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Abstract 

 
Large scientific collaborations are moving towards 

service oriented architectures for implementation and 
deployment of globally distributed systems.  Clarens is 
a high performance, easy to deploy Web Service 
framework that supports the construction of such 
globally distributed systems. This paper discusses 
some of the core functionality of Clarens that the 
authors believe is important for building distributed 
systems based on Web Services that support scientific 
analysis.  
 
1. Introduction 
 

Scientific collaborations are becoming more and 
more geographically dispersed. Researchers from all 
over the world collaborate on new scientific 
discoveries and breakthroughs in many "big science" 
experiments such as the Virtual Observatory [40], the 
Large Hadron Collider (LHC) program [13], LIGO 
[20] and Nuclear fusion [19]. Not only do these 
experiments generate tera bytes to peta bytes of data. 
In many cases resources for analyzing and storing 
these large amounts of data are distributed on a 
national or international scale. 

Some of the largest scientific collaborations today, 
such as CMS [21] and ATLAS [22] are building 
experiments for CERN's LHC program, each 
encompass 2000 physicists from 150 institutions in 
more than 30 countries. Each of these collaborations 
include 300-400 physicists in the US, from more than 
30 universities, as well as the major US HEP 
laboratories.  

Realizing the scientific wealth of these science 
experiments, presents new problems in data access, 
processing, distribution, and collaboration across 
national and international networks, on a scale 
unprecedented in the history of science. [23] discusses 
several of the information technology challenges 
facing these “big science” experiments. 

All of these challenges need to be met, so as to 
provide an integrated, managed, distributed system 
infrastructure that can serve "virtual organizations" on 
a global scale. One technology that holds the promise 
to form the basis of such an integrated, managed, 
distributed system are Web Services. 

The Clarens project was started in 2001 [34] to 
provide a scalable Web Service framework for the 
development of distributed applications. Initially 
Clarens was developed as part of the CMS experiment 
[21], however as Web and Grid Services became two 
of the de facto standards for development of 
distributed applications, Clarens became part of several 
projects:  Ultralight [12], HotGrid [14], Monte Carlo 
Processing Service using RunJob [26], the physics 
shell project (PHYSH) [7], Lambda Station [24] 
project, IGUANA [6] and the Proof [8] Enabled 
Analysis Center (PEAC). Development and 
deployment of Clarens is also part of several large 
Grid collaborations such as PPDG [41], IvdGL [43], 
Griphyn [42], OSG [25] and Grid3 [44]. Clarens was 
also used in the winning SuperComputing 2003 
bandwidth challenge (23 Gb/s peak), in which Clarens 
servers generated a peak of 3.2 Gb/s disk-to-disk 
streams consisting of CMS detector events. 

This paper gives an overview of Clarens. More 
information about Clarens can be found in [1], [14], 
[15], [16], [17], [18], and [34]. The first sections of 



this paper discuss the architecture and core 
functionality of the Clarens framework. This 
functionality is, according to the authors essential in 
providing a framework for developing distributed 
service based applications for scientific collaboration 
and distributed data analysis. Section 4 describes some 
of the portal functionality while section 5 describes 
several performance measurements of the Clarens 
server. Section 6 and section 7 describe related and 
future work. Section 8 finishes with conclusions.  

Unless mentioned otherwise Clarens refers to both 
the Python and Java implementation, JClarens refers to 
the Java implementation and PClarens refers to the 
python implementation.  

Within this paper we use the following definitions 
for Web Services and Web Service Framework: A 
Web Service is a component performing a task, most 
likely over a network. A Web Service can be identified 
by a URI and its public interfaces and bindings are 
described using WSDL.  At the basis of a Web Service 
call (invocation) is a protocol (frequently, but not 
exclusively this is XML-RPC [3] or SOAP [5] ). A 
Web Service Framework is an application that 
provides support for developing and deploying Web 
Services. 

