as a hierarchy of servers, farms, nodes
and key/numerical value pairs. Although the schema is
not ideal for organizing service description data, the
scalable publish-subscribe network offers a ready to
use service discovery environment.

Clarens servers can publish service information
using a UDP-based application to so called station
servers that in turn republish it to the MonALISA
network.

Figure 3 shows the current discovery architecture
where the JClarens server becomes a fully fledged JINI
client, and aggregating discovery information from the
JINI network. The JClarens server is consequently able
to respond to service searches far more rapidly by
using the local database.

The discovery service is one of the several services
identified by the Open Science Grid consortium [25] as
vital for robust distributed system development.

2.5 Shell Service

The Shell provides a secure way for authorized
clients to execute shell commands on the server. The
command is executed by a designated local system
user.

The local system user is designated by using an
ACL file located under the clarens/shell directory,
named .clarens_user_map. The file maps user
distinguished names to local system users.

Each mapping tuple consists of a system user name
string, followed by a list of user distinguished name
strings, a list of group name strings, and a final list
reserved for future use. For example, this file maps the
user: /DC=org/DC=doegrids/OU=People/
CN=Joe User to the user joe:

Execution takes place in a sandbox owned by the
local system user. This sandbox can be created or re-
used for subsequent commands and is visible to the file
service. Using the shell.cmd_info command the
user gets back the top directory of the sand box that it
can use to issue file service commands such as
uploading and downloading files, but also commands
like file.ls, and file.find.

2.6 Proxy Service

The proxy service provides a secure way to store
and retrieve so-called "proxy" certificates on a Clarens
server. Proxy certificates consist of a temporary
certificate (public key) and unencrypted private key
that can be used to log into remote servers without the

inconvenience to type in the private key password over
and over. This has the side benefit that it allows the
proxy to be used on behalf of the user by others, so-
called delegation.

This service also allows the user to use a previously
stored proxy as a way of logging into the server by
only knowing the certificate distinguished name and
password that was used to store it.

Additionally, a stored proxy can also be "attached"
to an existing session, thereby renewing an existing
proxy, or bringing the benefits of delegation to
sessions that were initiated without a proxy certificate -
e.g. browsers use CA-issued certificates to initiate
sessions.

3. Portal Functionality

According to [29] a Grid portal is a user's point of
access to a Grid system. It provides an environment
where the user can access Grid resources and services,
execute and monitor Grid applications, and collaborate
with other users. Portals can also lower the barrier for
users (the scientists) to access Web Services and using
Grid enabled applications.

As modern browsers have native support for SSL-
encrypted connections and client-side certificate
authentication, it provides a platform for constructing
Grid portals on top of Clarens services.

Clarens is able to serve web pages in response to
HTTP GET requests, the portal is implemented as a
series of static web pages that embed JavaScript scripts
to handle communication and web service calls using
dynamic HTML. Such a portal implementation
eliminates the need for users to install any additional
software apart from a web browser, which most people
already have.

Functionality currently provided by the browser
interface include: browsing remote files, access control
management, virtual organization management, service
discovery, job submission.

The remote file access portal component has a look
and feel similar to conventional file browsers such as
MS explorer (within a JavaScript context). Users can
browse the parts of the remote file system to which
they have been granted access to.

Similar to the file access portal component, the
discovery portal component enables users to query for
servers, and services within a browser context, and by
point and click on the query results can navigate to
portal components.

Clarens does not offer a framework to build portals
other than the already available tools that enable

developers to embed JavaScript components that
execute Web Service calls to Web Services.

4. Performance

Important for the success of Web Services is the
performance of the web server, hosting the service.
Although badly engineered Web Services can still
have a slow performance, the server itself should not
become the bottleneck. Poor performance can lead to
high hardware costs for larger servers or unacceptable
long response times. A performance and scalability
test for PClarens was performed using a system
consisting of a dual 2.8 GHz Xeon server with 1 GB of
memory, accessed using a 100 Mb/s local area network

In this test a configurable number of unencrypted
client connections were opened and set to access the
system.list_methods Web Service method as
rapidly as possible. The client was run on a 2.6 GHz
Pentium 4 workstation as a single process opening
connections to the server and completing requests
asynchronously,

The clients would make 1000 web service calls to
the server, after which the total response time was
measured (e.g. 0.5 seconds for 1000 calls means 2000
calls per second). This process was repeated 2000
times for each number of asynchronous clients (we
varied the number of asynchronous clients between 1
and 79). After varying the clients from 1 to 79 the
process described above was repeated to verify the
results. A grand total of 316 million requests where
successfully completed without any client or server
errors.

