
H. MASAOKA
KODAI MATH. J.
33 (2010), 233–239

THE CLASSES OF BOUNDED HARMONIC FUNCTIONS AND
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Introduction

For an open Riemann surface R, we denote by HPðRÞ, HBðRÞ and HDðRÞ
the class of di¤erences of positive harmonic functions on R, bounded harmonic
functions on R, and harmonic functions with finite Drichlet integrals on R,
respectively. And denote by HPþðRÞ, HBþðRÞ and HDþðRÞ the class of posi-
tive harmonic functions on R, bounded and positive harmonic functions on R,
and positive harmonic functions with finite Drichlet integrals on R, respectively.
Note that HX ðRÞ ¼ HXþðRÞ �HXþðRÞ, X ¼ P;B;D. It is easily seen that
HBðRÞHHPðRÞ and HDðRÞHHPðRÞ (cf. [9]).

We say that an open Riemann surface R is parabolic (resp. hyperbolic) if R
does not admit (resp. admits) Green’s functions on R. It is well-known that, if R
is parabolic, then HPðRÞ, HBðRÞ and HDðRÞ consist of constant functions (cf.
[9]).

Hereafter, we consider only hyperbolic Riemann surfaces R. Let D ¼ DR;M

and D1 ¼ DR;M
1 the Martin boundary of R and the minimal Martin boundary of R,

respectively. We refer to [2] for details about the Martin boundary.
In [4] (resp. [5]) we gave necessary and su‰cient conditions in terms of

Martin boundary in order that the converse HBðRÞIHPðRÞ (resp. HDðRÞI
HPðRÞ) of the above respective inclusion relations hold.

Though the inclusion relation between HBðRÞ and HDðRÞ does not generally
hold, it seems to be an interesting problem to give a necessary and su‰cient
condition in order that HBðRÞ coincides with HDðRÞ. The purpose of this
article is to prove the following

Main Theorem. Suppose that R is hyperbolic. Then the followings are
equivalent by pairs:
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(i) HBðRÞ ¼ HDðRÞ;
(ii) there exists a null set N of D with respect to the harmonic measure such

that D1nN consists of finitely many points with positive harmonic measures whose
Martin functions have finite Dirichlet integrals;

(iii) dim HBðRÞ ¼ dim HDðRÞ < y;
where dim HX ðRÞ is the dimension of the linear space HX ðRÞ, X ¼ B;D.

Finally the author would like to express his deepest gratitude to Prof. S.
Segawa for his valuable comment and at the same time to a referee for his helpful
advice. He told the author that Prof. M. Nakai [8] gave an alternative proof for
Main Theorem.

1. Preliminaries

In this section we state several propositions in order to prove Main Theorem
in Introduction in the next section.

Let z0 be a specified point of R, which serves as a reference point. Denote
by ozð�Þ the harmonic measure on D with respect to z A R. We also denote by
kzðzÞ (ðz; zÞ A ðRUDÞ � R) the Martin function on R with pole at z.

First we give a characterization for boundedness of Martin function.

Proposition 1 (cf. [2, Hilfssatz 13.3]). Let z belong to D1. Then the Martin
function kzð�Þ with pole at z is bounded on R if and only if the harmonic measure
o�ðfzgÞ of the singleton fzg is positive.

Next we review for fundamental properties concerning HDðRÞ:

Definition 1. Fix z0 A R. For h; u A HDðRÞ, set

Dðh; uÞ :¼
ð
R

ðgrad hðzÞ; grad uðzÞÞ dvðzÞ;

where grad hðzÞ is the gradient of h at z, ðgrad hðzÞ; grad uðzÞÞ is the usual inner

product of two vectors grad hðzÞ and grad uðzÞ in R2 and v is the area element
on R:

For h A HDðRÞ, denote by DðhÞ :¼ Dðh; hÞ. We call it the Dirichlet integral
of h. By the discussion in [1, p. 400] we have the following

Proposition 2 (cf. [1]). HDðRÞ is a Hilbert space with the inner product
Dð� ; �Þ in the above definition, two functions being identified if their di¤erence is a
constant function.