 
2. Architecture 
 

Clarens aims to provide the basis for a consistent, 
high-performance, fault tolerant system of distributed 
Web Services deployment and development. By 
leveraging existing, widely implemented standards and 
software components, including HTTP, SSL/TLS 
(RFC 2246) encryption and X509 (RFC 3280)1 
certificate-based authentication, and SOAP/XML RPC 
data serialization, Clarens also aims to be easily 
accessible to a wide variety of client implementations 
with the minimum of software dependencies. This 
approach lowers the barriers of entry to participate in 
the service network, re-use of existing  developer 
skills, and a wide choice of development tools and 
languages.  

In order to improve scalability, the PClarens server 
is implemented as an extension to the Apache Web 
Server [2] using the mod_python extension in the 
Python byte-code compiled language. PClarens itself is 
both architecture and platform independent by virtue 
of using Python as an implementation language. Figure 
1 shows the PClarens architecture. The Apache server 
receives an HTTP POST or GET request from the 
client, and invokes PClarens based on the form of the 
                                                           
1 For Internet Engineering Task Force Request For Comment (RFC) 
documents, see http://www.ietf.org/ 

URL specified by the client (other URLs are handled 
transparently by the Apache server according to its 
configuration). Secure Sockets Layer (SSL) encrypted 
connections are handled transparently by the Apache 
server, with no special coding needed in PClarens 
itself to decrypt (encrypt) requests (responses).  
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Figure 1. PClarens Architecture 

After the request has been processed, a response is 
sent back to the client, which is usually encoded as an 
RPC response, but may also be in the form of binary 
data. GET requests return a file or an XML-encoded 
error message to the client, while XML-RPC or SOAP 
encoded POST requests return a similarly encoded 
response error message 

In response to a preference for developing not only 
Python based Web Services but also Java based Web 
Services, a second Java based Web Service framework 
has been implemented (JClarens). The Java language 
and runtime environment have several desirable 
characteristics, including implementations on several 
platforms, a large developer community, and mature 
Web Service development tools.  

The JClarens implementation is based on so-called 
servlets implemented inside a commodity container, in 
this case the open source Apache Tomcat server [4]. 
For JClarens the Tomcat server replaces the Apache 
web server and mod_python module in the 
architecture as depicted in Figure 1. 

As mentioned in the beginning of this section, 
Clarens utilizes HTTP requests. Since the HTTP 
protocol does not require2 persistent connections, it is 
important that session information is stored 

                                                           
2 In the HTTP 1.1 standard, persistend connections are the default for 
performance reasons, but the protocol is still inherently stateless, as 
opposed to e.g. the FTP protocol. 



persistently on the server side. This has the positive 
side-effect of allowing clients to survive server failures 
or restarts transparently without having to re-
authenticate themselves to the server in those cases. 

 
2. Core Services and Utilities 
 

The architecture discussed in the previous section 
can give the impression that Clarens (both the Python 
and Java implementation) is very similar to for 
example a Tomcat server and an Apache AXIS module 
[37] (the Java implementation actually uses Tomcat 
and AXIS). Both systems can be called Web Servers 
that host Web Services.  Some of the differences are 
that the Clarens Web Service framework address 
issues such as: 

 
• Certificate based authentication when establishing 

a connection. 
• Access control on Web Services. 
• Remote file access (and access control on files). 
• Discovery of services. 
• Shell service. Shell like access to remote machines 

(managed by access control lists). 
• Proxy certificate functionality 
• Virtual Organization management. 
• Multiple protocols (XML-RPC, SOAP, Java RMI 

(only for JClarens), JSON-RPC [38]).  
 
This section gives an overview of several of the 

services and utilities within the Clarens framework 
 

2.1 Virtual Organization Management 
 

Virtual organization management allows 
(geographically dispersed) users in large collaborations 
to be grouped together. Using this group structure it is 
easier for administrators of Grid resources to create 
fine grained access control lists for different groups 
and sub groups of scientists. 