Figure 4. Clarens performance

Each request passed through two access control

checks involving access to several databases, namely
checking whether the client credentials are associated
with a current session, and whether the client has

access to the particular method being called. No
caching was performed on the server, with each
request incurring a database lookup for all registered
methods in the server, and serializing the resultant list
of more than 30 strings as an array response in XML-
RPC. The Python client de-serialized each response to
a native list object that could be used in the rest of the
script.

In effect this test reports the overhead that the
PClarens server system imposes on service request,
with control passing through all parts of the server
used by a typical service.

This test under-reports the actual server performance
for at least two reasons: in a more realistic
environment multiple client machines would be
accessing the server, and the Apache server
configuration was used unmodified on a Linux 2.4-
based kernel which is known to be a sub-optimal setup.

A final summary of the results of this test is given in
Figure 4 showing an average of 1450 requests per
second served.

During the test the controlling Apache server
process that is responsible for accepting new requests
and opening new connections constantly used all
available CPU time on of the two CPUs of the test
server. This is probably due to the way that the file
descriptors use for network connections are handled by
the Linux 2.4-kernel.

Future tests will be repeated using more optimized
Apache configurations and SSL/TLS-encrypted
network connections. Informal test show the latter to
reduce performance by up to 50%. No formal tests
were setup for other Web Service frameworks such as
Globus. However 3rd party test results with the Globus
toolkit 3 differed4 substantially with Clarens
performance

5. Related Work

Several other Web Service and portal frameworks
have been developed in the last couple of years. The
latest versions of Globus [9] have been service
oriented frameworks based on the open grid service
architecture (OGSA). Although Globus offers secure
and authenticated access using the concept of grid map
files, it has a much coarser authentication and access
control granularity than the Clarens ACL and VO
management. Furthermore, the server performance
(calls/second) for Globus 3 are not as high as the
Clarens server.

4 A trivial method 100 times (ignoring first invocation) across a
100Mbps LAN using GTK 3.0 and GTK 3.9.1 resulted in 5 to 1 calls
per second.

IBM Websphere [10] is a commercial product that
enables you to develop and deploy Web Services and
is therefore not a desirable candidate to be deployed in
large science collaborations that rely on open source.

OGCE [30] provides open source software for
building Grid Computing Portals. Several of its
portlets are based upon Globus services. A drawback
(at the time of writing this paper) is the large size of
the download, setup and configuration functionality.
Several OGCE portlets have a conceptual commonality
with Clarens based portals. For example: remote file
access and job submission. Furthermore, OGCE
portlets are based on Java, rather than JavaScript
which offers a richer development environment.

Glite[31] is a Perl based service framework based
on Alien [32] that is used by the EGEE project [33] to
develop web services. Several of the interfaces
developed for services in this project are similar (but
not the same) to Clarens service interfaces. The first
versions of the Glite framework were based on Alien
which initially was not designed to be a generic service
oriented framework, while Clarens was. Substantial
work has been carried out however to make Glite, less
dependent on Alien.

6. Future Work

Future work will focus (amongst others) on: GUI
framework, message based protocols, mass storage
integration, improved service discovery functionality.

The JavaScript browser based GUI has limitations
in creating easy to use and functional graphical user
interfaces. Instead Java offers more flexibility in
creating sophisticated user interface to support
scientists in interaction with a distributed service
environment. The current Clarens Web Service
implementation was designed for a request response
mode of operation, making it ill-suited for the type of
asynchronous bi-directional communication required
for interactions between users and the jobs they are
running on private networks protected by network
address translation (NAT) and firewalls. An instant
messaging (IM) architecture provides the possibility to
overcome this limitation. Since messages can be sent
and received by jobs asynchronously, jobs can be
instrumented to act as Clarens servers, or clients
sending information to monitoring systems or remote
debugging tools.

Although Clarens provides remote file access
through a Web Service, it does not support interfaces
to mass storage facilities yet. Work is under way to
provide an SRM service interface [27] to dCache [28]

such that Clarens can support robust file transfer
between different mass storage facilities.

Work is underway to provide interoperability
between the Clarens discovery service and Globus
MDS [39] such that both systems can publish/retrieve
information in the other system. Other activities
include collaboration with the EGEE project on a
common discovery interface.

7. Conclusions

The Clarens Web Service framework is gaining
acceptance in the science community to support the
development of a scalable distributed service
environment. Several of the projects have chosen
Clarens as it offers a good service response
performance and yet provides powerful features such
as ACL and VO management, service discovery, and
remote file access.

Clarens provides a growing functionality for
distributed analysis in a Grid-based environment,
coupled with a set of useful client implementations for
physics analysis. The projects that utilize Clarens also
provide valuable feedback, which enable the Clarens
team to enhance and improve the core functionality of
Clarens and reuse components across projects that
focus on scientific analysis.

