PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 124, Number 12, December 1996, Pages 3777–3787 S 0002-9939(96)03490-9

THE CLASSICAL BANACH SPACES $\ell_{\varphi}/h_{\varphi}$

ANTONIO S. GRANERO AND HENRYK HUDZIK

(Communicated by Palle E. T. Jorgensen)

ABSTRACT. In this paper we study some structural and geometric properties of the quotient Banach spaces $\ell_{\varphi}(I)/h_{\varphi}(S)$, where I is an arbitrary set, φ is an Orlicz function, $\ell_{\varphi}(I)$ is the corresponding Orlicz space on I and $h_{\varphi}(S) = \{x \in \ell_{\varphi}(I) : \forall \lambda > 0, \exists s \in S \text{ such that } I_{\varphi}(\frac{x-s}{\lambda}) < \infty\}$, S being the ideal of elements with finite support. The results we obtain here extend and complete the ones obtained by Leonard and Whitfield (Rocky Mountain J. Math. **13** (1983), 531–539). We show that $\ell_{\varphi}(I)/h_{\varphi}(S)$ is not a dual space, that $Ext(B_{\ell_{\varphi}(I)/h_{\varphi}(S)) = \emptyset$, if $\varphi(t) > 0$ for every t > 0, that $S_{\ell_{\varphi}(I)/h_{\varphi}(S)}$ has no smooth points, that it cannot be renormed equivalently with a strictly convex or smooth norm, that $\ell_{\varphi}(I)/h_{\varphi}(S)$ is a Grothendieck space, etc.

1. NOTATION AND PRELIMINARIES

Let $\varphi : \mathbb{R} \to [0, +\infty]$ denote an Orlicz function, i.e. a function which is even, nondecreasing, left continuous for $x \ge 0$, $\varphi(0) = 0$ and $\varphi(x) \to \infty$ as $x \to \infty$. Define $a(\varphi) = \sup\{t \ge 0 : \varphi(t) = 0\}$, $\tau(\varphi) = \sup\{t \ge 0 : \varphi(t) < \infty\}$ and assume that $\tau(\varphi) > 0$. Fix an arbitrary set I and, for $x \in \mathbb{R}^I$, define $I_{\varphi}(x) = \sum_{i \in I} \varphi(x_i)$. Let $\ell_{\varphi}(I)$ be the corresponding Orlicz space, i.e. $\ell_{\varphi}(I) = \{x \in \mathbb{R}^I : \exists \lambda > 0 \text{ such that } I_{\varphi}(x/\lambda) < \infty\}$. Consider in $\ell_{\varphi}(I)$ the F-norm $|x|_{\varphi} := \inf\{\lambda > 0 : I_{\varphi}(x/\lambda) \le \lambda\}$, $\forall x \in \ell_{\varphi}(I)$, and the associated distance $d(x, y) = |x - y|_{\varphi}$. It is known that $(\ell_{\varphi}(I), d)$ is a complete F-space.

Let $\mathcal{S} \subseteq \ell_{\varphi}(I)$ be the ideal of elements of finite support. Define $h_{\varphi}(\mathcal{S})$ by:

$$h_{\varphi}(\mathcal{S}) = \{ x \in \ell_{\varphi}(I) : \forall \lambda > 0, \ \exists s \in \mathcal{S} \text{ such that } I_{\varphi}(\frac{x-s}{\lambda}) < \infty \},$$

and $\delta(x)$ by:

$$\delta(x) = \inf\{\lambda > 0 : \exists s \in \mathcal{S} \text{ such that } I_{\varphi}(\frac{x-s}{\lambda}) < \infty\}, x \in \ell_{\varphi}(I).$$

Clearly, $h_{\varphi}(S)$ is a closed ideal of $\ell_{\varphi}(I)$ such that $h_{\varphi}(S) = \{x \in \ell_{\varphi}(I) : \forall \lambda > 0, I_{\varphi}(\lambda x) < \infty\}$, if φ is finite, and $\overline{S} = h_{\varphi}(S)$, where \overline{S} is the closure of S in $\ell_{\varphi}(I)$.

We are interested in the quotient space $\ell_{\varphi}(I)/h_{\varphi}(S)$. Hence we must impose the condition $\ell_{\varphi}(I) \neq h_{\varphi}(S)$. Note that this happens if and only if I is infinite and $\varphi \notin \Delta_2^0$, i.e. φ doesn't satisfy the Δ_2 condition at 0.

©1996 American Mathematical Society

Received by the editors March 15, 1995 and, in revised form, June 13, 1995.

¹⁹⁹¹ Mathematics Subject Classification. Primary 46B20.

Key words and phrases. Orlicz spaces, quotient spaces.

The first author was supported in part by DGICYT grant PB 94-0243. The paper was written while the second author visited the Universidad Complutense de Madrid.

If φ is convex we can consider the Luxemburg norm $\|\cdot\|_L$ and the Luxemburg distance d_L :

$$||x||_L = \inf\{\lambda > 0 : I_{\varphi}(x/\lambda) \le 1\}, \qquad d_L(x,y) = ||x-y||_L, \qquad x, y \in \ell_{\varphi}(I),$$

as well as the Amemiya-Orlicz norm $\|\cdot\|_o$ and the Amemiya-Orlicz distance d_o :

$$\|x\|_o = \inf_{k>0} \{ \frac{1}{k} (1 + I_{\varphi}(kx)) \}, \qquad d_o(x-y) = \|x-y\|_o, \qquad x, y \in \ell_{\varphi}(I).$$

It is known that, $\forall x \in \ell_{\varphi}(I), \|x\|_{L} \leq \|x\|_{o} \leq 2\|x\|_{L}$ and that these norms define on $\ell_{\varphi}(I)$ the same topology as $|\cdot|_{\varphi}$. Denote by B_{φ}^{L} (resp. B_{φ}^{o}) and S_{φ}^{L} (resp. S_{φ}^{o}) the closed unit ball and unit sphere of $(\ell_{\varphi}(I), \|\cdot\|_{L})$ (resp. $(\ell_{\varphi}(I), \|\cdot\|_{o})$). Recall that a Banach *M*-space is a Banach lattice $(X, \|\cdot\|)$ such that $\|x \vee y\| = \|x\| \vee \|y\|$, whenever $x, y \in X^{+}$.

Proposition 1.1. Let I be an infinite set and φ an Orlicz function such that $\ell_{\varphi}(I) \neq h_{\varphi}(S)$. Then:

- (1) For each $x \in \ell_{\varphi}(I)$ we have $\delta(x) = d(x, h_{\varphi}(S))$ and, if φ is convex, also $\delta(x) = d_L(x, h_{\varphi}(S)) = d_o(x, h_{\varphi}(S)).$
- (2) δ is a monotone seminorm on $\ell_{\varphi}(I)$ such that $ker(\delta) = h_{\varphi}(\mathcal{S})$.
- (3) Let $\|\cdot\|$ be the quotient F-norm on $\ell_{\varphi}(I)/h_{\varphi}(S)$. Then $(\ell_{\varphi}(I)/h_{\varphi}(S), \|\cdot\|)$ is a Banach M-space.
- (4) If φ is convex, the space ℓ_φ(I)/h_φ(S) equipped with the quotient norms corresponding to the Luxemburg norm as well as to the Orlicz norm is order isomorphic and isometric to (ℓ_φ(I)/h_φ(S), || · ||).

Proof. (1) Let $x \in \ell_{\varphi}(I)$ and fix $\epsilon > 0$. Then $\exists s \in \mathcal{S}$ such that $I_{\varphi}\left(\frac{x-s}{\delta(x)+\epsilon}\right) < +\infty$ and $0 \leq s^+ \leq x^+, 0 \leq s^- \leq x^-$. Pick $\{y_{\alpha}\}_{\alpha \in A}, \{z_{\alpha}\}_{\alpha \in A}$ in $h_{\varphi}(\mathcal{S})^+$ with $y_{\alpha} \uparrow x^+ - s^+, z_{\alpha} \uparrow x^- - s^-$. Since I_{φ} is o-continuous, we get:

$$I_{\varphi}\left(\frac{x-s-y_{\alpha}+z_{\alpha}}{\delta(x)+\epsilon}\right) = I_{\varphi}\left(\frac{x^{+}-s^{+}-y_{\alpha}+x^{-}-s^{-}-z_{\alpha}}{\delta(x)+\epsilon}\right) \to 0$$

with respect to (for short, wrt) $\alpha \in A$. Hence $d(x, h_{\varphi}(S)) \leq \delta(x)$, since $\epsilon > 0$ is arbitrary. If φ is convex, the above also proves that $d_L(x, h_{\varphi}(S)) \leq \delta(x)$. Concerning the Amemiya-Orlicz norm, since $I_{\varphi}\left(\frac{x-s-y_{\alpha}+z_{\alpha}}{\delta(x)+\epsilon}\right) \to 0$ wrt $\alpha \in A$, we have:

$$\|x - s - y_{\alpha} + z_{\alpha}\|_{o} \leq (\delta(x) + \epsilon) \left[1 + I_{\varphi} \left(\frac{x - s - y_{\alpha} + z_{\alpha}}{\delta(x) + \epsilon} \right) \right]$$

$$\to \delta(x) + \epsilon \text{ wrt } \alpha \in A,$$

whence, ϵ being arbitrary, it follows that $d_o(x, h_{\varphi}(\mathcal{S})) \leq \delta(x)$.

For the contrary inequality, if $\delta(x) = 0$, the above proves that $0 = \delta(x) = d(x, h_{\varphi}(\mathcal{S})) = d_L(x, h_{\varphi}(\mathcal{S})) = d_o(x, h_{\varphi}(\mathcal{S}))$. Assume that $\delta(x) > 0$ and pick a fixed $y \in h_{\varphi}(\mathcal{S})$. Suppose that there exists $0 < \lambda < \delta(x)$ such that $I_{\varphi}\left(\frac{x-y}{\lambda}\right) < +\infty$. Take $\lambda < t < \delta(x)$ and denote $r = \lambda/t$. Then 0 < r < 1 and $\exists s \in \mathcal{S}$ such that $I_{\varphi}\left(\frac{y-s}{(1-r)t}\right) < +\infty$. Since $\frac{x-s}{t} = r\frac{x-y}{rt} + (1-r)\frac{y-s}{(1-r)t}$, we have:

$$I_{\varphi}\left(\frac{x-s}{t}\right) \leq I_{\varphi}\left(\frac{x-y}{\lambda}\right) + I_{\varphi}\left(\frac{y-s}{(1-r)t}\right) < +\infty,$$

a contradiction. Hence $\forall 0 < \lambda < \delta(x), \ \forall y \in h_{\varphi}(\mathcal{S}), \ I_{\varphi}\left(\frac{x-y}{\lambda}\right) = +\infty$, which implies $d(x, h_{\varphi}(\mathcal{S})) \geq \delta(x) \leq d_L(x, h_{\varphi}(\mathcal{S}))$. As $\|\cdot\|_o \geq \|\cdot\|_L$, we also get $d_o(x, h_{\varphi}(\mathcal{S})) \geq \delta(x)$.

(2) and (3) were proved in [15] and (4) follows easily from the above.

In the sequel $\ell_{\varphi}(I)/h_{\varphi}(S)$ will be the Banach *M*-space $(\ell_{\varphi}(I)/h_{\varphi}(S), \|\cdot\|)$ and *Q* the quotient map $Q: \ell_{\varphi}(I) \to \ell_{\varphi}(I)/h_{\varphi}(S)$. Let βI denote the Stone-Weierstrass compactification of *I*, when we consider in *I* the discrete topology. Denote by $\mathfrak{F}(I)$ the class of finite subsets of *I*. If $x \in \mathbb{R}^{I}$ and $A \subseteq I$, define $x_{A} = x \cdot \mathbf{1}_{A}$ and $x^{A} = x \cdot \mathbf{1}_{I \setminus A}$.

Proposition 1.2. Let I be an infinite set and φ an Orlicz function such that $\ell_{\varphi}(I) \neq h_{\varphi}(S)$. If $a(\varphi) > 0$, then

$$\ell_{\varphi}(I)/h_{\varphi}(\mathcal{S}) \cong (\ell_{\infty}(I)/c_o(I), \|\cdot\|_{\infty}) \cong (C(\beta I \setminus I), \|\cdot\|_{\infty})$$

(order isomorphism and isometry).

Proof. First of all, it is clear that $\ell_{\varphi}(I) = \ell_{\infty}(I)$ and $h_{\varphi}(S) = c_o(I)$, as sets and algebraically. Consider the map $i : \ell_{\infty}(I) \to \ell_{\varphi}(I)$ such that $i(x) = a(\varphi) \cdot x$ and the quotient map $q : \ell_{\infty}(I) \to \ell_{\infty}(I)/c_o(I)$. Note that $|i(x)|_{\varphi} \leq ||x||_{\infty}$ and that:

$$\forall x \in \ell_{\infty}(I), \|q(x)\| = \inf_{A \in \mathfrak{F}(I)} \|x^{A}\|_{\infty},$$
$$\|Q(i(x))\| = d(i(x), h_{\varphi}(\mathcal{S})) = \inf_{A \in \mathfrak{F}(I)} |i(x^{A})|_{\varphi}.$$

Clearly, $||Q(i(x))|| \leq ||q(x)||$, whence, if ||q(x)|| = 0, we get ||Q(i(x))|| = ||q(x)|| = 0. Assume that ||q(x)|| =: a > 0 and take $0 < \epsilon < a$. Find sequences, $\{A_n\}_{n \geq 1}$ in $\mathfrak{F}(I)$ and $\{i_n\}_{n \geq 1}$ in I, such that $A_n \subseteq A_{n+1}$, $i_n \in A_{n+1} \setminus A_n$ and $|x_{i_n}| > a - \epsilon/2$. Then:

$$\forall n \ge 1, \ I_{\varphi}\left(\frac{i(x^{A_n})}{a-\epsilon}\right) = I_{\varphi}\left(\frac{a(\varphi) \cdot x^{A_n}}{a-\epsilon}\right) \ge \sum_{k>n} \varphi\left(\frac{a(\varphi) \cdot x_{i_k}}{a-\epsilon}\right) = \infty,$$

which implies $|i(x^{A_n})|_{\varphi} \ge a - \epsilon$, $\forall n \ge 1$, whence $||Q(i(x))|| \ge a - \epsilon$. Since $\epsilon > 0$ is arbitrary, we get $||Q(i(x))|| \ge a$ and finally ||Q(i(x))|| = a.

2. Proximinality

Let (X, D) be a metric linear space with a distance D and $M \subseteq X$ a subspace of X. Consider the distance $D(x, M) = \inf\{D(x, m) : m \in M\}, x \in X$, and say that $x \in X$ is *M*-approximable if $\exists m \in M$ such that D(x, M) = D(x, m). Denote by Ap(M, X) the subset of *M*-approximable elements of X. If Ap(M, X) = X, Mis said to be *proximinal* in X. If M is proximinal in X then, obviously, M is closed in X.

Let $(X, \|\cdot\|)$ be a normed space and $M \subseteq X$ a closed subspace. Denote by B_X , S_X its closed unit ball and unit sphere, respectively, and by X^* its topological dual. Define $Top(M, X) = \{x \in S_X : \text{distance } (x, M) = 1\}$. Clearly, $Top(M, X) \subseteq Ap(M, X) \setminus M$ and $x \in Top(M, X)$ iff $x \in S_X$ and $q(x) \in S_{X/M}$, where q is the canonical quotient map $q : X \to X/M$. In normed spaces, the proximinality has been characterized by Godini as follows:

Theorem 2.1 (Godini). If X is a normed space and $M \subseteq X$ a closed subspace, then the following are equivalent: (1) $q(B_X) = B_{X/M}$; (2) $q(B_X)$ is closed in X/M; (3) M is proximinal in X.

