THE CLASS OF THE AFFINE LINE IS A ZERO DIVISOR IN THE GROTHENDIECK RING

LEV A. BORISOV

Abstract

We show that the class of the affine line is a zero divisor in the Grothendieck ring of algebraic varieties over complex numbers. The argument is based on the Pfaffian-Grassmannian double mirror correspondence.

1. Introduction

The Grothendieck ring $K_0(Var/\mathbb{C})$ of complex algebraic varieties is a fundamental object of algebraic geometry. It is defined as the quotient of the group of formal integer linear combinations $\sum_i a_i[Z_i]$ of isomorphism classes of complex algebraic varieties modulo the relations

$$[Z] - [U] - [Z \backslash U]$$

for all open subvarieties $U \subseteq Z$. The product structure is induced from the Cartesian product.

The main result of this paper is the following.

Theorem 2.13. The class L of the affine line is a zero divisor in the Grothendieck ring of varieties over \mathbb{C} .

The class $L = [\mathbb{C}^1]$ of the affine line plays an important role in the study of $K_0(Var/\mathbb{C})$. For example, it has been proved in [10] that the quotient of $K_0(Var/\mathbb{C})$ by L has a natural basis indexed by the classes of projective algebraic varieties up to stable birational equivalence. In other instances one needs to localize $K_0(Var/\mathbb{C})$ by L (see [4, 12]), so it is important to know whether L is a nonzero divisor. While it has been shown in [14] that $K_0(Var/\mathbb{C})$ is not a domain, there remained a hope that L is nonetheless a nonzero divisor in $K_0(Var/\mathbb{C})$.

©2017 University Press, Inc.

Received January 6, 2015, and, in revised form, April 30, 2015 and December 10, 2016. The author was partially supported by NSF grant DMS-1201466.

This problem was brought to our attention by an elegant recent preprint of Galkin and Shinder [5] in which the authors prove that if L is a nonzero divisor in $K_0(Var/\mathbb{C})$ (a weaker condition that $L^2a = 0$ implies $a \in \langle L \rangle$ in fact suffices), then a rational smooth cubic fourfold in \mathbb{P}^5 must have its Fano variety of lines birational to a symmetric square of a K3 surface. This paper puts a dent in this approach to (ir)rationality of cubic fourfolds.

The consequence of our construction is another important result, which was pointed out to us by Evgeny Shinder. A cut-and-paste conjecture (or question) of Larsen and Lunts [10, Question 1.2] asks whether any two algebraic varieties X and Y with [X] = [Y] in the Grothendieck ring can be cut into disjoint unions of pairwise isomorphic locally closed subvarieties.

Theorem 2.14. The cut-and-paste conjecture of Larsen and Lunts fails.

The negative answer to this conjecture is important in view of its potential applications to rationality of motivic zeta functions; see [4], [11].

The main idea of the proof of Theorems 2.13 and 2.14 is to compare the two sides X_W and Y_W of the Pfaffian-Grassmannian double mirror correspondence. These are nonbirational smooth Calabi-Yau threefolds which are derived equivalent. There is a natural variety (a frame bundle over the Cayley hypersurface of X_W) whose class in the Grothendieck ring can be expressed both in terms of $[X_W]$ and in terms of $[Y_W]$. This provides a relation

$$([X_W] - [Y_W])(L^2 - 1)(L - 1)L^7 = 0$$

in the Grothendieck ring, which then implies that L is a zero divisor.

After this preprint appeared, the result was improved to

$$([X_W] - [Y_W])(L+1)L^6 = 0$$

by Kuznetsov [9] and then later to

$$\left([X_W] - [Y_W] \right) L^6 = 0$$

independently by Chambert-Loir and Martin [3, 13].

2. The construction

2.1. Pfaffian and Grassmannian double mirror Calabi-Yau varieties. Let V be a 7-dimensional complex vector space. Let $W \subset \Lambda^2 V^{\vee}$ be a generic 7-dimensional space of skew forms on V. These data encode two smooth Calabi-Yau varieties X_W and Y_W as follows.

Definition 2.1. We define X_W as a subvariety of the Grassmannian G(2, V) of dimension two subspaces $T_2 \subset V$, which is the locus of all $T_2 \in G(2, V)$

Licensed to AMS. License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf

204

with $w\Big|_{T_2} = 0$ for all $w \in W$. We define Y_W as a subvariety of the Pfaffian variety $Pf(V) \subset \mathbb{P}\Lambda^2 V$ of skew forms on V whose rank is less than 6. It is defined as the intersection of Pf(V) with $\mathbb{P}W \subset \mathbb{P}\Lambda^2 V$.

The following proposition summarizes the properties of X_W and Y_W that will be used later.

Proposition 2.2. The following statements hold for a general choice of W.