8. Acknowledgements

This work is partly supported by the Department of
Energy grants: DE-FC02-01ER25459, DE-FG02-92-
ER40701, DE-FG02-04ER25613, DE-AC02-
76CH03000 as part of the Particle Physics DataGrid
project, National Science Foundation grants: ANI-
0230967, PHY-0218937, PHY-0122557, PHY-
0427110 and by Department of State grant: S-
LMAQM-04-GR-170. Any opinions, findings,
conclusions or recommendations expressed in this
material are those of the authors and do not necessarily
reflect the views of the Department of Energy, the
National Science Foundation, or the Department of
State.

9. References

[1] Steenberg, C., Aslakson, E., Bunn, J., Newman, H.,

Thomas, M., Van Lingen, F., “The Clarens Web Service
Architecture”, Computing for High Energy Physics, La
Jolla, California, 2003

[2] Apache Web Server, Apache Software Foundation,
http://www.apache.org

[3] XML Remote Procedure Call Website,
http://www.xmlrpc.com

http://www.apache.org/
http://www.xmlrpc.com/

[4] The Tomcat Servlet Engine, http://tomcat.apache.org
[5] Simple Object Access Protocol, W3 Consortium,

http://www.w3.org/2002/ws/
[6] I. Osborne, S. Muzaffar, L. Taylor, L. Tuura, G.

Alverson, G. Eulisse, "IGUANA Interactive Graphics
Project: Recent Developments", In proceedings of
CHEP 2004, Interlaken

[7] Physh, http://cmsdoc.cern.ch/cms/aprom/physh/
[8] M. Ballintijn, “Global Distributed Parallel Analysis

using PROOF and AliEn”, In Proceedings of CHEP
2004 Interlaken

[9] Foster, C. Kesselman, “Globus: A Metacomputing
Infrastructure Toolkit” Intl. J. Supercomputer
Applications, 11(2):115-128, 1997

[10] Websphere, http://www.websphere.org/
[11] I. Legrand, “MonALISA - MONitoring Agents using a

Large Integrated Service Architecure” International
Workshop on Advanced Computing and Analysis
Techniques in Physics Research, Tsukuba, Japan,
December 2003

[12] UltraLight Collaboration “UltraLight: An Ultrascale
Information System for Data Intensive Research”
proposal Submitted to NSF MPS/Physics: “ITR”
February 2004. See also: http://ultralight.caltech.edu/

[13] LHC Project, http://lhc-new-homepage.web.cern.ch/lhc-
new-homepage/

[14] R. Williams, C. Steenberg, J. Bunn, " HotGrid:
Graduated Access to Grid-based Science Gateways", In
Proceedings of IEEE Supercomputing Conference,
Pittsburgh USA, 2004

[15] C. Steenberg, E. Aslakson, J. Bunn, H. Newman, M.
Thomas, F. van Lingen "Clarens Client and Server
Applications" CHEP, La Jolla California 2003

[16] C. Steenberg, J. Bunn, I. Legrand, H. Newman, M.
Thomas, F. van Lingen, A. Anjum, T. Azim "The
Clarens Grid-enabled Web Services Framework:
Services and Implementation" In Proceedings of CHEP,
Interlaken Switzerland 2004

[17] A. Ali, A. Anjum, R. Haider, T. Azim, W. ur Rehman,
J. Bunn, H. Newman, M. Thomas, C. Steenberg.
“JClarens: A Java Based Interactive Physics Analysis
Environment for Data Intensive Applications” in the
Proceedings of ICWS, the International Conference of
Web Services, San Diego, USA 2004

[18] Clarens homepage, http://clarens.sourceforge.net
[19] Join European Torus, http://www.jet.efda.org/
[20] LIGO, http://www.ligo.caltech.edu/
[21] The Compact Muon Solenoid Technical Proposal,

CERN/LHCC 94-38 (1994) and CERN LHCC-P1; see
also: http://cmsdoc.cern.ch/

[22] The ATLAS Technical Proposal, CERN/LHCC 94-43
(1994) and CERN LHCC-P2; see also:
http://atlasinfo.cern.ch/ATLAS/TP/NEW/HTML/tp9ne
w/tp9.html

[23] J. Bunn and H. Newman "Data Intensive Grids for
High Energy Physics", in "Grid Computing: Making the
Global Infrastructure a Reality”, edited by Fran
Berman, Geoffrey Fox and Tony Hey, March 2003 by
Wiley.

