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Abstract. We study the classical field limit of non-relativistic many-boson
theories in space dimension n2 3. When A—0, the correlation functions, which
are the averages of products of bounded functions of field operators at different
times taken in suitable states, converge to the corresponding functions of the
appropriate solutions of the classical field equation, and the quantum fluc-
tuations are described by the equation obtained by linearizing the field
equation around the classical solution. These properties were proved by Hepp
[6] for suitably regular potentials and in finite time intervals. Using a general
theory of existence of global solutions and a general scattering theory for the
classical equation, we extend these results in two directions: (1) we consider
more singular potentials, (2) more important, we prove that for dispersive
classical solutions, the #—0 limit is uniform in time in an appropriate
representation of the field operators. As a consequence we obtain the
convergence of suitable matrix elements of the wave operators and, if
asymptotic completeness holds, of the S-matrix.

1. Introduction and Statement of the Problem

Since the early days of quantum mechanics it has been a natural question to
compare the classical and quantum mechanical descriptions of physical systems.
One of the oldest and by now best known relations between the two theories goes
back to Ehrenfest [1]. Only recently however was this relation put on a firm
mathematical basis by Hepp [6] who proved that in the limit #—0 the matrix
elements of bounded functions of quantum observables between suitable 7-
dependent coherent states tend to classical values evolving according to the
appropriate classical equation. Furthermore he proved that the quantum
mechanical fluctuations evolve according to the equation obtained by linearizing
the quantum mechanical evolution equation around the classical solution.
However his analysis is limited to finite time intervals and therefore does not
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provide any information on the connection between the classical and quantum
mechanical scattering theories. For systems of finitely many particles such a
connection was provided recently by Yajima [117].

In this and subsequent papers we shall study the connection between classical
and quantum mechanical scattering theories for non-relativistic many-boson
systems. The main result is that, under suitable circumstances, the #i-—0 limit of
quantities similar to those considered by Hepp is uniform in time. In particular
this extends his results to the S-matrix.

In order to state the problem in more precise terms, we first analyse the general
structure of the quantum theory in connection with its classical limit. Our results
can and will be described more explicitly only at the end of this analysis, which
takes up most of the present section. It is inspired by that of Hepp and the earlier
one of Gross [6,5]. [t is phrased in a way that is suitable for many-boson systems
although it applies to more general situations. In this discussion we restrict our
attention to the algebraic aspects of the problem and do not make any attempt at
mathematical rigor. We treat # as a free parameter. Since nature gives us only one
physical value for it, this means of course that we are imbedding the actual
quantum theory in a one-parameter family of quantum theories indexed by 4.

We consider a system described by a family of quantum variables a={a,},_;
satisfying the CCR

la,a;1=0, [a,af]=0,;. (1.1)
The variables a, = {a,,},.; expected to have classical limits are related to the a’s by
ay,=ha,, iel, (1.2)

for some p>0. There are reasons why u should take the value 1/2, but they are
irrelevant for the discussion that follows. We shall come back to this point later. In
all this paper, we shall make the following convention: an operator 4 which is a
function of both the @’s and the a*’s (for instance a polynomial) will be denoted
simply by A(a). This should be remembered especially when taking commutators.

In the Heisenberg picture, the time evolution of the g,’s is given by the equation

ihay(t)=Lay(t), Hy(a()], (1.3)
where the Hamiltonian H, is assumed to have the form
Hy(a,)=h"H(a,) (1.4)

for some real J; the function H(-) is assumed to have no explicit # dependence and
to be suitably regular, for instance polynomial. It may however have an explicit
time dependence, which is omitted for brevity. The Eq. (1.3) is solved by

a, (1) =Ult, 1o alte))* aylto) UL 1o 5 alty)), (1.5)
where U(t,t,; alt,)) is the unitary group satisfying Ul(t,, ty; a(ty))=1 and the

equation

ik j—t Ult, ty; alty))=Hya,(t ) Ult, ty; alt,)). (L6)
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We want to relate the set of operators a,(t) with a family of #-independent, time-
dependent c-number variables

o) ={p/0)} 1 (1.7)

to be thought of as their classical limits. It is therefore natural to expand the
Hamiltonian in power series of @, — ¢ and g — @ in a neighborhood of ¢, @ (where
o 1s the complex conjugate of ¢):

H(a;)=H(p)+ H,(a,— @)+ H,(a,— @)
+H 5~ 9), (1.8)
where the functions H,, H, and H , ; have total degree 1, 2 and = 3 respectively in
the variables a,— ¢ and af — . They have an additional dependence on ¢ and

possibly on time (which we have omitted for brevity), but no explicit # dependence.
We now define

Hya)=[a,H)], k=1,2,=3. (1.9)

It is clear from (1.1) that the functions H} are A-independent, that H) is a c-
number, and that H'(a) is linear in the variables a, a*. The Eq. (1.3) can now be
rewritten as

i9b+i(ah_§b):h6+2u71(Hl1 + Hy(a,— @)+ H', 3(a,— ), (1.10)

where the time dependence has been omitted for brevity.
In order to obtain a non trivial classical limit, we assume 6=1—2u. We then
choose for ¢ a solution of the equation

ip=H/, (1.11)

which is the classical evolution equation associated with the hamiltonian H. The
Eq. (1.10) then becomes

{a—@y)=Hy(a— @) +h " H, 5(h"(a— @), (1.12)
where
Py=h""p. (1.13)

In order to study the classical limit of the evolution Eq. (1.3) with initial condition
a,(t,) at time t =t,, we define new variables b(t) by

b(t)=C(alt,), Ot )* (alt) — @ (1) Clalty), ,(ty)), (1.14)
where
C(a, o) =exp [Z (a¥o,— ai&i)} (1.15)

for any o= {,}, ;. The operators C(a, o} are the Weyl operators. They are unitary
and satisfy

C(a, w)*aCla,0y=a+o. (1.16)
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When applied to the vacuum, they yield coherent states. Using (1.16), one can
rewrite the definition (1.14) as

b(t) = Clalt), ,(te))* Cla(t), py(t)) al?)
-Cla(t), p,(1)* Clalty), @4(to)) - (1.17)

The initial value problem is now reduced to finding a family of operators b(t)
satisfying the CCR, the initial condition

bitg)=alt,) (1.18)
and the equation
ib=H,(b)+h™*H' 4(h"D). (1.19)

The second term in the R.H.S. of (1.19) is O(h*) because H', ,(a) has degree at least
two in the @ and a*’s. We now face a well defined perturbation problem, namely to
prove that when A—0, the solution of (1.19) with initial condition (1.18) tends in a
suitable sense to the solution of the equation

ib=H',(b) (1.20)

with the same initial condition (1.18). The Eq. (1.20) describes the evolution of the
quantum fluctuations in the limit #—0. It is the equation obtained by linearizing
the Eq. (1.3) around the classical solution ¢(t). In sufficiently regular situations the
solution a,(t) of (1.20) with initial condition (1.18) is given by

ay()=U,(t, tq; alte)* alt) UL, Lo ; alty)) . (L.21)
where U,(t, t,; a(t,)) is the unitary group satisfying U,(t,, tq; a(t,))=1 and the

equation

i% U,(t,to; alto)) = Holalto)) U, (8, £o ; alto)). (1.22)

Note that U,(t, ty; alt,)) is independent of # in so far as a(t,) is. Similarly the
solution b(t) of (1.19) with initial condition (1.18) is given by

b(t)=Wt, t,; alto))* alto) WL, 1o ; alto)) , (1.23)
where W(t,,; al(t,)) is the unitary group

WL, ty; alty))=explimt, 1) ] U(t, 1y ; alt,))

-Cla(t), py(1))* Claltp), @y(t)) (1.24)
=expliwy(t, to)] Clalto), ,()* Uz, 1 ; alty))
-Clalty), @4(ty)) (1.25)
with
w;(t, 1)

=h" 2 [ dr{H(z, p(1)) — Re (1), Hy (. (1))} . (1.26)

to
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In order to pass from (1.24) to (1.25), we have used (1.5). In (1.26) we have written
the dependence of H} on ¢ and the possible explicit dependence of H and H' on
time. The scalar product <-, -> is defined by
(o, By =) &p;. (L.27)
iel
The choice of the phase (1.26) in (1.24) ensures that the operator W(t,t,; a(t,))
satisfies the equation

d
l% Wit ty; alty))

=(H(alto))+ 7™ Hy 5(hat,) ) WL, 15 ; alto)). (1.28)

The computation showing that W(t, ¢, ; (to)) satisfies (1.28) is straightforward and
will be omitted here. It will be performed in a special case of interest in Sect 3 (see
the proof of Proposmon 3.1).

Now the previous perturbation problem is reduced to comparing W(t, ¢, ; aft,))
with U,(t,t,; alty)). In favorable cases,

slim Wi, to; alto)) = Ut o alto))- (1.29)

This strong convergence implies that, for any family of bounded suitably regular
functions R,(a) and for any family of times {t,} i=1,2,...,m,

Sh'g%n Clalty), pulto)* lz_m[ Ry(a(t) — @u(t) Clalt,), oy(ty))

= l_[ Ry(ay(t), (1.30)

where az(t) is given by (1.21) and a(z) is given by (1.2) and (1.5) or equivalently
through b(t) by (1.14) and (1.23). The convergence (1.30) can be interpreted in terms
of correlation functions in coherent states.

In more singular cases, it may happen that U, does not exist. One may then
expect only convergence of the automorphisms of the CCR algebras defined by
(1.19) and (1.20).

So far we have considered the problem of evolution in finite time intervals.
Now we turn to scattering theory. This requires a little more structure. We want to
compare the evolution of the system with a simpler evolution called the free
evolution. Therefore we assume that we are given a free hamiltonian

Hoyla,)=h'">"H(a,), (1.31)

where H(-) is quadratic and time-independent. The free evolution is then
represented by the one-parameter unitary group of operators

Uy(t; a)=exp{—ih~ "t Hy,a,)} =exp{—itH(a)}. (1.32)

Note that U,(¢; a) is h-independent in so far as a is. It is now convenient to
reformulate the evolution problem in the asymptotic picture defined by

at)=U,(t; a())a(t) Uo(t; a(t)* (1.33)
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and similarly by
b(t) = U o(t; HO)b(e) Uoft; b)), (1.34)

with the operators b(z) given by (1.14). It follows immediately from (1.33), (1.34),
and (1.17) that

b(t) = Clalt,), i(te)y* Clalt), py(1))a(r)
-Clalt), p,(0)* Clalty), @y(to)). (1.35)

The operators in the asymptotic picture are expected to have limits as ¢ and/or ¢,
tend to +oo for fixed a(t))=a, if the Heisenberg operators behave as free

operators for large times. Obviously the operators b(z) satisfy the CCR and the
initial condition

b(ty) =, (1.36)
The evolution Eq. (1.19) becomes

ib = H'y(B) — Hiy(B) + h ™ HL 4 (h5), (1.37)
where

H, isdefined for k=2, =3, by

Hia)={a, Ha)] (1.37a)
with

Hy(a)=U(t, a)*Ha)U,(t. a) , (1.37b)

Hy is defined by (1.9) with k=0 and the time dependence has been omitted for
brevity. The previous perturbation problem now becomes that of proving that
when 70, the solution of (1.37) with initial condition (1.36) tends in the same
sense as above to the solution of the equation

ib=H',(5)— Hyy(b) (1.38)

with the same initial condition (1.36). In addition, the limit #—0 is expected to
have some uniformity in ¢ and ¢, for fixed &,, and to commute with the limits
where ¢ and/or t, tend to + oo, provided the latter exist. In sufficiently regular
situations, and in particular in those considered in the present paper, where the
Eqs. (1.19) and (1.20) have the solution (1.23) and (1.21) respectively, the Eq. (1.38)
has the solution

a,(t) = U(t; a () ay() Ut ; ay(t))*
=U,(t,ty; Go)*dy U,(t 1y ), (1.39)
where

f]z(t, to: do)
= Uty alto) Uyt 1o s alto)) Uol(t; a(6))* (1.40)

= Uy(t; o) U,(t,to; dg) Uty o). (1.41)
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In order to pass from (1.40) to (1.41) we have used (1.21) and (1.33). The operators
U,(t,t,; d,) form a unitary group satisfying U,(t,, ,; d,) =1 and the equation

d ~ ~ o
ia U, o )= {H (do) — Holap)} UL, to; do) - (1.42)

Similarly the Eq. (1.37) is solved by

b(t) = W(t, 1o 8o) o Wt o Go), (1.43)
where

Wit ty; ao)

= Uty alto) Wit ty 5 alte)) Uo(t; b(t))* (1.44)

=Uy(t; do)* Wit ty; dg) Uglty; dg) . (1.45)

In order to pass from (1.44) to (1.45) we have used (1.23) and (1.33). The operators
Wit t,;d,) from a unitary group satisfying W(t,,t,;d,)=1 and the equation

d - . . .
i% WALty do) = {H (o) — Holdo)+ k™2 H 5 5(h*a)} W(t 101 do) - (1.46)

In order to study the A—0 limit uniformly in time we need more information
on the asymptotic behaviour of the classical solution ¢(t). For this purpose we
introduce the classical free evolution which is the evolution associated with H, in
the same way as the total classical evolution was associated with H through Eq.
(1.11). Since H, is quadratic the classical free evolution is represented by a group of
real-linear operators u,(t) and one easily checks the identity

U,(t;a)Cla, ) Uy(t; a)* = Cla, uy(t)er) . (1.47)
We introduce the asymptotic picture for the classical evolution by

@) =uy(—)(t)
{q?h(t) = uZ< —1)@,(t), (1.48)

so that (1.47) implies
Cla(t), (1) = Ca(e), 9,(1)). (1.49)

We now assume that the classical solution is asymptotically free, namely that the
limits

lim @)=, (1.50)

t— oo

exist in a suitable sense. Under this assumption and in favorable circumstances
one expects the following results:
1) The limit

s-lim W(t,ty;d0)= Ut ty 3 d,) (1.51)
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should exist uniformly in ¢ and ¢, for fixed &,. This implies limiting properties of
the correlation functions similar to those expressed by (1.30) namely:

m

sthaO,(ph(tO) ]_[ dalt,)— <P;,(t)) (@o» qB,,(to))

i=1

ﬁ R(@,(1,)) (1.52)

uniformly in ¢, and the t;’s for fixed 4.

2) If in_addition the quantum theory is asymptotically complete, then the
operators W(t, t,;d,) should have strong limits as ¢t and/or ¢, tend to + oo at fixed
Gy. Similarly U,(t,t,;d,) should have strong limits in the same circumstances.
These limits are simply related to the corresponding S-matrices in the Heisenberg
picture (&, being the incoming field)

S@y)= ts-lim Uo(t5a0)* Ul g3 a0) Uolty s o) (1.53)
to—> — o0
and
S,(dp)= s-lim U,(t, ty;d,). (1.54)
>+
o> —

Indeed it follows from (1.29), (1.45), and (1.49) that
Wt to380) = Clao, @4(0)* Uolt:@0)* U(t, 3 30) Uolta : o)
-Clay, ppto)) expliogt, t)] (1.55)
and therefore that
s-lim W(t, to:80)=Clag, @y 4 )*S(@)C(ay. ©5_)

l‘*’ o]
to—> — 0

-exp[iw,(+ oo, — 0)]. (1.56)

The phase w,(+ oo, —o0) should be finite for asymptotically free classical so-
lutions. Furthermore the limits #—0 and t,t,— + oo should commute. In
particular

S;:Egl Cllgs Pn+)*S(a0) 8y, ¢ ) exp [ioy( + 00, — 0)] =S ,(dy). (1.57)

In the absence of asymptotic completeness, one nevertheless expects similar results
to hold for the wave operators, provided they exist [see (5.97)].

We conclude this preliminary discussion with a comment on the role of the
parameter u [see Eq. (1.2)] which was left unspecified until now. The parameters #
and p enter into the basic Egs. (1.19) and (1.37) only through the combination #* so
that the entire analysis is insensitive to the choice of pu. The requirement that the
quantum mechanical energy tend in some sense to the classical one imposes =0
or equivalently p=1 [see Eq. (1.4)], but this choice is extraneous to the dynamical
problem. From now on, we choose p=1, in keeping with common use.

After this discussion, we are in a position to state our results more precisely.
They consist in proving (1.51) with the uniformity in time there stated, and (1.57)
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and its analogues for the wave operators, in the case of a non-relativistic many-
boson system with two-body interactions, in space dimension n=3. From the
convergence (1.51) with uniformity in time, the convergence (1.52), which is
perhaps of more direct physical significance, follows with similar uniformity in
time. Since however the derivation of (1.52) from (1.51) is completely straightfor-
ward, we shall from now on concentrate on (1.51) and not mention (1.52) any more
in the rest of the paper.

We now introduce the notation appropriate to describe the system mentioned
above. Let a(x) and a*(x) satisfy the CCR

La(x), a(y)]1 =0, [a(x)a*(y)]=0d(x - y). (1.58)

The a(x)s play the role of the a’s. We recall that a,(x)=h'2a(x). The total
hamiltonian of the system is

Hila)= oo [dxVa*(s)-Valx) + ] dxdyWie— () p)ata).  (L59)

where V,, is a real even function. In order that H, have the form (1.4) with 6 =0 (i.e.
©=3) we must impose that

my=hm, V(x)=h?V(x), (1.60)

with m and V h-independent. From now on, we take in addition m=1. The total
Hamiltonian can then be rewritten as

H,=H(a,)=hH(a)+h*H (a), (1.61)
where

H(a)=3 [ dxVa*(x)-Va(x), (1.62)

H (@) =% [ dxdyV(x — y)a*(x)a*(y)a(x)a(y), (1.63)
and the operator H{a) defined in (1.4) becomes

H(a)=H,(a)+ H,(a). (1.64)

In the classical limit that we are considering, the particle number
N = dxa*(x)a(x) (1.65)

is O(h™ 1), the total energy is O(1) and therefore the energy per particle is O(h). Since
the mass itself is O(#) the De Broglie wavelength is O(1). In the limit £—0, the
particle structure disappears and the system becomes a classical field or a fluid
described by the classical variable ¢ which is now a complex function of x. The
quantum mechanical free evolution is generated through (1.32) by the free
Hamiltonian H,(a) defined by (1.62). The operator H,(a) defined by (1.8) becomes

H,(a)= — [ dx(Ag(x)a*(x)+ Ap(x)a(x))
+§ dxdyV(x~ Wlo()* (@(x)a*(x) + p(x)a(x)), (1.66)
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and therefore the classical evolution Eq. (1.11) obtained through (1.9) becomes
ip=—340+p(V+lo]). (1.67)
Similarly, the classical free equation is
ip=—14¢, (1.68)

so that the free evolution operator u,(t) is given by
t
ug(t) =exp <i§A>. (1.69)

The remaining terms of the decomposition (1.8) will be given where needed,
namely in Sect. 3.

The implementation of our program requires some information on the
evolution at finite and infinite times of both the classical and quantum theories.
The classical theory will be treated in a companion paper [4], where we study the
Cauchy problem for the Eq. (1.67) and the scattering problem for the Eqgs. (1.67)
and (1.68). The results relevant for the present analysis are collected in Sect. 2. As
regards the quantum theory, we need to define and study both the total evolution
associated with U(t,t,;d,), Wit t,;d,) and the evolution of the fluctuations
associated with U,(t, 1, d,). Various degrees of difficulty arise in the analysis of
these operators, depending on whether the potential Vis locally square integrable
(Ve L} ) or not. In order to keep this paper to a reasonable length, we treat here
only the case where Ve L . In this situation the evolutions given by the operators
Ult, t,; ), Wi, tosdy), and Uz(t, to:d,) are studied in Sects. 3 and 4 respectively.
The more singular case is left for a subsequent paper. Having all the necessary
ingredients we can then proceed to the proof of the announced convergences when
h—0. This is done in Sect. 5 where the results are stated in a precise form in
Proposition 5.1 and Theorem 5.1. The assumptions on the potential vary from
section to section and will be given whenever needed.

2. The Classical Theory

In this section we describe some results concerning the Cauchy problem and the
scattering theory for the classical equations (1.67) and (1.68) in R" with n=3. A
more detailed exposition, closely following [3], as well as the proofs will be given
in [4]. Here we present the main results in a simplified form which is sufficient for
the applications in this paper.

We denote by [ -||, the norm in L= LYR") (1 £q = o), except for g=2 where
the subscript 2 will be omitted, and by H*= H¥R") the usual Sobolev spaces. For
any interval I (possibly unbounded) of the real line R, for any Banach space %, we
denote by ¥(I, %) [respectively €,(I,%#)] the space of continuous (respectively
bounded continuous) functions from I to #. Let n=3, let 2<r<2n/(n—2), let k be
an integer, k=1 ; we define:

X, ={y:weH* and D*wel foralla, |¢|=k} 2.1)
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and
Z (H=%,1,H)¥(,X,,). (2.2)

It is convenient to rewrite the Cauchy problem for the Eq. (1.67) with the initial
condition ¢(t,)= ¢, in the form of the following integral equation

@(t)=ug(t—to)po—i | druy(t —7) {p(O)(V+lo()*}, (2.3)

to

where u,(t) is defined by (1.69). We first state a global existence and uniqueness
result.

Proposition 2.1. Let n=3, let X,, and ¥ (-) be defined by (2.1) and (2.2) respectively.
Let V satisfy the following assumptions:

VelPi4 L7, (2.4)
where
{1/2—1/r; 1/p, £1/p, Min(1, 1 —2/r +2/n) (2.5)
p,>1 if k>1 and r=n=3,
and
V_ e [Max(oini2) 4 o2 (2.6)

where V, =Max(+ V,0). Let toelR, let ¢,eX,, be such that uy(t—t,)p.e % (R).
Then the Eq. (2.3) has a unique solution ¢(t) in & (R). This solution satisfies

@I =, 2.7)

and

H(p(t))=H(p,), (2.8)
where H(-) is defined by (1.64)

Remark 2.1. The parameters p, and p, control the decay of the potential at infinity
and its local singularities respectively. They are coupled through (2.5); the worst
singularities allowed for V¥, correspond to p,=1 for n=3 (with r>3) and to
p,>n/4 for n=4 [with r close to 2n/(n—2)].

As mentioned in the introduction [see especially the Eq. (1.50)] we need some
information on the asymptotic behaviour in time of the solutions of (2.3). In a first
step we can construct solutions asymptotically free at + oo or at — oo by solving
the integral equation

P(O)=ug(Po—1 | drug(t—1) {p()(Vxlg(0)?)} (2.9)

where ¢, lies in a neighborhood of + oo or of — co. For this purpose we introduce
the following spaces. Let ' satisfy

12— 1/n<lfr<1/r<1/2—1/3n. (2.10)
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For any interval I (possibly unbounded) of R, we define
Zo(D={p:peZ () ply; <o}, (2.11)

where
[Wlor= Squ 1‘\;’13;5 (DR, (L4 ey =" || DPap,.,
te a|Fk

(LA [ty D, 3 (2.12)

We shall use freely the notation pe Z (R)n% ,(I) to denote a function pe Z (IR),
the restriction of which to I lies in & y(I).
We are now in a position to state the following result.

Proposition 2.2. Let n=3, let X,,, X, and X', be defined by (2.1), (2.2), and (2.11)
respectively. Let V satisfy (2.4)-(2.6) and in addition
12—1/r+1/n<1/p,. (2.13)

Let poeX,, be such that uy()poe & (R)NZ ((R"). Then

1) For t, sufficiently large (depending on ¢,) and in particular for t,= oo, the
Eq. (2.9) has a unique solution ¢ in Z (R)NZ ,(R™).

2) LettyeRorty=+ o0 and let pe & (R)NZ ((R™) be solution of the Eq. (2.9).
Then uy(-)p(s)e Z (R)NZ ((R™) for all seR. Furthermore, there exists ¢ €X,, such
that uy()e . e Z (R)NZ (RY), uy()p(s)—uo( )@ . € X o(R), and

lim uo()p(s) —uo( ), =0 in Zo(R), (2.14)

where ((s) is defined by (1.48). In particular
lim p(s)=¢, in X,,. (2.15)

Furthermore, for all telR,

le@l=lie.l, (2.16)
H(p()=3Ve {?. (2.17)

If ty=+ 0, ¢, =0,
Similar results hold for t, in a neighborhood of —co and uy(t)p, or ¢ in
Z,(R)NZ(R™).

Remark 2.2. The condition (2.13) imposes an additional restriction on the decay of
the potential at infinity. It follows from (2.10) and (2.13) that p, <3n/4. One checks
easily that for any allowed choice of » and #, (2.13) is stronger than the upper
limitation on p, and compatible with the lower limitation on p, that come from
(2.5).

Remark 2.3. Under the assumptions of the Proposition 2.2, the wave operators
formally given by

Qrp.=00)=0—i +§ drug(— ) {@(r)(V=lo(0)]*)} (2.18)
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are well defined as (non linear) maps from Y. to itself, where
Y, ={p uy()pe ZR)NZ,(R*)}. (2.19)

A solution of (2.9) in Z (IR) will be called dispersive (respectively dispersive in
the past or in the future) if it belongs to Z,(IR) [respectively to Z,(IR™) or Zo(R™)].
Proposition 2.2 provides us with solutions that are dispersive in the past or in the
future but not necessarily in both directions. For such solutions the uniformly of
the #—0 limit announced after (1.51) holds only when ¢ or ¢, tends to — oo or to
+00. As a consequence, for such solutions one cannot obtain in general the
limiting property (1.57) for the S-matrix but only the corresponding property for
the wave operators.

In order to obtain dispersive solutions, more information is necessary. In
particular, we shall see that under an additional restriction on the initial data ¢,
all solutions of the Eq. (2.3) obtained from Proposition 2.1 are dispersive if the
potential V'is repulsive in a suitable sense. For this purpose we define a new space
2 as the Hilbert space

Z={yp:peH! and xypel?}, (2.20)
with the norm defined by
Il = Il + [Pyl + | xpl|?. (2.21)

The relevance of X is best seen from the following lemma.

Lemma 2.1, Let weX, let 2<q<2n/(n—2). Then
luo@ ], = a,(1+ )™= |yl 5, (2.22)
where the constant a, depends only on n and q.

We can now state the following result.

Proposition 2.3. Letn=3,let X,,, & (-), Z,(-) and X be defined by (2.1), (2.2), (2.11),
and (2.20). Let V satisfy (2.4)~(2.6) and in addition

x-VVelL* + L¥*, (2.23)
where
1/p,=Min(1,2+4k/n—4/r) (2.24)

and the derivative of V is taken in the distribution sense. Let pyeX,, N be such that
Uo(t) Po€ X (R).

1) Let ty be finite and let @ be the solution of (2.9) in Z (R) as obtained from
Proposition 2.1. Then pc4(IR, 2).

Assume in addition that V is repulsive in the following sense:

V is non negative and A2V(Ax) is decreasing in A for all xeR" and all AleR™.

Then pe% (R, 2).

Assume in addition that V satisfies (2.13) and that uy(-)Poe ZH(R). Then
peZ,(R).
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Let ¢, be defined as in Proposition 2.2, then ¢, X and

slirpw P)=¢p, in 2. (2.25)

2) Let v be such that

12—1/n<lprs1pr<1/2—1/2n, (2.26)
let

P <n/2, (2.27)
and let V satisfy in addition

x-VVelL?s 4 LP4 (2.28)
with

py<n/2. (2.29)

Let tyeR or ty=~+ o0 and let pe % (R)NE,(RF) be solution of the Eq. (2.9).
Then peb(R,X). Let ¢, be defined as in Proposition 2.2, then ¢ . €X and

im ¢(s)=¢, in . (2.30)

s> +w

For repulsive interactions in the previous sense, Proposition 2.3 provides us
with a large class of dispersive solutions. Actually it implies asymptotic complete-
ness in the space Z:

Z={yp:peX and uy(-)peZ,(R)}. (2.31)

Corollary 2.1. Let r and v satisfy (2.26). Let V satisfy (2.4), (2.5), (2.27), the
repulsivity condition of Proposition 2.3, (2.28), (2.29), and (2.24). Then the (non
linear) mapping

P_—p=50_ (2.32)

defined formally by
01 =01 | dru(=9) (o) (V= lo(P) .3

and, more precisely, by a combined use of Proposition 2.2 and 2.3, is a bijection of Z
onto Z.

Remark 2.4. In each of the situations covered by the previous propositions one can
also obtain boundedness properties of the solutions and continuity properties with
respect to the initial data.

3. The Quantum Theory

In this section, we define the quantum theory formally described in Sect. 1, and in
particular we derive the main properties of the operators W(t,s; a) defined by
(1.45) and (1.55) that will be used later.
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The basic space of the theory is the boson Fock space
H= P Ay, (3.1
N=0
where 4, is the space of totally symmetric square integrable functions of N

variables in R"”. The Fock vacuum is denoted by ¥,. The scalar product in 4 is
denoted by

(D, V) =fdX BX)P(X), (32)
where X =(x,,...,xy) and
Fax= 3 (NO)™'fdx,..dx,. (3.3)
N=0
The norm in # is denoted by | - |l. No confusion should arise with the scalar

product and the norm in L? = #, for which we use the same notation. The norm of
a bounded operator A in # is denoted by [|A]l. The creation and annihilation
operators are defined, for any ae L, by

(al@) ¥ —J ) V). 64
(@) V)X z YX\x).

In (3.2)3.4), we follow the convention of Friedrichs [2]. The particle number
operator N is defined by (1.65).

For any self-adjoint semi-bounded operator A=cl in #, we denote by Q(A4)
the form domain of 4, namely Q(4)=2((4— c1)1/?). Q(A4) is a Hilbert space with
norm [{((1 —c¢)1+.4)}?®||. We denote by Q*(A4) the completion of # in the norm
[(1—c)L+ A)~ 2 @|. We shall also use the space €,(N) of vectors in # with
finitely many particles.

We now begin the study of Wi(t,s; a). For this purpose we need some properties
of the Weyl operators defined [cf. Eq. (1.15)] by

C(a, o) =exp[a*(o) — a(@)] (3.5)
for any ae L2

Lemma 3.1.

1) C(a,a) is unitary and strongly continuous as a function of ae L.

2) Let ac H'. Then C(a,a) is bounded in Q(H ) and in Q*(H ) uniformly for o in
a bounded set of H'. (H,, is defined by (1.62)).

3) Let a:t—a(t)e €' (R, L?). Then C(a,«t)) is strongly differentiable in t from
Q(N) to A. The derivative is given by

Cla, oft)) = Cla, (1)) (@*(3) — a(@) + i Im<a, &), (3.6)
where ¢ =do/dt.
Proof.

1) Unitarity is obvious. Strong continuity then follows from weak continuity
on €o(N).
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2) We have
Cla, o)* Ho Cla, o) =4 [ dx(Va*(x) + Va(x)) - (Va(x) + Va(x)) (3.7)
S2H +||Va)?. (3.8)

This proves 2) for Q(H,) and by duality for Q*(H,).
3) Let ¥, ¥,e%,(N). Then by an elementary computation

L Caa) N+ 1))

={¥,,C(a, () D(t)(N+ 1)~ 129>, (3.9)
where
D(t) = a*(a(t)) — a(a(t)) + i Im< ou(t), 6(2)> . (3.10)

The operator D(t)(N +1)" /2 is bounded and norm continuous in t. Therefore
t
[C(a, x(1)) ~ Cla,als)] P = | dr C(a, a(t)) D(1) ¥ (3.11)

as a strong Riemann integral in # for any ¥ in Q(N). This proves 3). Q.E.D

The main constituent of I7V(t,s;a) is the total evolution operator U(t,s; a)
which we now define. We do not strive for the greatest possible generality, since
the strongest assumptions we shall need on V will arise in the study of the limit
h—0 in Sect.5. Let n=3 and V, =Max(+ V,0). We assume that V satisfies the
following conditions

{VeL‘”-l—L” (rz1). (3.12)

V_elL®+L"?

The Hamiltonians H,, H,, and H, [see (1.61)] are defined through the direct sum
decomposition

Hy,= P Hyy= @ hHoy+h2H,,. (3.13)
N=1 N=1

Under the assumptions made on ¥, H,, is for each N the self-adjoint operator
defined ds a sum in the sense of quadratic forms, with Q(H,,) CO(H,); it is semi-
bounded [10]. Furthermore H,, is essentially self-adjoint on Z(H,)NE,(N). If in
addition V. eL*+L* and V_eL*+ L™ (resp. V_eL***+L*) for n=3 (resp. for
n=4), then H, is essentially self-adjoint on the subspace of vectors with finitely
many particles and smooth wave functions [8]. The total evolution [see (1.6)] is
defined by

U(t,s; a)y=U(t—s; a)y=exp[ —ih " Ht—s)H,]. (3.14)

In order to study W(t, s; a) we need the explicit form of the decomposition (1.8).
H ,{(a) is given by (1.66). The other terms are given below:

H,(a)=Hy(a)+ G(a)+ K(a)+ L{a) + L*(a), (3.15)
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where H,(a) is defined by (1.62), and

G(a)= [ dxg(x)a*(x)a(x), (3.16)

K(a)= | dxdyk(x, y)a*(x)a(y), (3.17)

L(a)=1% [ dxdyl(x, y)a(x)a(y), (3.18)
with

g0 = [dyV(x—y) o> =Vl (x), (3.19)

k(x, y)=x)V(x—y)o(y), (3.20)

Ix, )= o(x) V(x=y)o(y), (3.21)

H (@)= Hy(a)+ H,(a), (3.22)
with

Hy(a)=A5(a)+ A3(a), (3.23)

A5(a)= [ dxdyV(x~y)p(x)a*(y)alx)a(y), (3.24)

and H,(a) is given by (1.63).
We first derive some properties of H,(a).

Lemma 3.2, Let VelL*+L? ie. V=V, +V, with V,eL®, V,eL?, p=2 and let
pel*nLf with 1/p+2/q=1. Then the operators N~ 'G, N 'K and
(N(N —1)"L*L are bounded and

IN“'Gll =gl , (3.25)

IN"'Kli<e, (3.26)

NN = 1)~ LELI < c?, (3.27)

AN +D(N+2) "' LL¥[ <52, (3.28)
where

= |kllys=2"2 | L*¥ o || ={[ dx(lg|*(V* x|l )} 12, (3.29)

and || - ||y denotes the Hilbert-Schmidt norm in S, . Furthermore
Max(c, gl )= Vil lel® +1Val, el - (3.30)
Proof. (3.25) and (3.26) are obvious. In order to prove (3.27) it suffices to show that
L*L<icAN(N-1) (3.31)
because L*L commutes with N. Now

”LIPHZ:&dX|%§dy1dy27(y1:yZ) W(Xayp,V2)|2
§”L*lpo”z’de%deﬁdszP(Xayls))z)lz
=3 L*P > <P, NIN-1) ¥ (3.32)
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by Schwarz’s inequality. The proof of (3.28) is similar. Finally (3.30) follows from
Holder’s and Young’s inequalities. Q.E.D.

Corollary 3.1. Let the assumptions of Lemma 3.2 be satisfied. Then, for any we(C,
ol =1,

wL+&L* <c(N+1) (3.33)
and

N+ 1)~ 12LSN 1) 12 <, (3.34)
where ¢ is given by (3.29).

Proof.
¢ 1/2 e —1/2 . ¢ 1/2 ¢ —1/2
[eovea)™—afon) s [ a] "—on(on) 20 39
implies
wL+®L* < %(N+2)+ (§N>-1 L*L<c(N+1) (3.36)

by (3.31). This proves (3.33), from which (3.34) follows by sum and
difference. Q.E.D.

In Sect. 5 we shall make essential use of a regularized version of the Eq. (1.46).
For this purpose we introduce a regularization operator P, as follows: let
o, €% (R") be positive and decreasing, ¢,(s)=1if s<1, 6,(s)=0if s=2. We denote
by o, the operator ¢, (N/v)in #. Let 9, e L' nL? be even, positive, with |lo, |, =1.
Let g, be its Fourier transform. Assume in addition that ¢, >0, that |klg, (k) is
bounded and that ¢,(Ak) is a decreasing function of A for all AeR* and keR". For
any k>0 let ¢, (x)=x"g, (xx) and let ¢, be the operator in ¢, defined by ¢,

Yix
oo}
=g,y for any pe#,. Let R, = P ¢%s" and P, =0, R, where the superscript
N=0

®¢N denotes the symmetrized N tensor power. The parameters v and « are a
particle number cut-off and a momentum cut-off respectively. The operators 7, R,
and P, commute among themselves and with N and H,. They satisfy 0P,
=P* <1, are increasing in v and x and satisfy

s-lim P, =1. (3.37)

V,K— 0

Some of the regularizing properties of P, are expressed by the following
lemma.

Lemma 3.3. Let V satisfy the assumptions of Lemma 3.2.
1) Let @el?nL* with 1/p+2/g=1. Then o (H,—H,) and therefore
P, (H,— H,) are bounded in # and strongly continuous with respect to e L*nLA.
2) Let e L*. Then P, H, and P, H, are bounded in # and strongly continuous
with respect to pe L* (H, and H, are defined by (3.23), (3.24), and (1.63) and the a
dependence is omitted ).
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Proof. Part 1) follows immediately from Lemma 3.2.

2) Because of the particle number cut-off it is enough to prove that R 4,
R A% and R _H , are bounded from J#, to J#,, from 5, to #, and from #, to J,
respectively. Let we s, and ¥, e #,. Then

{p, R AY¥>= jdxi dx,dx; p(x,)@(x,)
0, =X VX — x,) V(X x,),
W, R ALY = [dx dx,dx) dxy, Plx,, x,)0(x; — X))
"0 = x) VIxy — x5) (X)) 9(x3),
(¥,R.H, D)= jdx dx,dxy dx, P(x,, X,)0,(x, — x1)
“0,(x, = X5) V(x}) — x5) D(x], X3).
It is therefore sufficient to prove that the operator B in L*>®L? defined by

(BO) (x1,x,)= | dx| g, (x; —x;) V(x| — x,) 0(x, x,) (3.38)
is bounded. Now it follows from Young’s and Schwarz’s inequality that | B
S Vil Fled 1V5ll. This  proves boundedness; continvity is then

obvious. Q.E.D.
We are now in a position to study W(z, s ; a) defined formally by (1.55) through

(1.25), (1.26), (1.45) where ¢,, @, ¢, are defined by (1.13) with u=1/2 and (1.48). We
assume that V satisfies (3.12) and that

ped(R, L nLY) with 1/p+2/g=1. (3.39)

Then C(a, p,(t)) and U(t,s; a) are well defined through (3.5) and (3.14). The phase
(2, s) defined by (1.26) now becomes

w,(t,s)=—h"" j deH (o(1). (3.40)

It follows from (3.12) and (3.39), by Holder’s and Young’s inequalities, that w,(t, s)
is well defined and continuously differentiable in ¢, This completes the precise
definition of W(1,s; a). We now derive the regularized version of (1.46) mentioned
above. In order to be precise, we indicate explicitly the time dependence coming
from ¢ in the operators H(a)=H,(t, a), k=2,3,4, defined by (3.15), (3.23) and
(1.63), and H,(a)=H(t, a) defined by (1.37b), which then becomes

H(t,a)=Uy(t; a)*Ht,a)Uyt,a) (k=2,3,4). (3.41)
Proposition 3.1. Let V satisfy (3.12) with p=2. Let ¢ satisfy
pebR,H' nLY with 1/p+2/g=1 (3.42)

and the Eq. (2.9). Then the operator P, W(t,s; a) defined above is strongly
differentiable in A and its derivative is given by

i%PmVNV(t,s;a)zP( H,(t,a)— Hy(a)+ h'> H,(t, a)

+hH(t,a)W(t,s; a). (3.43)



56 J. Ginibre and G. Velo

Proof. We first remark that under the assumptions made on V and ¢, the integrand
in the R.H.S. of (2.9) lies in (R, L?). Therefore the integral is well defined as a
strong Riemann integral in L? and the Eq. (2.9) makes sense. Furthermore ¢
satisfies the equation

PO)=lte)—1i | drug(—1) {@() (Vxlp(t)*)}, (3.44)

from which it follows that pe@*(RR, L?) and that

. 4
1(t) =uo(~ D {e(t) (Vxlo®)*)} . (3.45)
In the rest of this proof we drop the a dependence in all the operators. It
follows from Lemma 3.3 and from (3.42) that the R.H.S. of (3.43) is a bounded
operator in # and is strongly continuous with respect to t. Therefore it is sufficient
to prove (3.43) on a dense subsct & of #. We take

T = {¥:Uo(s)C(§,() Ve D(H,)NE(N)} (3.46)

Using the facts that U(t—s) is strongly differentiable on 2(H,), that
2(H,)CQ(H,) CQ(H,), that U y(¢) is strongly differentiable from Q(H ) into Q*(H ),
that C({,(¢)) is bounded on Q*(H ) and strongly differentiable from % ,(N) into
(by Lemma 3.1), that P, is bounded from Q*(H,)} to # [because |k|g (k) is
bounded], we see that, for any Ye 9, PvKW(t, s)¥ is differentiable, and that its time
derivative is given by:

d ~
ia P, Wt s)¥ =P, C(o, ) {U, ) (H,+hH,)

~ HoUo(0)F — i[a*(¢(1) — al §(0) +1 Im{P,(0), 0]

Uy + 07 HH (@)U o(6)*} Ut —5) U o(8)C(Py(5)) ¥ -
(3.47)
We are left with the task of writing (3.47) in the form of (3.43). This results from an
algebraic computation to be performed below using the Eq. (3.45). This com-
putation amounts to writing the same operator in two ways as the sum of various

terms and is justified by the fact that all terms involved are well defined as
bounded operators in #. Using (3.45) and (1.49) we obtain in the R.H.S. of (3.47)

P U0y {Cloyt))*hH ;Clo(t) — h™ 2 a*(@(0) (Vx| p(D)]*))
—h™2a(@(O (Vxlp)?) — 1~ p(t), o) (Velp()]*))
+hT Hy (@)} U)W, ) ¥ .
(3.43) then follows from (1.16), (1.8), (1.63), (1.66), (3.15)+3.24), the fact that
o, p(V¥|p[*))> =2H ,(p) and the definition (3.41). Q.E.D. _

We conclude this section with some comments on the limit of W, s;a) when ¢
and/or s tend to + co. We first consider the operators Uy (t; a)*U(t —s;a)U,(s; a).
The existence of their strong limits as s— + co is equivalent to the existence of the
wave operators

Q. (a)= s;ljrm U(—s;a)Uy(s;0a). (3.48)
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By an easy extension of standard arguments one proves that the latter exist if

(3.49)

VelP*+ P> with 1=p,=p,<n,
V. eLMax(p1,n/2)+L"/2 .

On the other hand the existence of the limit as t— + oo is a much harder problem
since it is equivalent to asymptotic completeness. It can be expected to hold only if,
for all N, the N-particle system behaves as a free system for large time, for instance
if the interaction is repulsive in some sense. If Vis positive and V{(/x) is decreasing
in AeR* for all x, it can be proved [9] that for each N the spectrum of H,y is
absolutely continuous and coincides with [0, co). Asymptotic completeness follows
from similar but stronger assumptions [9]. It is likely and it would be desirable to
prove that asymptotic completeness holds under the repulsivity condition of Sect.
2.

Finally the operator C(a, §,(t)) converges strongly to C(a, ¢,,) when t— + oo
provided §,(1) converges to ¢, in L% This convergence as well as the existence of
the limit for the phase w,(t,s) as t and/or s tend to + co hold for all dispersive
solutions of (2.9) in the sense of Sect. 2 for potentials V satisfying the assumptions
of Proposition 2.2.

4. The Quantum Fluctuations

In this section we give a precise definition and study the properties of the unitary
group of operators Uz(t, s;a) formally defined by (1.41) and (1.22). As explained in
Sect. 1, this group describes the evolution of the quantum fluctuations around the
classical solution. The main problem consists in solving the Eq. (1.38), namely an
evolution equation with time-dependent generator. There is an important litera-
ture on this subject (see for instance [ 7]), but it is simpler to give a direct treatment
taking full advantage of the special features of the present case. We follow the
usual method, namely we first define a truncated unitary group and then we obtain
U,(t,s;a) from it by a limiting procedure. In all this section we shall drop the
dependence of the various operators on a. We shall need the spaces #°, SRR,
defined by #°=Q(N?) for §=0 and by #°=Q*(N"!) for <0, with norms

1®[;=1(1+N)"?P|. (4.1)

We denote by %(5,5') the space of bounded operators from #° to #° and by
I {5, the norm in %(6,4"). .
We first derive some properties of the generator of U,(t,s)

AN =H,(t)— Hy=G(t)+ K(t) + L(t) + L*(1), (4.2)

where H,(t) is defined by (3.41) and G(1), K(¢), L(z) and L*(r) are defined similarly.
We introduce the self-adjoint approximants

A()=0,A(0)o, (4.3)

for any integer v 1, where o, is the particle number cut-off operator defined in
Sect. 3.
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Lemma 4.1. Let Ve L* + L? with p=2 and let ¢ satisfy (3.39). Then:

1) Forany deR, A(t) belongs to B(6+ 2, 0) and is norm continuous as a function
of t. :

2) A[(t) satisfies 1) with bounds uniform in v. Furthermore, for any é€IR, A ()
belongs to #(5,0) and is norm continuous as a function of t.

3) Forany deR, A (1) tends to A(t) as v—co, in normin B(0+2+¢,0), >0, and
strongly in B(6+ 2,0), uniformly for t in a compact interval.

Proof.
1) It follows from Lemma 3.2 and an argument similar to the proof of
Corollary 3.1 that

1GO+K )54 5,55 190 + (), (4.4)

L) + LA 54 5,5 S (14397 H2)e(0), (4.5)
where

g() = Vslo(®)?, (4.6)

and c(t) is the continuous function defined by [see (3.29) and (3.30)]:
c(t)={{ dx|o@)]> (V>+[p(0)]*} /2. 4.7

This proves boundedness. Continuity is proved in the same way.

2) Follows from 1) and the fact that o, #(5, ') for any é and &".

3) Strong convergence of A (f) to A(t) in #(5 + 2,0) follows from the obvious
strong convergence on %,(N) and the fact that A,(¢) is bounded in #(6+2,9)
uniformly in v. Norm convergence in #(6+2+¢,0) follows from the fact that
(I—0,)(1+ N)~* tends to zero in norm as an operator in #. Q.E.D.

We can now define the unitary group LNJZ’V(t, s} by the series

o —

mj 1 dt, At,)... A[t,). (4.8)

o)

Uz,v(tas): > (_i)mjdtltjldtZW

m=0

By Lemma 4.1 the series (4.7) converges in norm in %4(é, §) and f]z’v(t, s) is norm
continuous and norm differentiable with respect to ¢ in %(5,6) for all selR. The
operators U, (t,s) satisfy the following crucial boundedness property.

Lemma 4.2. Let V and ¢ satisfy the assumptions of Lemma 4.1. Then f]z,v(t, s) is
bounded in H#° uniformly in v for all 5eR. More precisely.

105 (6 5), 5 Sexp le [ dee2)

), 4.9)

where c(t) is given by (4.7).

Proof. 1t is sufficient to consider the case 6 =0. The case § <0 will be obtained by
duality. Let Yes#. We want to estimate

Mit,5)= (N + 120, (&, s)(N +1)" 7292, (4.10)
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Now M(s,s)= | Pl|* and

d -
iEM(t, 5)=<U, (,s)(N+ 1),

o [(N+ 17, L(t)+ L*)]0,U, (t,s) (N +1) 229> (4.11)
By an argument similar to that in the proof of Corollary 3.1 one obtains
+i[(N 41, L(t)+ L*()] £ 6c(t) (N +2)°
+(Be()N?) (N + 1P — (N — 1))’ L¥(1) L(1) (4.12)
<Oc(t) {(N +2)0° + (462N%) " IN(N— 1) (N + 1 — (N —1)%)?} (4.13)
by Lemma 3.2,
. £262%(t) (N + 1Y

by elementary estimates.
Therefore

i% M1, 5)| < 2620c(t)M(L, 5) (4.14)

which yields

M(t,5)< | W) exp (2525 f drc(r)

). QED. (4.15)

We are now in a condition to define the unitary group ﬁz(t, s) and to derive its
main properties.

Proposition 4.1. Let V and ¢ satisfy the assumptions of Lemma 4.1. Then there is a
unique group of operators U (t,s) satisfying the following properties :

1) For any 0eR, U,(t,s) is bounded and strongly continuous with respect to t,s
in #° and satisfies

10t S)ll5. s Sexp (‘52%6110

) (4.16)

2) U 2(L,5) is unitary in .
3) For any 6eR, U ,(t,5) is strongly differentiable from #°*? to #° and

i% U,(t,s)=(H,(t)— H,)U,(t,s). (4.17)

In particular it is strongly differentiable from Z(N) to H#.

Proof.
1) For any positive integers u and v,

U, (t,5)—U, [(t,5)= —zjde2 (67 (A1) = AU, (7,5) (4.18)



60 J. Ginibre and G. Velo

as a Riemann integral in norm in %(6, 6) for any ¢. It follows then from part 2) of
Lemma 4.1 and from (4.9) that

“ ﬁZ,u(ta S) - 02,v(t’ S)Hé+ 2+4¢,8

[ de() ) SUp [ A,(1) = A3 2105 (4.19)

TES[

élt—sleXp<v

where y is a constant related to d. Therefore by part 3) of Lemma 4.1, for any 6€lR,
U2 Jt,s) converges in norm in #(5+2+¢,d) as v—oo uniformly for £,5 in a
compact set. The limit U(t,s) is clearly norm continuous in (5 +2 +¢, ) with
respect to t,s. The previous convergence and the uniform bound (4.9) imply strong
convergence of U, (f,s) to U,(t,s) in %(8, 6) uniformly for t,5 in a compact set. As
a consequence U ,(t,5) satisfies the bound (4.16) and is strongly continuous in
t, s. This proves part 1),

2) Part 2) follows from the unitarity of U2 Jt.s) in o and from the strong
convergence of U2 Jt,s) and of U2 (68)*=U, v(s t).

3) In order to prove part 3) we write

t
U, (t.)P=¥—i[dtA (U, (t,5)¥ (4.20)

as a strong Riemann integral in #° for Ye#°* 2. By part 3) of Lemma 4.1 and by

the previous convergence we can take the limit v—oo in (4.20). The result then

follows from part 1) of Lemma 4.1 and from part 1) of this proposition. Q.E.D.
We finally study the limit of ﬁz(t, s} as t and/or s tend to 4- 0.

Proposition 4.2. Let V and ¢ satisfy the assumptions of Lemma 4.1 and let the
function c(-) defined by (4.7) be integrable at + co (resp. at — oo, resp. in R). Then

1) For all IR, ﬁz(t, s) is bounded in #° uniformly int, s fort,s in R* (resp.
R, resp. R).

2) Assume in addition that the function ||g(t)||,, defined by (4.6) is integrable at
+ o0 (resp. — 0, resp. in IR). Then U,(t,s) has norm limits in #B(5+2,9) and
therefore strong limits in %(5,9) for all 5e R when t and/or s tend to + oo (resp. — oo,
resp. + o0 ).

Proof. Part 1) follows from (4.16). In order to prove part 2) we write
(O,(t, )= U,(t,s)} ¥ =—i jth(r (T, 5)¥ (4.21)

as a strong Riemann integral in #° for Ye#°" 2 Then by (4.4), (4.5), and (4.16),
I Uz(la $)— ﬁz(t,, Mo+2,5

<[J rtig(on., +retonex;

' )l (4.22)

where y is a constant related to ¢. Part 2) follows immediately. Q.E.D.

In the case where the relevant limits exist, as described in the previous
proposition, we define the wave operators and the S matrix for the quantum
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fluctuations by

Q,. = s-lim U,(0,5), (4.23)
S,= s-lim U,(z,5). (4.24)
t— + o

In particular, if ¢(-) and {g(-)||, are integrable in R, the quantum fluctuation
system is asymptotically complete. The integrability condition holds for dispersive
solutions in the sense of Sect. 2 and for suitable potentials.

5. The hi—0 Limit

In this section we prove the main result of this paper, namely the strong
convergence of W(t,t,;8,) to U,(t,t,;d,) uniformly in ¢ and ¢, for fixed &, [see
(1.51)]. In Sect. 1, , was the initial condition at time ¢, common to the Eqs. (1.37)
and (1.38). However it is clear from (1.55) that the definition of W(t, ty . dgy) does not
imply any relation between t, and d, and does not contain any reference to the
role of ¢, as initial time. We shall therefore consider Wit,s; d,) as defined by (1.55),
for any ¢ and s belonging to R, in the Fock space associated with the &,’s. From
now on, we shall replace the notation d, by the simpler one a. In particular we
shall freely use the results of Sects. 3 and 4, already written with this notation. The
same remarks apply to U,(t, ;)

The basic tool of the proof is the Duhamel formula between W(t,s;a) and
Uz(t,s;a) as in [6]. However two complications arise. 1) For the potentials we
want to consider, the derivative in the Duhamel formula is too singular and we
must regularize it by the use of the operators P,. This leads to strong
convergence for finite times, stated in Proposition 5.1. 2) Uniformity in time is not
apparent at this stage. In order to make it explicit we need to differentiate a second
time. This leaves us with two integrals on time variables. One is a simple integral
similar to the one encountered in the usual existence proof of the wave operators
in linear scattering and is controlled by the space decay of the wave function and
the dispersive properties of the free evolution. The second one is a double integral
over two time variables. One integral is controlled by the dispersive properties of
the free evolution and the other one by the time decay of the classical solution. The
main result is stated in Theorem 5.1 at the end of this section, and most of the
latter is devoted to its proof.

Before starting the proof we introduce some more notation. We denote by
-1l and J||-|]|, the norm of bounded operators in the one- and two-particle
spaces #, and s, respectively. Let f; and f, be operators in #, and %,
respectively. We define the second quantized operators I';(f;) and I',(f,) by

I(f)= @1 1<Z<Nf1(i), (5.1)
r=9 X h. 52)
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For instance we shall consider V as the operator in J#, defined by
(Mp) (x4, x,)=V(x, —x,)w(x,, x,). Then H,=I,(V). If A is an operator in H#
commuting with N we shall use the notation I',(A) for I',{A4,) where A4, is the
restriction of 4 to #,. Let b be the function.

bx)=(1 +x2)/ (5.3)

with > 1. We denote by b, the operator of multiplication by b in 5, and by b, the
operator in #, defined by

(b)) (x4, X5) = by — X)) (x4, x,) . (5.4)

We define B, =T(b,) and B,=1T,(b,). We shall write explicitly the x dependence
coming from ¢ in g(t: x). k(t;x,y) and Ur; x,y) defined by (3.19)~3.21). The
space variables will be omitted when confusion does not arise. In addition we shall
use the notation g(¢) and k(t) for the operators in # defined respectively as the
multiplication by ¢(¢) and as the integral operator with kernel k(¢). For brevity, in
all this section we shall omit the dependence on a of the various operators under
study, the subscripts v and « in o, ¢,, ¢, R, and P, and, most of the time, the
variable s.

We now begin the proof of (1.51). In all this section we suppose that V and ¢
satisfy the following conditions:

VelPr+LP* with 2=Zp,=<p, <0,
. VﬁeLMax(pl,n/z)_‘_Ln/Z’ (55)
peB(R H' nL%2) with 1/p,+2/q,=1, (5.6)

and that ¢ satisfies the Eq. (2.9). We shall write V=V, +V, with VielL?, i=1,2.
These assumptions are slightly stronger than those of Proposition 3.1 and will not
be repeated in the intermediate lemmas. We take a fixed Ye Q(NB,) and define

V. () =W(t, )P
{‘Pz(t) =U,(t,5) ¥, (5.7)

where the s dependence is omitted, as said above, in the L.H.S. of (5.7). We start
estimating the difference

1P,(6)— P,(0)) > =2Re P, (1— W(t,5)* U, (1, 5) ¥
=2(?,(1—P)¥)—2ReC ¥, (1),(1— P) P,(1))

—2Re<‘P fdri PW(r s))*U T s)'P> = i (5.8)

where
Jo=X¥P,(1-P)¥>, (5.9)
J,=—=2Re¥ (), 1—P)¥,(1)), (5.10)

J, =2Im§ At ¥, (v), [H,(z), P1¥ (1)), (5.11)
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J3::2Imidt(?’l(f),hl’/2ﬁ3(‘c)P'l’2(‘E)>, (5.12)

J,=2Im f de(¥ (), hH () PP (7)) . (5.13)

In writing (5.8) we have used Proposition 3.1 and part 3) of Proposition 4.1. We
want to prove that the J;s tend to zero when #—0 uniformly in ¢t and s. We
consider them successively. For definiteness, we assume s<t. By (3.37), J, tends to
zero when v, k—>o0; J, does not depend on ¢, s. We next consider J,.

Lemma 5.1. J, tends to zero as v,x—co uniformly for t,s in a compact set. If in
addition c( - ) (defined by (4.7)) is integrable at + oo (resp. — oo, resp. inIR ), then the
limit is uniform with respect to t in R* (resp. R™, resp. R).

Proof. We write
y1=2] 2] (- P)U,(5) ). (5.14)

The last norm in the R.H.S. of (5.14) is a decreasing function of v, x and tends to
zero when v, k— o0 for fixed ¢,s. It is continuous in ¢, s for £, seR and, under the
integrability condition on c¢(-) for t,selRu{+ o0} (resp. RuU{— o0}, resp. R
w{+oo}u{—o}) by Proposition4.2. The result then follows from Dint’s
theorem. Q.E.D.

We now turn to J,.

Lemma 5.2. J, satisfies the estimate
t
TS 21 %] fdr{2v™ o} Il c(r) + L9 (x), e, ]l

+4AML (0} [N+ D P, (5.15)

where o, is the particle number cut-off function, o, its derivative, ¢(-) is defined by
(4.7) and M,(1) by

M, () = [dxdy|fdx o(x — x') (k(z; x, y) ~ k(t; X', y)|*. (5.16)
Proof. We write

T <20 % §de||[H ,(x), P]¥ (1) . (5.17)
Now
[H,(v), P]=[H,(x), 6] R +06[H,(x), R] (5.18)

and
[ ,(2). 61 =[L(x)+ L*(v), 0]
=(0(N+2)—06(N)) L(t) +(a(N — 2) — o(N)) L*(7).
Using the estimate
lloN £2)—a(NII=2v" o} ],
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Lemma 3.2 [see especially (3.27) and (3.28)] and the fact that R, N, and U,
commute, we obtain easily
I[H (), 6 1R Y (1)
<2070} @) | (N + 1) P,(0)] (5.19)
We consider next [H ,(7), R]. Obviously
ILG()+ K(x), R1¥,(x)|
=g + k(@) ¢ JL INF, (D] - (5.20)
Furthermore
MNCk(T), 0, Ml S20k(7) (L—0,)llus=2M , (1), (5.21)

where | - ||ys denotes the Hilbert-Schmidt norm in s, and M,(r) is defined by
(5.16).
On the other hand one obtains easily

ILL()+ L¥(2), R1¥,(0)]
S22 (L= R)L*(@) Vol I(N+ 1) P,
by an argument similar to the proof of Lemma 3.2,
L Z2ML(D N+ 1) P L)) (5.22)
Inserting the estimates (5.19)~(5.22) into (5.17) and (5.18) yields (5.15). Q.E.D.
We next estimate {||[g(7), ¢, 1lll; and M () in the following lemma.

Lemma 5.3.

1lg(D), 2, Ml = @Iz, [ dveW V=V, 1,5 (5.23)

i=1,2

M= Y {le@—exe@l, lo@l, 1V,

i=1,2
+lo@lz fdyeN V=V, l,.} (5.24)
where V, (x)=V{x—y) and 1/p,+2/q;=1, i=1,2.
Proof. In the proof we omit the variable 1. Let pes#,. Then
(9. 0, Jw(x)= [ dye(y)y(x — ») (g(x) —g(x — y))

from which (5.23) follows by Hélder’s inequality.
On the other hand

M, = [dx o(x—x) (@(x)V(x = y)— o(x) V(X' = y) 8Ol »
where | - ||, denotes the norm in L*(dxdy)

Sp—ox@) () V(x—y)pO),
+ fdy' o) @, (x)(V=V,) (x—=»aW)l, ,
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where ¢, (x)=¢(x—~y). From this (5.24) follows by Holder’s and Young’s
inequalities. Q.E.D.

Corollary 5.1,

1) J, tends to zero when v,ix—0 uniformly in t,s in a compact set.
2) If in addition || @(v)|l,,, and || @(z) —+(7)|,, belong to L*(R", dt) (resp. LA(R™,

dr), resp. L*(R, dv)) for i=1,2, and if ) de] (Dl 1) — 2 x (),
R* (resp. R™,resp.IR)
tends to zero when k— oo for i=1,2, then the limit J,—0 is uniform for t,selR*

(resp. R™, resp. R).

Proof. Convergence and uniformity for finite times follow from Lemmas 5.1 and
5.2 by a simple application of Lebesgue’s dominated convergence theorem.
Uniformity for ¢,selR is obvious after noticing that

s Y Vi, le@Il;. QED. (5.25)

i=1,2

We next turn to J, and J,. In a first step we write .

t
Ty S20 2P|  de| Ho(1) PY,(1)] (5.26)

J, <20 | [drl| H (1) PP (1), (5.27)

and we note that in (5.26) and (5.27) # appears only in the explicit factors #'/2 and %
while v and x occur in P. By part 2) of Lemma 3.3, the integrands in (5.26) and
(5.27) are continuous functions of 7. Therefore, in order to prove that
| ¥, (t)— ¥ ,(t)] tends to zero when #—0, we can proceed as follows. By Lemma 5.1
and Corollary 5.1, we can make J, and J, arbitrarily small by choosing v and «
large enough. We can then make J, and J, arbitrarily small by taking #
sufficiently small for fixed v and x. At the present stage, we can already prove the
strong convergence (1.51) at finite times.

Proposition 5.1. Let V satisfy (5.5), let ¢ satisfy (5.6) and the Eq. (2.9). Then the
following strong limit exists

s-Jim Wit s)=U,(t,5) (5.28)

uniformly for t,s in compact intervals.

Proof. The result follows from Lemma 5.1, Corollary 5.1, part 2) of Lemma 3.3 and
the preceding remarks. Q.E.D.

We are now left with the task of estimating the integrals in (5.26) and (5.27)
uniformly in ¢,s. We consider first J,. We define the function g,(t) by ‘

g:(0)=V2x|op(v) (5.29)
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Lemma 5.4. The following estimate holds :
H, (1) <4N?G, (7). (5.30)

Proof. In this proof we omit the t dependence. Now by (3.23)
HI=(A,+ AN S2AA%A,+ A,4%),

where A, and A% are given by (3.24). Let @ be a vector in # with finitely many
particles and smooth wave functions. Let X =(x,,...,xy). Then

(459) (X)=jdx Z o) V(x—x,)PX, x),

1<i<N

@3X)= ¥ Vln—x)p0x) PX\x), o3
1<iFjSN
so that
[A;@1 < fdX fdx Z [P, 12 N [ dylo)? Vix,—y)
by Schwarz’s inequality,
=X D, (N-1)2G D). (5.32)
Similarly
A0 S FAONIN = 1) T Vx=) ) 90X\l
=<¢,N(N+1)élé5>. (5.33)
Taking the sum of (5.32) and (5.33), we obtain (5.30). Q.E.D.
It follows from Lemma 5.4. that
|H () PY,(0)] S{P4(x). 4N?6?RG () RY (1)) "2
S4(P,(1).G (D P12, (5.34)
where
G1a(0)=Uo (0¥ Gy DU, (0), (5.35)
G () =11(9,x()) (5.36)
and
9:r(1)=0,9:(1)e,. (5.37)
In order to estimate J, we introduce
My(e, 7) = ¥(1), G0 (7)1, (538)

so that
M,(1,5)=( ¥, G, (1) ¥>112. (5.39)
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Then by (5.34)

fdf”ﬁs(r)wz(r)u §4vj"dfM3(r, 7)
<4y {f dtM(z, s) + jfdr j dv'|M 4(x, z/)|}, (5.40)

where M 3(7,7)=dM (7, 7")/d7v". The quantity M(z,s) is readily estimated by the
following obvious lemma [we recall that ¥YeQ(NB,)CQ(B,}]:

Lemma 5.5. M4(z, s) satisfies the estimate
M (,5) <<, By ) 12llg, (1) 120 g ()b 2]l (5.41)
We now estimate M 51, '), starting from the identity
2iM (1, )M 4(1, 7')
— (P&, (G 1), H, () — Hy1P,(2)) (5.42)
which follows from part 3) of Proposition 4.1.
Lemma 5.6. M 5(t,7') satisfies the estimate
IV 32, 7)) S W), (N + 1) P02 {llg, (22 0,0 (t— )9 (I,
+2[g,(0)"2 0, ot — TV s} - (5.43)

Proof. We estimate the contributions of the various terms of H,(v')—H, to the
R.H.S. of (5.42). The terms with G and K contribute

KP,(2), [G,x(x), (&) + K ()] P, ()|
=[CV,(), [ ([§42(0), §() + k()] P, (t))]
S2M (5, v) {Po(0), T (@) + k() g, g(0) @) + K(2) P o(e)> 12
by Schwarz’s inequality,
S2M (7, 7) W L(T), NP (7)) 12
Jllg, (1)1 20 ug(e — ) (g(2') + KT, (5.44)

by inspection, where §(r) =u,(t)*g(t)u,(r) and g, () and k(z) are defined similarly.
We next estimate the contribution of L*. That of L satisfies the same estimate.
Now:

(P (1), [G (1), LHT)] (1))
-Z< ), Y G r ™)+ F 1O )Wz(i,.)<r/>> : (5.45)

i<j

where < -, - >y denotes the N-particle contribution to the scalar product in #,

(7)== u(2) @ sto(t) T') (5.46)
[so that L*( (t)= jdxdyl ("5 x, y)a*(x)a*(y)], the subscripts i,j label the variables
that occur in l(r) and ¥,; )(r) denotes the wave function with variables different
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from x;, x;. The previous scalar product is estimated by

[o]= Z<lpz(fl)7 Z (glRi(T)+§1Rj(I)) Tz(T/)>1/2

N i<j N

-1 3 i) (), @ D)+ F 12 (D) %(i,-)(r/»zv}“

i<j

by Schwarz’s inequality in 5,
= L BN = D), Gia() VoD
N

P AT), Vot y— o (LT P, Gy g(0) LK) WD 2
<M (r, 7)1, (N +1) P, ()12
Ng1 (072 0y tto(t—TVR(T)| s (5.47)

by Schwarz’s inequality applied to the sum over N. Then (5.43) follows from (5.44),
(5.47) and the inequality ||-|]|; £ || |y Q.-E.D.

The task of estimating J, is now reduced to that of estimating the norms in the
R.H.S. of (5.41) and (5.43). Before doing this, we perform the same reduction on J,.
We first note that

H2<IN(N - 1)TL(V?). (5.48)
Therefore
|H,(0) PP, ()|
SCP,(0, 5NN =)o’ RU()* (V) U(t) RY (1) 2
<2120 W), TV (1) V(1) 112, (5.49)
where 172 z(1) is the operator in #, defined by
Vyr(0)=Uo(1)* RVIRU o(1)] , - (5.50)
In order to estimate J,, we introduce
M y(5,7) = (@), T(Vor(@) Vo ()12, (5.51)
so that
M (1, 8)= (W, V(1) P12 (5.52)

Then, by (5.49)

§drl|H, () P¥,(1)]
gzl/%}mm(n 7)

1 t T
<212y { [deM (x,5)+ [dr [ dr'|M (x, r’)|}, (5.53)

where M (t,7)=dM (1,7)/d7’. The quantity M (t,s) is readily estimated by the
following obvious lemma [we recall that ¥e Q(NB,)CQ(B,)]:
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Lemma 5.7, M ,(z, s) satisfies the estimate

M (z,5) <P, B, W PIIVRU o (1)by V2L, (5.54)
We now estimate M. 4(7, '), starting from the relation
2iM (=, )M 41, 7)

= (L), (Vs p(0) Hy (1) — Hol W,(0)) (5.55)

which follows from part 3) of Proposition 4.1.
Lemma 5.8. M (t, 7)) satisfies the estimate
IM (z,7)| S 2" IN P, ()]
: iSUPHIVyQ*uo(T—T’)Q(T’)Hh +2{lw(z, T’)Q*Hh}
y

FIPIIVRU o(x =) L¥(T) Poll, (5.56)

where w(t,t') is the operator in #, of multiplication by the function
w(t, T)=w(t, 7' ; X) defined by

{wz(r, )=V>xw,(1,7)? (5.57)

wy(r,7)? = [ dyle, up(t —TVk(x'; -, Y2

Proof. We estimate the contribution of the various terms of H,(t")—H, to the
R.H.S. of (5.54). The terms with G and K contribute

[P, [ (Va (@), G(@') + K], )

=[C¥,(1), L([Vax(), G(T) + K(2)]) P, (x'))
S2U2M (5, T) CP,(T), N(N — 1) ()12

MVRU o (z =) (G () + K ()l (5.58)
by Schwarz’s inequality. The contribution of G to the last norm is estimated by
MVRU,(r—1) Gl =2 Sup|l|V 0,10 (r =Yg (D)l (5.59)

y

where V, is the operator in #; of multiplication by the function V(x)=V(x~—y).
The contribution of K is estimated as follows. Let 0e #,. Then

[VRU o(r— ) K()0||
<2{fdx,dx, V(x, —x,)*?
'”dY2[Q*”o(T_ Vk(t)] (x5, ¥,) [9*19] (xpyZ)’Z}l/za
where ¢, denotes the operator g, acting on the variable 1,
L2 dxydx, Vix, —x,)% [dy,lo,., 00x, y)Pwi(r, 75 x,)?

by Schwarz’s inequality applied to the integration over y,, with w, defined by
(5.57). From this it follows that

IVRU,(t =) K(D)lll, Z2[[w(z, T)e,lll; - (3.60)
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We next consider the contribution of L* to the R.H.S. of (5.55). That of L
satisfies the same estimate.

<L) [T, (%R(r» LAY ,(7))
ZR(T))U if T ) 5UZ(z'j)(‘LJ)>N

ijk+

§;<5” (@), X (V@) ¥, f)>”2

: {,ZKIPZ(U)(T/) ij(T ),( (T ))Ulu(f)Tz(lj)(T/»N}l/z
+ Z< (T, Z 2R(T))ij Tz(fl)> 11/\,2

ijk*

: 1 > ) O, (V)i ) W, )>N}“2 (5.61)

ijk*

by Schwarz’s inequality in 4%,
--§M4(T,T’){H‘Pl[ [VRU{t—7)L*7) ¥,
[ZZN 2) 3 (idem)y }”2} (5.62)
ifk=+

by Schwarz’s inequality applied to the sum over N. The last square bracket is
estimated by

[- 12 =212CW,(), NI (0, w1, T)0,) ¥, (1)) /2
S22INEL @) lw(z, eyl - (63

Substituting (5.59) and (5.60) into (5.58), and (5.63) into (5.61) and (5.62), and
collecting the various terms, we obtain (5.56). Q.E.D.

In order to complete the estimates of J, and J,, we shall use as an essential
ingredient the dispersive properties of the free evolution. For any ¢ =2, we denote
by g the conjugate index defined by 1/g+ 1/g=1.

Lemma 5.9. ~
1) Let 2<q =< 00. Then for any pe L’
luo@)wll, = ity |yl (5.64)
2) Let 2£q< o0, 1/q+1/1=1/2. Then for any we D{x|""),
luoE)wll, S adtl ™"l x|l (5.65)

where a, is a constant depending only on | and n.

Proof. 1) The result follows by interpolation between the cases g=2 and g= oo
where it is a consequence of the integral representation

uy(t; x, y)=2mit) " "* exp[ — (x — y)?/2it]. (5.66)
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2) The identity
luo() | =17 (exp(—ix?/2)p)| (3.67)

(where & denotes the Fourier transform) and the Sobolev inequality

lpll, S all(— 4"y (5.68)
imply
lug(Mwll, Sal IxI"'y] . (5.69)

The general case follows by homogeneity. Q.E.D.

We shall need one more technical result, the proof of which is given in the
appendix.

Lemma 5.10. Write A, as
Hy=L*dx )R L*(dx,)=L*(dE)®L:dn), (5.70)

where &=(x, +X,)/2, §=X, — X,, and the subscript e in L2 means the restriction to
even functions. Let f and f' be operators in #, = L* leaving L? invariant, and let f,
and f be the operators in #, defined by f, =1, f, and f; =1, f; corresponding to
the decomposition (5.70). Then

I3RS = fl;pnlllf*rk*f’llh, (5.71)

where 1, is the operators in #, of convolution with the function
. x x
rdx)=fdle ’%(( + 5) Q(C - 5). (5.72)

We are now in a condition to estimate the various norms that appear in the
R.H.S. of (5.41), (5.43), (5.54), and (5.56). We recall that V and ¢ satisfy the
assumptions (5.5) and (5.6).

Lemma 5.11. Let [Zp,, l=n/p, [>2 and let

=1/p,—1/l for i=1,2. (5.73)
Then

lllg (1) 2 ,uo(T)b 1 M2l < [[9(0)] A7), (5.74)

IVRU,(2)b; 2], £27"2,(0), (5.75)
where

/11(’:):|T|""”azi:1’2 Vil el - (5.76)

Proof. (5.74) follows from (5.29), (5.3), and (5.65) by Holder’s and Young’s
inequalities. (5.75) follows from Lemma 5.10, from (5.4), (5.65) and the fact that

Sup [l = 7ol = el QE.D. (5.77)
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Lemma 5.12. Let = p, and define I, and q; by

=1-2/g;=1/p,—1JI, for i=12.
Then

g, (' @, (=) g (s S @)l (2,77,

Sup [V, 0.t (t =) g (Dl 2wz, ),

¥y

l91(2)"2 0, gz~ V(@) s < L)l (T, ),

lw(z, ©)e,llly = Iw(z, U)o = (e ),

IVRU ot =) L¥@) Yo | £27 12"z, 7),
where w(t, ') is defined by (5.57) and

T, )= ( . uVinplneuTi) Qnfr—1]) "

s

(.2, il o)),

i=1,

=

J. Ginibre and G. Velo

(5.78)

(5.79)
(5.80)

(5.81)
(5.82)
(5.83)

(5.84)

Proof. The estimates (5.79) and (5.80) follow from (5.29), (4.6) and (5.64) by Holder’s
and Young’s inequalitiecs. We now prove (5.81). By (5.29) and Holder’s and

Young’s inequalities again,

191(D)0, (= T)R(T) s
<le@l X 1Vil, (57,

=1,

where
7n )= dyllouo(t— k(s - y)IZ 32
and
1/s;+1/p,=1/2 for i=1,2.
By part 1) of Lemma 5.9,
1) S felrCale—h " fdylk(; -, I3
with 1/s+1/I=1/2. Now
{Jaylik(e's - Iz
={[ dylo(@, y)I* (o) =V F) (1)}
= igz (@)l 4, o)+ VF|I e

< 2 le@NZ Vi,

i=1,2

A

(5.85)

(5.86)

(5.87)

(5.88)

(5.89)

by Holder’s and Young’s inequalities. (5.81) then follows from (5.85)+5.89).
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We now turn to (5.82). The first inequality is obvious. From (5.57) and Holder’s
inequality, we obtain

W, Mo £ XAVl 1w, (7. 7,
where s, is defined by (5.87). Now

“ WI(L T/)“ Si é '))Sl(’C, T,) ’

where y, (1,7) is defined by (5.86) and we have used the convexity of the norm in
L*'%, The end of the proof is identical with that of (5.81).
Finally we consider (5.83). We first split the L.H.S. as follows

[VRUo(x—7)L*(t) ¥l < R IIVRU (e =)V,

VTP o) @ ()] (5.90)
where the last norm is taken in 5#,. By Lemma 5.10, we obtain
IIVRU o (z = )VIPIl,
= Slklp IHolrgo (=Dl
where v (resp. v;, i=1,2) is the operator of multiplication by V(resp. V., i=1,2) in
H,
LZ X IV, el Gale— ) VR (591)

j=1,2

IA

by part 1) of Lemma 5.9, by (5.77) and Holder’s and Young’s inequalities. On the
other hand

VY2 () @5 <272 o) Z IV, P (5.92)
The result now follows from (5.90), (5.91), and (5.92). Q.E.D.

Collecting the estimates contained in Lemmas 5.4-5.12 and using the fact that
lo(z)l| =] is actually independent of 7', we obtain

t
T, <812 P (ol {< W, B, ¥)'2 [ dr Inf (v)

+3 j dz } dt{W (), (N + 1) P,(x)»/? Infuz, r’)} , (5.93)
J =2 | P {( ¥,B, Pyl } dz Irllflll(‘t)

+ e [de 61N L)) + 1 VI Inf e, )} (5.94)

where A,(t) and (t,7') are defined by (5.76) and (5.84) and the Infimum is taken
over the values of [ allowed in Lemma 5.11 for 4, and in Lemma 5.12 for ;.
We can now state our main result. We concentrate on situations where we can
control the classical theory by the results of Sect. 2, the quantum theory by the
results of Sects. 3 and 4, and the limit 2—0 by the estimates of this section.
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Theorem 5.1. Let n=>3 and let Vsatisfy:

Ve LP'nL? with p, <n/2
for n=34,

Ve LPr 4 P2 599
{VEL"/Z P,22,n/4<p,<p,<n/2,

for nzS.
Let v and v satisfy the (compatible) conditions
12—1/n<1/r=1fr<1/2—1/2n
rl/m+1/2—1/2p,.

Let X, Z,(+) and Z(-) be defined by (2.1), (2.2), and (2.11). Then

1) The Eq. (2.9) has global solutions in Z,(IR) in the sense of Proposition 2.1, and
solutions dispersive in the past (i.e. in & (R)NX ,(R7)) or in the future (i.e.in Z (R)
NZ (R™)) in the sense of Proposition 2.2.

2) The quantum mechanical evolution operators U(t — s) defined by (3.14) form a
strongly continuous unitary group. The wave operators (3.48) exist.

3) Let ¢ be a solution of (2.9) in Z (R). Then the operators Wit,s) and ﬁz(t, s)
form strongly continuous umitary groups and satisfy Propositions 3.1 and 4.1
respectively. If in addition peZ,(R™) (resp. peZ,(R™), resp. peZ(R)), then
W(t, s) has strong limits when s tends to + oo (resp. — oo, resp. + o0 ) and U,(t,s) has
strong limits when t and/or s tend to + oo (resp. — oo, resp. + ).

4) Let ¢ be a solution of (2.9) in Z,R)NZ,(R™) (resp. X, (RINZ(R™), resp.
Zo(R)). Then for any O, for any Ye #,

s-lim Wi(t,s)¥ =U,(t,5)¥ (5.96)
uniformly in t,s for t,s 20 (resp. <0, resp. in R). Moreover, if peZ,(R¥), the wave
operators (3.48) converge in the following sense

s-lim C(,(0))* Q. C(y.-)explioy 0, + )] =€, (5.97)
where w, is defined by (3.40) and Q, , by (4.23).

5) Let ¢ be a solution of (2.9) in Z,(R) and assume that the quantum system is

asymptotically complete. Then W(t,s) has strong limits when t and/or s tend to + 0.
Furthermore

s=lim C(g,, . )*SClepy, - ) explio,(+ o0, —c0)]=S$,, (5.98)
where
S= ts-1i+m U)*U(t—s)U,(s) (5.99)

is the quantum mechanical S-matrix and S, is defined by (4.24).

Proof. Parts 1)-3) are restatements of results from Sects. 2—4 in the special case at
hand. We turn to part 4). For definiteness we assume that pe 2, (R)nZ,(R7); the
other cases are similar. It is sufficient to prove (5.96) for ¥ in the dense set Q(NB,).
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From the definition (2.11) of Z,(IR*) and the conditions 1/¥' <1/2—1/2n and
P, <n, it follows that

o0

dto@)|2 <o, i=1,2. (5.100)
g &

In particular, by (5.25), ¢(z) is integrable in R*. By Lemma 5.1, this implies that J,
tends to zero when v, x— oo uniformly with respect to ,s in R*. By an argument
similar to the proof of Proposition 2.2, which cannot be given here, one can prove
the remaining assumptions of part2) of Corollary 5.1. Therefore also J, tends to
zero when v, k— co uniformly with respect to ¢, s in R*. Furthermore, by part 1) of
Proposition 4.2 and by (5.25), it follows from (5.100) that the factors
(L) N+ DP,(T))Y? and [NP,(r)| in (5.93) and (5.94) are bounded un-
iformly with respect to t'eR* for fixed e Q(NB,)CZ(N). In order to complete
the control of J; and J, we now pick &>0 sufficiently small so that
n—e>Max(p,,n/f,2) and substitute in (5.93) and (5.94) the inequalities

G0 RIS
At o(T) if |7|=1,
U, fr,7) if |r—7|=1

Inf 2(0) < {

Inf N<
Maln )= {um(r, ) i fe—t)z1
Then the integrals over 7 for fixed 7" in the R.H.S. of (5.93) and (5.94) are bounded
uniformly with respect to ¢, s, and v in R*. It then follows from the assumptions on
V (especially from the condition p, <n/2) and the definition of Z,(R™) that

[dvo@) 2, <o, i=1,2,
0

for both |=n+¢ and therefore that the remaining integrals over 7" are bounded
uniformly with respect to t,selR". This completes the proof of (5.95) with the
uniformity thereafter stated. Finally, the convergences (5.97) and (5.98) follow
immediately from the uniformity of (5.96) in ¢, s and from the existence of the wave
operators and of the S-matrix. Q.E.D.

For the class of potentials considered in Theorem 5.1, Propositions 2.1 and 2.2
provide us with a systematic method of constructing classical solutions satisfying
the assumptions of parts 3) and 4) of Theorem 5.1. In order to construct dispersive
solutions [i.e. solutions in Z,(R)] as needed in part 5), stronger conditions on the
potential are needed. Proposition 2.3 provides such a set of sufficient conditions,
which is compatible with (5.95) in dimension n=35. [One can take for instance
V(x)=C|x|"? with C>0 and 2<y<Min(4,n/2).] Under the assumptions of
Proposition 2.3, all classical solutions are dispersive and determined by ¢ _. If in
addition quantum mechanical asymptotic completeness holds, then part 5) of
Theorem 5.1 applies and (5.98) can be rewritten as

s-lim C(h~ 128 @ _y*SC(h™'2¢ _)expliw,(+ 00, — 0)]=S,, (5.101)

where S, is the classical S-matrix.
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Appendix

Proof of Lemma 5.10. Let w and y'esf,, let 0= f,p and 0'= fiy'. All these
functions are written as functions of variables (x,,x,) corresponding to the first
decomposition in (5.70). Let £=(x, +x,)/2 and n=x,—x,. We define partial
Fourier transforms as follows

{ti)(k, ny=[dée” " (& +n/2,¢— n/2)
W(E+1/2,E—n/2)=2n)"" | dke™P(k, n)

and similarly for ¢/, 0, and ¢'. Then

{frws REW'S =§dx1dx2dx/1dx/2§(x1, X,)o(x; —x17)
“0(x, — x5)0'(x}, x3) i
=Q2m)~ " jdkdk' jdédf'dﬂd}y' exp(ik'& — iké)é(k, n)
O(E—E+—n)/DeE—E —n—n) 0K, 7).

Let £— ¢ ={. For fixed k,n,#" and {, the integrations over (¢+¢&')/2 and k' are
trivial and yield

o, REw'> =@2m) " § dk § dndn 6k, nr (n~m)B (K, ),

where we have used the definition (5.72). Taking norms in L2(dy), we obtain,

Lo, REWD S@m) ™" fdklllf *rp Sl 19k, DI 9K, -l

from which (5.71) follows by Schwarz’s inequality. Q.E.D.
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