- The varieties X_W and Y_W are smooth Calabi-Yau threefolds.
- The varieties X_W and Y_W are not isomorphic, or even birational, to each other.
- All forms $\mathbb{C}w \in Y_W$ have rank 4. All forms $\mathbb{C}w \in \mathbb{P}W \setminus Y_W$ have rank 6.

Proof. Smoothness of X_W and Y_W has been shown by Rødland [15]. They are not isomorphic to each other because the ample generators D_X and D_Y of their respective Picard groups have $D_X^3 = 42$ and $D_Y^3 = 14$. The statement that X_W and Y_W are not birational follows from the fact that they are nonisomorphic Calabi-Yau threefolds with Picard number one; see [2].

The statement about the rank of the forms follows from the fact that W is generic, since the locus of rank 2 forms in $\mathbb{P}\Lambda^2 V^{\vee}$ is of codimension 10. Alternatively, if $\mathbb{C}w \in Y_W$ has rank 2, then Y_W is automatically singular at $\mathbb{C}w$.

Remark 2.3. The varieties X_W and Y_W are double-mirror to each other, in the sense that they have the same mirror family. This is just a heuristic statement, but it does indicate that geometry of X_W is intimately connected to that of Y_W . For example, it was shown independently in [2] and [8] that X_W and Y_W have equivalent derived categories.

2.2. Cayley hypersurface and its frame bundle. The main technical tool of this paper is the so-called Cayley hypersurface of X_W . It is the hypersurface in $G(2, V) \times \mathbb{P}W$ which consists of pairs $(T_2, \mathbb{C}w)$ with the property $w\Big|_{T_2} = 0$. The class of X_W in the Grothendieck ring of varieties over \mathbb{C} is related to that of H as follows.

Proposition 2.4. The following equality holds in the Grothendieck ring:

$$[H] = [G(2,7)][\mathbb{P}^5] + [X_W]L^6.$$

Proof. Consider the projection of H onto G(2, V). The restriction of this map to the preimage of X_W is a trivial fibration with fiber $\mathbb{P}W = \mathbb{P}^6$. The restriction of it to the complement of X_W is a Zariski locally trivial fibration with fiber \mathbb{P}^5 . Indeed, the hyperplanes of w that vanish on a given T_2 can be Zariski locally identified with a fixed \mathbb{P}^5 by projecting from a fixed point

in $\mathbb{P}W$. This gives

 $[H] = [X_W][\mathbb{P}^6] + ([G(2,7)] - [X_W])[\mathbb{P}^5] = [G(2,7)][P^5] + [X_W]([\mathbb{P}^6] - [\mathbb{P}^5]),$ which proves the claim.

Remark 2.5. In the proof of Proposition 2.4 we used the statement that for a Zariski locally trivial fibration $Z \to B$ with fiber F there holds [Z] = [B][F] in $K_0(Var/\mathbb{C})$. We will use this statement repeatedly in the subsequent arguments.

We can project the Cayley hypersurface H onto the second factor $\pi : H \to \mathbb{P}W$. We will have different fibers depending on whether the image lies in Y_W or not. While we would like to say that the restriction of π to the preimages of Y_W and its complement are Zariski locally trivial, we do not know if this is true or not. So instead of using H itself we will pass to the frame bundle \tilde{H} over H.

Definition 2.6. We denote by H the frame bundle of H, i.e. the space of triples (v_1, v_2, w) where v_1 and v_2 are linearly independent vectors in V and w is an element of $\mathbb{P}W$ such that $w(v_1, v_2) = 0$.

Remark 2.7. Since \hat{H} is the frame bundle of the Zariski locally trivial vector bundle (pullback of the tautological subbundle on G(2, V)) on H, the fibration $\hat{H} \to H$ is Zariski locally trivial. An easy calculation shows that

(1)
$$[\ddot{H}] = [H](L^2 - 1)(L^2 - L)$$

in the Grothendieck ring.

We now consider the projection $\tilde{H} \to \mathbb{P}W$. Notice that we have

(2)
$$\tilde{H} = \tilde{H}_1 \sqcup \tilde{H}_2$$

where \tilde{H}_1 is the preimage of Y_W and \tilde{H}_2 is the preimage of its complement in $\mathbb{P}W$.

