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Abstract

We consider a quantum affine algebra realized in two-dimensional non-linear

sigma models with target space three-dimensional squashed sphere. Its affine gen-

erators are explicitly constructed and the Poisson brackets are computed. The

defining relations of quantum affine algebra in the sense of the Drinfeld first realiza-

tion are satisfied at classical level. The relation to the Drinfeld second realization

is also discussed including higher conserved charges. Finally we comment on a

semiclassical limit of quantum affine algebra at quantum level.
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1 Introduction

Integrable quantum field theories are wonderful laboratories to develop non-perturbative

methods such as strong/weak-coupling dualities. Some examples are principal chiral mod-

els and O(N)-invariant non-linear sigma models, and these are integrable at both classical

and quantum mechanical level [1,2]. The integrability is closely related to the symmetric

coset structure of target space [3].

For symmetric coset target spaces, a general prescription to construct an infinite num-

ber of classical conserved charges is well known [2–4] and the charges obtained along it

form the Yangian algebra [5, 6], mathematically formulated by Drinfeld [7]. Then the

quantum integrability can be argued by checking whether the conservation laws of the

charges are anomalous or not [8,9]. When the system is quantum mechanically integrable,

the Bethe ansatz technique works well as in principal chiral models [10].

The integrability plays an important role in the recent study of AdS/CFT [11] (For a

comprehensive review see [12]). In particular, the classical integrability of sigma model

on the string theory side is discussed in [13] and it is inherited from the behind structure

of AdS/CFT, the parent integrable spin chain. It would be a nice direction to seek for

a generalization of AdS/CFT preserving the sigma model integrability. Within a class of

symmetric spaces including the supersymmetric extension, it has been done quite generally

in [14]. Hence the next is to consider non-symmetric cosets as a generalization.

There are some integrable deformations of AdS/CFT, one of which is the well-known

β-deformation [15–18]. However, we are interested in another class of integrable deforma-

tions concerning warped AdS spaces and squashed spheres in three dimensions, which are

represented by non-symmetric cosets. Since warped AdS spaces are obtained via double

Wick rotations from squashed spheres, we are confined to squashed spheres here. The

main subject in this paper is to gain more insight into the classical integrable structure

of two-dimensional non-linear sigma models with squashed spheres as target space1.

Although the squashed sigma models are well known as an integrable model of the

trigonometric class, it has been shown that a Yangian symmetry Y (sl(2)) is realized even

after the squashing in a series of works [19–21] (For a short summary see [22]). This result

may sound curious. However, in fact, there exist two descriptions to describe the classical

1 The sigma models are often referred here to as “squashed sigma models” as an abbreviation.
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dynamics, i) the trigonometric description and ii) the rational description. That is, it is

possible to construct two types of Lax pair, both of which lead to the identical classical

equations of motion. The two descriptions are related to each other via a non-local map.

Furthermore, a finite-dimensional quantum group symmetry Uq(sl(2)) [7,23] is realized at

classical level in terms of non-local currents corresponding to the broken generators due

to the squashing of target space. This is nothing but a classical origin of quantum group

symmetry [7,23]. The explicit relation between the algebraic deformation parameter q of

the quantum group Uq(sl(2)) and the geometric deformation parameter of squashed three

sphere is also given by [21].

In this paper, as a generalization of the previous result, it is shown that the quantum

group symmetry Uq(sl(2)) is enhanced to the quantum affine algebra Uq(ŝl(2)) at classical

level. An infinite number of classical conserved charges are derived by expanding the

monodromy matrix constructed with the Lax pair in the trigonometric description [24].

The infinite tower structure of the charges with the Poisson bracket turns out to be

a classical analogue of quantum affine algebra Uq(ŝl(2)) [7]. Firstly, we show that the

Poisson brackets of the level 0,±1 charges satisfy the defining relations of the quantum

affine algebra Uq(ŝl(2)) in the sense of the Drinfeld first realization. Secondly, we argue

that including all of the higher charges recast the tower structure into the Drinfeld second

realization.

This paper is organized as follows. In section 2 we introduce the classical action of

squashed sigma models and the monodromy matrix in the trigonometric description. In

section 3 an infinite set of conserved (non-local) charges are derived by expanding the

monodromy matrix. In section 4, by evaluating the classical Poisson brackets, we show

that they actually coincide with the defining relations of quantum affine algebra Uq(ŝl(2))

in the sense of the Drinfeld first realization. Then we argue the relation between higher

conserved charges and the Drinfeld second realization at classical level. In section 5 we

comment on a semiclassical limit of quantum affine algebra realized at quantum level.

Section 6 is devoted to conclusion and discussion. In Appendix A we give a proof of the

classical q-Serre relations, which are a part of the defining relations in the Drinfeld first

realization and impose constraints on the higher conserved charges.
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2 Squashed sigma model and monodromy matrix

We consider two-dimensional non-linear sigma models with target space squashed sphere

in three dimensions. The classical action is given by

S[J ] =

∫∫
dtdx

[
Tr (JµJ

µ)− 2C Tr
(
T 3Jµ

)
Tr
(
T 3Jµ

)]
,

Jµ ≡ g−1∂µg , g ∈ SU(2) . (2.1)

The coordinates and metric of base space are xµ = (t, x) and ηµν = diag(−1,+1) . Suppose

that the value of C ∈ R is restricted to C > −1 so that the sign of kinetic term is not

flipped. The SU(2) Lie algebra generators T a (a = 1, 2, 3) satisfy

[T a, T b] = εabcT
c , Tr(T aT b) = −1

2
δab , (2.2)

where εabc is the totally anti-symmetric tensor.

This system has the SU(2)L × U(1)R symmetry. The non-zero value of C breaks the

original SU(2)L × SU(2)R symmetry of round S3 to SU(2)L × U(1)R . As a matter of

course, the SU(2)L × SU(2)R symmetry recovers when C = 0 .

Note that the Virasoro and periodic boundary conditions are not imposed here, though

we have some applications in string theory in our mind. Instead of them, we impose the

boundary condition that the group variable g(x) approaches a constant element rapidly

as it goes to spatial infinity like

g(x) → g±∞ : const. (x→ ±∞) . (2.3)

That is, Jµ(x) vanishes rapidly as x→ ±∞ .