Proposition 3 (cf. [3]). h A HDðRÞ if and only if h has the minimal fine limit
h�ðzÞ at almost every point zðA D1Þ with respect to the harmonic measure oz0 such
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that hðzÞ ¼
Ð
D1
h�ðzÞ dozðzÞ,

Ð
D1
jh�ðzÞj2 doz0ðzÞ < y, and the following property

holds: ð
D1

ð
D1

ðh�ðzÞ � h�ðxÞÞ2yz0ðz; xÞ doz0ðzÞ doz0ðxÞ < y;

where yz0ðz; xÞ is the Naı̈m kernel on ðRUDnfz0gÞ � ðRUDnfz0gÞ (cf. [6]).
Then, moreover,

DðhÞ ¼ q

ð
D1

ð
D1

ðh�ðzÞ � h�ðxÞÞ2yz0ðz; xÞ doz0ðzÞ doz0ðxÞ;

where q is the absolute constasnt.

Denote by MHBþðRÞ (resp. MHDþðRÞ) the class of all finite limit functions
of monotone increasing sequences of HBþðRÞ (resp. HDþðRÞ). Set MHX ðRÞ ¼
MHXþðRÞ �MHXþðRÞ ðX ¼ B;DÞ. The class MHBðRÞ is called the class of
quasi-bounded functions on R. By [2, Folgesatz 13.1, Satz 13.4 and Satz 14.2]
we have the following

Lemma 1 (cf. [2]). It holds that

MHBðRÞ ¼
�
h j h has the minimal fine limit h�ðzÞ at almost every point

zðA D1Þ with respect to oz0 with uðzÞ ¼
ð
DM
1

u�ðzÞ dozðzÞ
�
:

From Proposition 3 and Lemma 1 the next lemma is easily deduced.

Lemma 2. MHDðRÞHMHBðRÞ.

By the above lemma we have the following

Proposition 4. Suppose that dim HBðRÞ < y. Then HDðRÞHHBðRÞ.

Proof. Suppose that dim HBðRÞ < y. By [5, Theorem 2], HBðRÞ ¼
MHBðRÞ. Hence, it follows from Lemma 2 that HDðRÞHMHDðRÞH
MHBðRÞ ¼ HBðRÞ.

2. Proof of Main Theorem

Suppose that (i) holds. Further we suppose that there exists a point z A D
such that oz0ðUrðzÞÞ > 0 for any positive r and oz0ðfzgÞ ¼ 0, where UrðzÞ is
the disc with center z and radius r with respect to the standard metric on
RUD. Hence, there exists a monotone decreasing sequence frng

y
n¼1 with
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limn!y rn ¼ 0, oz0ðUrnðzÞnUrnþ1
ðzÞÞ > 0 ðn A NÞ and limn!y oz0ðUrnðzÞÞ ¼ 0. Set

unðzÞ ¼ ozðUrnðzÞÞ ðz A R; n A NÞ. Since HBðRÞ ¼ HDðRÞ, DðunÞ < þy. First
we show that fDðunÞgyn¼1 is bounded. Suppose that fDðunÞgyn¼1 is un-
bounded. Set Vn ¼ UrnðzÞnUrnþ1

ðzÞ ðn A NÞ. Then UrnðzÞ ¼ 6y
t¼n

Vt ðn A NÞ
and V0 ¼ DnUr1ðzÞ. By Proposition 3 we have

1

2
DðunÞ ¼ q

ð
Urn ðzÞ

ð
DnUrn ðzÞ

yz0ðh; xÞ doz0ðhÞ doz0ðxÞ

¼ q
Xy
t¼n

Xn�1

s¼0

ð
Vt

ð
Vs

yz0ðh; xÞ doz0ðhÞ doz0ðxÞ:

Hence there exists a subsequence fDðunnÞg
y
n¼1 of fDðunÞgyn¼1 withð

6
nnþ1�1
t¼nn Vt

ð
6

nn�1
s¼0

Vs

yz0ðh; xÞ doz0ðhÞ doz0ðxÞ

¼
Xnnþ1�1

t¼nn

Xnn�1

s¼0

ð
Vt

ð
Vs

yz0ðh; xÞ doz0ðhÞ doz0ðxÞb n5:

Set u ¼
Py

n¼1 unn=n
2. It is easily seen that u A HBðRÞ. On the other hand,

we have

1

2
DðuÞ ¼ q

Xy
m¼1

Xm�1

n¼0

Xm
j¼nþ1

1

j2

 !2ð
6

nmþ1�1

t¼nm Vt

ð
6

nnþ1�1
s¼nn Vs

yz0ðh; xÞ doz0ðhÞ doz0ðxÞ ðn0 ¼ 0Þ

b q
Xl

m¼1

Xm�1

n¼0

Xm
j¼nþ1

1

j2

 !2ð
6

nmþ1�1

t¼nm Vt

ð
6

nnþ1�1
s¼nn Vs

yz0ðh; xÞ doz0ðhÞ doz0ðxÞ

b q
Xl�1

n¼0

Xl

j¼nþ1

1

j2

 !2ð
6

nlþ1�1
t¼nl

Vt

ð
6

nnþ1�1
s¼nn Vs

yz0ðh; xÞ doz0ðhÞ doz0ðxÞ

b
q

l 4

Xl�1

n¼0

ð
6

nlþ1�1
t¼nl

Vt

ð
6

nnþ1�1
s¼nn Vs

yz0ðh; xÞ doz0ðhÞ doz0ðxÞ

¼ q

l4

ð
6

nlþ1�1
t¼nl

Vt

ð
6

nl�1

s¼0
Vs

yz0ðh; xÞ doz0ðhÞ doz0ðxÞ

b
q

l 4
l 5 ¼ ql

for every l A N. Hence u B HDðRÞ. This is a contradiction.
By definition of un we find that fungyn¼1 converges to 0 locally uniformlly on

R. Taking su‰ciently large intger m0 and replacing fungyn¼1 with fungyn¼m0
, we

may suppose that u1 < 1 on R. This implies that oz0ðV0Þ > 0. Since fungyn¼1
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converges to 0 locally uniformlly on R and fDðunÞgyn¼1 is bounded, by [9, the
discussion in the proof of Theorem in p. 149] we find that, for every v A HDðRÞ,

Dðun; vÞ ! 0 ðn ! yÞ:

By Mazur’s Theorem (cf. [10, Theorem 2 (p. 120)]), for every n, there exist
an integer nn and non-negative sequences fan; jgnn

j¼1 such that
Pnn

j¼1 an; j ¼ 1 and
Dð
Pnn

j¼1 an; jujÞ < n�2. On the other hand, since f
Pnn

j¼1 an; jujg
y
n¼1 is bounded, we

can take a subsequence of f
Pnn

j¼1 an; jujg
y
n¼1 such that f

Pnn
j¼1 an; jujðz0Þg

y
n¼1 con-

verges to a constant a. Hence, by [3, Theorems 4.1 and 4.2], f
Pnn

j¼1 an; jujg
y
n¼1

converges to a in L2ðD;oz0Þ, where L2ðD;oz0Þ is the set of square integrable
functions on D with respect to oz0 and hence, by [3, the result in the first
paragraph of section 12], f

Pnn
j¼1 an; jujg

y
n¼1 converges to a locally uniformlly on

R. Hence, by [3, Theorem 4.3], and the facts that
Pnn

j¼1 an; j ¼ 1 and that
oz0ðV0Þ > 0, we find that a ¼ 0:

Set wn ¼
Pnn

j¼1 an; juj: Take a subsequence fwnlg
y
l¼1 of fwngyn¼1 with wnlðz0Þ

< 1=l2. Set s ¼
Py

l¼1 wnl . By [3, Theorem 4.2] s is well-defined. We find that
s A HDðRÞ and that s is unbounded on any neigborhood of z, that is, s A
HDðRÞnHBðRÞ. This is a conradiction.