Proposition 2.8. The following equality holds in the Grothendieck ring:

$$[\tilde{H}_1] = [Y_W] \Big((L^3 - 1)(L^7 - L) + (L^7 - L^3)(L^6 - L) \Big).$$

Proof. There is a subvariety $\tilde{H}_{1,1}$ in \tilde{H}_1 given by the condition $v_1 \in Ker(w)$. Forgetting v_2 realizes $\tilde{H}_{1,1}$ as a Zariski locally trivial fibration with fiber $\mathbb{C}^7 - \mathbb{C}$ over the space of pairs (v_1, w) with $v_1 \in Ker(w)$, $v_1 \neq 0$. This in turn is a Zariski locally trivial fibration over Y_W with fiber $(\mathbb{C}^3 - \text{pt})$, since all $\mathbb{C}w \in Y_W$ have rank 4. Putting all this together, we have

$$[\tilde{H}_{1,1}] = [Y_W](L^3 - 1)(L^7 - L)$$

in the Grothendieck ring. Similarly, the complement $\tilde{H}_{1,2}$ of $\tilde{H}_{1,1}$ in \tilde{H}_1 satisfies

$$[\tilde{H}_{1,2}] = [Y_W](L^7 - L^3)(L^6 - L).$$

Indeed, $\hat{H}_{1,2}$ forms a vector bundle of rank 6 over the space of pairs (v_1, w) , since the condition $w(v_1, v_2) = 0$ is now nontrivial. The result of the proposition now follows from $[\tilde{H}_1] = [\tilde{H}_{1,1}] + [\tilde{H}_{1,2}]$.

Proposition 2.9. The following equality holds in the Grothendieck ring:

$$[\tilde{H}_2] = \left([\mathbb{P}^6] - [Y_W] \right) \left((L-1)(L^7 - L) + (L^7 - L)(L^6 - L) \right).$$

Proof. The argument is completely analogous to that of Proposition 2.8. The only difference is that a form $\mathbb{C}w \notin Y_W$ has rank 6 and thus a 1-dimensional kernel.

As a corollary of Propositions 2.8 and 2.9 we get the formula for [H].

Proposition 2.10. The following equality holds in the Grothendieck ring:

$$[\tilde{H}] = [\mathbb{P}^6](L^7 - L)(L^6 - 1) + [Y_W](L^2 - 1)(L - 1)L^7.$$

Proof. This follows immediately from (2) and Propositions 2.8 and 2.9. \Box

2.3. Main theorem. We are now ready to prove our main result. We start with the following formula derived from the calculations of the previous subsection.

Proposition 2.11. The following equality holds in the Grothendieck ring:

$$([X_W] - [Y_W])(L^2 - 1)(L - 1)L^7 = 0.$$

Proof. We use Proposition 2.10 and Proposition 2.4 with equation (1) to get expressions for $[\tilde{H}]$, in terms of $[Y_W]$ and $[X_W]$ respectively. By subtracting one from the other we get

$$([X_W] - [Y_W])(L^2 - 1)(L - 1)L^7 = [\mathbb{P}^6](L^7 - L)(L^6 - 1) - [G(2,7)][\mathbb{P}^5](L^2 - 1)(L^2 - L),$$

which then equals zero in view of $[G(2,7)](L^2-1)(L^2-L) = (L^7-1)(L^7-L)$ and $[\mathbb{P}^6](L^6-1) = [\mathbb{P}^5](L^7-1)$.

Remark 2.12. It was communicated to us by Kuznetsov [9] that the factor $(L^2-1)(L-1)L^7$ in the statement of Proposition 2.11 can be replaced by $(L+1)L^6$ by considering the projectivization of the tautological subbundle instead of the frame bundle. Later, Chambert-Loir and Martin [3, 13] independently showed that

$$\left([X_W] - [Y_W] \right) L^6 = 0.$$

Their argument relies on the fact that a skew-symmetric form over any field has a standard symplectic basis.

Theorem 2.13. The class L of the affine line is a zero divisor in the Grothendieck ring of varieties over \mathbb{C} .

Proof. In view of Proposition 2.11, it suffices to show that

$$([X_W] - [Y_W])(L^2 - 1)(L - 1)$$

is a nonzero element of the Grothendieck ring. In fact, we can argue that it is a nonzero element modulo L. Indeed, if it were zero modulo L, this would mean that $[X_W] = [Y_W] \mod L$. This implies that X_W is stably birational to Y_W , by [10]. This means that for some $k \ge 0$ the varieties $X_W \times \mathbb{P}^k$ and $Y_W \times \mathbb{P}^k$ are birational to each other. We now consider the MRC fibration [7], which is a birational invariant of an algebraic variety. Importantly, if Xis not uniruled (for example a Calabi-Yau variety), then the base of the MRC fibration of $X \times \mathbb{P}^k$ is X. Thus, birationality of $X_W \times \mathbb{P}^k$ and $Y_W \times \mathbb{P}^k$ implies birationality of X_W and Y_W , which is known to be false; see Proposition 2.2.