The classical equations of motion are obtained in the usual manner as

∂µJµ − 2CTr(T 3∂µJµ)T
3 − 2C Tr(T 3Jµ)[J

µ, T 3] = 0 . (2.4)

It is possible to construct two types of Lax pair which lead to the identical equations of

motion (2.4) and these are equivalent through a non-local map [21]. That is, there are

two equivalent ways in describing the classical dynamics, 1) the rational description based

on SU(2)L and 2) the trigonometric description based on U(1)R .

We work below in the trigonometric description, where the Lax pair is given by [24]

LR
t (x;λ) =

3∑

a=1

[
wa(λ+ α)Sa − wa(λ− α)S̄a

]
T a ,
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LR
x (x;λ) =

3∑

a=1

[
wa(λ+ α)Sa + wa(λ− α)S̄a

]
T a . (2.5)

Here λ ∈ C is a spectral parameter and wa(λ) is defined as

w1(λ) = w2(λ) ≡
1

sinh λ
, w3(λ) ≡ cothλ . (2.6)

Then Sa and S̄a are related to Ja
µ ≡ −2Tr(T aJµ) like

J3
t = (w1(2α) + w3(2α))(S

3 + S̄3) ,

J3
x = (w1(2α) + w3(2α))(S

3 − S̄3) ,

J1,2
t =

√
2w1(2α)(w1(2α) + w3(2α)) (S

1,2 + S̄1,2) ,

J1,2
x =

√
2w1(2α)(w1(2α) + w3(2α)) (S

1,2 − S̄1,2) ,

and the parameter α is written in terms of the squashing parameter C as

coshα ≡ 1√
1 + C

, sinhα ≡ i
√
C√

1 + C
.

Note that α is pure imaginary for C > 0 and real for C < 0 . When C = 0 , α = 0 .

The commutator

[∂t + LR
t (x;λ), ∂x + LR

x (x;λ)] = 0

leads to the equations of motion in (2.4) as well as the Maurer-Cartan equation

dJ + J ∧ J = 0 .

Then the monodromy matrix UR(λ) is defined as

UR(λ) ≡ P exp

[
−
∫ ∞

−∞

dxLR
x (x;λ)

]
. (2.7)

It is straightforward to show that this is a conserved quantity,

d

dt
UR(λ) = 0 .

It would be helpful later to use the following form of LR
x (x;λ) ,

LR
x (x;λ) =

sinhα

sinh(λ− α) sinh(λ+ α)

[
T3

(
sinhλ coshλ

coshα
J3
t (x)− sinhαJ3

x(x)

)

+ T+
(
coshα sinhλJ+

t (x)− sinhα cosh λJ+
x (x)

)
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+T−
(
coshα sinh λJ−

t (x)− sinhα coshλJ−
x (x)

)]
,

where we have introduced the following notations,

T± ≡ 1√
2
(T 1 ± iT 2) = T∓ .

An infinite number of conserved charges are obtained by expanding the monodromy matrix

UR(λ) with respect to λ around an expansion point. The expression of charges depends

on expansion points.

3 Expanding monodromy matrix

Let us expand the monodromy matrix UR(λ) with the complex parameter z = e−λ.

Depending on the regions of the complex plane, we obtain the following two expansions

i) UR(λ) = eū0 exp

[
∞∑

n=1

znūn

]
for |z| < 1 (or Re(λ) > 0) (3.1)

ii) UR(λ) = eu0 exp

[
∞∑

n=1

z−nun

]
for |z| > 1 (or Re(λ) < 0) (3.2)

Corresponding the expanding coefficients ū0, ūn and u0, un (n ≥ 1), we would define the

conserved charges Q̄R,a
(n) and QR,a

(n) respectively, where superscript a runs ±, 3 and denotes

the triplet generators of sl(2) . An infinite number of conserved non-local charges are

obtained systematically at classical level. These charges are nothing but the generators

of quantum affine algebra Uq(ŝl(2)) as we will discuss later.

3.1 Expansion i)

Let us consider the expansion i). Then the spatial component of the Lax pair is expanded

around z = 0 like

LR
x (x;λ) = i

√
CT3J

3
t (x)

+z

[
T+

(
2i
√
C

1 + C
J+
t (x) +

2C

1 + C
J+
x (x)

)

+T−

(
2i
√
C

1 + C
J−
t (x) +

2C

1 + C
J−
x (x)

)]
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+z2T3

(
2i
√
C(1− C)

1 + C
J3
t (x) +

4C

1 + C
J3
x(x)

)

+z3

[
T+

(
2i
√
C(1− 3C)

(1 + C)2
J+
t (x)−

2i
√
C(3− C)

(1 + C)2
J+
x (x)

)

+ T−

(
2i
√
C(1− 3C)

(1 + C)2
J−
t (x)−

2i
√
C(3− C)

(1 + C)2
J−
x (x)

)]
+O(z4) .

The expanded monodromy matrix is

UR(λ) = P exp

[
−
∫ ∞

−∞

dxLR
x (x;λ)

]

= eū0

[
1 + zū1 + z2

(
ū2 +

1

2
(ū1)

2

)

+z3
(
ū3 +

1

2
(ū2ū1 + ū1ū2) +

1

6
(ū1)

3

)
+O(z4)

]
,

where ūi (i = 0, 1, 2, 3, . . .) are

ū0 = iγT3Q̄
R,3
(0) , ū1 = −2i

γ

(
T−e

−γQ̄R,3
(0)

/2
QR,−

(1) + T+e
γQ̄R,3

(0)
/2
Q̃R,+

(1)

)
,

ū2 =
2i

γ2
T3Q̄

R,3
(2) , ū3 =

2i

γ3

(
T−e

−γQ̄R,3
(0)

/2
QR,−

(3) + T+e
γQ̄R,3

(0)
/2
Q̃R,+

(3)

)
,

and a new parameter γ is defined in terms of C as

γ ≡
√
C

1 + C
. (3.3)

The conserved charges obtained up to the fourth order of z are summarized below:

Q̄R,3
(0) = −

∫ ∞

−∞

dx jR,3
t (x) ,

QR,−
(1) =

∫ ∞

−∞

dx jR,−
t (x) , Q̃R,+

(1) =

∫ ∞

−∞

dx j̃R,+
t (x) ,

Q̄R,3
(2) =

∫ ∞

−∞

dx

∫ ∞

−∞

dy ǫ(x− y)jR,−
t (x)j̃R,+

t (y) + 2i

∫ ∞

−∞

dxjR,3
x (x) +

1− C√
C

Q̄R,3
(0) ,

QR,−
(3) =

1

2

∫ ∞

−∞

dx

∫ ∞

−∞

dy

∫ ∞

−∞

dz ǫ(x− y)ǫ(x− z)j̃R,+
t (x)jR,−

t (y)jR,−
t (z)

−
∫ ∞

−∞

dx

∫ ∞

−∞

dy ǫ(x− y)jR,−
t (x)

(
1− C√

C
jR,3
t − 2ijR,3

x

)
(y)

+2i
1 + C√
C

∫ ∞

−∞

dx jR,−
x (x)− 1

6
(QR,−

(1) )
2Q̃R,+

(1) − 1− C2

C
QR,−

(1) ,

Q̃R,+
(3) =

1

2

∫ ∞

−∞

dx

∫ ∞

−∞

dy

∫ ∞

−∞

dz ǫ(x− y)ǫ(x− z)jR,−
t (x)j̃R,+

t (y)j̃R,+
t (z)
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+

∫ ∞

−∞

dx

∫ ∞

−∞

dy ǫ(x− y)j̃R,+
t (x)

(
1− C√

C
jR,3
t − 2ijR,3

x

)
(y)

+2i
1 + C√
C

∫ ∞

−∞

dx j̃R,+
x (x)− 1

6
(Q̃R,+

(1) )
2QR,−

(1) − 1− C2

C
Q̃R,+

(1) ,

... (3.4)

The subscript (n) of Q(n), which we call level, denotes the order of z and also measures

the non-locality of the charges simultaneously. We have introduced the signature function

ǫ(x− y) ≡ θ(x− y)− θ(y − x) , where θ(x− y) is a step function.

Note that all of the charges in (3.4) are written in terms of non-local currents,2

jR,3
µ (x) ≡ (1 + C)J3

µ(x) (local) ,

jR,±
µ (x) ≡ eγχ

[
J±
µ ± i

√
CǫµνJ

±,ν
]
(x) , (3.5)

j̃R,±
µ (x) ≡ e−γχ

[
J±
µ ∓ i

√
CǫµνJ

±,ν
]
(x) .

χ(x) ≡ 1

2

∫ ∞

−∞

dy ǫ(x− y)jR,3
t (y) (non-local) .

This point is highly non-trivial because the Lax pair is not written in terms of the non-local

currents in (3.5) but the left-invariant current J = g−1dg . Then a direct computation

shows that all of the currents in (3.5) are conserved under the equations of motion in

(2.4) and the corresponding conserved charges can be constructed. In fact, in the previous

work [21], we have already found out the first three currents jR,3
µ and jR,±

µ and have shown

that the corresponding charges generate a quantum group algebra Uq(sl(2)) . This is a

non-local realization of the broken SU(2)R generators according to the squashing of the

target space geometry.

The remaining question is what is the role of new ingredients j̃R,±
µ . As we will discuss

later, the corresponding charges enhance Uq(sl(2)) to a classical analogue of quantum

affine algebra Uq(ŝl(2)) . That is, j̃
R,±
µ are related to its affine generators.

Finally we should notice that the conserved charges,

QR,+
(1) ≡

∫ ∞

−∞

dx jR,+
t , Q̃R,−

(1) ≡
∫ ∞

−∞

dx j̃R,−
t

are missed in the list (3.4). This observation suggests that the expansion i) is not enough

to consider the underlying symmetry of the system, although a single point expansion of

2 The appearance of non-local currents is suggested also from the T-duality argument [25].
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the monodromy matrix is enough in the case of Yangians. Indeed, the remaining charges

appear in the expansion ii) , as shown in the next subsection.

3.2 Expansion ii)

Next we will consider the expansion ii) . The spatial component of the Lax pair is ex-

panded in terms of z′ ≡ 1/z as

LR
x (x;λ) = −i

√
CT3J

3
t (x)

+z′

[
T+

(
2C

1 + C
J+
x (x)−

2i
√
C

1 + C
J+
t (x)

)

+T−

(
2C

1 + C
J−
x (x)−

2i
√
C

1 + C
J−
t (x)

)]

+z′2T3

(
−2i

√
C(1− C)

1 + C
J3
t (x) +

4C

1 + C
J3
x(x)

)

+z′3

[
T+

(
−2i

√
C(1− 3C)

(1 + C)2
J+
t (x)−

2i
√
C(3− C)

(1 + C)2
J+
x (x)

)

+T−

(
−2i

√
C(1− 3C)

(1 + C)2
J−
t (x)−

2i
√
C(3− C)

(1 + C)2
J−
x (x)

)]
+O(z′4) .

Then the expanded monodromy matrix is

UR(λ) = P exp

[
−
∫ ∞

−∞

dxLR
x (x;λ)

]

= eu0

[
1 + z′u1 + z′2

(
u2 +

1

2
(u1)

2

)

+z′3
(
u3 +

1

2
(u2u1 + u1u2) +

1

6
(u1)

3

)
+O(z′4)

]
,

where ui (i = 0, 1, 2, 3, . . .) are

u0 = iγT3Q
R,3
(0) , u1 =

2i

γ

(
T+e

γQR,3
(0)

/2
QR,+

(1) + T−e
−γQR,3

(0)
/2
Q̃R,−

(1)

)
,

u2 = − 2i

γ2
T3Q

R,3
(2) , u3 = − 2i

γ3

(
T+e

γQR,3
(0)

/2
QR,+

(3) + T−e
−γQR,3

(0)
/2
Q̃R,−

(3)

)
, · · · .

The conserved charges obtained up to the fourth order of z′ are listed below,

QR,3
(0) =

∫ ∞

−∞

dx jR,3
t (x) = −Q̄R,3

(0) ,
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QR,+
(1) =

∫ ∞

−∞

dx jR,+
t (x) , Q̃R,−

(1) =

∫ ∞

−∞

dx j̃R,−
t (x) ,

QR,3
(2) =

∫ ∞

−∞

dx

∫ ∞

−∞

dy ǫ(x− y)jR,+
t (x)j̃R,−

t (y)

−2i

∫ ∞

−∞

dx jR,3
x (x)− 1− C√

C
QR,3

(0) ,

QR,+
(3) =

1

2

∫ ∞

−∞

dx

∫ ∞

−∞

dy

∫ ∞

−∞

dz ǫ(x− y)ǫ(x− z)j̃R,−
t (x)jR,+

t (y)jR,+
t (z)

−
∫ ∞

−∞

dx

∫ ∞

−∞

dy ǫ(x− y)jR,+
t (x)

(
1− C√

C
jR,3
t + 2ijR,3

x

)
(y)

−2i
1 + C√

C

∫ ∞

−∞

dx jR,+
x (x)− 1

6
(QR,+

(1) )2Q̃R,−
(1) − 1− C2

C
QR,+

(1) ,

Q̃R,−
(3) =

1

2

∫ ∞

−∞

dx

∫ ∞

−∞

dy

∫ ∞

−∞

dz ǫ(x− y)ǫ(x− z)jR,+
t (x)j̃R,−

t (y)j̃R,−
t (z)

+

∫ ∞

−∞

dx

∫ ∞

−∞

dy ǫ(x− y)j̃R,−
t (x)

(
1− C√

C
jR,3
t + 2ijR,3

x

)
(y)

−2i
1 + C√

C

∫ ∞

−∞

dx j̃R,−
x (x)− 1

6
(Q̃R,−

(1) )2QR,+
(1) − 1− C2

C
Q̃R,−

(1) ,

... (3.6)

Note that all of the charges are again written in terms of the non-local currents in (3.5) .

As mentioned in the previous subsection, QR,+
(1) and Q̃R,−

(1) are surely contained as the first

two in the list (3.6). The next task is to clarify the algebraic structure that the conserved

charges form.

3.3 Poisson brackets of non-local charges

It is a turn to compute the Poisson brackets of the non-local conserved charges. The

starting point is the Poisson brackets that the left-invariant one-form J = g−1dg satisfy,

{
J±
t (x), J

∓
t (y)

}
P
= ±i(1 + C)J3

t (x)δ(x− y) ,
{
J±
t (x), J

3
t (y)

}
P
= ∓ 1

1 + C
iJ±

t (x)δ(x− y) ,
{
J±
t (x), J

∓
x (y)

}
P
= ±iJ3

x(x)δ(x− y) + ∂xδ(x− y) ,
{
J±
t (x), J

3
x(y)

}
P
= ∓iJ±

x (x)δ(x− y) , (3.7)
{
J3
t (x), J

±
x (y)

}
P
= ±i 1

1 + C
J±
x (x)δ(x− y) ,

{
J3
t (x), J

3
x(y)

}
P
=

1

1 + C
∂xδ(x− y) .
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The relations in (3.7) lead to the Poisson brackets of the non-local currents in (3.5),

{
jR,±
t (x), jR,∓

t (y)
}
P
= ±ie2γχjR,3

t (x)δ(x− y) ,

{
jR,±
t (x), jR,±

t (y)
}
P
= ±i

√
C

1 + C
ǫ(x− y)jR,±

t (x)jR,±
t (y) ,

{
jR,±
t (x), jR,3

t (y)
}
P
= ∓ijR,±

t (x)δ(x− y) ,
{
j̃R,±
t (x), j̃R,∓

t (y)
}
P
= ±ie−2γχjR,3

t (x)δ(x− y) ,

{
j̃R,±
t (x), j̃R,±

t (y)
}
P
= ∓i

√
C

1 + C
ǫ(x− y)j̃R,±

t (x)j̃R,±
t (y) ,

{
j̃R,±
t (x), jR,3

t (y)
}
P
= ∓ĩjR,±

t (x)δ(x− y) ,
{
jR,±
t (x), j̃R,±

t (y)
}
P
= 0 ,

{
jR,±
t (x), j̃R,∓

t (y)
}
P
= ±i1 − C

1 + C
jR,3
t (x)δ(x− y)− 2

√
C

1 + C
jR,3
x (x)δ(x− y)

∓i
√
C

1 + C
ǫ(x− y)jR±

t (x)j̃R,∓
t (y)± 2i

√
C∂xδ(x− y) ,

{
jR,±
t (x), jR,3

x (y)
}
P
= ∓ijR,±

x (x)δ(x− y) ,
{
j̃R,±
t (x), jR,3

x (y)
}
P
= ∓ĩjR,±

x (x)δ(x− y) ,

{
jR,±
t (x), jR,±

x (y)
}
P
= ±i

√
C

1 + C
ǫ(x− y)jR,±

t (x)jR,±
x (y) ,

{
j̃R,±
t (x), j̃R,±

x (y)
}
P
= ∓i

√
C

1 + C
ǫ(x− y)j̃R,±

t (x)j̃R,±
x (y) .

Integrating this current algebra leads to the following charge algebra,

{
QR,±

(1) , Q
R,∓
(1)

}
P
= ±ie

γQR,3
(0) − e

−γQR,3
(0)

2γ
,

{
QR,±

(1) , Q
R,±
(1)

}
P
= 0 ,

{
QR,±

(1) , Q
R,3
(0)

}
P
= ∓iQR,±

(1) ,

{
Q̃R,±

(1) , Q̃
R,∓
(1)

}
P
= ±ie

γQR,3
(0) − e

−γQR,3
(0)

2γ
,

{
Q̃R,±

(1) , Q̃
R,±
(1)

}
P
= 0 , (3.8)

{
Q̃R,±

(1) , Q
R,3
(0)

}
P
= ∓iQ̃R,±

(1) ,
{
QR,±

(1) , Q̃
R,±
(1)

}
P
= 0 ,

{
QR,+

(1) , Q̃
R,−
(1)

}
P
= −iγQR,3

(2) ,
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{
QR,−

(1) , Q̃
R,+
(1)

}
P
= iγQ̄R,3

(2) ,

{
QR,3

(2) , Q
R,+
(1)

}
P
= iγ

[
QR,+

(3) +
2

3
Q̃R,−

(1) (Q
R,+
(1) )2

]
,

{
QR,3

(2) , Q̃
R,−
(1)

}
P
= −iγ

[
Q̃R,−

(3) +
2

3
QR,+

(1) (Q̃R,−
(1) )

2

]
,

{
Q̄R,3

(2) , Q
R,−
(1)

}
P
= −iγ

[
QR,−

(3) +
2

3
Q̃R,+

(1) (QR,−
(1) )

2

]
,

{
Q̄R,3

(2) , Q̃
R,+
(1)

}
P
= iγ

[
Q̃R,+

(3) +
2

3
QR,−

(1) (Q̃
R,+
(1) )2

]
,

{
QR,+

(3) , Q
R,+
(1)

}
P
=
iγ

3
QR,3

(2) (Q
R,+
(1) )

2 ,

{
Q̃R,−

(3) , Q̃
R,−
(1)

}
P
=
iγ

3
QR,3

(2) (Q̃
R,−
(1) )

2 ,
{
QR,−

(3) , Q
R,−
(1)

}
P
= −iγ

3
Q̄R,3

(2) (Q
R,−
(1) )

2 ,
{
Q̃R,+

(3) , Q̃
R,+
(1)

}
P
= −iγ

3
Q̄R,3

(2) (Q̃
R,+
(1) )

2 ,

...

where we have used the boundary condition (2.3) when integrating the first and the fourth

brackets. Note that higher-level charges can be basically generated by taking the Poisson

bracket withQR,± and Q̃R,± , repeatedly, up to lower-level charges. These Poisson brackets

enable us to argue the tower structure that the conserved charges form, as depicted in Fig.

1. In fact, this tower can be reinterpreted as the Drinfeld second realization of quantum

affine algebra Uq(ŝl(2)) , as we will discuss in the next section.

3.4 Yangian limit

Since both the non-local currents jR,±
µ (x) and j̃R,∓

µ (x) in (3.5) reduce to the local current

J±
µ (x) in C → 0 limit, it is worth showing how the SU(2)R Yangian charges obtained

in [19] are reproduced in this limit.

Interestingly, we have found that the rescaled differences of the corresponding charges

recover the (+,−)-components of the SU(2)R Yangian generators at level 1 recover as

lim
C→0

1

2i
√
C

(
QR,+

(1) − Q̃R,+
(1)

)
=

∫
dx J+

x (x)−
i

2

∫∫
dxdy ǫ(x− y) J+

t (x)J
3
t (y) ,

lim
C→0

1

2i
√
C

(
Q̃R,−

(1) −QR,−
(1)

)
=

∫
dx J−

x (x) +
i

2

∫∫
dxdy ǫ(x− y) J−

t (x)J
3
t (y) . (3.9)
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Level   k 

0 

1 

2 

3 

-3 

-2 

-1 

Rules: 

Figure 1: The tower of conserved charges. The absolute value of the level in the vertical axis measures

the non-locality of the charges. The horizontal axis denotes eigenvalues of QR,3
(0) . Higher-level charges

can be constructed basically by taking the Poisson bracket according to the rules depicted in the figure,

up to lower-level conserved charges.

The 3-component of the level 1 Yangian generators is reproduced as the C → 0 limit of

the difference of QR,3
(2) and Q̄R,3

(2)

lim
C→0

i

4

(
QR,3

(2) − Q̄R,3
(2)

)
=

∫
dx J3

x(x) +
i

2

∫∫
dxdy ǫ(x− y) J+

t (x)J
−
t (y) . (3.10)

Higher-level generators of the SU(2)R Yangian are reproduced similarly.

In general, the level n generators are obtained as the C → 0 limit of the differences

QR,+
(2n−1)− Q̃

R,+
(2n−1) , Q̃

R,−
(2n−1)−Q

R,−
(2n−1) and Q

R,3
(2n)− Q̄

R,3
(2n) for n ≥ 1 . That is, half of the tower

structure in Fig. 1 results in the SU(2)R Yangian after taking the C → 0 limit.

4 The classical origin of quantum affine algebra

In this section we will make some interpretations of the Poisson bracket algebra from the

mathematical point of view. The first thing is that the Poisson brackets of the level 0,±1

charges in the previous section can be regarded as Drinfeld’s first realization of quantum

affine algebra [7]. Then we argue the role of the higher-level conserved charges in the

context of the Drinfeld second realization [7].
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4.1 Drinfeld’s first realization of quantum affine algebra

To see the relation to Drinfeld’s first realization [7], let us concentrate on the conserved

charges QR,3
(0) , Q

R,±
(1) and Q̃R,±

(1) , apart from the higher-level conserved charges Q(n) (n ≥ 2) .

The role of the higher-level charges will be the subject in the next subsection.

It is convenient to rewrite the charges QR,3
(0) , Q

R,±
(1) and Q̃R,±

(1) as follows:3

H1 ≡ −2QR,3
(0) , H0 ≡ 2QR,3

(0) ,

E1 ≡
(

γ
sinh(γ/2)

)1/2
QR,+

(1) , E0 ≡
(

γ
sinh(γ/2)

)1/2
Q̃R,−

(1) ,

F1 ≡
(

γ
sinh(γ/2)

)1/2
QR,−

(1) , F0 ≡
(

γ
sinh(γ/2)

)1/2
Q̃R,+

(1) .

The Poisson brackets of them are

i {Hi, Hj}P = 0 (i, j = 0, 1) ,

i {Hi, Ej}P = AijEj , i {Hi, Fj}P = −AijFj , (4.1)

i {Ei, Fj}P = δij
qHi − q−Hi

q − q−1
.

Here the generalized Cartan matrix Aij is given by

Aij = (αi, αj) =


 2 −2

−2 2


 with α1 =


 1

−1


 , α0 =


−1

1


 (4.2)

and a q-deformation parameter is defined as

q ≡ eγ/2 = exp

( √
C

2(1 + C)

)
. (4.3)

The brackets in (4.1) give a classical realization of the defining relations of quantum affine

algebra in the sense of the first realization by Drinfeld [7]. Its affine central charge k is

zero because

k ≡ H0 +H1 = 0 .

This corresponds to the evaluation representation of quantum affine algebra (see also [26]).

Note that the C → 0 limit is equivalent to q → 1 .

The q-Serre relations should also be checked. The classical analogue of the q-Serre

relations are deduced by introducing the classical q-Poisson bracket,

{
JA, JB

}
qP

≡
{
JA, JB

}
P
+
iγ

2
(βA, βB)J

BJA , (4.4)

3We follow the notation utilized in [26].
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where βA are the associated root vectors. Now JA and JB are c-number and commutative

and the ordering in the second term is irrelevant. This q-Poisson bracket in (4.4) is nothing

but a classical analogue of q-commutator and it is realized as a semiclassical limit (~ → 0)

of the q-commutator at quantum level, as we will see later.

With the q-Poisson bracket in (4.4), the classical q-Serre relations are shown as

{
Ei,
{
Ei,
{
Ei, Ej

}
qP

}
qP

}
qP

=
{
Fi,
{
Fi,
{
Fi, Fj

}
qP

}
qP

}
qP

= 0 for |i− j| = 1 .

For the detail computation, see Appendix A.

4.2 The relation to the second realization

Next we shall make an interpretation of the higher-level conserved charges in the context

of the Drinfeld second realization of quantum affine algebra [7].

Let us first introduce the following notation,

h0 ≡ −2QR,3
(0) , x+0 ≡

√
2QR,+

(1) , x−0 ≡
√
2QR,−

(1) ,

x+−1 ≡
√
2 eγQ

R,3
(0) Q̃R,+

(1) , x−1 ≡
√
2 eγQ̄

R,3
(0) Q̃R,−

(1) . (4.5)

Equivalently, the relations between
{
hk, x

±
k

}
k∈Z

and Hi, Ei, Fi (i = 0, 1) are written as

H1 = h0 , E1 =

(
γ/2

sinh(γ/2)

)1/2

x+0 , F1 =

(
γ/2

sinh(γ/2)

)1/2

x−0 ,

H0 = −h0 , E0 =

(
γ/2

sinh(γ/2)

)1/2

e−γh0/2 x−1 , F0 =

(
γ/2

sinh(γ/2)

)1/2

eγh0/2 x+−1 . (4.6)

This is the isomorphism from the first to the second realizations [7] (see also [26]).

With the definitions in (4.5) and the Poisson brackets in (3.8), one can show that the

following relations are satisfied,

{hk, hl}P = 0 ,
{
hk, x

±
l

}
P
= ∓2ix±k+l ,

{
x±k+1, x

±
l

}
P
± iγx±l x

±
k+1 =

{
x±k , x

±
l+1

}
P
∓ iγx±k x

±
l+1 ,

{
x+k , x

−
l

}
P
= − i

γ

(
ψ+
k+l − ψ−

k+l

)
,

∑

k∈Z

ψ±
k z

−k = e±γh0/2 exp

(
±γ

∞∑

k=1

h±kz
∓k

)
. (4.7)
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This is nothing but a classical analogue of Uq(ŝl(2)) in the sense of the second realization.

The root diagram of the conserved charges is depicted in Fig. 2.

The explicit expressions of higher charges can be computed from the above relations.

For example, h1 and h−1 are obtained from
{
x+0 , x

−
1

}
P
and

{
x+−1, x

−
0

}
P

respectively,

{
x+0 , x

−
1

}
P
= − i

γ

(
ψ+
1 − ψ−

1

)
= −ieh0γ/2h1 ,

{
x+−1, x

−
0

}
P
= − i

γ

(
ψ+
−1 − ψ−

−1

)
= −ie−h0γ/2h−1 ,

and hence they can be written in terms of QR,±
(1) and Q̃R,±

(1) ,

h1 = 2ie
γQR,3

(0)

{
QR,+

(1) , e
γQ̄R,3

(0) Q̃R,−
(1)

}

= 2i
{
QR,+

(1) , Q̃
R,−
(1)

}
P
− 2γQR,+

(1) Q̃
R,−
(1) = −2i

{
Q̃R,−

(1) , Q
R,+
(1)

}
qP
,

h−1 = 2ie
γQ̄R,3

(0)

{
e
γQR,3

(0) Q̃R,+
(1) , Q

R,−
(1)

}

= 2i
{
Q̃R,+

(1) , Q
R,−
(1)

}
P
+ 2γQ̃R,+

(1) Q
R,−
(1) = 2i

{
Q̃R,+

(1) , Q
R,−
(1)

}
qP
.

Then x±k (k = 1, 2, 3, . . .) are constructed as a sequence obtained by acting h±1 on x±0

repeatedly,

{
h1, x

±
k

}
P
= ∓2ix±k+1

=⇒ x±k =

(
± i

2

)k {
h1,
{
h1,
{
· · · ,

{
h1, x

±
0

}
P

}
P

}
P

}
P
,

{
h−1, x

±
−k

}
P
= ∓2ix±−k−1

=⇒ x±−k =

(
± i

2

)k {
h−1,

{
h−1,

{
· · · ,

{
h−1, x

±
0

}
P

}
P

}
P

}
P
.

Since x±0 , h1 and h−1 are written in terms of QR,3
(0) , Q

R,±
(1) and Q̃R,±

(1) , x±k are also written in

the same way. The Poisson brackets {A,B}P above may be replaced by q-Poisson brackets

{A,B}qP , because the inner product of the root vectors associated with
{
QR,±

(1) , Q̃
R,∓
(1)

}
qP

vanishes and there is no correction term in (4.4). In the end, all of hk are obtained from

x±k with the relations

{
x+k−1, x

−
1

}
P
=
ψ+
k − ψ−

k

iγ
= −ieγh0/2hk + · · · ,

{
x+−1, x

−
−k+1

}
P
=
ψ+
−k − ψ−

−k

iγ
= −ieγh0/2h−k + · · · .
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Figure 2: The tower structure of the conserved charges in the Drinfeld second realization. The three

circles denote the sl(2) root diagram and the two boxes are the associated affine generators. With the

affine generators, higher conserved charges are basically generated according to the composition laws of

vectors. First of all, h1 is constructed as h1 ∼ {x+
0 , x

−

1 }P . Then x+
1 is generated by h1 and x+

0 like

x+
1 ∼ {x+

0 , h1} . The next step is to generate h2 with x+
1 and x−

1 . After that x±

2 are obtained by acting

x±

0 to h2 , respectively. This step can be repeated recursively and the upper half of the tower is generated.

The lower half is also generated in the same way.

Here the part “. . . ” contains only products of the lower-level conserved charges. The

above argument proves the surjectivity of the map (4.6).

Let us here comment on the relation between the second realization of quantum affine

algebra and the higher-level conserved charges obtained by expanding the monodromy

matrix UR(λ) in (2.7). By construction, x±±k and h±k are written as a sequence of the

Poisson brackets among QR,±
(1) and Q̃R,±

(1) . Hence it is easy to notice that x±±k and h±k

are closely related to the higher-level conserved charges obtained by expanding the mon-

odromy matrix. For example, h1 and h−1 correspond to QR,3
(2) and Q̄R,3

(2) , respectively, up

to the lower-level conserved charges. Similarly, one can figure out the correspondence

between the charges in Fig. 1 and in Fig. 2, up to lower-level conserved charges.

Note that there is an ambiguity in the expression of the monodromy matrix in (2.7)

according to an ambiguity of the Lax pair due to gauge transformations. It may be possible

to figure out the exact correspondence without deviation by lower-level conserved charges.

However, it has not been done yet so far. As a peculiarity of Uq(ŝl(2)) , the width of the

root diagram shown in Fig. 2 is not so wide that such an exact correspondence may be

found out. It would be an interesting direction in the future study. It is also nice to

elucidate the relation to the RTT formalism, following [27].
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5 Comment on semiclassical limit

Although we have focused upon classical realizations of quantum affine algebra so far,

the next subject is to consider a semiclassical limit of quantum affine algebra realized at

quantum mechanical level. In principle, one can perform the canonical quantization by

replacing the classical Poisson bracket with the usual commutator like

i{ , }P → 1

~
[ , ] .

Then a quantum affine algebra seems to be realized at quantum level but it is not the

case. The conservation laws of non-local charges should be checked carefully, because their

definition contains the product of currents and hence some renormalizations are necessary

to define the charges at quantum level definitely. Namely, the conservation laws might be

broken due to the renormalization after all. In the case of O(N) non-linear sigma models

in two dimensions, the quantum conservation laws are carefully confirmed [1] (For generic

coset sigma models, see [8, 9]).

Eventually, the quantum conservation laws should be shown for definite argument by

following [8,9] in the present case. Then it is possible to discuss the quantum affine algebra

along the scenario as discussed in [28]. We do not, however, try to argue the conservation

laws in detail here and leave it as a future problem. Instead, simply supposing that

well-defined quantum charges Q̂’s exist, we discuss a semiclassical limit of quantum affine

algebra realized at quantum level.

Note that, for quantum integrability of squashed sigma model, we have another con-

firmation, which is that the Bethe ansatz has already been constructed by Wiegmann [29]

(For related works see [30,31]) and the exact solutions have been found out. As a result,

the quantum integrability has been confirmed indirectly by another argument.

For simplicity, we consider the first realization of quantum affine algebra here. Then

the quantum charges satisfy the defining relations of Uq(ŝl(2)) , which are the standard

form in mathematical literatures, like

[
Ĥi, Ĥj

]
= 0 (i, j = 0, 1) ,

[
Ĥi, Êj

]
= AijÊj ,

[
Ĥi, F̂j

]
= −Aij F̂j , (5.1)

[
Êi, F̂j

]
= δij

q̂Hi − q̂−Hi

q̂ − q̂−1
.
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The q-Serre relations are

[
Êi,
[
Êi,
[
Êi, Êj

]
q̂

]
q̂

]
q̂
=
[
F̂i,
[
F̂i,
[
F̂i, F̂j

]
q̂

]
q̂

]
q̂
= 0 for |i− j| = 1 (5.2)

and the q-commutator is defined as

[ĴA, ĴB]q̂ ≡ ĴAĴB − q̂(βA,βB)ĴBĴA . (5.3)

Here a deformation parameter q̂ at quantum level is related to the classical one q as

q̂ ≡ q~ = e~γ/2 . (5.4)

Note that q̂ depends on the Planck constant ~ . This is a difference of importance between

at classical and quantum levels.

Let us now consider a semiclassical limit ~ → 0 . The quantum charges are first

rescaled as

Êi → ~

(
γ

sinh(γ/2)

)1/2

Êi , F̂i → ~

(
γ

sinh(γ/2)

)1/2

F̂i , Ĥi →
~

2
Ĥi ,

and then the commutators should be replaced by the Poisson brackets,

[ , ] → i~ { , }P .

Noting that q̂ is expanded with respect to ~ as

q̂ = 1 +
~γ

2
+O(~2) ,

the semiclassical limit ~ → 0 is taken.

As a result, the classical defining relations in (4.1) are reproduced as a semiclassi-

cal limit of the quantum ones in (5.1) , as a matter of course. In addition, the clas-

sical q-Poisson bracket in (4.4) is reproduced as a semiclassical limit of the standard

q-commutator (5.3):

[ĴA, ĴB]q̂ = ĴAĴB − q̂(βA,βB)ĴBĴA

= [ĴA, ĴB]− (e~γ(βA,βB)/2 − 1)ĴBĴA

→ i~{JA, JB}P − ~γ

2
(βA, βB)J

BJA

= i~{JA, JB}qP
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6 Conclusion and Discussion

We have argued a quantum affine algebra realized in two-dimensional non-linear sigma

models with target space three-dimensional squashed spheres. We have explicitly con-

structed its affine generators and computed the Poisson brackets. The defining relations

of quantum affine algebra in the sense of the Drinfeld first realization are satisfied at

classical level. The relation to the second realization is also discussed including higher

conserved charges. The result here is consistently interpreted as a semiclassical limit of

quantum affine algebra realized at quantum level.

There are some potentially interesting directions in the future study. The first is

to figure out an affine extension of q-deformed Poincare symmetry in the null-warped

case [32] by following the argument discussed here. It is also nice to consider an extension

of the null-warped geometry to the higher-dimensional case, though the coset structure is

not reductive any more in contrast to the three-dimensional case [33]. A relative direction

is to consider the hybrid deformation consisting of the standard q-deformed SL(2) and the

q-deformed Poincare [34] (For its application to three-dimensional gravities see [35]). The

second is to look for some applications in the context of AdS/condensed matter physics

(CMP), where the warped AdS geometries appear as the gravity dual to the system in the

presence of magnetic field [36]. The anisotropy of the system is reflected as the squashing

of spacetime geometry in the gravity side. Finally, it is interesting to try to consider

quantum affine algebra in the context of Kerr/CFT correspondence [37] and the recently

proposed scenario, warped AdS3/dipole CFT2 [38, 39].
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Appendix

A Proof of q-Serre relations at classical level

We show here that Ei and Fi satisfy the classical analogue of q-Serre relations in (4.5).

Note that the q-Serre relations are rewritten with QR,±
(1) and Q̃R,±

(1) as

{
QR,±

(1) ,
{
QR,±

(1) ,
{
QR,±

(1) , Q̃
R,∓
(1)

}
qP

}
qP

}
qP

= 0 , (A.1)
{
Q̃R,∓

(1) ,
{
Q̃R,∓

(1) ,
{
Q̃R,∓

(1) , Q
R,±
(1)

}
qP

}
qP

}
qP

= 0 . (A.2)

The first bracket is evaluated as

{
QR,±

(1) , Q̃
R,∓
(1)

}
qP

=
{
QR,±

(1) , Q̃
R,∓
(1)

}
P
+
iγ

2
(α0, α1) Q̃

R,∓
(1) Q

R,±
(1)

=
{
QR,±

(1) , Q̃
R,∓
(1)

}
P
− iγQ̃R,∓

(1) Q
R,±
(1) .

Then one more bracket leads to

{
QR,±

(1) ,
{
QR,±

(1) , Q̃
R,∓
(1)

}
qP

}
qP

=
{
QR,±

(1) ,
{
QR,±

(1) , Q̃
R,∓
(1)

}
qP

}
P
+
iγ

2
(α0, α0 + α1)

{
QR,±

(1) , Q̃
R,∓
(1)

}
qP
QR,±

(1)

=
{
QR,±

(1) ,
{
QR,±

(1) , Q̃
R,∓
(1)

}
qP

}
P
.

With one more bracket, we obtain that

{
QR,±

(1) ,
{
QR,±

(1) ,
{
QR,±

(1) , Q̃
R,∓
(1)

}
qP

}
qP

}
qP

=
{
QR,±

(1) ,
{
QR,±

(1) ,
{
QR,±

(1) , Q̃
R,∓
(1)

}
qP

}
qP

}
P

+
iγ

2
(α0, 2α0 + α1)

{
QR,±

(1) ,
{
QR,±

(1) , Q̃
R,∓
(1)

}
qP

}
qP
QR,±

(1)
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=
{
QR,±

(1) ,
{
QR,±

(1) ,
{
QR,±

(1) , Q̃
R,∓
(1)

}
qP

}
qP

}
P
+ iγ

{
QR,±

(1) ,
{
QR,±

(1) , Q̃
R,∓
(1)

}
qP

}
qP
QR,±

(1) .

The fourth bracket is evaluated as

{
QR,±

(1) ,
{
QR,±

(1) ,
{
QR,±

(1) , Q̃
R,∓
(1)

}
qP

}
qP

}
qP

=
{
QR,±

(1) ,
{
QR,±

(1) ,
{
QR,±

(1) , Q̃
R,∓
(1)

}
qP

}
qP

}
P
+ iγ

{
QR,±

(1) ,
{
QR,±

(1) , Q̃
R,∓
(1)

}
qP

}
qP
QR,±

(1)

=
{
QR,±

(1) ,
{
QR,±

(1) ,
{
QR,±

(1) , Q̃
R,∓
(1)

}
qP

}
P

}
P
+ iγ

{
QR,±

(1) ,
{
QR,±

(1) , Q̃
R,∓
(1)

}
qP

}
P
QR,±

(1)

=
{
QR,±

(1) ,
{
QR,±

(1) ,
{
QR,±

(1) , Q̃
R,∓
(1)

}
P
− iγQ̃R,∓

(1) Q
R,±
(1)

}
P

}
P

+iγ
{
QR,±

(1) ,
{
QR,±

(1) , Q̃
R,∓
(1)

}
P
− iγQ̃R,∓

(1) Q
R,±
(1)

}
P
QR,±

(1)

=
{
QR,±

(1) ,
{
QR,±

(1) ,
{
QR,±

(1) , Q̃
R,∓
(1)

}
P

}
P

}
P
+ γ2

{
QR,±

(1) , Q̃
R,∓
(1)

}
P
(QR,±

(1) )
2 .

With the Poisson brackets in (3.8), one can show the following:

{
QR,±

(1) ,
{
QR,±

(1) ,
{
QR,±

(1) , Q̃
R,∓
(1)

}
P

}
P

}
P
+ γ2

{
QR,±

(1) , Q̃
R,∓
(1)

}
P
(QR,±

(1) )
2 = 0 .

Thus the relation (A.1) has been proven. Similarly, one can easily show the relation (A.2).
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