Hence, if zðA DÞ satisfies that oz0ðUrðzÞÞ > 0 for every positive r;oz0ðfzgÞ
> 0. It follows from this fact that there exists a subset N of D such that
oz0ðNÞ ¼ 0 and that D1nN consists of at most countably many points with
positive harmonic measure. To see this set

N ¼ fz A D j there exists a positive rz with oz0ðUrzðzÞÞ ¼ 0g

and set F ¼ DnN. Clearly F UN ¼ D, F VN ¼ j and oz0ðfzgÞ > 0 for every
z A F . Hence F is an at most countable subset of D1 because oz0ðDÞ ¼ 1 and
oz0ðDnD1Þ ¼ 0. Hence it is su‰cient to prove that oz0ðNÞ ¼ 0. Set O ¼
6

z AN UrzðzÞ. Clearly O is an open subset of RUD and OVD ¼ N. By the
Lindelöf theorem there exists a sequence fxngyn¼1 of N with O ¼ 6y

n¼1
Urxn

ðxnÞ.
Hence oz0ðNÞaoz0ðOÞa

Py
n¼1 oz0ðUrxn

ðxnÞÞ ¼ 0, and hence, oz0ðNÞ ¼ 0:
Suppose that ]ðD1nNÞ ¼ @0, where ]ðD1nNÞ is the cardinal number of

D1nN. Set D1nN ¼ fzngyn¼1:
Set unðzÞ ¼ ozðfzjgyj¼nÞ ðz A RÞ. Since HBðRÞ ¼ HDðRÞ, DðunÞ < y. First

we show that fDðunÞgyn¼1 is bounded. Suppose that fDðunÞgyn¼1 is unbounded.
By Proposition 3 we have

1

2
DðunÞ ¼ q

Xy
t¼n

Xn�1

s¼1

yz0ðzt; zsÞoz0ðfztgÞoz0ðfzsgÞ:

Hence there exists a subsequence fDðunnÞg
y
n¼1 of fDðunÞgyn¼1 with

Xnnþ1�1

t¼nn

Xnn�1

s¼1

yz0ðzt; zsÞoz0ðfztgÞoz0ðfzsgÞb n5:
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Set u ¼
Py

n¼1 unn=n
2. It is easily seen that u A HBðRÞ. On the other hand,

for any integer lðb 2Þ, we have

1

2
DðuÞ ¼ q

Xy
m¼2

Xm�1

n¼1

Xnmþ1�1

t¼nm

Xnnþ1�1

s¼nn

Xm
j¼nþ1

1

j2

 !2

yz0ðzt; zsÞoz0ðfztgÞoz0ðfzsgÞ

b q
Xl

m¼2

Xm�1

n¼1

Xnmþ1�1

t¼nm

Xnnþ1�1

s¼nn

Xm
j¼nþ1

1

j2

 !2
yz0ðzt; zsÞoz0ðfztgÞoz0ðfzsgÞ

b
q

l4

Xl

m¼2

Xm�1

n¼1

Xnmþ1�1

t¼nm

Xnnþ1�1

s¼nn

yz0ðzt; zsÞoz0ðfztgÞoz0ðfzsgÞ

b
q

l4
l 5 ¼ ql:

Hence u B HDðRÞ. This is a contradiction.
By definition of un we find that fungyn¼1 converges to 0 locally uniformlly on

R. Replacing fungyn¼1 with fungyn¼2, we may suppose that u1 < 1 on R. This
implies that oz0ðDnfzng

y
n¼1Þ > 0. Since fungyn¼1 converges to 0 locally uniformlly

on R and fDðunÞgyn¼1 is bounded, by [9, the discussion in the proof of Theorem in
p. 149] we find that, for every v A HDðRÞ,