It was observed by Evgeny Shinder that the construction of this paper provides a negative answer to the cut-and-paste question of Larsen and Lunts [10, Question 1.2], which asks whether any two varieties with equal classes in the Grothendieck ring can be cut up into isomorphic pieces.¹

Theorem 2.14. The cut-and-paste conjecture of Larsen and Lunts fails. Proof. The equality

$$[X_W](L^2 - 1)(L - 1)L^7 = [Y_W](L^2 - 1)(L - 1)L^7$$

implies that trivial $GL(2,\mathbb{C}) \times \mathbb{C}^6$ bundles over X_W and Y_W have the same class in the Grothendieck ring. If it were possible to cut them into unions of isomorphic varieties, then $X_W \times GL(2,\mathbb{C}) \times \mathbb{C}^6$ would be birational to $Y_W \times GL(2,\mathbb{C}) \times \mathbb{C}^6$. This implies that X_W and Y_W are stably birational, and thus birational, in contradiction to Proposition 2.2.

Remark 2.15. Our method works over any field of characteristic zero. It does not appear to work in positive characteristics, since results of [10] are based on [1], which in turn relies on the resolution of singularities.

Acknowledgements

This paper came about as a byproduct of joint work with Anatoly Libgober on a higher dimensional version of Pfaffian-Grassmannian double mirror correspondence. The author is indebted to Professor Libgober for stimulating conversations, useful references and comments on the preliminary version of

208

¹Another counterexample to the question was recently announced by Ilya Karzhemanov in [6].

the paper. The author also thanks Evgeny Shinder, who pointed out that the construction of the paper gives a counterexample to the cut-and-paste conjecture of Larsen and Lunts; see Theorem 2.14.

References

- Dan Abramovich, Kalle Karu, Kenji Matsuki, and Jarosław Włodarczyk, *Torification and factorization of birational maps*, J. Amer. Math. Soc. **15** (2002), no. 3, 531–572, DOI 10.1090/S0894-0347-02-00396-X. MR1896232
- [2] Lev Borisov and Andrei Căldăraru, The Pfaffian-Grassmannian derived equivalence, J. Algebraic Geom. 18 (2009), no. 2, 201–222, DOI 10.1090/S1056-3911-08-00496-7. MR2475813
- [3] A. Chambert-Loir, private communication.
- [4] Jan Denef and François Loeser, On some rational generating series occurring in arithmetic geometry, Geometric aspects of Dwork theory. Vol. I, II, Walter de Gruyter, Berlin, 2004, pp. 509–526. MR2099079
- [5] S. Galkin and E. Shinder, The Fano variety of lines and rationality problem for a cubic hypersurface, preprint, arXiv:1405.5154.
- [6] I. Karzhemanov, On the cut-and-paste property of algebraic varieties, preprint, arXiv:1411.6084.
- [7] János Kollár, Yoichi Miyaoka, and Shigefumi Mori, Rationally connected varieties, J. Algebraic Geom. 1 (1992), no. 3, 429–448. MR1158625
- [8] Alexander Kuznetsov, Lefschetz decompositions and categorical resolutions of singularities, Selecta Math. (N.S.) 13 (2008), no. 4, 661–696, DOI 10.1007/s00029-008-0052-1. MR2403307
- [9] A. Kuznetsov, private communication.
- [10] Michael Larsen and Valery A. Lunts, Motivic measures and stable birational geometry (English, with English and Russian summaries), Mosc. Math. J. 3 (2003), no. 1, 85–95, 259. MR1996804
- [11] M. Larsen and V. Lunts, Rationality of motivic zeta function and cut-and-paste problem, preprint, arXiv:1410.7099.
- [12] Daniel Litt, Symmetric powers do not stabilize, Proc. Amer. Math. Soc. 142 (2014), no. 12, 4079–4094, DOI 10.1090/S0002-9939-2014-12155-1. MR3266979
- [13] Nicolas Martin, The class of the affine line is a zero divisor in the Grothendieck ring: an improvement (English, with English and French summaries), C. R. Math. Acad. Sci. Paris 354 (2016), no. 9, 936–939, DOI 10.1016/j.crma.2016.05.016. MR3535349
- [14] Bjorn Poonen, The Grothendieck ring of varieties is not a domain, Math. Res. Lett. 9 (2002), no. 4, 493–497, DOI 10.4310/MRL.2002.v9.n4.a8. MR1928868
- [15] Einar Andreas Rødland, The Pfaffian Calabi-Yau, its mirror, and their link to the Grassmannian G(2,7), Compositio Math. 122 (2000), no. 2, 135–149, DOI 10.1023/A:1001847914402. MR1775415

DEPARTMENT OF MATHEMATICS, RUTGERS UNIVERSITY, PISCATAWAY, NEW JERSEY 08854 $E\text{-}mail\ address:\ borisov@math.rutgers.edu$

Licensed to AMS. License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf