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THE CLASS OF THE AFFINE LINE IS A ZERO

DIVISOR IN THE GROTHENDIECK RING

LEV A. BORISOV

Abstract

We show that the class of the affine line is a zero divisor in the
Grothendieck ring of algebraic varieties over complex numbers. The
argument is based on the Pfaffian-Grassmannian double mirror corre-
spondence.

1. Introduction

The Grothendieck ring K0(V ar/C) of complex algebraic varieties is a fun-

damental object of algebraic geometry. It is defined as the quotient of the

group of formal integer linear combinations
∑

i ai[Zi] of isomorphism classes

of complex algebraic varieties modulo the relations

[Z]− [U ]− [Z\U ]

for all open subvarieties U ⊆ Z. The product structure is induced from the

Cartesian product.

The main result of this paper is the following.

Theorem 2.13. The class L of the affine line is a zero divisor in the

Grothendieck ring of varieties over C.

The class L = [C1] of the affine line plays an important role in the study

of K0(V ar/C). For example, it has been proved in [10] that the quotient of

K0(V ar/C) by L has a natural basis indexed by the classes of projective alge-

braic varieties up to stable birational equivalence. In other instances one needs

to localize K0(V ar/C) by L (see [4, 12]), so it is important to know whether

L is a nonzero divisor. While it has been shown in [14] that K0(V ar/C) is

not a domain, there remained a hope that L is nonetheless a nonzero divisor

in K0(V ar/C).
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This problem was brought to our attention by an elegant recent preprint

of Galkin and Shinder [5] in which the authors prove that if L is a nonzero

divisor in K0(V ar/C) (a weaker condition that L2a = 0 implies a ∈ 〈L〉 in

fact suffices), then a rational smooth cubic fourfold in P
5 must have its Fano

variety of lines birational to a symmetric square of a K3 surface. This paper

puts a dent in this approach to (ir)rationality of cubic fourfolds.

The consequence of our construction is another important result, which was

pointed out to us by Evgeny Shinder. A cut-and-paste conjecture (or question)

of Larsen and Lunts [10, Question 1.2] asks whether any two algebraic varieties

X and Y with [X] = [Y ] in the Grothendieck ring can be cut into disjoint

unions of pairwise isomorphic locally closed subvarieties.

Theorem 2.14. The cut-and-paste conjecture of Larsen and Lunts fails.

The negative answer to this conjecture is important in view of its potential

applications to rationality of motivic zeta functions; see [4], [11].

The main idea of the proof of Theorems 2.13 and 2.14 is to compare the

two sides XW and YW of the Pfaffian-Grassmannian double mirror corre-

spondence. These are nonbirational smooth Calabi-Yau threefolds which are

derived equivalent. There is a natural variety (a frame bundle over the Cayley

hypersurface of XW ) whose class in the Grothendieck ring can be expressed

both in terms of [XW ] and in terms of [YW ]. This provides a relation
(

[XW ]− [YW ]
)

(L2 − 1)(L− 1)L7 = 0

in the Grothendieck ring, which then implies that L is a zero divisor.

After this preprint appeared, the result was improved to
(

[XW ]− [YW ]
)

(L+ 1)L6 = 0

by Kuznetsov [9] and then later to
(

[XW ]− [YW ]
)

L6 = 0

independently by Chambert-Loir and Martin [3, 13].

2. The construction

2.1. Pfaffian and Grassmannian double mirror Calabi-Yau vari-

eties. Let V be a 7-dimensional complex vector space. Let W ⊂ Λ2V ∨ be

a generic 7-dimensional space of skew forms on V . These data encode two

smooth Calabi-Yau varieties XW and YW as follows.

Definition 2.1. We defineXW as a subvariety of the Grassmannian G(2, V )

of dimension two subspaces T2 ⊂ V , which is the locus of all T2 ∈ G(2, V )
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with w
∣

∣

∣

T2

= 0 for all w ∈ W . We define YW as a subvariety of the Pfaffian

variety Pf(V ) ⊂ PΛ2V of skew forms on V whose rank is less than 6. It is

defined as the intersection of Pf(V ) with PW ⊂ PΛ2V .

The following proposition summarizes the properties of XW and YW that

will be used later.

Proposition 2.2. The following statements hold for a general choice of

W .

• The varieties XW and YW are smooth Calabi-Yau threefolds.

