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Elevation of the dietary saturated fatty acid palmitate contributes to the reduction of functional beta cell mass in the pathogenesis of
type 2 diabetes.
e diabetogenic e�ect of palmitate is achieved by increasing beta cell death through induction of the endoplasmic
reticulum (ER) stress markers including activating transcription factor 3 (Atf3) and CAAT/enhancer-binding protein homologous
protein-10 (Chop). In this study, we investigated whether treatment of beta cells with the MS-275, a HDAC1 and HDAC3 activity
inhibitor which prevents beta cell death elicited by cytokines, is benecial for combating beta cell dysfunction caused by palmitate.
We show that culture of isolated human islets and MIN6 cells with MS-275 reduced apoptosis evoked by palmitate. 
e protective
e�ect of MS-275 was associated with the attenuation of the expression of Atf3 and Chop. Silencing of HDAC3, but not of HDAC1,
mimicked the e�ects of MS-275 on the expression of the two ER stress markers and apoptosis. 
ese data point to HDAC3 as a
potential drug target for preserving beta cells against lipotoxicity in diabetes.

1. Introduction

Type 2 diabetes arises when beta cells produce insu�cient
insulin to meet the increased hormone demand, caused by
insulin resistance. Impaired insulin plasma level is the conse-
quence of reduced capacity for secreting insulin in response
to nutrients and insu�cient beta cells number. Lifestyle
changes together with excessive visceral adiposity and genetic
factors predispose to the diabetes risk, and thereby to beta
cell dysfunction [1, 2]. 
ese factors promote low chronic
grade in�ammation, which a�ects beta cell function andmass
[3]. Several reports have shown that treatment of beta cells
with histone deacetylase (HDAC) inhibitors can prevent the
adverse e�ects of cytokines [4, 5]. 
ese inhibitors include
the HDAC1 and HDAC3 MS-275 compound also called
entinostat [4, 5]. 
e latter is undergoing clinical trials for
treatment of cancers including breast, lymphoma, and lung

[6]. Coexposure of islets and beta cell line to the MS-275
prevents death caused by cytokines [5]. 
e protective e�ect
of MS-275 relies on HDAC3 [5]. Silencing of HDAC3mimics
the e�ect of MS-275 against beta cell death [5].

Chronic elevation of saturated free fatty acids may be
the link between visceral adiposity and low grade in�amma-
tion in type 2 diabetes [7–9]. Numerous studies underline
the diabetogenic e�ect of palmitate in eliciting beta cell
death in the pathogenesis of type 2 diabetes [9–17]. 
e
harmful e�ects of palmitate are achieved by activation of
some important signalling pathways, including activation
of endoplasmic reticulum (ER) stress [18–22]. Activation
of ER stress triggers the unfolded protein response (UPR)
[23, 24]. In response to prolonged exposure to palmitate,
UPR promotes the expression of CAAT/enhancer-binding
protein homologous protein-10 (CHOP, also known as the
DNA-damage-inducible transcription factor 3) and activates
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transcription factor 3 (ATF3), thus leading to apoptosis [25,
26]. Changes in CHOP and ATF3 expression have been
associated with beta cell dysfunction in diabetes [22, 27–30].
In this study, we investigated the e�ects of MS-275 on the
adverse e�ects evoked by palmitate.

2. Materials and Methods

2.1. Materials. 
e saturated fatty acid palmitate (sodium
salts, Sigma Aldrich, St. Louis, MO) was coupled to bovine
serum albumin-fatty acid free by 1 h agitation at 37∘C and
freshly prepared for each experiment [31]. 
is procedure
yielded BSA-coupled fatty acids in a molar ratio of 5 : 1.

e MS-275 was purchased from Sigma-Aldrich (St. Louis,
MO). 
e antibodies against Chop, Atf3, TATA box binding
protein (Tbp), and HDAC1 were obtained from Santa Cruz
Biotechnology (CA,USA).
e anti-HDAC3 and anti-�-actin
antibodies were from Cell Signaling Technology (MA, USA)
and Sigma (Saint Quentin, France), respectively.

2.2. Cell Culture and Transfection. 
e mouse insulin-
secreting cell line MIN6 was cultured exactly as previously
described [32]. 
e siRNA duplexes directed against HDAC1
(si-HDAC1), HDAC3 (si-HDAC3), and GFP (si-GFP) were
introduced using the Lipofectamine 2000 (Invitrogen AG)
exactly as described [33]. Human pancreases were harvested
from adult brain-dead donors in accordance with French reg-
ulations and with the local Institutional Ethical Committee
from the “Centre Hospitalier Régional et Universitaire de
Lille.” Pancreatic islets were isolated a�er ductal distension
of the pancreas and digestion of the tissue as described
previously [34]. All experiments were carried out at least
on islets cells of >80% purity. Puried islets were cultured
in CMRL 1066 medium (Gibco BRL, Life Technologies)
containing 0.625% free fatty acid HSA (Roche Diagnostics),
penicillin (100 �UI/mL), and streptomycin (100 �g/mL). A
pool of 4 siRNAs was used to knock down HDAC1 and
HDAC3 expression (ON-TARGETplus SMARTpool,
ermo
Scientic Dharmacon).

2.3. Quantitative PCR. Total RNA was extracted using
guanidinium thiocyanate-phenol-chloroform and converted
to cDNA as described [35]. Real-time quantitative PCR
assays were carried out on the Bio-Rad MyiQ real-time PCR
detection system using iQ SyBr Green Supermix (Bio-Rad)
as the amplication system with 100 nM primers and 2 �L of
template (RT product) in 20 �L of PCR volume and annealing
temperature of 59∘C. Primers sequences were human ATF3;
forward 5�-CTCCTGGGTCACTGGTGTTT-3� and reverse
5�-GTTCTCTGCTGCTGGGATTC-3�; mouse Atf3; forward
5�-AAGACAGAGTGCCTGCAGAA-3� and reverse 5�-GTG-
CCACCTCTGCTTAGCTC-3�; human CHOP forward 5�-
GTGAATCTGCACCAAGCATGA-3� and reverse 5�-AAG-
GTGGGTAGTGTGGCCC-3�; mouseChop forward 5�-TTC-
ACTACTCTTGACCCTGCGT-3� and reverse 5�-CAC-
TGACCACTCTGTTTCCGTTTC-3�; human and mouse
Rplp0/RPLP0 forward 5�-ACCTCCTTTTTCCAGGCTTT-3�

and reverse 5�-CCCACTTTGTCTCCAGTCTTG-3�.

2.4. Western Blotting. Nuclear protein extracts from cells
were prepared exactly as previously described [16]. For
western blotting experiments, 25–40�g of protein extracts
was separated on 10% SDS-polyacrylamide gel and elec-
trically blotted to nitrocellulose membrane. 
e proteins
were detected a�er an overnight incubation of the mem-
brane at 4∘C with the specic primary antibodies against
HDAC1 (dilution 1 : 1000), Tata box binding protein (Tbp,
dilution 1 : 1000),�-actin (dilution 1 : 5000),HDAC3 (dilution
1 : 1000), and Chop (dilution 1 : 500) in bu�er containing
0.1% Tween 20 with either 5% milk (for HDAC1, Chop, �-
actin, and Tbp) or 5% BSA (for HDAC3 and Atf3). Proteins
were visualized with IRDye800 or IRDye700 (Eurobio, Les
Ulis, France) as secondary antibodies. Quantication was
performed using theOdyssey infrared imaging system (Euro-
bio).

2.5. Apoptosis Assay. Apoptosis was determined by deter-
mining mono- and oligonucleosomes in the cytoplasmic
fraction by ELISA kit (Roche Molecular Biochemicals) and
by scoring cells displaying pyknotic or fragmented nuclei
(visualized with Hoechst 33342) [36]. 
e counting was
performed blind by two di�erent experimenters.

2.6. Statistical Analysis. ANOVA was used for statistical sig-
nicance, followed by the post hoc Bonferroni test (Dunnett’s
test) when experiments included more than two groups.

3. Results

3.1. MS-275 Antagonizes the Deleterious E�ects of Palmitate in
MIN6 and Isolated Human Islets. Previous studies including
ours have found that palmitate increases death in di�erent
insulin-secreting cells including MIN6 cells and isolated
human islets cultured with palmitate for 48 hrs [13, 16, 18,
20, 37]. Palmitate triggers some adverse e�ects under normal
glucose concentration in human andmouse beta cells [13, 38].
We conrmed that exposure of MIN6 and isolated human
islets cells to 0.5mM palmitate for 48 hrs caused a 3- and
4-fold increase in apoptosis, respectively (Figure 1). Di�er-
ent concentrations of MS-275 have been previously tested
in insulin-secreting cells [5]. Preliminary studies showed
that concentrations of MS-275 above 1 �M were deleterious
for cell viability (data not shown). However culture of
MIN6 cells with 1 �M MS-275 did not a�ect cell survival
under normal culture condition (Figure 1(a)) whereas, as
expected, it caused a 30–40% signicant reduction in the total
HDAC activity (Supplementary Figure 1(a) available online
at http://dx.doi.org/10.1155/2014/195739). A previous study
reports that prolonged exposure of insulin-producing cells
to palmitate did not change total HDAC activity [39]. In line
with this observation, chronic culture of MIN6 cells with the
saturated fatty acid did a�ect neither total HDAC activity nor
HDAC1 and HDAC3 mRNA levels (Supplementary Figures
1(a) and 1(b)). In fact, we found that the drop of HDAC activ-
ity caused by the MS-275 was associated with an increase in
survival of MIN6 and isolated human islets cells in response
to palmitate (Figures 1(a) and 1(b)). While chronic exposure
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Figure 1: MS-275 alleviates apoptosis caused by palmitate in isolated human islets and MIN6 cells. E�ect of MS-275 on (a) the number of
pyknotic nuclei and (b) histone-associatedDNA fragments.MIN6 or dispersed human islets cells were culturedwith 0.5mMpalmitate (Palm,
Sigma Aldrich, St. Louis, MO) or bovine serum albumin (BSA; −) with 1 �MMS-275 (Sigma Aldrich, St. Louis, MO) or vehicle (DMSO; −)
for 48 hrs. 
e data are the mean ± SD of 4 independent experiments (∗� < 0.05).

ofMIN6 cells to palmitate reduces preproinsulinmRNA level
[16], we conrmed that the lipid did not a�ect the hormone
mRNA level in isolated human islets (Supplementary Figure
2(a)) as previously described [40]. However, insulin content
is diminished in islets from di�erent species and MIN6
cells chronically exposed to palmitate [40–42]. 
e MS-275
improved the preproinsulin mRNA (Supplementary Figure
2(a)) and insulin content (Supplementary Figure 2(b)) of
cells chronically cultured with palmitate. Palmitate impairs
glucose-induced insulin secretion [16]. However, the MS-
275 was insu�cient for antagonizing the harmful e�ect of
the lipid on glucose-induced insulin secretion in MIN6 cells
(Supplementary Figure 2(c)). All these data indicate that
the cytoprotective e�ect of MS-275 is associated with an
improved insulin expression.

Elevation of ATF3 and CHOP contributes to the UPR-
induced death caused by palmitate [37]. We next investi-
gated whether the protective e�ect triggered by MS-275 is
associated with reduced level of the two ER stress markers.
Quantitative PCR showed that MS-275 attenuated induction
of Atf3/ATF3 and Chop/CHOP by palmitate in MIN6 cells
and human islets (Figure 2(a)).Western blotting experiments
conrmed the antagonist e�ects of MS-275 on the increase of
Atf3 and Chop evoked by palmitate (Figure 2(b)).

3.2. Silencing of HDAC3 Mimics the E�ects of MS-275. MS-
275 is a class I HDAC inhibitor that selectively inhibits
HDAC1 and HDAC3 activities [43]. Silencing of HDAC1 and
HDAC3 by siRNA duplexes (siH1 and siH3) was performed
to determine which of the two HDACs was involved in the
e�ect of MS-275. Western blotting experiments conrmed
the e�ciency of the two siRNA duplexes for reducing the
HDAC1 andHDAC3 abundances inMIN6 cells (Figure 3(a)).

While the decrease of HDAC1 did not protect MIN6 cells
against apoptosis caused by palmitate, suppression ofHDAC3
did (Figure 3(b)). In addition, siH3, but not siH1, mimicked
the e�ect of MS-275 by alleviating the elevation of Atf3 and
Chop mRNA and protein levels provoked by the fatty acid
(Figures 4(a) and 4(b)), suggesting a role for HDAC3 as the
target of MS-275 for triggering the protective e�ect.

4. Discussion


e saturated fatty acid palmitate is deemed to be an impor-
tant diabetogenic factor that links obesity, insulin resistance,
and reduced functional beta cell mass [2, 9]. One of the
harmful e�ects triggered by palmitate on beta cells is the
reduction of cell survival [19, 20, 37]. 
is is in part achieved
by inducing the expression of Chop and Atf3 through UPR
[25, 26]. Herein, we show that MS-275 prevents the increase
of the two transcription factors and apoptosis caused by
palmitate. Silencing of HDAC3, but not HDAC1, mimicked
the e�ects of the compound. Palmitate did not impinge
the HDAC3 expression, supporting a role for the lipid in
triggering the activity of this Hdac. Similar to most HDACs,
HDAC3 binds to promoters as a corepressor [44]. HDAC3
activity produces some changes in the chromatin structure
through histone deacetylation, leading to silencing of gene
expression [44]. Based on this function, a direct binding
of HDAC3 to the Chop/CHOP and Atf3/ATF3 promoters in
response to palmitate seems unlikely.
emost likely scenario
is that HDAC3 directly regulates the expression of negative
regulatory factor such as transcriptional repressor(s) or
microRNAs. Reduced activity of these negative regulators by
HDAC3may elevate the Chop/CHOP and Atf3/ATF3mRNA
and protein levels in response to palmitate, thus leading to
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Figure 2: E�ects of MS-275 on the expression the ER stress markers. (a) 
e mRNA of Atf3/ATF3 and Chop/CHOP was quantied by
quantitative real-time PCR from MIN6 cells and isolated human islets cultured with 0.5mM palmitate plus MS-275 (grey bars) or DMSO
(open bars) for 48 hrs. 
e mRNA levels were normalized against the Rplp0/RPLP0 and the expression levels from cells cultured with BSA
(−) were set to 100%. Data are the mean of ± SEM of 3 independent experiments (∗∗∗� < 0.001; ∗� < 0.05). (b) For western blotting analysis,
nuclear proteins were prepared from cells cultured for 48 hrs with 0.5mM palmitate plus DMSO (−) or 1 �MMS-275. Immunoblotting was
done using the anti-Atf3, anti-Chop, and anti-Tbp as the control. 
e gure shows the result of a representative experiment out of three. 
e
data are the mean ± SEM of 4 independent experiments (∗� < 0.05).
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Figure 3: Impact of HDAC1 and HDAC3 silencing on apoptosis evoked by palmitate. (a) Western blotting analysis of HDAC1 and HDAC3
abundance and (b) measurement of apoptosis upon silencing of HDAC1 and HDAC3 in MIN6 cells. Cells were transfected with the siRNAs
directed against either HDAC1 (siH1), HDAC3 (siH3), or GFP (ctrl). Palmitate was added 24 hrs a�er transfection. Nuclear proteins were
prepared and pyknotic nuclei were counted 48 hrs later. 
e immunoblotting was achieved using the anti-HDAC1, anti-HDAC3, and anti-�-
actin antibodies. 
e gure shows the result of a representative experiment out of three.

apoptosis. Inversely, MS-275 or silencing of HDAC3 may
prevent the silencing of the negative regulators caused by
palmitate. 
e consequence of such derepression would lead
to reduction of Chop/CHOP and Atf3/ATF3 mRNA and
protein expression. Future experiments plan to identify the
repressor(s) through which HDAC3 controls the elevation

of the two ER stress markers level and apoptosis caused by
lipotoxicity.


ere is increasing evidence supporting the therapeutic
use ofHDAC inhibition as novel drugs for neurodegenerative
and other in�ammatory diseases [45]. At present, a grow-
ing number of reports indicate benecial e�ects of HDAC
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Figure 4: E�ects ofHDAC1 andHDAC3 silencing on the ER stressmarkers.
eAtf3 andChop level ofMIN6 cells transfectedwith siH1, siH3,
or control siRNAs (siGFP) was quantied by (a) quantitative PCR and (b) western blotting experiments. Cells were cultured with palmitate
(lled bars) or BSA (open bars) 24 hrs a�er transfection. Total RNA and nuclear protein extracts were prepared 48 hrs later. 
e mRNA levels
were normalized against the Rplp0 and the expression levels from cells cultured with BSA (−) and transfected with siGFP were set to 100%.
Data are the mean of ± SEM of 3 independent experiments (∗∗� < 0.01; ∗� < 0.05). For western blotting analysis, the anti-Atf3, anti-Chop,
and anti-Tbp as the control were used. 
e gure shows the result of a representative experiment out of three.

inhibitors in metabolic diseases. Treatment with the pan-
HDACs inhibitors sodium butyrate or the class I HDAC
inhibitor MS-275 improves insulin sensitivity in mice with
diet-induced obesity [46] and obese db/db mice [47], respec-
tively. A protective role of class I HDAC inhibition against
beta cell apoptosis and dysfunction elicited by cytokines has
been further reported [5, 48], thus underlining the potential
interest of HDAC inhibition for diabetes care. In this regard,
HDAC3 has been suggested as an antidiabetic drug target
[49]. In conclusion, in this study we provide additional
evidence that HDAC3 could also be a potential drug target
for preserving pancreatic beta cells against apoptosis induced
by lipotoxicity in type 2 diabetes.
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