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I. INTRODUCTION 

The last three :years have seen considerable interest in the 

·development of semiclassical methods for treating complex molecular 

collisions, i.e., those which involve inelastic or reactive proce$ses. 

One _of the reasons for tiiis activity is tliat the recent work, primarily 

that of Miller
1 

and that. of 'Marcus~- 2 
has shown how numerically com-

puted classical trajectories can oe used as input to the semiclassical 

theory, so that. it is not necessary to make any dynamical approximations 

when applying these semiclassical approaches to complex collision 

processes. There is thus the possiBility of being able to augment 

purely classical (i.e.Mon~~ Carlo) trajectory calculations,
3

' 4 which 

have proved extremely po~Jerful and useful in their own right, with 
< 

many of the quantum effects that may be important in molecular collision 

phenomena. 

Another motivation for pursuing.these semiclassical approaches 

to inelastic and reactive. scattering is the well-known success that. 

semiclassical theory has had in describing quantum effects in simpler 

elastic (potential) scattering.
5

'
6 

Here one now knows that essentially 

all quantum effects can be adequately described in a semiclassical 

framework. 

This paper reviews thi~ )I classical S.-rn.a trixn theory, i.e • , the 

semiclassical theory of inelastic and reactive scattering which 

combines exact classical mechanics (i.e. numerically computed trajectories) 

with the quantum principle of superposition. It is always possible, 

and in some applications may ev~n be desirable, to apply the basic 

7 
semiclassical model with approximate dynamics; Cross has discu~sed 

' 
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the simplifications that result in classical S-matrix theory if one. 

treats· the .dynamics .. tvithin the ·sudden approximati:o.n~ for example,·. 

and shown how this relates to some of his earlier ;.rork
8 

on inelastic 

scattering. For the most part, however, this review will emphasize 

the use of exact classical dynamics and avoid discussion of various 

dynamical models and approximations, the reason being to focus on 

the nature and validity of the basic semiclassical idea itself, 

i.e., classical dynamics plus quantum superposition. Actually, all 

quantum effects - being a direct result of the superposition of 

probability amplitudes - are contained (at least qualitatively) 

within the semiclassical model, and the primary question to be 

answered regards the quantitative accuracy of the description. 

Since I have reviewed certain aspects of semiclassical, or 

classical-limit quantum mechanics only a year ago,
9 

this presentation 

will summarize the general theory only briefly and concentrate more 

on specific applications. The results of various calculations 

utilizing classical S-matrix theory are reviewed, and the semiclassical 

description of several different physical processes - scattering reso-

nances~ scattering of atoms from surfaces, and photodissociation of 

polyatomic molecules - is developed to illustrate more fully how one 

can translate between classical, semiclassical, and quantum mechanical 

versions of a theory. The semiclassical theory of elastic scattering 

itself will not be discussed explicitly since this has been the sub

ject of a recent review by Berry and Mount.
10 

An understanding of the 

semiclassical techniques used in elastic scattering has, of course, been 

essential in extending semiclassical ideas to more general collision 

processes. 
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Lt should be noted that there are a number of other 

treatments of inelastic scattering, which will not be reviewed here, 

t·o which the term 11semiclassicaln is also applied. The oldest and 

11 
most common of these is the "classical path model": here a traj-

ectory is assumed for the translational motion, this causing a time-

dependent perturbation on the internal degrees of freedom which are 

treated quantum mechanically, i.e., via the time-dependent Schrodinger 

equation. 
11 

The simplest version of this approach assumes a straight 

line, constant velocity trajectory and applies first order perturbation 

theory to solve the time-dependent Schrodinger equation for the internal 

degrees of freedom; neither of these assumptions is necessary, however, . . 

and there have been applications that invoke neither of them.
12 

The 

fundamental distinction between this class of approximations and class-

ical s~matrix theory is that in the former some degrees of freedom, 

namely translation, are treated classically and the others quantum 

mechanically, while classical S-matrix theory tr~ats all degrees of 

freedom classically, superposition being the only element of quantum 

mechanics contained in the model. In classical S-matrix theory, 

therefore, it is completely straight-fonvard to include the full 

dynamics exactly - by calculation of classical trajectories - while 

classical path models have inherent dynamical approximations embedded 

in them. 

The remarks in the previous paragraph apply, of course, only to 

the case of electronically adiabatic molecular collisio~s f.or which 

all degrees of freedom refer to the motion of nuclei (i.e~, trans-

lation, rotation, and vibration).; :;U; trans:t.t:tons between different 
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,· 

electronic states are also involved, then there is no way to avoid 

dealing with an explicit mixture of a quantum description 6£ some 

degrees. of freedom (electronic) and· a classical descri.ption of tlie 

.· g. . . . .· .. 
others~ The des~ription of such non....:adiabatic electronic transi...: .··. 

. ' . . . .... : 

tions within the framework of 'classical S-matrix theory has been .. 

discussed at length in the earlier review
9 

and is not included here. 

· .. \ . ~..; ., . 

·-., 

.. 

i ' 



... _ 

-4-

II. FUNDAMENTAL CORRESPONDENCE RELATIONS. 

The basic semiclassical idea is that one.uses a quantum mechanical 

description of the process of interest but then invokes classical 

mechanics to determine all dynamical relationships. A transition 

from initial state i to final state f, for example, is thus de-

scribed by a transition amplitude, or S-matrix element Sfi' the 

square produlus of v1hich is· the transition prohability: P fi 

lsfi!
2

• The semiclassical approach uses classical mechanics to 

construct the cla~sical-limit approximation fbr the transition 

amplitude, i.e., the "classical S-matrix"; the fact that classical 

mechanics is used to construct an amplitude means that the quantum 

principle of superposition is incorporated in the description, and 

this is the only element of quantum mechanics in the model. The 

_completely classical approach would be to use classical mechanics 

to construct the transition probability directly, never alluding 

to an amplitude. 

One thus needs a prescription for constructing the classical-

limit approximation to quantum mechanical amplitudes, or transformation 

elements. This is given most generally by establishing the corre-

spondence of canonical transformations between various coordinates 

and momenta in classical mechanics to unitary transformations between 

various sets of states in quantum me..:hanics. These correspondence 

relations have been derived earlier
1

'
9 

and are summarized below. 

A. Summary of General Formulae. 

Let (p, q) be one set of canonically conjugate coordinates 

and momenta (the "old" variables) and (P, Q) be another such set (the 
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.J 3 
"new" variables .T (P, Q, p~ and q are N;....dimensional vectors for a 

system with N degrees o£ freedom, but for the sake of clarity multi-

dimensional notation will not be used; the explicitly multidimensional 

expressions are in most cases o5vious.) In classical mechanics P and 

Q may be considered as functions of p and q, or inversely, P and Q 

may be chosen as the independent variables with p and q being functions 

of them. To carry out. the canonical transformation between these two 

sets of variables, however, one -must rather choose one "old'' variable 

and one "new" variable as the independent variables, the remaining 

two variables then being considered as functions of them. The 

canonical transformation is then carried out with the aid of a 

generating function, or generator, which is some function of the 

two independent variables, and two equations which express the 

dependent variables in terms of the independent variables.
13 

If, for example, the "old" coordina;t:.e q and the "new" 

coordinate Q are chosen as the independent variables, and if F
1 

(q,Q} 

is· the generat9r, therr:;the two' equations which.; define p. ahd,Pc are'~· 

p(q,Q) 
. qfl (q,Q) 

(2 .la) = 
Clq 

.. ar:t.C<i~Q) 
P(p,Q) 

oQ 
(Z.lb) 

To express P and Q explicitly in terms of p and q it would be necessary 

to solve Eq. (2.1a), i.e.· 



··~ 

-6-

. 3J:l(q,Q) 

p = (3q (2.la') 

for Q(p,q) and then substitute this into Eq. (2.lb) to obtain P(p,q). 

There are clearly three other comoinations of "one old variable and 

one new variable": (q,P), (p,Q), and (p,l?). Equivalently, the 

generators F
2

(q,P), :F
3

(p,Q), or r
4

Cp,P) may be used in a similar 

manner, along with the appropriate pair of differential equations 

analogous to Eq. (2.1), to effect the transformation. 

Quantum mecnailically, the objects of interest are the elements 

of the unitary transformation fram the "old" states jq> ahd ;jp> to 

the 'ileVT11 states d.Q> and ')P>". IThe unitary transformation elements 

relating any canonically conjugate pair is always given by 

<qlp> (2niii) -l/2 exp (ipq/tt) (2.2a) 

<QjP> (2nin)-l/Z exp(iPQ/h) . ] (2.2b) 

There are, just as in classical mechanics, four ways of choosing "one 

old variable and one new variable", so there are four equivaJent sets 

of unitary transformation elements connecting the "old'' and "new11 

representations: <q I Q>, <q I P>, <p:j Q>, and <pIP>. The ;fundamental 

correspondence relations express the classical limit of these unitary 

transformation elements in terms o;f the classical generating functions 

for the related classical canonical transformation: 



,. 
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a2
F G ··1 1/2 

<qiQ> I~ 
.. ·'"1 q~Q 

I 2TiihJ exp l iF 1 Cq ~ Q) /1LJ (2 .3a) "" aqaQ 

a 2 t~ Cq,P) 
1/2 

<qiP> = I 3q3P I 2Tiiil] exp Ii'F 
2 

Cq,J?) /hJ (2 .Jb) 

. a2'Fj (p~·Q) 1/2 

<piQ> ::: 

I apaQ I 2niil] exp I i:F 
3 

Cp, Q) /nJ (2 .3c) 

.C12$4 (p~P) 1/2 

<piP> = I-
a paP I 2Tritl:.] exp I i'F 

4 
(p , P) /ti) (2 .3d) 