Each Clarens server instance manages a tree-like 
Virtual Organization (VO) structure, as shown in 
Figure 2, rooted in a list of administrators. This group, 
named admins, is populated statically from values 
provided in the server configuration file on each server 
restart. The list of group members is cached in a 
database, as is all VO information. The admins group 
is authorized to create and delete groups at all levels. 

Each group consists of two lists of distinguished 
names (DNs), for the group members and 
administrators respectively. Group administrators are 
authorized to add and delete group members, as well as 
groups at lower levels. The group structure is 

hierarchical because group members of higher level 
groups are automatically members of lower level 
groups in the same branch. The example in Figure 2 
demonstrates the top-level groups A,B, and C with 
second level groups A.1, A.2, and A.3. 
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Figure 2. Clarens Virtual Organization Diagram 

A further optimization, the hierarchical information 
in the DNs may also be used to define membership, so 
that only the initial significant part of the DN need to 
be specified in defining members of a group. DNs are 
structured to include information on the country (C), 
state/province (ST), locality/city (L), organization (O), 
organizational unit (OU), common name (CN), and 
(Email). An example DN issued by the DOE Science 
Grid CA for individuals is: 

 
/O=doesciencegrid.org/OU=People/CN=Jo
hn Smith 12345  
 
For servers a DN could look like: 
 
/O=doesciencegrid.org/OU=Services/CN=
host/www.mysite.edu for servers.  
 
To add all individuals to a particular group, only 
/O=doesciencegrid.org/OU=People need to 
be specified as member DN 
 
2.2 Access Control Management 
 

Access control management enables administrators 
to deny or allow groups (virtual organizations) of 
using resources. For example certain services have 
methods that are used for administration of the service 
by persons other than the local site administrator. You 



do not want to give everybody access to these 
methods. Access Control Lists (ACLs) allow you to 
prevent and manage that. 

Execution of Web Service methods as well as 
mapping of certificate DNs to users on the server 
system is controlled by a set of hierarchical ACLs in a 
similar fashion to the VO structure described in the 
previous sub section, and modelled after the access 
control (.htaccess) files used by Apache. 

Methods have a natural hierarchical structure. 
Clarens places no arbitrary restrictions on the depth of 
this hierarchy, but a depth of two or three levels is 
most common, e.g. module.method or 
module.submodule.method. 

An ACL consists of an evaluation order 
specification (allow, deny or deny, allow) followed by 
a list of DNs allowed, groups allowed, DNs denied and 
groups denied access. A DN or group granted access to 
a higher level method automatically has access to a 
lower level method, unless specifically denied at the 
lower level. The ACL specification is therefore 
evaluated from the lowest applicable level to the 
highest. 
 
2.3 Remote File Access 
 

In many “big science” experiments data is stored in 
files rather than in databases. As storage resources will 
be geographically distributed the data (thus the files) 
will be too. Scientists should be able to access remote 
data using well known interfaces (e.g. UNIX file 
system). Furthermore scientists should be able to deny 
or allow read or write access on these remote files, to 
groups of collaborators. The Clarens file service 
enables scientists to manage their remote data and 
create ACLs for it. 

Clarens serves files in two different ways: in 
response to standard HTTP GET requests, as well as 
via a file.read() service method. A virtual server 
root directory can be defined for each of the above via 
the server configuration file which may be any 
directory on the server system. The file.read() 
method takes a filename, an offset and the number of 
bytes to return to the client. Error messages are 
returned as serialized RPC responses. Network I/O is 
handed off to the web server, which uses the zero-copy 
sendfile() system call where available to 
minimize CPU usage and increase throughput.  

Other file access methods include file.ls()   to 
obtain director listings, file.stat() to obtain file 
or directory information, and file.md5() to obtain 
a hash file for checking file integrity. 

Just as with methods, files (and directories) can be 
subject to ACLs using the same structure as described 
in the previous sub section. The ACLs specification for 
files extend the method ACLs with two extra fields: 
read and write.  
 
2.4 Dynamic Service Discovery 
 

Within a global distributed service environment 
services will appear, disappear, and be moved in a 
unpredictable manner. It is virtually impossible for 
scientists, and applications to keep track of these 
changes. The discovery service allows scientists and 
applications to query for services and retrieve up to 
date information on the location and interface of a 
service.  Using the discovery service, applications (and 
this include other services) can make service calls that 
are location independent by virtue of the discovery 
service.  Binding to a location can than occur in real 
time. Such a discovery environment needs to scale to 
large numbers of servers and users without incurring 
prohibitively large amounts of administrative 
overhead. 
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Figure 3. The MonALISA-based service 

discovery architecture. 

The MonALISA[11] framework provides a scalable 
distributed monitoring service system using 
JINI/JAVA [35] and WSDL/SOAP technologies At 
the time of writing MonALISA was monitoring more 
than 90 sites and network connections. The sites range 
from 1 PC to dozens of computing farms with 100s of 
compute nodes3. Each MonALISA server acts as a 
dynamic service system and provides the functionality 
to be discovered and used by any other services or 
clients that require such information. 

                                                           
3 You can access this information by downloading the monitoring 
client:  http://monalisa.caltech.edu/dl_jClient.html 
 



Information provided to MonALISA is usually 
arranged roughly as described by the so-called GLUE 
[36] schema, as a hierarchy of servers, farms, nodes 
and key/numerical value pairs. Although the schema is 
not ideal for organizing service description data, the 
scalable publish-subscribe network offers a ready to 
use service discovery environment. 

Clarens servers can publish service information 
using a UDP-based application to so called station 
servers that in turn republish it to the MonALISA 
network. 

Figure 3 shows the current discovery architecture 
where the JClarens server becomes a fully fledged JINI 
client, and aggregating discovery information from the 
JINI network. The JClarens server is consequently able 
to respond to service searches far more rapidly by 
using the local database. 

The discovery service is one of the several services 
identified by the Open Science Grid consortium [25] as 
vital for robust distributed system development. 

 
2.5 Shell Service 
 

The Shell provides a secure way for authorized 
clients to execute shell commands on the server. The 
command is executed by a designated local system 
user.  

The local system user is designated by using an 
ACL file located under the clarens/shell directory, 
named .clarens_user_map. The file maps user 
distinguished names to local system users.  

Each mapping tuple consists of a system user name 
string, followed by a list of user distinguished name 
strings, a list of group name strings, and a final list 
reserved for future use. For example, this file maps the 
user: /DC=org/DC=doegrids/OU=People/ 
CN=Joe User to the user joe: 

Execution takes place in a sandbox owned by the 
local system user. This sandbox can be created or re-
used for subsequent commands and is visible to the file 
service. Using the shell.cmd_info command the 
user gets back the top directory of the sand box that it 
can use to issue file service commands such as 
uploading and downloading files, but also commands 
like file.ls,  and file.find.  

 
2.6 Proxy Service 
 

The proxy service provides a secure way to store 
and retrieve so-called "proxy" certificates on a Clarens 
server. Proxy certificates consist of a temporary 
certificate (public key) and unencrypted private key 
that can be used to log into remote servers without the 

inconvenience to type in the private key password over 
and over. This has the side benefit that it allows the 
proxy to be used on behalf of the user by others, so-
called delegation.  

This service also allows the user to use a previously 
stored proxy as a way of logging into the server by 
only knowing the certificate distinguished name and 
password that was used to store it.  

Additionally, a stored proxy can also be "attached" 
to an existing session, thereby renewing an existing 
proxy, or bringing the benefits of delegation to 
sessions that were initiated without a proxy certificate - 
e.g. browsers use CA-issued certificates to initiate 
sessions.  
 
3. Portal Functionality 
 

According to [29] a Grid portal is a user's point of 
access to a Grid system. It provides an environment 
where the user can access Grid resources and services, 
execute and monitor Grid applications, and collaborate 
with other users. Portals can also lower the barrier for 
users (the scientists) to access Web Services and using 
Grid enabled applications. 

As modern browsers have native support for SSL-
encrypted connections and client-side certificate 
authentication, it provides a platform for constructing 
Grid portals on top of Clarens services.  

Clarens is able to serve web pages in response to 
HTTP GET requests, the portal is implemented as a 
series of static web pages that embed JavaScript scripts 
to handle communication and web service calls using 
dynamic HTML. Such a portal implementation 
eliminates the need for users to install any additional 
software apart from a web browser, which most people 
already have.  

Functionality currently provided by the browser 
interface include: browsing remote files, access control 
management, virtual organization management, service 
discovery, job submission. 

The remote file access portal component has a look 
and feel similar to conventional file browsers such as 
MS explorer (within a JavaScript context). Users can 
browse the parts of the remote file system to which 
they have been granted access to. 

Similar to the file access portal component, the 
discovery portal component enables users to query for 
servers, and services within a browser context, and by 
point and click on the query results can navigate to 
portal components. 

Clarens does not offer a framework to build portals 
other than the already available tools that enable 



developers to embed JavaScript components that 
execute Web Service calls to Web Services. 

 
4. Performance 
 

Important for the success of Web Services is the 
performance of the web server, hosting the service. 
Although badly engineered Web Services can still 
have a slow performance, the server itself should not 
become the bottleneck. Poor performance can lead to 
high hardware costs for larger servers or unacceptable 
long response times.  A performance and scalability 
test for PClarens was performed using a system 
consisting of a dual 2.8 GHz Xeon server with 1 GB of 
memory, accessed using a 100 Mb/s local area network 

In this test a configurable number of unencrypted 
client connections were opened and set to access the 
system.list_methods Web Service method as 
rapidly as possible. The client was run on a 2.6 GHz 
Pentium 4 workstation as a single process opening 
connections to the server and completing requests 
asynchronously,  

The clients would make 1000 web service calls to 
the server, after which the total response time was 
measured (e.g. 0.5 seconds for 1000 calls means 2000 
calls per second). This process was repeated 2000 
times for each number of asynchronous clients (we 
varied the number of asynchronous clients between 1 
and 79). After varying the clients from 1 to 79 the 
process described above was repeated to verify the 
results. A grand total of 316 million requests where 
successfully completed without any client or server 
errors. 

 

 
Figure 4. Clarens performance 

 
Each request passed through two access control 

checks involving access to several databases, namely 
checking  whether the client credentials are associated 
with a current session, and whether the client has 

access to the particular method being called. No 
caching was performed on the server, with each 
request incurring a database lookup for all registered 
methods in the server, and serializing the resultant list 
of more than 30 strings as an array response in XML-
RPC. The Python client de-serialized each response to 
a native list object that could be used in the rest of the 
script. 

In effect this test reports the overhead that the 
PClarens server system imposes on service request, 
with control passing through all parts of the server 
used by a typical service. 

This test under-reports the actual server performance 
for at least two reasons: in a more realistic 
environment multiple client machines would be 
accessing the server, and the Apache server 
configuration was used unmodified on a Linux 2.4-
based kernel which is known to be a sub-optimal setup. 

A final summary of the results of this test is given in  
Figure 4 showing an average of 1450 requests per 
second served. 

During the test the controlling Apache server 
process that is responsible for accepting new requests 
and opening new connections constantly used all 
available CPU time on of the two CPUs of the test 
server. This is probably due to the way that the file 
descriptors use for network connections are handled by 
the Linux 2.4-kernel. 

Future tests will be repeated using more optimized 
Apache configurations and SSL/TLS-encrypted 
network connections. Informal test show the latter to 
reduce performance by up to 50%. No formal tests 
were setup for other Web Service frameworks such as 
Globus. However 3rd party test results with the Globus 
toolkit 3 differed4 substantially with Clarens 
performance 
 
5. Related Work 
 

Several other Web Service and portal frameworks 
have been developed in the last couple of years. The 
latest versions of Globus [9] have been service 
oriented frameworks based on the open grid service 
architecture (OGSA). Although Globus offers secure 
and authenticated access using the concept of grid map 
files, it has a much coarser authentication and access 
control granularity than the Clarens ACL and VO 
management. Furthermore, the server performance 
(calls/second) for Globus 3 are not as high as the 
Clarens server.  
                                                           
4 A trivial method 100 times (ignoring first invocation) across a 
100Mbps LAN using GTK 3.0 and GTK 3.9.1 resulted in 5 to 1 calls 
per second. 



IBM Websphere [10] is a commercial product that 
enables you to develop and deploy Web Services and 
is therefore not a desirable candidate to be deployed in 
large science collaborations that rely on open source. 

OGCE [30] provides open source software for 
building Grid Computing Portals. Several of its 
portlets are based upon Globus services. A drawback 
(at the time of writing this paper) is the large size of 
the download, setup and configuration functionality.  
Several OGCE portlets have a conceptual commonality 
with Clarens based portals. For example: remote file 
access and job submission. Furthermore, OGCE 
portlets are based on Java, rather than JavaScript 
which offers a richer development environment. 

Glite[31] is a Perl based service framework based 
on Alien [32] that is used by the EGEE project [33] to 
develop web services. Several of the interfaces 
developed for services in this project are similar (but 
not the same) to Clarens service interfaces. The first 
versions of the Glite framework were based on Alien 
which initially was not designed to be a generic service 
oriented framework, while Clarens was. Substantial 
work has been carried out however to make Glite, less 
dependent on Alien.  
 
6. Future Work 
 

Future work will focus (amongst others) on: GUI 
framework, message based protocols, mass storage 
integration, improved service discovery functionality. 

The JavaScript browser based GUI has limitations 
in creating easy to use and functional graphical user 
interfaces. Instead Java offers more flexibility in 
creating sophisticated user interface to support 
scientists in interaction with a distributed service 
environment. The current Clarens Web Service 
implementation was designed for a request response 
mode of operation, making it ill-suited for the type of 
asynchronous bi-directional communication required 
for interactions between users and the jobs they are 
running on private networks protected by network 
address translation (NAT) and firewalls. An instant 
messaging (IM) architecture provides the possibility to 
overcome this limitation. Since messages can be sent 
and received by jobs asynchronously, jobs can be 
instrumented to act as Clarens servers, or clients 
sending information to monitoring systems or remote 
debugging tools. 

Although Clarens provides remote file access 
through a Web Service, it does not support interfaces 
to mass storage facilities yet. Work is under way to 
provide an SRM service interface [27] to dCache [28] 

such that Clarens can support robust file transfer 
between different mass storage facilities. 

Work is underway to provide interoperability 
between the Clarens discovery service and Globus 
MDS [39] such that both systems can publish/retrieve 
information in the other system. Other activities 
include collaboration with the EGEE project on a 
common discovery interface. 
 
7. Conclusions 
 

The Clarens Web Service framework is gaining 
acceptance in the science community to support the 
development of a scalable distributed service 
environment. Several of the projects have chosen 
Clarens as it offers a good service response 
performance and yet provides powerful features such 
as ACL and VO management, service discovery, and 
remote file access.  

Clarens provides a growing functionality for 
distributed analysis in a Grid-based environment, 
coupled with a set of useful client implementations for 
physics analysis. The projects that utilize Clarens also 
provide valuable feedback, which enable the Clarens 
team to enhance and improve the core functionality of 
Clarens and reuse components across projects that 
focus on scientific analysis. 
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