Dðun; vÞ ! 0 ðn ! yÞ:
By Mazur’s Theorem (cf. [10, Theorem 2 (p. 120)]), for every n, there exist
an integer nn and non-negative sequences fan; jgnn

j¼1 such that
Pnn

j¼1 an; j ¼ 1 and
Dð
Pnn

j¼1 an; jujÞ < n�2. On the other hand, since f
Pnn

j¼1 an; jujg
y
n¼1 is bounded, we

can take a subsequence of f
Pnn

j¼1 an; jujg
y
n¼1 such that f

Pnn
j¼1 an; jujðz0Þg

y
n¼1 con-

verges to a constant a. Hence, by [3, Theorems 4.1 and 4.2], f
Pnn

j¼1 an; jujg
y
n¼1

converges to a in L2ðD;oz0Þ, where L2ðD;oz0Þ is the set of square integrable
functions on D with respect to oz0 and hence, by [3, the result in the first
paragraph of section 12], f

Pnn
j¼1 an; jujg

y
n¼1 converges to a locally uniformlly on

R. Hence, by [3, Theorem 4.3], and the facts that
Pnn

j¼1 an; j ¼ 1 and that
oz0ðDnfzng

y
n¼1Þ > 0, we find that a ¼ 0:

Set wn ¼
Pnn

j¼1 an; juj: Take a subsequence fwnlg
y
l¼1 of fwngyn¼1 with wnlðz0Þ

< 1=l2. Set s ¼
Py

l¼1 wnl . By [3, Theorem 4.2] s is well-defined. Clearly
s A HDðRÞ. Let x0 be an accumlating point of fzjgyj¼1. We find that s is un-
bounded on any neighborhood of x0. Hence s A HDðRÞnHBðRÞ. This is a
contradiction. Hence ]fzngnb1 < y:

Hence, setting N ¼ D1nfz A D1 : oz0ðzÞ > 0g, by Proposition 1, we find that
oz0ðNÞ ¼ 0, ]ðD1nNÞ < y, and kz A HBðRÞVHDðRÞ for all z A D1nN. There-
fore we have (ii).

Suppose that (ii) holds. Hence, there exists a null set N of D with respect to
the harmonic measure such that D1nN consists of finitely many points and the
Martin function kz on R with pole at a point z of D1nN is a bounded and
positive harmonic function with a finite Dirichlet integral. Put ]ðD1nNÞ ¼ m.
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D1nN ¼ fz1; . . . ; zmg. Take any h A HBðRÞ ðresp: h A HDðRÞÞ. Then there exist
hi A HPþðRÞ ði ¼ 1; 2Þ with h ¼ h1 � h2 on R. By the Martin reprensentation
theorem there exist the positive measures m1 and m2 such that

hiðzÞ ¼
ð
D1

kzðzÞ dmiðzÞ ¼
Xm
j¼1

kzj ðzÞmiðfzjgÞ ði ¼ 1; 2Þ:

Hence hðzÞ ¼ h1ðzÞ � h2ðzÞ ¼
Pm

j¼1 kzj ðzÞðm1ðfzjgÞ � m2ðfzjgÞÞ. Since kzj AHDðRÞ
ðresp: kzj A HBðRÞÞ ð j ¼ 1; . . . ;mÞ, h A HDðRÞ ðresp: h A HBðRÞÞ. Hence,
HBðRÞHHDðRÞ ðresp: HDðRÞHHBðRÞÞ, and hence, HBðRÞ ¼ HDðRÞ. Hence
dim HBðRÞ ¼ dim HDðRÞ < y. Therefore we have (iii).

Suppose that (iii) holds. Since dim HBðRÞ < y, by Proposition 4, we find
that HDðRÞHHBðRÞ. Since HDðRÞ is a linear subspace of the linear space
HBðRÞ, by the assertion (iii), we find that HBðRÞ ¼ HDðRÞ. Therefore we have
(i).
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