[24] Lambda station, http://www.lambdastation.org/
[25] Open Science Grid, http://www.opensciencegrid.org/
[26] P. Love, I. Bertram, D. Evans, G. Graham, "Cross

Experiment Workflow Management: The Runjob
Project", In proceedings of CHEP, Interlaken
Switzerland 2004

[27] A. Shoshani, A. Sim, J. Gu, “Storage Resource
Managers: Middleware Components for Grid Storage”,
In proceedings of Mass Storage Systems conference,
Maryland USA 2002

[28] P. Fuhrmann, "dCache the commodity cache", In
proceedings of the Twelfth NASA Goddard and Twenty
First IEEE Conference on Mass Storage Systems and
Technologies, Washington DC 2004

[29] D. Gannon, G. Fox, M. Pierce, B. Plale, G. von
Laszewski, C. Severance, J. Hardin, J. Alameda, M.
Thomas, J. Boisseau, “Grid Portals: A Scientist's Access
Point for Grid Services” Sept. 19 2003, GGF working
draft

[30] OGCE http://www.ogce.org/
[31] M. Lamanna, B. Koblitz, T. Chen, W. Ueng, J. Herrala,

D. Liko, A. Maier, J. Moscicki, A. Peters, F. Orellana,
V. Pose, A. Demichev, D. Feichtinger, "Experiences
with the gLite Grid Middleware" In proceedings of
CHEP, Interlaken Switzerland, 2004. see also:
http://glite.web.cern.ch/glite/

[32] P.Buncic, A.J. Peters, P.Saiz "The AliEn System, status
and perspectives",In proceedings of CHEP, La Jolla,
California 2003

[33] E. Laure, F. Hemmer, F. Prelz, S. Beco, S. Fisher, M.
Livny, L. Guy, M. Barroso, P. Buncic, P. Kunszt, A. Di
Meglio, A. Aimar, A. Edlund, D. Groep, F. Pacini, M.
SGaravatto, O. Mulmo, " Middleware for the next
generation Grid infrastructure", In proceedings of
CHEP, Interlaken, Switzerland 2004.

[34] C. Steenberg, J. Bunn, T.Hickey, K. Holtman, I.
Legrand, V. Litvin, H. Newman, A. Samar, S. Singh, R.
Wilkinson (for the CMS Collaboration), "Prototype for
a Generic Thin-Client Remote Analysis Environment
for CMS" Proceedings of CHEP, paper 3-044, p. 186,
H.S. Chen (ed.), Beijing China, 2001

[35] JINI, http://www.sun.com/software/jini/
[36] GLUE, http://www.cnaf.infn.it/~sergio/datatag/glue/

index.htm
[37] AXIS, http://ws.apache.org/axis/
[38] JSON RPC,

http://oss.metaparadigm.com/jsonrpc/index.html
[39] K. Czajkowski, S. Fitzgerald, I. Foster, C. Kesselman,

“Grid Information Services for Distributed Resource
Sharing”, Proceedings of the Tenth IEEE International
Symposium on High-Performance Distributed
Computing (HPDC-10), IEEE Press, August 2001.

[40] National Virtual Observatory http://www.us-vo.org
[41] Particle Physics Data Grid, http://www.ppdg.net/
[42] Grid Physics Network, http://www.griphyn.org/
[43] International Virtual Data grid laboratory,

http://www.ivdgl.org/
[44] Grid3, http://www.ivdgl.org/grid2003/

http://tomcat.apache.org/
http://www.w3.org/2002/ws/
http://cmsdoc.cern.ch/cms/aprom/physh/
http://www.websphere.org/
http://ultralight.caltech.edu/
http://lhc-new-homepage.web.cern.ch/lhc-new-homepage/
http://lhc-new-homepage.web.cern.ch/lhc-new-homepage/
http://clarens.sourceforge.net/
http://www.jet.efda.org/
http://www.ligo.caltech.edu/
http://cmsdoc.cern.ch/
http://atlasinfo.cern.ch/ATLAS/TP/NEW/HTML/tp9new/tp9.html
http://atlasinfo.cern.ch/ATLAS/TP/NEW/HTML/tp9new/tp9.html
http://www.lambdastation.org/
http://www.opensciencegrid.org/
http://glite.web.cern.ch/glite/
http://www.cnaf.infn.it/~sergio/datatag/glue/
http://ws.apache.org/axis/
http://oss.metaparadigm.com/jsonrpc/index.html
http://www.us-vo.org/
http://www.ppdg.net/
http://www.griphyn.org/
http://www.ivdgl.org/
http://www.ivdgl.org/grid2003/

	1. Introduction
	2. Architecture
	2. Core Services and Utilities
	2.1 Virtual Organization Management
	2.2 Access Control Management
	2.3 Remote File Access
	2.4 Dynamic Service Discovery

	2.5 Shell Service
	2.6 Proxy Service
	3. Portal Functionality
	4. Performance
	5. Related Work
	6. Future Work
	7. Conclusions
	8. Acknowledgements
	9. References