Proof. See [7].

Proposition 2.2. Let I be an infinite set and φ an Orlicz function such that $\ell_{\varphi}(I) \neq h_{\varphi}(S)$. Then:

- (a) h_φ(S) is proximinal in (ℓ_φ(I), |·|_φ) and, if φ is convex, also in (ℓ_φ(I), ||·||_L).
 (b) Assume that φ is convex. Then:
 - (1) $x \in Top(h_{\varphi}(\mathcal{S}), (\ell_{\varphi}(I), \|\cdot\|_{z}))$ iff $|x| \in Top(h_{\varphi}(\mathcal{S}), (\ell_{\varphi}(I), \|\cdot\|_{z}))$, for z = L or z = o.
 - (2) $Top(h_{\varphi}(\mathcal{S}), (\ell_{\varphi}(I), \|\cdot\|_o)) = Top(h_{\varphi}(\mathcal{S}), (\ell_{\varphi}(I), \|\cdot\|_L)) \cap S_{\varphi}^o.$
 - (3) $Top(h_{\varphi}(\mathcal{S}), (\ell_{\varphi}(I), \|\cdot\|_{L})) = \{x \in \ell_{\varphi}(I) : I_{\varphi}(x) \leq 1, I_{\varphi}(\lambda x^{A}) = \infty, \forall \lambda > 1, \forall A \in \mathfrak{F}(I) \}.$
 - (4) If $a(\varphi) = 0$, then

$$Top(h_{\varphi}(\mathcal{S}), (\ell_{\varphi}(I), \|\cdot\|_o)) = \emptyset.$$

If $a(\varphi) > 0$, then

$$Top(h_{\varphi}(\mathcal{S}), (\ell_{\varphi}(I), \|\cdot\|_{o})) = \{x \in \ell_{\varphi}(I) : |x_{i}| \leq a(\varphi), \forall i \in I, \}$$

and $\forall \epsilon > 0$, $card\{i \in I : |x_i| \ge a(\varphi) - \epsilon\} = \infty\}.$ (5) $h_{\varphi}(\mathcal{S})$ is proximinal in $(\ell_{\varphi}(I), \|\cdot\|_o)$ iff $a(\varphi) > 0$.

Proof. (a) Pick $x \in \ell_{\varphi}(I)$. If $\delta(x) = 0$, by Proposition 1.1 we get that $d(x, h_{\varphi}(\mathcal{S})) = 0$. Hence $x \in h_{\varphi}(\mathcal{S})$ since $h_{\varphi}(\mathcal{S})$ is closed in $(\ell_{\varphi}(I), |\cdot|_{\varphi})$.

Assume that $\delta(x) > 0$ and $x \ge 0$. Let $\epsilon_k \downarrow 1$ be such that $1 - \frac{1}{\epsilon_k} =: \eta_k \le 2^{-k}, k \ge 1$. Since $I_{\varphi}\left(\frac{x}{\delta(x)\epsilon_1}\right) < \infty$ and I_{φ} is o-continuous, there exists a finite subset $A_1 \subseteq I$ such that $I_{\varphi}\left(\frac{x-u_1}{\delta(x)\epsilon_1}\right) \le 2^{-2}a$, where $u_1 := x \cdot \mathbf{1}_{A_1}$ and $0 < a \le \inf\{1, \delta(x)\}$ is arbitrary. Let $x_2 := x - u_1$. Then there exists a finite subset $A_2 \subseteq I \setminus A_1$ such that $I_{\varphi}\left(\frac{x_2-u_2}{\delta(x)\epsilon_2}\right) \le 2^{-3}a$, where $u_2 := x \cdot \mathbf{1}_{A_2}$. By reiteration we obtain a family of pairwise disjoint elements $\{u_n\}_{n\ge 1}$ in \mathcal{S}^+ such that, if $x_n = x - \sum_{k=0}^{n-1} u_k, n \ge 1, u_0 = 0$, then $u_n \le x_n$ and $I_{\varphi}\left(\frac{x_{n+1}}{\delta(x)\epsilon_n}\right) \le 2^{-n-1}a$.

Let $g_r = \sum_{k=0}^r \eta_k u_{k+1}$, $\eta_o = 1$. We claim that $\{g_r\}_{r\geq 0}$ is a Cauchy sequence in $(\ell_{\varphi}(I), |\cdot|_{\varphi})$. Indeed, fix $\epsilon > 0$ and take $r_o \in \mathbb{N}$ such that, $\forall r > r_o, \ \eta_r/\epsilon \leq \frac{1}{\delta(x)\epsilon_r}$ and $\sum_{k>r_o} 2^{-(k+1)} \leq \epsilon/a$. Then, $\forall s \geq r > r_o$, we have:

$$I_{\varphi}\left(\frac{g_s - g_r}{\epsilon}\right) = \sum_{k=r+1}^s I_{\varphi}\left(\frac{\eta_k u_{k+1}}{\epsilon}\right) \le \sum_{k=r+1}^s I_{\varphi}\left(\frac{u_{k+1}}{\delta(x)\epsilon_k}\right) \le (\epsilon/a)a = \epsilon.$$

Hence $\sum_{k\geq 0} \eta_k u_{k+1} =: g \in h_{\varphi}(\mathcal{S})$. Note also that $\sum_{k\geq 0} u_{k+1} =: f \in \ell_{\varphi}(I)$, because $\ell_{\varphi}(I)$ is σ -o-complete and $0 \leq f \leq x$. Let z = x - f. Then $f \wedge z = 0$ and $0 \leq z \leq x_{k+1}, \forall k \geq 0$. So $I_{\varphi}\left(\frac{z}{\delta(x)\epsilon_k}\right) \leq 2^{-(k+1)}a, \forall k \geq 1$. Since I_{φ} is

3780

left-continuous, we get $I_{\varphi}\left(\frac{z}{\delta(x)}\right) = 0$. Hence:

$$\begin{split} I_{\varphi}\left(\frac{x-g}{\delta(x)}\right) &= I_{\varphi}\left(\frac{x-z-g+z}{\delta(x)}\right) = I_{\varphi}\left(\frac{\sum_{k\geq 0}(1-\eta_k)u_{k+1}+z}{\delta(x)}\right) \\ &= \left[\sum_{k\geq 0}I_{\varphi}\left(\frac{u_{k+1}}{\delta(x)\epsilon_k}\right) + I_{\varphi}\left(\frac{z}{\delta(x)}\right)\right] \leq a\sum_{k\geq 0}2^{-(k+1)} \leq a. \end{split}$$

Thus $D(x,g) \leq \delta(x)$ with D = d or $D = d_L$ and $d_L(x,y) = ||x - y||_L$. Since $D(x,g) \ge \delta(x)$, we get $D(x,g) = \delta(x)$.