• The varieties XW and YW are not isomorphic, or even birational, to

each other.

• All forms Cw ∈ YW have rank 4. All forms Cw ∈ PW\YW have rank

6.

Proof. Smoothness of XW and YW has been shown by Rødland [15]. They

are not isomorphic to each other because the ample generators DX and DY

of their respective Picard groups have D3
X = 42 and D3

Y = 14. The statement

that XW and YW are not birational follows from the fact that they are non-

isomorphic Calabi-Yau threefolds with Picard number one; see [2].

The statement about the rank of the forms follows from the fact that W

is generic, since the locus of rank 2 forms in PΛ2V ∨ is of codimension 10.

Alternatively, if Cw ∈ YW has rank 2, then YW is automatically singular at

Cw. �

Remark 2.3. The varieties XW and YW are double-mirror to each other,

in the sense that they have the same mirror family. This is just a heuristic

statement, but it does indicate that geometry of XW is intimately connected

to that of YW . For example, it was shown independently in [2] and [8] that

XW and YW have equivalent derived categories.

2.2. Cayley hypersurface and its frame bundle. The main technical

tool of this paper is the so-called Cayley hypersurface of XW . It is the hyper-

surface in G(2, V ) × PW which consists of pairs (T2,Cw) with the property

w
∣

∣

∣

T2

= 0. The class of XW in the Grothendieck ring of varieties over C is

related to that of H as follows.

Proposition 2.4. The following equality holds in the Grothendieck ring:

[H] = [G(2, 7)][P5] + [XW ]L6.

Proof. Consider the projection of H onto G(2, V ). The restriction of this

map to the preimage of XW is a trivial fibration with fiber PW = P6. The

restriction of it to the complement of XW is a Zariski locally trivial fibration

with fiber P
5. Indeed, the hyperplanes of w that vanish on a given T2 can

be Zariski locally identified with a fixed P
5 by projecting from a fixed point
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in PW . This gives

[H] = [XW ][P6] + ([G(2, 7)]− [XW ])[P5] = [G(2, 7)][P 5] + [XW ]([P6]− [P5]),

which proves the claim. �

Remark 2.5. In the proof of Proposition 2.4 we used the statement that

for a Zariski locally trivial fibration Z → B with fiber F there holds [Z] =

[B][F ] inK0(V ar/C). We will use this statement repeatedly in the subsequent

arguments.

We can project the Cayley hypersurface H onto the second factor π : H →

PW . We will have different fibers depending on whether the image lies in YW

or not. While we would like to say that the restriction of π to the preimages

of YW and its complement are Zariski locally trivial, we do not know if this

is true or not. So instead of using H itself we will pass to the frame bundle

H̃ over H.

Definition 2.6. We denote by H̃ the frame bundle of H, i.e. the space of

triples (v1, v2, w) where v1 and v2 are linearly independent vectors in V and

w is an element of PW such that w(v1, v2) = 0.

Remark 2.7. Since H̃ is the frame bundle of the Zariski locally trivial

vector bundle (pullback of the tautological subbundle on G(2, V )) on H, the

fibration H̃ → H is Zariski locally trivial. An easy calculation shows that

(1) [H̃ ] = [H](L2 − 1)(L2 − L)

in the Grothendieck ring.

We now consider the projection H̃ → PW . Notice that we have

(2) H̃ = H̃1 ⊔ H̃2

where H̃1 is the preimage of YW and H̃2 is the preimage of its complement in

PW .

Proposition 2.8. The following equality holds in the Grothendieck ring:

[H̃1] = [YW ]
(

(L3 − 1)(L7 − L) + (L7 − L3)(L6 − L)
)

.

Proof. There is a subvariety H̃1,1 in H̃1 given by the condition v1 ∈ Ker(w).

Forgetting v2 realizes H̃1,1 as a Zariski locally trivial fibration with fiber C7−C

over the space of pairs (v1, w) with v1 ∈ Ker(w), v1 	= 0. This in turn is a

Zariski locally trivial fibration over YW with fiber (C3−pt), since all Cw ∈ YW

have rank 4. Putting all this together, we have

[H̃1,1] = [YW ](L3 − 1)(L7 − L)

in the Grothendieck ring. Similarly, the complement H̃1,2 of H̃1,1 in H̃1 sat-

isfies

[H̃1,2] = [YW ](L7 − L3)(L6 − L).

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



THE AFFINE LINE IS A ZERO DIVISOR IN GROTHENDIECK RING 207

Indeed, H̃1,2 forms a vector bundle of rank 6 over the space of pairs (v1, w),

since the condition w(v1, v2) = 0 is now nontrivial. The result of the propo-

sition now follows from [H̃1] = [H̃1,1] + [H̃1,2]. �

Proposition 2.9. The following equality holds in the Grothendieck ring:

[H̃2] =
(

[P6]− [YW ]
)(

(L− 1)(L7 − L) + (L7 − L)(L6 − L)
)

.

Proof. The argument is completely analogous to that of Proposition 2.8.

The only difference is that a form Cw 	∈ YW has rank 6 and thus a 1-

dimensional kernel. �

As a corollary of Propositions 2.8 and 2.9 we get the formula for [H̃ ].

Proposition 2.10. The following equality holds in the Grothendieck ring:

[H̃] = [P6](L7 − L)(L6 − 1) + [YW ](L2 − 1)(L− 1)L7.

Proof. This follows immediately from (2) and Propositions 2.8 and 2.9. �

2.3. Main theorem. We are now ready to prove our main result. We

start with the following formula derived from the calculations of the previous

subsection.

Proposition 2.11. The following equality holds in the Grothendieck ring:
(

[XW ]− [YW ]
)

(L2 − 1)(L− 1)L7 = 0.

Proof. We use Proposition 2.10 and Proposition 2.4 with equation (1) to get

expressions for [H̃ ], in terms of [YW ] and [XW ] respectively. By subtracting

one from the other we get
(

[XW ]− [YW ]
)

(L2 − 1)(L− 1)L7

= [P6](L7 − L)(L6 − 1)− [G(2, 7)][P5](L2 − 1)(L2 − L),

which then equals zero in view of [G(2, 7)](L2−1)(L2−L) = (L7−1)(L7−L)

and [P6](L6 − 1) = [P5](L7 − 1). �

Remark 2.12. It was communicated to us by Kuznetsov [9] that the factor

(L2−1)(L−1)L7 in the statement of Proposition 2.11 can be replaced by (L+

1)L6 by considering the projectivization of the tautological subbundle instead

of the frame bundle. Later, Chambert-Loir and Martin [3, 13] independently

showed that
(

[XW ]− [YW ]
)

L6 = 0.

Their argument relies on the fact that a skew-symmetric form over any field

has a standard symplectic basis.

Theorem 2.13. The class L of the affine line is a zero divisor in the

Grothendieck ring of varieties over C.
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Proof. In view of Proposition 2.11, it suffices to show that
(

[XW ]− [YW ]
)

(L2 − 1)(L− 1)

is a nonzero element of the Grothendieck ring. In fact, we can argue that it

is a nonzero element modulo L. Indeed, if it were zero modulo L, this would

mean that [XW ] = [YW ] mod L. This implies that XW is stably birational

to YW , by [10]. This means that for some k ≥ 0 the varieties XW × Pk and

YW × Pk are birational to each other. We now consider the MRC fibration

[7], which is a birational invariant of an algebraic variety. Importantly, if X

is not uniruled (for example a Calabi-Yau variety), then the base of the MRC

fibration of X×Pk is X. Thus, birationality of XW ×Pk and YW ×Pk implies

birationality of XW and YW , which is known to be false; see Proposition

2.2. �

It was observed by Evgeny Shinder that the construction of this paper

provides a negative answer to the cut-and-paste question of Larsen and Lunts

[10, Question 1.2], which asks whether any two varieties with equal classes in

the Grothendieck ring can be cut up into isomorphic pieces.1

Theorem 2.14. The cut-and-paste conjecture of Larsen and Lunts fails.

Proof. The equality

[XW ](L2 − 1)(L− 1)L7 = [YW ](L2 − 1)(L− 1)L7

implies that trivial GL(2,C) × C6 bundles over XW and YW have the same

class in the Grothendieck ring. If it were possible to cut them into unions

of isomorphic varieties, then XW × GL(2,C) × C6 would be birational to

YW × GL(2,C) × C
6. This implies that XW and YW are stably birational,

and thus birational, in contradiction to Proposition 2.2. �

Remark 2.15. Our method works over any field of characteristic zero. It

does not appear to work in positive characteristics, since results of [10] are

based on [1], which in turn relies on the resolution of singularities.
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