The Classical Limit of n-Vector Spin Models

Colin J. Thompson
Mathematics Department, University of Melbourne, Victoria, Australia
Howard Silver
Physics Department, University of Melbourne, Victoria, Australia

Received February 20, 1973

Abstract

It is proved that the free energy of a system of n-dimensional spins with Kac type potential is equal, in the infinite range zero strength limit, to the free energy of the corresponding Curie-Weiss system in which every spin interacts equally with every other spin.

1. Introduction

In 1966 Lebowitz and Penrose [1] proved that the free energy of a classical system of particles in v-dimensions with pair potential $v(\boldsymbol{r})$ of Kac type,

$$
\begin{equation*}
v(\boldsymbol{r})=q(\boldsymbol{r})+\gamma^{\nu} \varrho(\gamma \boldsymbol{r}) \tag{1.1}
\end{equation*}
$$

approaches the van der Waals free energy with Maxwell construction in the limit $\gamma \rightarrow 0+$ (after the thermodynamic limit) provided the short range repulsive (hard core) part of the potential $q(\boldsymbol{r})$ and the long range attractive part of the potential $\gamma^{\nu} \varrho(\gamma \boldsymbol{r})$ satisfied certain conditions (stated in [1]).

It is not difficult, as suggested by Lebowitz and Penrose, to extend the analysis to Ising ferromagnets (or equivalently, attractive lattice gases) and show that the classical Curie-Weiss theory of magnetism can be obtained from a $\gamma \rightarrow 0+$ limit [2].

Here we consider the n-vector model, first introduced by Stanley [3], composed of a set of N, n-dimensional spins

$$
\begin{equation*}
S_{i}=\left(S_{i 1}, S_{i 2}, \ldots, S_{i n}\right), \quad i=1,2, \ldots, N \tag{1.2}
\end{equation*}
$$

occupying the vertices of a v-dimensional lattice, with norm

$$
\begin{equation*}
\left\|\boldsymbol{S}_{i}\right\|=\left(\sum_{k=1}^{n} S_{i k}^{2}\right)^{1 / 2}=n^{1 / 2} \tag{1.3}
\end{equation*}
$$

and with interaction energy

$$
\begin{equation*}
E=-\sum_{1 \leqq i<j \leqq N} \varrho_{i j} \boldsymbol{S}_{i} \cdot \boldsymbol{S}_{j}-\boldsymbol{H} \cdot \sum_{i=1}^{N} \boldsymbol{S}_{i}, \tag{1.4}
\end{equation*}
$$

where $\varrho_{i j}$ is the coupling constant between the i th and j th spins and \boldsymbol{H} is the external magnetic field.

The main interest in this class of models stems from the fact that as special cases of (1.4) one has the Ising model $(n=1)$, the planar classical Heisenberg model $(n=2)$, the classical Heisenberg model $(n=3)$ and the spherical model $(n \rightarrow \infty)[4,5]$.

Our concern here is with the $\gamma \rightarrow 0+$ limit (v and n fixed) of (1.4) for a potential of Kac type

$$
\begin{equation*}
\varrho_{i j}=\gamma^{v} \varrho\left(\gamma\left|\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right|\right), \tag{1.5}
\end{equation*}
$$

where \boldsymbol{r}_{i} is the position vector of the i th lattice site. We will assume throughout (in order to guarantee the existence of the thermodynamic limit) that

$$
\begin{equation*}
g(0, \gamma)=\gamma^{\nu} \sum_{l} \varrho(\gamma|\boldsymbol{l}|) \tag{1.6}
\end{equation*}
$$

where the sum extends over the infinite lattice, exists for all $\gamma>0$. In addition, we assume that $\varrho_{i j} \geqq 0$, that

$$
\begin{equation*}
g(0)=\lim _{\gamma \rightarrow 0+} g(0, \gamma)=\int \varrho(|\boldsymbol{r}|) d \boldsymbol{r} \tag{1.7}
\end{equation*}
$$

exists (as a Riemann integral) and that $\varrho(\dot{r})$ is everywhere bounded.
The normalized partition function is defined by

$$
\begin{equation*}
Q_{N}(\beta, \gamma)=\left[Z_{N}(0, \gamma)\right]^{-1} Z_{N}(\beta, \gamma) \tag{1.8}
\end{equation*}
$$

where $\beta=(k T)^{-1}$,
and

$$
\begin{equation*}
Z_{N}(\beta, \gamma)=\int_{\left\|\boldsymbol{S}_{\mathrm{t}}\right\|=\boldsymbol{n}^{1 / 2}} \exp (-\beta E) d \boldsymbol{S}_{1} \ldots d \boldsymbol{S}_{N} \tag{1.9}
\end{equation*}
$$

$$
\begin{equation*}
Z_{N}(0, \gamma)=\left[2 \pi^{n / 2} n^{(n-1) / 2} / \Gamma(n / 2)\right]^{N} \tag{1.10}
\end{equation*}
$$

The limiting free energy per $\operatorname{spin} \psi(\beta, \gamma)$ is defined by

$$
\begin{equation*}
-\beta \psi(\beta, \gamma)=\lim _{N \rightarrow \infty} N^{-1} \log Q_{N}(\beta, \gamma) \tag{1.11}
\end{equation*}
$$

and our aim here is to prove the following
Theorem. For a system of n-dimensional spins with interaction energy (1.4) and with free energy $\psi(\beta, \gamma)$ defined by (1.11)

$$
\begin{equation*}
\lim _{\gamma \rightarrow 0^{+}} \psi(\beta, \gamma)=n g(0) \eta^{2} / 2-\beta^{-1} \log \left[\frac{\Gamma(n / 2) I_{n / 2-1}\left(n \beta g(0) \eta+n^{1 / 2} \beta H\right)}{\left(n \beta g(0) \eta / 2+n^{1 / 2} \beta H / 2\right)^{n / 2-1}}\right] \tag{1.12}
\end{equation*}
$$

where $I_{\mu}(x)$ is the modified Bessel function of the first kind of order μ, η is the solution of

$$
\begin{equation*}
\eta=I_{n / 2}\left(n \beta g(0) \eta+n^{1 / 2} \beta H\right) / I_{n / 2-1}\left(n \beta g(0) \eta+n^{1 / 2} \beta H\right) \tag{1.13}
\end{equation*}
$$

which minimizes the right hand side of (1.12), and the potential $\varrho_{i j}(\geqq 0)$ (1.5) satisfies the conditions (1.6) and (1.7).

For the special case $n=1$, (1.12) reduces to the classical Curie-Weiss free energy [2] (since $I_{1 / 2}(x)=(\pi x / 2)^{-1 / 2} \sinh x$ and $\left.I_{-1 / 2}(x)=(\pi x / 2)^{-1 / 2} \cosh x\right)$. For $n>1$, Silver et al. [6] have shown that the limiting free energy per spin for a Curie-Weiss system of N, n-dimensional spins (1.2) and (1.3) with interaction energy

$$
\begin{equation*}
E^{\prime}=-\frac{g(0)}{N} \sum_{1 \leqq i<j \leqq N} \boldsymbol{S}_{i} \cdot \boldsymbol{S}_{j}-H \cdot \sum_{i=1}^{N} \boldsymbol{S}_{i} \tag{1.14}
\end{equation*}
$$

is given by (1.12) and (1.13).
A complete discussion of the thermodynamics and critical behavior of (1.12) (which is the same as for the ordinary, $n=1$, Curie-Weiss theory) can be found in [6].

To prove the theorem we obtain upper and lower bounds on the free energy $\psi(\beta, \gamma)(1.11)$ and show that the two bounds coalesce to give the stated result in the limit $\gamma \rightarrow 0^{+}$.

2. Upper Bound on the Free Energy

For simplicity we impose periodic (Born Von Karman) boundary conditions on the potential (1.5) so that

$$
\begin{equation*}
\sum_{j=1}^{N} \varrho_{i j}=g_{N}(0, \gamma) \tag{2.1}
\end{equation*}
$$

for all $i=1,2, \ldots, N$ [in the limit $N \rightarrow \infty, g_{N}(0, \gamma)$ approaches $\left.g(0, \gamma)(1.6)\right]$.
We write the interaction energy (1.4) as $\left(\varrho_{i i}=0\right)$

$$
\begin{align*}
E= & -1 / 2 \sum_{i, j=1}^{N} \varrho_{i j}\left(\boldsymbol{S}_{i}-m \hat{H}\right) \cdot\left(\boldsymbol{S}_{j}-m \hat{H}\right)-1 / 2 m \hat{H} \cdot \sum_{i, j=1}^{N} \varrho_{i j}\left(\boldsymbol{S}_{i}+\boldsymbol{S}_{j}\right) \\
& +m^{2} / 2 \sum_{i, j=1}^{N} \varrho_{i j}-\boldsymbol{H} \cdot \sum_{i=1}^{N} \boldsymbol{S}_{i} \tag{2.2}
\end{align*}
$$

where \hat{H} is the unit vector in the direction of \boldsymbol{H} and m will be fixed in a moment to give (1.12) as an upper bound on $\lim _{\gamma \rightarrow 0+} \psi(\beta, \gamma)$.

Using (2.1) and (2.2) the normalized partition function (1.8) can be written as

$$
\begin{align*}
Q_{N}(\beta, \gamma)= & {\left[Z_{N}^{C}(\beta, \gamma, m) / Z_{N}(0, \gamma)\right] } \\
& \cdot \int_{\left\|\boldsymbol{S}_{i}\right\|=n^{1 / 2}} \cdots \int_{i, j=1} \exp \left[\beta / 2 \sum_{i,}^{N} \varrho_{i j}\left(\boldsymbol{S}_{i}-m \hat{H}\right) \cdot\left(\boldsymbol{S}_{j}-m \hat{H}\right)\right] \\
\{\exp [- & \left.\left.\beta m^{2} N g_{N}(0, \gamma) / 2+\left(\beta m g_{N}(0, \gamma)+H\right) \hat{H} \cdot \sum_{i=1}^{N} \boldsymbol{S}_{i}\right] / Z_{N}^{C}(\beta, \gamma, m)\right\} \prod_{i=1}^{N} d \boldsymbol{S}_{i} \\
= & Q_{N}^{C}(\beta, \gamma, m)\left\langle\exp \left[\beta / 2 \sum_{i, j=1}^{N} \varrho_{i j}\left(S_{i}-m \hat{H}\right) \cdot\left(S_{j}-m \hat{H}\right)\right]\right\rangle_{C} \tag{2.3}
\end{align*}
$$

where $H=\|\boldsymbol{H}\|$,

$$
\begin{equation*}
Q_{N}^{\mathrm{C}}(\beta, \gamma, m)=Z_{N}^{\mathrm{C}}(\beta, \gamma, m) / Z_{N}(0, \gamma) \tag{2.4}
\end{equation*}
$$

$$
\begin{align*}
Z_{N}^{C}(\beta, \gamma, m)= & \int_{\left\|\boldsymbol{S}_{i}\right\|=n^{1 / 2}} \cdots \int_{i=1} \\
& \exp \left[-\beta m^{2} N g_{N}(0, \gamma) / 2+\left(\beta m g_{N}(0, \gamma)+\beta H\right) \hat{H} \cdot \sum_{i=1}^{N} \boldsymbol{S}_{i} \prod_{i=1}^{N} d \boldsymbol{S}_{i}\right. \\
= & \exp \left[-\beta m^{2} N g_{N}(0, \gamma) / 2\right] \tag{2.5}\\
& \cdot\left(\int_{\|\boldsymbol{S}\|=n^{1 / 2}} \exp \left[\left(\beta m g_{N}(0, \gamma)+H\right) \hat{H} \cdot \boldsymbol{S}\right] d S\right)^{N}
\end{align*}
$$

and $\langle\cdots\rangle_{C}$ denotes an average with respect to the distribution function

$$
\begin{gather*}
P_{N}^{C}\left(\boldsymbol{S}_{1}, \ldots, \boldsymbol{S}_{N}\right)=\prod_{i=1}^{N} p^{C}\left(\boldsymbol{S}_{\boldsymbol{i}}\right), \tag{2.6}\\
p^{C}(\boldsymbol{S})=\exp \left[\left(\beta m g_{N}(0, \gamma)+\beta H\right) \hat{H} \cdot \boldsymbol{S}\right] / \int_{\|\boldsymbol{S}\|=n^{1 / 2}} \tag{2.7}\\
\cdot \exp \left[\left(\beta m g_{N}(0, \gamma)+\beta H\right) \hat{H} \cdot \boldsymbol{S}\right] d \boldsymbol{S} .
\end{gather*}
$$

Making use of Jensen's inequality $(\langle\exp X\rangle \geqq \exp \langle X\rangle)$ and the fact that the spins occur independently in $P_{N}^{C}(2.6),(2.3)$ gives
$Q_{N}(\beta, \gamma) \geqq Q_{N}^{C}(\beta, \gamma, m) \exp \left[\beta / 2 \sum_{i, j=1}^{N} \varrho_{i j}\left(\left\langle\boldsymbol{S}_{i}\right\rangle_{C}-m \hat{H}\right) \cdot\left(\left\langle\boldsymbol{S}_{j}\right\rangle_{C}-m \hat{H}\right)\right]$.
To obtain the desired lower bound on $Q_{N}(\beta, \gamma)$ we choose, since $\left\langle\boldsymbol{S}_{i}\right\rangle_{C}=\langle\boldsymbol{S}\rangle_{C}$ is independent of i, and from (2.7) and (2.12) below, in the direction of \boldsymbol{H},
so that

$$
\begin{equation*}
m \hat{H}=\langle\boldsymbol{S}\rangle_{C} \tag{2.9}
\end{equation*}
$$

$$
\begin{equation*}
Q_{N}(\beta, \gamma) \geqq Q_{N}^{C}(\beta, \gamma, m) \tag{2.10}
\end{equation*}
$$

To evaluate $\langle\boldsymbol{S}\rangle_{C}$ and $Q_{N}^{C}(\beta, \gamma, m)$ we need the following results:
$\int_{\|\boldsymbol{S}\|=n^{1 / 2}} \exp (\boldsymbol{\alpha} \cdot \boldsymbol{S}) d \boldsymbol{S}=2 \pi^{n / 2} n^{(n-1) / 2} I_{n / 2-1}\left(n^{1 / 2}\|\boldsymbol{\alpha}\|\right) /\left(n^{1 / 2}\|\boldsymbol{\alpha}\| / 2\right)^{n / 2^{-1}}$
and
$\int_{\|\boldsymbol{S}\|=n^{1 / 2}} \boldsymbol{S} \exp (\boldsymbol{\alpha} \cdot \boldsymbol{S}) d \boldsymbol{S}=2 \pi^{n / 2} n^{(n-1) / 2}\left[I_{n / 2}\left(n^{1 / 2}\|\boldsymbol{\alpha}\|\right) /\left(n^{1 / 2}\|\boldsymbol{\alpha}\| / 2\right)^{n / 2^{-1}}\right] n^{1 / 2} \hat{\boldsymbol{\alpha}}$
(2.11) can be found in Appendix A Silver et al. [6] and (2.12) follows from (2.11) and the fact that $\frac{d}{d x}\left(x^{-\alpha} I_{\alpha}(x)\right)=x^{-\alpha} I_{\alpha+1}(x)$.

From the definitions of $Q_{N}^{C}(\beta, \gamma, m)$ (2.4) and $\langle\boldsymbol{S}\rangle_{C}$ (2.9) we obtain from (2.11) and (2.12) respectively,

$$
\begin{align*}
Q_{N}^{C}(\beta, \gamma, m)= & {[\Gamma(n / 2)]^{N} \exp \left[-\beta m^{2} N g_{N}(0, \gamma) / 2\right] } \\
& {\left[\frac{I_{n / 2-1}\left(n^{1 / 2}\left(\beta m g_{N}(0, \gamma)+\beta H\right)\right)}{\left(1 / 2 n^{1 / 2}\left(\beta m g_{N}(0, \gamma)+\beta H\right)\right)^{n / 2-1}}\right]^{N} } \tag{2.13}
\end{align*}
$$

and

$$
\begin{align*}
m & =\langle\boldsymbol{S}\rangle_{C} \cdot \hat{H} \\
& =\left(\int_{\| \boldsymbol{S U}=n^{1 / 2}} \boldsymbol{S} p^{C}(\boldsymbol{S}) d \boldsymbol{S}\right) \cdot \hat{H} \tag{2.14}\\
& =\frac{I_{n / 2}\left(n^{1 / 2}\left(\beta m g_{N}(0, \gamma)+\beta H\right)\right)}{I_{n / 2-1}\left(n ^ { 1 / 2 } \left(\beta m g_{N}(0, \gamma)+\beta\right.\right.} \frac{n^{1 / 2}}{H))} .
\end{align*}
$$

Defining

$$
\begin{equation*}
\eta=m n^{-1 / 2} \tag{2.15}
\end{equation*}
$$

and allowing γ to approach zero after N approaches infinity, η becomes a solution of (1.13) and from (1.11), (2.10) and (2.13)

$$
\begin{align*}
\lim _{\gamma \rightarrow 0^{+}} \psi(\beta, \gamma) & =\lim _{\gamma \rightarrow 0^{+}} \lim _{N \rightarrow \infty}\left(-\beta^{-1} N^{-1} \log Q_{N}(\beta, \gamma)\right) \tag{2.16}\\
& \leqq \psi^{C}(\beta)
\end{align*}
$$

where $\psi^{c}(\beta)$ is the right hand side of (1.12).
This completes the derivation of the upper bound.

3. Lower Bound on the Free Energy

We begin by writting

$$
\begin{align*}
Q_{N}(\beta, \gamma) & =\left[Z_{N}(0, \gamma)\right]^{-1} \exp \left(-N n \gamma^{v} \varrho(0) \beta / 2\right) . \\
\cdot \int_{\left\|\boldsymbol{S}_{i}\right\|=n^{1 / 2}} & \exp \left[\beta / 2 \sum_{i, j=1}^{N} \gamma^{v} \varrho\left(\gamma\left|\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right|\right) \boldsymbol{S}_{i} \cdot \boldsymbol{S}_{j}+\beta \boldsymbol{H} \cdot \sum_{i=1}^{N} \boldsymbol{S}_{i}\right] \prod_{i=1}^{N} d \boldsymbol{S}_{i} \tag{3.1}
\end{align*}
$$

where a diagonal term $(i=j)$ has been added and subtracted from the quadratic term, with $\varrho(0)$ chosen (sufficiently large) to make $\sum_{i, j=1}^{N} \gamma^{v} \varrho\left(\gamma\left|\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right|\right) \boldsymbol{S}_{i} \cdot \boldsymbol{S}_{j}$ positive definite.

We can then use the following elementary generalization of a well known identity [7],

$$
\begin{align*}
\exp (\beta / 2 & \left.\sum_{i, j=1}^{N} \varrho_{i j} \boldsymbol{S}_{i} \cdot \boldsymbol{S}_{j}\right)=(2 \pi)^{-N n / 2}(\operatorname{Det} \varrho)^{-n / 2} \tag{3.2}\\
& \cdot \int_{-\infty}^{\infty} \cdots \int \exp \left(-1 / 2 \sum_{i, j=1}^{N}\left(\varrho^{-1}\right)_{i j} \boldsymbol{X}_{i} \cdot \boldsymbol{X}_{j}+\beta^{1 / 2} \sum_{i=1}^{N} \boldsymbol{S}_{i} \cdot \boldsymbol{X}_{i}\right) \prod_{i=1}^{N} d \boldsymbol{X}_{i}
\end{align*}
$$

which is valid for any positive definite symmetric matrix $\varrho=\left(\varrho_{i j}\right)$ and real n-dimensional vectors \boldsymbol{S}_{i}, to write

$$
\begin{align*}
Q_{N}(\beta, \gamma)= & {\left[Z_{N}(0, \gamma)\right]^{-1} \exp \left(-N n \gamma^{v} \varrho(0) \beta / 2\right)(2 \pi)^{-N n / 2}(\text { Det } \varrho)^{-n / 2} } \\
& \cdot \int_{\left\|\boldsymbol{S}_{i}\right\|=n^{1 / 2}} \cdots \prod_{i=1}^{N} d \boldsymbol{S}_{i} \int_{-\infty}^{\infty} \cdots \int \prod_{i=1}^{N} d \boldsymbol{X}_{i} \tag{3.3}\\
& \cdot \exp \left(-1 / 2 \sum_{i, j=1}^{N}\left(\varrho^{-1}\right)_{i j} \boldsymbol{X}_{i} \cdot \boldsymbol{X}_{j}+\sum_{i=1}^{N} \boldsymbol{S}_{i} \cdot\left(\beta^{1 / 2} \boldsymbol{X}_{i}+\beta \boldsymbol{H}\right)\right) .
\end{align*}
$$

Interchanging orders of integration we then obtain

$$
\begin{align*}
Q_{N}(\beta, \gamma)= & {[\Gamma(n / 2)]^{N} \exp \left(-N n \gamma^{v} \varrho(0) \beta / 2\right)(2 \pi)^{-N n / 2}(\operatorname{Det} \varrho)^{-n / 2} } \\
& \cdot \int_{-\infty}^{\infty} \int_{i=1}^{N} d \boldsymbol{X}_{i} \exp \left[-1 / 2 \sum_{i, j=1}^{N}\left(\varrho^{-1}\right)_{i j} \boldsymbol{X}_{i} \cdot \boldsymbol{X}_{j}+1 / 2 z \sum_{i=1}^{N}\left\|\boldsymbol{X}_{i}\right\|^{2}\right] \\
& \cdot \prod_{i=1}^{N} \frac{\exp \left(-\left\|\boldsymbol{X}_{i}\right\|^{2} / 2 z\right) / I_{n / 2-1}\left(n^{1 / 2}\left\|\beta^{1 / 2} \boldsymbol{X}_{i}+\beta \boldsymbol{H}\right\|\right)}{\left(n^{1 / 2}\left\|\beta^{1 / 2} \boldsymbol{X}_{i}+\beta \boldsymbol{H}\right\| / 2\right)^{n / 2-1}} \tag{3.4}
\end{align*}
$$

where use has been made of (2.11) and in anticipation of the next step we have added and subtracted a term $\left(\sum_{i=1}^{N}\left\|X_{i}\right\|^{2} / 2 z\right)$ in the exponent.

To obtain an upper bound for $Q_{N}(\beta, \gamma)$ we first increase the right hand side of (3.4) by replacing $\left\|\beta^{1 / 2} \boldsymbol{X}_{i}+\beta \boldsymbol{H}\right\|$ by the larger quantity $\beta^{1 / 2}\left\|\boldsymbol{X}_{i}\right\|+\beta H$ (this follows from the fact that $I_{\mu}(|\alpha|) /|\alpha|^{\mu}$ is an increasing function of $|\alpha|)$ and then maximize each term in the resulting product in (3.4) separately for each i. The maximum occurs for $\left\|\boldsymbol{X}_{i}\right\|=X$ a solution of

$$
\begin{equation*}
X / z=(\beta n)^{1 / 2} I_{n / 2}\left(n^{1 / 2}\left(\beta^{1 / 2} X+\beta H\right)\right) / I_{n / 2-1}\left(n^{1 / 2}\left(\beta^{1 / 2} X+\beta H\right)\right) \tag{3.5}
\end{equation*}
$$

The remaining integral in (3.4) can then be performed immediately to give

$$
\begin{align*}
& Q_{N}(\beta, \gamma) \leqq[\Gamma(n / 2)]^{N} \exp \left(-N n \gamma^{v} \varrho(0) \beta / 2\right)[\operatorname{Det}(I-\varrho / z)]^{-n / 2} \tag{3.6}\\
& \cdot\left[I_{n / 2-1}\left(n \beta z \bar{\eta}+n^{1 / 2} \beta H\right) \exp \left(-\bar{\eta}^{2} \beta n z / 2\right) /\left(n \beta z \bar{\eta} / 2+n^{1 / 2} \beta H / 2\right)^{n / 2-1}\right]
\end{align*}
$$

where $\bar{\eta}$ is defined by

$$
\begin{align*}
\bar{\eta} & =X z^{-1}(\beta n)^{-1 / 2} \\
& =I_{n / 2}\left(n \beta z \bar{\eta}+n^{1 / 2} \beta H\right) / I_{n / 2-1}\left(n \beta z \bar{\eta}+n^{1 / 2} \beta H\right) . \tag{3.7}
\end{align*}
$$

The manipulation leading to (3.6) obviously requires the matrix $I-\varrho / z$ to be positive definite, which will certainly be the case if z is greater than the maximum eigenvalue of ϱ. For $N=m^{\nu}$ spins located on the vertices of a regular v-dimensional hypercubic lattice the eigen-
values of ϱ are given by

$$
\begin{equation*}
\lambda(\boldsymbol{k})=\gamma^{\nu} \sum_{\boldsymbol{l}} \varrho(\gamma\|\boldsymbol{l}\|) \exp (2 \pi i \boldsymbol{k} \cdot \boldsymbol{l} / m) \tag{3.8}
\end{equation*}
$$

where the sum extends over all lattice vectors \boldsymbol{l}, including $\boldsymbol{l}=\mathbf{0}$. Since the $\boldsymbol{l}=\mathbf{0}$ term is immaterial for sufficiently small $\gamma(\varrho(0)$, of order unity, was chosen to make all $\lambda(\boldsymbol{k})>0$) and the maximum eigenvalue is $\lambda(\mathbf{0})$ (since we are assuming all $\varrho(X) \geqq 0$), the results (3.6) and (3.7) are valid as long as, from (2.1),

$$
\begin{equation*}
z>\gamma^{v} \sum_{\boldsymbol{l} \neq \boldsymbol{0}} \varrho(\gamma\|\boldsymbol{l}\|)=g_{N}(0, \gamma) \tag{3.9}
\end{equation*}
$$

Now since ϱ is a Toeplitz matrix, Szegö's theorem [8] gives

$$
\begin{align*}
f_{v}(z, \gamma) & =\lim _{N \rightarrow \infty} N^{-1} \log \operatorname{Det}(I-\varrho / z) \tag{3.10}\\
& =(2 \pi)^{-v} \int_{0}^{2 \pi} \cdots \int \log (1-g(\theta, \gamma) / z) d^{v} \theta
\end{align*}
$$

where, noting (3.8),

$$
\begin{equation*}
g(\boldsymbol{\theta}, \gamma)=\sum_{\boldsymbol{l}} \gamma^{\nu} \varrho(\gamma\|\boldsymbol{l}\|) e^{i \boldsymbol{l} \cdot \boldsymbol{\theta}} \tag{3.11}
\end{equation*}
$$

It follows then from (3.6) that
for all

$$
\begin{align*}
\psi(\beta, \gamma)= & -\lim _{N \rightarrow \infty}(N \beta)^{-1} \log Q_{N}(\beta, \gamma) \\
\geqq & n z \bar{\eta}^{2} / 2-\beta^{-1} \log \left[\frac{\Gamma(n / 2) I_{n / 2-1}\left(n \beta z \bar{\eta}+n^{1 / 2} \beta H\right)}{\left(n \beta z \bar{\eta} / 2+n^{1 / 2} \beta H / 2\right)^{n / 2-1}}\right] \tag{3.12}\\
& +n \gamma^{v} \varrho(0) / 2+n(2 \beta)^{-1} f_{v}(z, \gamma)
\end{align*}
$$

$$
\begin{equation*}
z>g(0, \gamma) \tag{3.13}
\end{equation*}
$$

Taking the limit $z \rightarrow g(0, \gamma)+$ in (3.7) and (3.12), $\bar{\eta}$ becomes η given by (1.13) in the limit $\gamma \rightarrow 0+$, the first two terms in (3.12) become $\psi^{C}(\beta)$ (2.16) [the right hand side of (1.12)] and since $\varrho(0)$ is of order unity

$$
\begin{equation*}
\lim _{\gamma \rightarrow 0+} \psi(\beta, \gamma) \geqq \psi^{C}(\beta)+\lim _{\gamma \rightarrow 0+} n(2 \beta)^{-1} f_{v}(g(0, \gamma), \gamma) \tag{3.14}
\end{equation*}
$$

In view of the upper bound (2.16), the theorem will be proved once we have shown that the second term in (3.14) is zero.

Consider first the case $v=1$. From (3.11) we have

$$
\begin{equation*}
g(\theta, \gamma)=2 \gamma \sum_{l=1}^{\infty} \varrho(\gamma l) \cos l \theta \tag{3.15}
\end{equation*}
$$

which can be approximated arbitrarily closely for small γ by

$$
\begin{equation*}
G(\theta, \gamma)=2 \int_{0}^{\infty} \varrho(X) \cos (\theta X / \gamma) d X \tag{3.16}
\end{equation*}
$$

Since we are assuming that $\varrho(X)$ is bounded for $0 \leqq X<\infty$ and that $\int_{0}^{\infty} \varrho(X) d X$ exists (as a Riemann integral), $G(\theta, \gamma)$ and hence $g(\theta, \gamma)$ approach zero as $\gamma \rightarrow 0+$ by the Riemann-Lebesgue lemma, for all $\varepsilon \leqq \theta<2 \pi$ and (arbitrarily small) $\varepsilon>0$. It follows almost immediately from (3.10) that $f_{1}(g(0, \gamma), \gamma)$ also approaches zero as $\gamma \rightarrow 0+$.

The case of arbitrary v is a straightforward generalization of the above argument.

References

1. Lebowitz, J. L., Penrose, O. : J. Math. Phys. 7, 98 (1966)
2. Thompson, C.J.: Mathematical statistical mechanics, Appendix C. Macmillan N.Y. 1972.
3. Stanley, H. E. : Phys. Rev. Lett. 20, 589 (1968)
4. Stanley, H. E. : Phys. Rev. 176, 718 (1968)
5. Kac, M., Thompson, C. J. : Physica Norvegica 5, 163 (1971)
6. Silver, H., Frankel, N. E., Ninham, B. W.: J. Math. Phys. 13, 468 (1972)
7. Cramer, H. : Mathematical methods in statistics, p. 118. Princeton University Press 1951.
8. Grenander, U., Szegö, G. : Toeplitz forms and their applications. Berkeley, California: University of California Press 1958.

C. J. Thompson
University of Melbourne
Department of Mathematics
Parkville, Victoria 3052, Australia