In the general case (i.e. $x^+ > 0, x^- > 0$), if $\delta(x) > 0$ (i.e. $x \notin h_{\varphi}(S)$), by the above it is possible to find $g_1, g_2 \in h_{\varphi}(S)$ such that $0 \leq g_1 \leq x^+, 0 \leq g_2 \leq x^$ and $I_{\varphi}\left(\frac{x^+-g_1}{\delta(x)}\right) \leq \frac{a}{2} \geq I_{\varphi}\left(\frac{x^--g_2}{\delta(x)}\right)$. Thus, if $g = g_1 - g_2$, we get $I_{\varphi}\left(\frac{x-g_2}{\delta(x)}\right) = \left[I_{\varphi}\left(\frac{x^+-g_1}{\delta(x)}\right) + I_{\varphi}\left(\frac{x^--g_2}{\delta(x)}\right)\right] \leq a$. Hence $D(x,g) = \delta(x)$. (b)(1) Observe that, for z = L or z = o, we have $||x||_z = || |x| ||_z$ and $d_z(x, h_{\varphi}(\mathcal{S})) = \inf\{||x - y||_z : y \in h_{\varphi}(\mathcal{S})\} = \inf\{||x| - y||_z : y \in h_{\varphi}(\mathcal{S})\}$

 $d_z(|x|, h_{\omega}(\mathcal{S})).$

(b)(2) If $f \in Top(h_{\varphi}(\mathcal{S}), (\ell_{\varphi}(I), \|\cdot\|_o))$, then $1 = d_o(f, h_{\varphi}(\mathcal{S})) = d_L(f, h_{\varphi}(\mathcal{S})) \leq$ $||f||_L \leq ||f||_o = 1.$ Hence $f \in Top(h_{\varphi}(\mathcal{S}), (\ell_{\varphi}(I), \|\cdot\|_L)) \cap S_{\varphi}^o$. If $f \in Top(h_{\varphi}(\mathcal{S}), (\ell_{\varphi}(I), \|\cdot\|_{L})) \cap S_{\varphi}^{o}$, then $1 = d_{L}(f, h_{\varphi}(\mathcal{S})) = d_{o}(f, h_{\varphi}(\mathcal{S})) \leq d_{o}(f, h_{\varphi}(\mathcal{S}))$

 $||f||_o = 1$. Hence $f \in Top(h_{\varphi}(\mathcal{S}), (\ell_{\varphi}(I), ||\cdot||_o))$. (b)(3) It is enough to remark that $x \in Top(h_{\varphi}(\mathcal{S}), (\ell_{\varphi}(I), \|\cdot\|_{L}))$ iff $\|x\|_{L} \leq 1$

and $\delta(x) \geq 1$. But these conditions are equivalent to $I_{\varphi}(x) \leq 1$ and, $\forall \lambda > 1, \forall A \in$ $\mathfrak{F}(I), \ I_{\varphi}(\lambda x^A) = \infty.$

(b)(4) First of all, note that if $x \in Top(h_{\varphi}(\mathcal{S}), (\ell_{\varphi}(I), \|\cdot\|_o))$, then $|x_i| \in$ $[0, a(\varphi)], \forall i \in I$. Indeed, we have that $\delta(x) \geq 1$, i.e.:

(*)
$$\forall \lambda > 1, \ \forall A \in \mathfrak{F}(I), \ I_{\varphi}(\lambda x^A) = \infty.$$

Since $1 = ||x||_o = \inf_{k>0} \{ \frac{1}{k} (1 + I_{\varphi}(kx)) \}$, we get that $1 = 1 + I_{\varphi}(x)$, whence $I_{\varphi}(x) = 0$ and $|x_i| \in [0, a(\varphi)], \forall i \in I.$

Therefore, if $a(\varphi) = 0$, it is clear that $Top(h_{\varphi}(\mathcal{S}), (\ell_{\varphi}(I), \|\cdot\|_o)) = \emptyset$. Assume that $a(\varphi) > 0$ and that $x \in Top(h_{\varphi}(\mathcal{S}), (\ell_{\varphi}(I), \|\cdot\|_o))$. Then, by the above, $|x_i| \leq 1$ $a(\varphi), \forall i \in I.$ By (*) it follows that $\forall \epsilon > 0, \text{ card}\{i \in I : |x_i| \ge a(\varphi) - \epsilon\} = \infty.$ Finally if $x \in \ell_{\varphi}(I)$ satisfies $|x_i| \leq a(\varphi), \forall i \in I$, and $\operatorname{card}\{i \in I : |x_i| \geq a(\varphi) - \epsilon\} = 0$ $\infty, \forall \epsilon > 0$, we easily conclude that $||x||_o = \inf_{k>0} \{\frac{1}{k}(1 + I_{\varphi}(kx))\} = 1$ and that $\delta(x) \ge 1$, i.e. $x \in Top(h_{\varphi}(\mathcal{S}), (\ell_{\varphi}(I), \|\cdot\|_o)).$

(b)(5) If $a(\varphi) = 0$ it is clear, by the above, that $h_{\varphi}(\mathcal{S})$ is not proximinal in $(\ell_{\varphi}(I), \|\cdot\|_o)$. Assume that $a(\varphi) > 0$. By Proposition 2.1, it is enough to prove that, if $x \in Top(h_{\varphi}(\mathcal{S}), (\ell_{\varphi}(I), \|\cdot\|_{L}))^{+}$, then there exists $f \in h_{\varphi}(\mathcal{S}), \ 0 \leq f \leq x$, such that $||x - f||_o = 1$. Denote $h := (x - a(\varphi)) \vee 0$ and observe that $h \in h_{\varphi}(\mathcal{S})$ (because, $\forall \lambda > 0$, card $\{i \in I : \lambda h_i > a(\varphi)\} < \aleph_0$). Clearly $I_{\varphi}(x - h) = 0$ and, $\forall \lambda > 1, I_{\varphi}(\lambda(x-h)) = \infty$ (because $d_L(x, h_{\varphi}(\mathcal{S})) = d_L(x-h, h_{\varphi}(\mathcal{S})) = 1$). Hence:

$$||x - h||_o = \inf_{k > 0} \frac{1}{k} (1 + I_{\varphi}(k(x - h))) = 1 + I_{\varphi}(x - h) = 1.$$

3. Extremal structures

Denote by Ext(C) the set of extreme points of a convex set C. If $a(\varphi) > 0$, we have, by Proposition 1.2 and [10, Theorem 4.1], that the ball $B_{\ell_{\varphi}(I)/h_{\varphi}(S)}$ has an abundance of extreme points. In fact, we get

$$Ext(B_{\ell_{\varphi}(I)/h_{\varphi}(\mathcal{S})}) = Ext(B_{\ell_{\infty}(I)/c_{o}(I)}) = q(Ext(B_{\ell_{\infty}(I)}))$$

and

$$B_{\ell_{\varphi}(I)/h_{\varphi}(\mathcal{S})} = \overline{co}(Ext(B_{\ell_{\varphi}(I)/h_{\varphi}(\mathcal{S})})).$$

If $a(\varphi) = 0$ the situation is completely different.

Proposition 3.1. Let I be an infinite set and φ an Orlicz function such that $\ell_{\varphi}(I) \neq h_{\varphi}(S)$ and $a(\varphi) = 0$. Then $Ext(B_{\ell_{\varphi}(I)/h_{\varphi}(S)}) = \emptyset$.

Proof. Assume that $e \in Ext(B_{\ell_{\varphi}(I)/h_{\varphi}(S)})$. Pick $w \in \ell_{\varphi}(I)$ such that Q(w) = e. Then $d(w, h_{\varphi}(S)) = 1$ and there exists $g \in h_{\varphi}(S)$ such that $1 = d(w, h_{\varphi}(S)) = d(w, g) = d(w - g, 0)$, whence, $\forall \lambda > 1$, $I_{\varphi}\left(\frac{w-g}{\lambda}\right) \leq \lambda$. By the left-continuity of I_{φ} we get that $I_{\varphi}(w - g) \leq \lambda$, $\forall \lambda > 1$, i.e. $I_{\varphi}(w - g) \leq 1$. Let u = w - g and suppose, without loss of generality, that $I_{\varphi}(u) \leq 1/2$ (if not, put $u_i = 0$ for $i \in A$ and some $A \in \mathfrak{F}(I)$). Since $a(\varphi) = 0$, we can choose a countable subset $B = \{i_n\}_{n\geq 1}$ of I such that $u_{i_n} \to 0$, as $n \to \infty$, and, if $h = u \cdot \mathbf{1}_B$, then $h \in h_{\varphi}(S)$ and Q(u - h) = e. Since $a(\varphi) = 0$ we have that $\operatorname{card}(\operatorname{supp}(u)) = \aleph_0$. Let $\operatorname{supp}(u) = \{j_r\}_{r\geq 1}$ and define $x, y \in \ell_{\varphi}(I)$ as follows:

$$x_{i} = \begin{cases} u_{i}, & \text{if } i \notin B \\ u_{j_{k}}, & \text{if } i = i_{k}, \ k \ge 1 \end{cases}, \qquad y_{i} = \begin{cases} u_{i}, & \text{if } i \notin B \\ -u_{j_{k}}, & \text{if } i = i_{k}, \ k \ge 1 \end{cases}.$$

Then $Q(x) \neq Q(y)$ (because $x - y \notin h_{\varphi}(S)$), $Q(x), Q(y) \in B_{\ell_{\varphi}(I)/h_{\varphi}(S)}$ (because $I_{\varphi}(x), I_{\varphi}(y) \leq 1$) and $\frac{1}{2}(Q(x) + Q(y)) = Q(u - h) = e$, a contradiction. Hence $Ext(B_{\ell_{\varphi}(I)/h_{\varphi}(S)}) = \emptyset$.

If X is a normed space and $x \in S_X$, denote $Grad(x) = \{x^* \in S_{X^*} : x^*(x) = 1\}$. We say that $x \in S_X$ is *smooth* iff card(Grad(x)) = 1.

Proposition 3.2. Let I be an infinite set and φ an Orlicz function such that $h_{\varphi}(S) \neq \ell_{\varphi}(I)$. Then $S_{\ell_{\varphi}(I)/h_{\varphi}(S)}$ has no smooth points.

Proof. Let $e \in S_{\ell_{\varphi}(I)/h_{\varphi}(S)}$. Pick $x \in \ell_{\varphi}(I)$ such that $I_{\varphi}(x) \leq 1$ and Q(x) = e. Then $I_{\varphi}(\lambda x) = \infty$, $\forall \lambda > 1$. We claim that there exists $C \subseteq I$ such that, if $y = x_C$ and $z = x^C$, then $Q(y), Q(z) \in S_{\ell_{\varphi}(I)/h_{\varphi}(S)}$. Indeed, since $I_{\varphi}((1 + 2^{-n})x) = \infty$, we can choose two sequences of nonempty and finite subsets $\{A_n\}_{n\geq 1}, \{B_n\}_{n\geq 1}$ of I such that: (i) $\sum_{i\in A_n} \varphi((1 + 2^{-n})x_i) \geq 2^n \leq \sum_{i\in B_n} \varphi((1 + 2^{-n})x_i)$; (ii) $A_n \cap B_n = \emptyset = (A_n \cup B_n) \cap (A_m \cup B_m), n \neq m$. Now, take $C = \bigcup_{n\geq 1} A_n$. Note that $I_{\varphi}(y \pm z) = I_{\varphi}(x) \leq 1$, $Q(y \pm z) \in S_{\ell_{\varphi}(I)/h_{\varphi}(S)}$ and y + z = x.

There exists $y^* \in Grad(Q(y))$ and $z^* \in Grad(Q(z))$ such that:

$$1 \ge y^*(Q(y) \pm Q(z)) = y^*(Q(y)) \pm y^*(Q(z)) = 1 \pm y^*(Q(z)),$$

whence we get $y^*(Q(z)) = 0$. In a similar way, we get $z^*(Q(y)) = 0$. This means that $y^* \neq z^*$. We have:

$$\begin{split} y^*(Q(x)) &= y^*(Q(y) + Q(z)) = y^*(Q(y)) + y^*(Q(z)) = 1 + 0 = 1, \\ z^*(Q(x)) &= z^*(Q(y) + Q(z)) = z^*(Q(y)) + z^*(Q(z)) = 0 + 1 = 1, \end{split}$$

which means that $y^*, z^* \in Grad(e)$, so e is not smooth.

4. Order completeness and order continuity

In [15] it is proved that every $x \in (\ell_{\varphi}(I)/h_{\varphi}(S)) \setminus \{0\}$ is σ -o-continuous and not σ -o-complete. Recall that a vector x of a Banach lattice X is: (i) σ -o-continuous if for every decreasing sequence $\{x_n\}_{n\geq 1}$ in X^+ such that $x_n \leq |x|$ and $\inf_{n\geq 1} x_n = 0$, we have $||x_n|| \downarrow 0$; (ii) σ -o-complete if for every increasing sequence $\{x_n\}_{n\geq 1}$ in X^+ such that $x_n \leq |x|$, there exists $\sup_{n\geq 1} x_n$. In particular, an increasing sequence in $\ell_{\varphi}(I)/h_{\varphi}(S)$ has supremum if and only if it is a Cauchy sequence.

As a consequence, we get the following known fact: if I is an infinite set and $\{A_n\}_{n\geq 1}$ a sequence of closed-and-open (clopen) subsets of $\beta I \setminus I$ such that $A_n \subseteq A_{n+1}$ and $A_n \neq A_{n+1}$, then \overline{A} is not open in $\beta I \setminus I$, with $A := \bigcup_{n\geq 1} A_n$. Indeed, let φ be the convex Orlicz function such that $\varphi(t) = 0$ if $|t| \leq 1$, but $\varphi(t) = \infty$ whenever |t| > 1. Then $\ell_{\varphi}(I)/h_{\varphi}(S) \cong (C(\beta I \setminus I), \|\cdot\|_{\infty})$ (order isomorphism and isometry). Consider in $\ell_{\varphi}(I)/h_{\varphi}(S)$ the sequence $\{\mathbf{1}_{A_n}\}_{n\geq 1}$, which is increasing and bounded by $\mathbf{1}_{\beta I \setminus I}$. Since $\|\mathbf{1}_{A_{n+1} \setminus A_n}\| = 1$, we get that $\{\mathbf{1}_{A_n}\}_{n\geq 1}$ is not Cauchy, whence this sequence has no supremum. But, if \overline{A} were open, $\mathbf{1}_{\overline{A}}$ should be the supremum of this sequence. Hence \overline{A} is not open and $\beta I \setminus I$ is not basically disconnected. Recall that a compact Hausdorff space K is basically disconnected if the closure of every open F_{σ} -set (i.e. a countable union of closed sets) in K is open (see [9, pg.4]).

5. ROTUNDITY AND SMOOTHNESS

Proposition 5.1. If I is an infinite set and φ is an Orlicz function such that $\ell_{\varphi}(I) \neq h_{\varphi}(S)$, then there exists an order isomorphic isometric copy of $C(\beta \mathbb{N} \setminus \mathbb{N})$ in $\ell_{\varphi}(I)/h_{\varphi}(S)$.

Proof. Pick $x \in \ell_{\varphi}(I)^+$ such that $I_{\varphi}(x) \leq 1$, $Q(x) \in S_{\ell_{\varphi}(I)/h_{\varphi}(S)}$ and, if $A := \sup p(x)$, then $\operatorname{card}(A) = \aleph_0$. Let $\{\lambda_n\}_{n\geq 1}$ be a sequence in \mathbb{R}^+ such that $\lambda_n \downarrow 1$. Note that $I_{\varphi}(\lambda_n(x-s)) = \infty$, $\forall n \geq 1$, $\forall s \in S$. Choose a sequence $\{A_n\}_{n\geq 1}$ of pairwise disjoint finite subsets of A such that $A = \bigcup_{n\geq 1} A_n$ and $I_{\varphi}(\lambda_n \cdot x \cdot \mathbf{1}_{A_n}) > 1$, $n \geq 1$. If $a = (a_n)_{n\geq 1} \in \ell_{\infty}$, put $a^k = (0, \ldots, 0, a_{k+1}, a_{k+2} \ldots)$ and define $T : \ell_{\infty} \to \ell_{\varphi}(I)$ by $Ta = \sum_{n\geq 1} a_n \cdot x \cdot \mathbf{1}_{A_n}$. Clearly, T is continuous and we have $\frac{1}{\lambda_k} \|a^k\|_{\infty} \leq \|Ta^k\|_L \leq \|a^k\|_{\infty}$. Observe that, if $a = (a_1, a_2, \ldots, a_k, 0, 0, \ldots)$, then $Ta \in h_{\varphi}(S)$, whence, by $h_{\varphi}(S)$ being closed in $\ell_{\varphi}(I)$, we get that $T(c_0) \subseteq h_{\varphi}(S)$. Hence, if q is the quotient map $q : \ell_{\infty} \to \ell_{\infty}/c_0$, we have the map $i : \ell_{\infty}/c_0 \to \ell_{\varphi}(I)/h_{\varphi}(S)$ such that i(q(a)) = QT(a), $\forall a \in \ell_{\infty}$. Clearly, this map preserves the order and satisfies $\|q(a)\| = \lim_{k\to\infty} \|a^k\|_{\infty} = \lim_{k\to\infty} \|Ta^k\|_L = \|QT(a)\|$. Therefore i is an order isomorphic isometry between ℓ_{∞}/c_0 and $i(\ell_{\infty}/c_0)$.

Corollary 5.2. Let I be an infinite set and φ an Orlicz function such that $\ell_{\varphi}(I) \neq h_{\varphi}(S)$. Then:

- (1) $\ell_{\varphi}(I)/h_{\varphi}(S)$ is not realcompact and cannot be renormed equivalently in order to be rotund or smooth.
- (2) $\ell_{\varphi}(I)/h_{\varphi}(S)$ does not have property (C), it is not WCD, it is not w-Lindelöf and $(\ell_{\varphi}(I)/h_{\varphi}(S))^* = h_{\varphi}(S)^{\perp}$ is not w*-angelic.

Proof. (1) This follows from the fact that $C(\beta \mathbb{N} \setminus \mathbb{N})$ is not realcompact (see [13, p. 146], [3]) and cannot be renormed in order to be rotund or smooth (see [2], [10]).

(2) This is a consequence of (1) (see [6]).

Π

6. $\ell_{\varphi}(I)/h_{\varphi}(\mathcal{S})$ is not a dual space

Let I be an infinite set, $\mathfrak{m} = \operatorname{card}(I)$ and $P_{\omega}(I) = \{A \subseteq I : \operatorname{card}(A) = \aleph_0\}$. Then, clearly, $\operatorname{card}(P_{\omega}(I)) = \mathfrak{m}^{\aleph_0} =: \mathfrak{n}$. Note that $\mathfrak{n} \ge \mathfrak{c}$, where $\mathfrak{c} = \operatorname{card}(\mathbb{R})$. Also there exists a family $\{A_t\}_{t\in\mathfrak{n}}$ in $P_{\omega}(I)$ such that $\operatorname{card}(A_t \cap A_s) < \aleph_0$, for $t \neq s$. Indeed, let $\{I_t\}_{t\in\mathfrak{m}}$ be a family of pairwise disjoint subsets of I such that $\operatorname{card}(I_t) = \mathfrak{m}, \forall t \in \mathfrak{m}$. Pick $i_t \in I_t, t \in \mathfrak{m}$, and choose a pairwise disjoint family $\{I_{ts}\}_{s\in\mathfrak{m}}$ of subsets of $I_t \setminus \{i_t\}$ such that $\operatorname{card}(I_{ts}) = \mathfrak{m}, s \in \mathfrak{m}$. Pick $i_{ts} \in I_{ts}$ and choose a pairwise disjoint family $\{I_{tsr}\}_{r\in\mathfrak{m}}$ of subsets of $I_{ts} \setminus \{i_{ts}\}$ such that $\operatorname{card}(I_{tsr}) = \mathfrak{m}, r \in \mathfrak{m}$. Pick $i_{tsr} \in I_{tsr}, r \in \mathfrak{m}$. By reiteration we obtain families of elements $\{i_t\}_{t\in\mathfrak{m}}, \{i_{ts}\}_{t,s\in\mathfrak{m}}, \operatorname{etc.}, \text{ of } I$. Now, consider the family \mathfrak{T} of sequences of the form $(i_{t_1}, i_{t_1t_2}, i_{t_1t_2t_3}, \ldots), t_j \in \mathfrak{m}, j \ge 1$. It is clear that $\operatorname{card}(\mathfrak{T}) = \mathfrak{m}^{\aleph_0} = \mathfrak{n}$, $\operatorname{card}(T) = \aleph_0, \forall T \in \mathfrak{T}$, and that, if $T, S \in \mathfrak{T}, T \neq S$, then $\operatorname{card}(T \cap S) < \aleph_0$.

Lemma 6.1. Let I be an infinite set and φ an Orlicz function such that $\ell_{\varphi}(I) \neq h_{\varphi}(S)$. If $\mathfrak{n} = \mathfrak{m}^{\aleph_0}$ and $\mathfrak{m} = card(I)$, there exists an order isomorphic isometric copy of $(c_o(\mathfrak{n}), \|\cdot\|_{\infty})$ in $\ell_{\varphi}(I)/h_{\varphi}(S)$.

Proof. Let $\{A_t\}_{t\in\mathfrak{n}}$ be a family of subsets of I such that $\operatorname{card}(A_t) = \aleph_0$ and $\operatorname{card}(A_t \cap A_s) < \aleph_0$, when $t \neq s$. Pick $x \in \ell_{\varphi}(I)^+$ such that $I_{\varphi}(x) \leq 1$, $Q(x) \in S_{\ell_{\varphi}(I)/h_{\varphi}(S)}$ and $\operatorname{card}(\operatorname{supp}(x)) = \aleph_0$. Let $\operatorname{supp}(x) = \{j_r\}_{r\geq 1}$. If $t \in \mathfrak{n}$ and $A_t = \{i_k\}_{k\geq 1}$, define e^t such that $\forall i \in I$, $e_i^t = 0$, if $i \notin A_t$, and $e_i^t = x_{j_r}$, if $i = i_r, r \geq 1$. Then clearly, $\forall t_1, t_2, \ldots, t_n \in \mathfrak{n}, \forall a_1, \ldots, a_n \in \mathbb{R}$, we have $\|\sum_{k=1}^n a_k Q(e^{t_k})\| = \sup\{|a_k| : k = 1, \ldots, n\}$, i.e. $\{Q(e^t)\}_{t\in\mathfrak{n}}$ is order isomorphically and isometrically equivalent to the unit basis of $c_0(\mathfrak{n})$.

Proposition 6.2. If I is an infinite set and φ an Orlicz function such that $\ell_{\varphi}(I) \neq h_{\varphi}(S)$, then $\ell_{\varphi}(I)/h_{\varphi}(S)$ is not a dual space.

Proof. If $a(\varphi) > 0$, we have by Proposition 1.2 that $\ell_{\varphi}(I)/h_{\varphi}(S) \cong C(\beta I \setminus I)$. Grothendieck (see [8]) has shown that, for a compact Hausdorff space T, T must be hyperstonian in order for C(T) to be a dual space (see [11, p. 95]). But $\beta I \setminus I$ is not hyperstonian because it is not basically disconnected.

Assume that $a(\varphi) = 0$. Then $\operatorname{card}(\operatorname{supp}(x)) \leq \aleph_0$ for each $x \in \ell_{\varphi}(I)$. Hence $\operatorname{card}(\ell_{\varphi}(I)) \leq \mathfrak{n} := \mathfrak{m}^{\aleph_0}$, with $\mathfrak{m} = \operatorname{card}(I)$. By Lemma 6.1, there exists a copy of $c_o(\mathfrak{n})$ in $\ell_{\varphi}(I)/h_{\varphi}(S)$ and, by a classical Rosenthal's result ([12, Cor. 1.2]), if $\ell_{\varphi}(I)/h_{\varphi}(S)$ were a dual space, it should contain a copy of $\ell_{\infty}(\mathfrak{n})$. But this is a contradiction because $\operatorname{card}(\ell_{\infty}(\mathfrak{n})) = 2^\mathfrak{n} > \mathfrak{n} \geq \operatorname{card}(\ell_{\varphi}(I)/h_{\varphi}(S))$.

7. $\ell_{\varphi}(I)/h_{\varphi}(\mathcal{S})$ is a Grothendieck space

If I is an infinite set, denote by $\mathfrak{M}(I)$ the Banach lattice of finitely additive signed measures on I (see [14]). It is known that this space is order isomorphic and isometric to $C(\beta I)^*$ (i.e. the space of Radon measures on βI). Let T be this isometry. Then:

- (1) If $\nu \in \mathfrak{M}(I)$ and $T(\nu) = \mu \in C(\beta I)^*$, we have, $\forall A \subseteq I$, $\nu(A) = \mu(\overline{A})$, where \overline{A} is the closure of A in βI .
- (2) $T(\{\nu \in \mathfrak{M}(I) : \nu(\{i\}) = 0, \forall i \in I\}) = C(\beta I \setminus I)^*$ (=Radon measures of $C(\beta I)^*$ supported on $\beta I \setminus I$).

If $a(\varphi) > 0$, let $M = \{\nu \in \mathfrak{M}(I) : \nu(\{i\}) = 0, \forall i \in I\} = T^{-1}(C(\beta I \setminus I)^*)$. If $a(\varphi) = 0$, define $M \subseteq \mathfrak{M}(I)$ as the subspace such that $\nu \in M$ iff $\nu(\{i\}) = 0, \forall i \in I$, and there exists a sequence $\{G_k\}_{k>1}$ of pairwise disjoint subsets of I satisfying:

- (1) $|\nu|(I \setminus \bigcup_{k \ge 1} G_k) = 0;$
- (2) $\sum_{k\geq 1} \varphi(1/k) \cdot |G_k| < \infty$, where $|G_k| = \operatorname{card}(G_k)$;
- (3) $\sum_{k\geq 1}^{-} \varphi\left(\frac{1}{k}\left[1+\frac{1}{n}\right]\right) \cdot |G_k \cap E| = \infty, \ \forall n \geq 1, \ \forall E \subseteq I \text{ such that } |\nu|(E) > 0.$

Proposition 7.1. Let I be an infinite set and φ an Orlicz function such that $\ell_{\varphi}(I) \neq h_{\varphi}(\mathcal{S})$. Then $(\ell_{\varphi}(I)/h_{\varphi}(\mathcal{S}))^*$ is order isomorphic and isometric to M and M is 1-complemented in $C(\beta I)^*$.

Proof. The proof is essentially the one given by Ando [1]. Let $X = \ell_{\varphi}(I)/h_{\varphi}(\mathcal{S})$ and pick $x^* \in X^{*+}$. If $E \subseteq I$, define x_E^* as $x_E^*(Q(h)) = x^*(Q(h_E)), \forall h \in \ell_{\varphi}(I)$, with $h_E = h \cdot \mathbf{1}_E$. Then $x_E^* \in X^{*+}$ and for disjoint subsets E, F of I we have $x_{E \cup F}^* =$ $x_{E}^{*} + x_{F}^{*}, \|x_{E\cup F}^{*}\| = \|x_{E}^{*}\| + \|x_{F}^{*}\|.$ So, we can define the measure $\nu_{x^{*}} \in \mathfrak{M}(I)^{+}$ as follows: $\forall E \subseteq I$, $\nu_{x^*}(E) = ||x_E^*||$. Note that this map $X^{*+} \ni x^* \to \nu_{x^*} \in \mathfrak{M}(I)^+$ is linear, monotone (i.e. $x^* \ge y^* \ge 0$ implies $\nu_{x^*} \ge \nu_{y^*}$) and $||\nu_{x^*}|| = ||x^*||$ (see Lemmas 2 and 3 of [1]).

We claim that $\nu_{x^*} \in M^+$. Clearly, $\nu_{x^*}(\{i\}) = 0, \forall i \in I$, whence, if $a(\varphi) > 0$, we get $\nu_{x^*} \in M^+$. Assume that $a(\varphi) = 0$ and pick $f \in \ell_{\varphi}(I)^+$ such that $I_{\varphi}(f) \leq 1$ and $||x_E^*|| = x^*(Q(f_E)), \forall E \subseteq I$ (see Lemma 2 of [1]). Define $G_1 = \{i \in I : |f_i| \geq i \}$ 1}, $G_k = \{i \in I : \frac{1}{k} \le |f_i| < \frac{1}{k-1}\}, k \ge 2$, and observe that $|G_k| < \infty, k \ge 1$, because we suppose that $a(\varphi) = 0$. We have:

(a)
$$\nu_{x^*}(I \setminus \bigcup_{k>1} G_k) = ||x^*_{I \setminus \bigcup_{k>1} G_k}|| = x^*(Q(f_{I \setminus \bigcup_{k>1} G_k})) = x^*(0) = 0.$$

- (b) $\sum_{k\geq 1} \varphi(\frac{1}{k}) \cdot |G_k| \leq I_{\varphi}(f) < \infty$. (c) Let $E \subseteq I$ be such that $\nu_{x^*}(E) > 0$. Then:

$$0 < \nu_{x^*}(E) = \|x_E^*\| = x^*(Q(f_E)) = x_E^*(Q(f_E)) \le \|Q(f_E)\| \cdot \|x_E^*\|,$$

whence we get $1 \leq ||Q(f_E)||$, i.e., $d(f_E, h_{\varphi}(\mathcal{S})) \geq 1$. Hence, $\forall \lambda > 1, \forall g \in h_{\varphi}(\mathcal{S})$, we have $I_{\varphi}(\lambda(f_E - g)) = \infty$. Pick $n \in \mathbb{N}$ and choose $k_o \in \mathbb{N}$ such that, $\forall k > k_o$, $(1 + \frac{1}{n})\frac{1}{k} \ge (1 + \frac{1}{2n})\frac{1}{k-1}$. Then, since $f_{E \cap (\bigcup_{i=1}^{k_o} G_i)} \in \mathcal{S}$, we have:

$$\sum_{k\geq 1} \varphi([1+\frac{1}{n}]\frac{1}{k}) \cdot |G_k \cap E| \geq \sum_{k>k_o} \varphi([1+\frac{1}{2n}]\frac{1}{k-1}) \cdot |G_k \cap E|$$
$$\geq I_{\varphi}([1+\frac{1}{2n}][f_E - f_{E\cap(\bigcup_{i=1}^{k_o} G_i)}]) = \infty,$$

and this completes the proof of the claim.

If $\nu \in \mathfrak{M}(I)^+$, define $x_{\nu}^* : X^+ \to \mathbb{R}$ as follows:

$$\forall h \in \ell_{\varphi}(I)^+, \ x_{\nu}^*(Q(h)) = \inf \sum_{k=1}^n \delta(h_{E_k}) \cdot \nu(E_k),$$

where the infimum is taken over all finite pairwise disjoint partitions $\{E_k\}_{k=1}^n$ of I. By Lemmas 4, 5 and 6 of [1] and defining

$$\forall h \in \ell_{\varphi}(I), \ x_{\nu}^{*}(Q(h)) = x_{\nu}^{*}(Q(h^{+})) - x_{\nu}^{*}(Q(h^{-})),$$

we have that $x_{\nu}^* \in X^{*+}$ and $||x_{\nu}^*|| \leq ||\nu|| = \nu(I)$. In addition, if $\nu \in M^+$ and $x^* \in X^{*+}$ (see [1, Theorems 2 and 3]), then: (i) $||(x_{\nu}^*)_E|| = \nu(E)$, $\forall E \subseteq I$; (ii) $x_{\nu_{x^*}}^* = x^*$, $\nu_{x_{\nu}}^* = \nu$. Hence the positive cones M^+ and X^{*+} are order isomorphic and isometric. If $\nu \in \mathfrak{M}(I)$ and $x^* \in X^*$, define $\nu_{x^*} = \nu_{x^{*+}} - \nu_{x^{*-}}, \ x_{\nu}^* = x_{\nu^+}^* - x_{\nu^-}^*$. With this extension we obtain an order isomorphism and isometry between X^* and M. The projection $P: \mathfrak{M}(I) \to M$ is defined as $P(\nu) = \nu_{x_{\nu}^*}, \forall \nu \in \mathfrak{M}(I).$

Proposition 7.2. Let I be an infinite set, φ an Orlicz function such that $\ell_{\varphi}(I) \neq h_{\varphi}(S)$, $\{x_n^*\}_{n\geq 1}$ a sequence in $(\ell_{\varphi}(I)/h_{\varphi}(S))^*$ and $\epsilon > 0$. Then there exists $f \in \ell_{\varphi}(I)^+$ such that $I_{\varphi}(f) \leq \epsilon$ and:

(1) $\nu_{x_n^*}(E) = x_n^*(Q(f_E)), \ \forall n \ge 1, \ \forall E \subseteq I;$ (2) $\nu_{x_n^*}(g) = x_n^*(Q(gf)), \ \forall n \ge 1, \ \forall g \in \ell_{\infty}(I).$

Proof. (A) If $x^* \in (\ell_{\varphi}(I)/h_{\varphi}(S))^*$, by Lemma 2 of [1], there exists $f \in \ell_{\varphi}(I)^+$ such that $I_{\varphi}(f) \leq \epsilon$ and $\nu_{x^{*+}}(E) = x^{*+}(Q(f_E)), \ \nu_{x^{*-}}(E) = x^{*-}(Q(f_E)), \ \forall E \subseteq I$. Hence:

$$\forall E \subseteq I, \ \nu_{x^*}(E) = \nu_{x^{*+}}(E) - \nu_{x^{*-}}(E) = x^{*+}(Q(f_E)) - x^{*-}(Q(f_E)) = x^*(Q(f_E)).$$

So, considering ν_{x^*} as a member of $C(\beta I)^*$, we get that $\nu_{x^*}(g) = x^*(Q(gf)), \forall g \in \ell_{\infty}(I)$.

(B) For each x_n^* take $f_n \in \ell_{\varphi}(I)^+$ satisfying (A) and such that $I_{\varphi}(f_n) \leq \epsilon/2^n$. Let $f = \sup_{n \geq 1} f_n$. Then we have $I_{\varphi}(f) \leq \epsilon$ (see Lemma 1 of [1]) and (1), (2) are fulfilled, $\forall n \geq 1$.

A Banach space is said to be a *Grothendieck space* (see [4]) if for each sequence $\{x_n^*\}_{n\geq 0}$ in X^* such that $x_n^* \to x_0^*$ in the w*-topology, we have that $x_n^* \to x_0^*$ in the w-topology of X^* .

Proposition 7.3. Let I be an infinite set and φ an Orlicz function such that $\ell_{\varphi}(I) \neq h_{\varphi}(S)$. Then $\ell_{\varphi}(I)/h_{\varphi}(S)$ is a Grothendieck space.

Proof. Let $\{x_n^*\}_{n\geq 0}$ be a sequence in $(\ell_{\varphi}(I)/h_{\varphi}(S))^*$ such that $x_n^* \to x_0^*$ in the w^{*}-topology. By Proposition 7.2 there exists $f \in \ell_{\varphi}(I)^+$ such that, $\forall g \in \ell_{\infty}(I), \forall n \geq 0, \nu_{x_n^*}(g) = x_n^*(Q(gf))$. Since $Q(gf) \in \ell_{\varphi}(I)/h_{\varphi}(S)$, we have

$$\lim_{n \to \infty} x_n^*(Q(gf)) = x_0^*(Q(gf))$$

Hence $\nu_{x_n^*} \to \nu_{x_0^*}$ in the w*-topology as members of $C(\beta I)^*$. Since $C(\beta I)$ is Grothendieck, we get $\nu_{x_n^*} \to \nu_{x_0^*}$ in the w-topology of $C(\beta I)^*$. Therefore $x_n^* \to x_0^*$ in the w-topology, because $(\ell_{\varphi}(I)/h_{\varphi}(\mathcal{S}))^*$ is a subspace of $C(\beta I)^*$.

Remarks. Since $\ell_{\varphi}(I)/h_{\varphi}(S)$ has the Dunford-Pettis property (*M*-spaces have the Dunford-Pettis property because they are L_1 -preduals) and is a Grothendieck space, we obtain that $\ell_{\varphi}(I)/h_{\varphi}(S)$ has no infinite dimensional complemented subspaces Y with B_{Y^*} w*-sequentially compact. Also from Proposition 7.3 we get again that $\ell_{\varphi}(I)/h_{\varphi}(S)$ cannot be renormed in order to be smooth, because a Grothendieck smooth space is reflexive ([4, p. 215]) and $\ell_{\varphi}(I)/h_{\varphi}(S)$ is not, containing a copy of $C(\beta \mathbb{N} \setminus \mathbb{N})$.

Question. Is $\ell_{\varphi}(I)/h_{\varphi}(S)$ primary? Recall that Drewnowski and Roberts proved, under CH, that ℓ_{∞}/c_0 is primary (see [5]).

References

- T. Ando, *Linear functionals on Orlicz spaces*, Nieuw Arch. Wisk. 8 (3) (1960), 1-16. MR 23:A1228
- 2. J.Bourgain, ℓ_{∞}/c_0 has no equivalent strictly convex norm, Proc. Amer. Math. Soc. **78** (1980), 225-226. MR **81h**:46029
- H.H.Corson, The weak topology of a Banach space, Trans. Amer. Math. Soc. 101 (1961), 1-15. MR 24:A2220

- J. Diestel and J.J.Uhl, Jr., Vector Measures, Math. Surveys No. 15, Amer. Math. Soc., Providence, 1977. MR 56:12216
- L.Drewnowski and J.W.Roberts, On the primariness of the Banach space ℓ_∞/c₀, Proc. Amer. Math. Soc. **112** (1991), 949-957. MR **91j**:46018
- G.A.Edgar, Measurability in Banach spaces II Indiana Univ. Math. J. 28 (1979), 559-579. MR 81d:28016
- G.Godini, Characterization of proximinal linear subspaces in normed linear spaces, Rev. Roumaine Math. Pures Appl. 18 (1973), 901-906. MR 48:2732
- A.Grothendieck, Sur les applications lineaire faiblement compacts d'espaces du type C(K), Can. J. Math. 5 (1953), 129-173. MR 15:438b
- J.Lindenstrauss and J.Tzafriri, Classical Banach spaces II, Springer-Verlag, Berlin-Heidelberg-New York, 1979. MR 81c:46001
- I.E.Leonard and J.H.M.Whitfield, A classical Banach spaces: ℓ_∞/c_o, Rocky Mountain J. Math. 13 (1983), 531-539. MR 84j:46030
- H.E.Lacey, The Isometric Theory of Classical Banach Spaces, Springer-Verlag, New York, 1974. MR 58:12308
- H.P.Rosenthal, On injective Banach spaces and the spaces L[∞](μ) for finite measures μ, Acta Math. 124 (1970), 205-248. MR 41:2370
- M.Valdivia, Topic in Locally Convex Spaces, Mathematics Studies 67, North-Holland, 1982. MR 84i:46007
- V.S. Varadarajan, Measures on topological spaces, Amer. Math. Soc. Transl. Ser. II 48 (1965), 161-228. MR 26:6342
- 15. W. Wnuk, On the order-topological properties of the quotient space L/L_A , Studia Math. **79** (1984), 139-149. MR **86k**:46013

Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad Complutense de Madrid, 28040-Madrid, Spain

E-mail address: granero@eucmax.sim.ucm.es

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE, A. MICKIEWICZ UNIVERSITY, POZNAŃ, POLAND

E-mail address: hudzik@plpuam11.bitnet