In applications it is usually convenient to make use of the derivative 

' 13 
relations of the generator to express the pre~exponented factors 

above in a less symmetrical, but more useful form. If use is made of 

' 
Eq. (2.lb), for example, it is easy to shm,7 that Eq. (2.3a) can be 

written as 

<q!Q> .. (2. JaY) 

The derivation of these fundamental correspondence relations, 

. 9 
Eq. (2.3), has been given previously, and one should see reference 

9 for a more detailed discussion. To obtain the results-it is nee-

essary to assume only Eq. (2.2) (which is essentially a statement of 

the uncertainty principle), make use of classical mechanics itself, 

and invoke the stationary phase apprO:Ximation
14 

to evaluate•all 

-1 
integrals for which the phase of the integrand is proportional to11 

Since the stationary phase approximation
14 

is an asymptotic approximation 

which becomes exact as 1L ->- o, tii.is is the nature of the classi_cah.,liitlit 

approximations in Eq. (2.3). In a very precise sense, therefore; classical~ 

limit quantum mechanics is the stationary phase approximation to quantum 

mechanics. 
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B. Example: Franck-Condon Factors. 

Several examples of the basic correspondence-relations [Eq. 

(2.3)] have been worked out in reference 9, and here another one is 

considered. For brevity the follovring discussion assumes some 

familiarity of Section II of reference 9. 

Let Va(x) and Vb,(x) be two one-dimensional potential wells with 

eigenstates (labeled by their vibrational quantum numbers) In > anc:;l 
a 

lnb>,' respectively. A Francl~-Condon factor is the square modulus of 

the amplitude <nblna>' i.e., l<~lna>1 2 • Thinking semiclassically, 

one notes that n is the generalized momentum of the action-angle 
a 

15 ) . 
variables (na,qa for the potential Va; ~ is similarily the 

generalized momentum of the action-angle variables (nb,qb) that are 

defined \vith respect to Vb. The amplitude <nb Ina> is thus a matrix 

element bet~ireen momentum states of different representations, so 

that its classical limit is given by Eq. (2.3d): 

where F
4 
(~,na) is the F

4 
- type generator of the (na,qa) 

classical canonical transformation • 

(2.4) 

To discover the appropriate F
4 

generator for Eq. (2.A) it is 

useful first to consider the canonical transformation from (na,qa) to 

ordinary cartesian variables (p,x), and then from (p,x) to the canonical 

. 9 
As shown before, the F

2 
- type generator for the (n ,q ) 

a a 

++ (p,x) transformation is 



• 

.. 

-9-

1/2 
/dx{2m[£ (n ) ~ V (x)]} 

a a a 

and of a similar form for the (nb,qb) +-+ (p,x) transformation: 

where £ (n ) and £b(nb) are the 1\TKB eigenvalue functions. Since 
a a . 

use of Eq. (2.3b) for the matrix elements on the integrand of Eq. 

(2. 5) 

(2. 6) 

(2.7) 

(2.7) and stationary phase evaluation of the integral over X shows 

that 

(2.8) 

where x ~ x(~,na) is defined implicitly by the stationary phase 

condition 

0 (2.9) 

Because of the follm-ting derivation relation for an F 
2 

- type 

= p(x,n) 

Eq. (2.9) may also be written as 
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(2 .10) 

. Thus tile _position X at whidL the na +-+ no :Franck Condon ,.... transition 

occurs is the one (or ones} for whic~ the Cartesian momentum is 

conserved;· this is, of course, a statement of the :Frimck Condon 

. . 1 16 pr1nc1p e. Since 

. .. 1/2 
p(x,n). == {2mls(n) .,.. V(x)]} · 

x(~,na) is equivalently defined as the solution 0;[ 

s (n ) - V , (x) 
a a a 

The pre-exponential factor in Eq •. (2.4) can be evaluated 

(2.11) 

explicitly by making use of Eqs. (2 .8) and (2. 9). Differentiation . 

of Eq. (2.8) gives 

. ]f
2
a(x,n } + . . a 

an (2 .12) 

a 

and by virtue of Eq. (2.9) the first term vanishes. Di;Uerentiation 

of Eq. (2.12) with respect to nb thus gives 

. 'a2:F2 a(~,na) .dX(~,na} 

dXdna dnb 
(2 ~13) 
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and from Eq. (2.5) one can show thqt 

a
2
:F2aC:X~ria) 
ClxCln 

a 

.1U. i;: .. ~'(ri ) 
a a 

(2 .14) 

where p ~ p(x,na) = p(x,~). Jurthermore, differentiation of Eq. (2.11) 

with respect to ~ gives 

or 

(2.15) 

where 11V(x) = Vb(x) .,... Va(x) Eqs. (2.13) - (2.15) thus give the 

pre-exponential factor as 

(2 .16) 

If there. is one value of x which satisfies Eq. (2.11), then 

there will be two terms. contributing to Eq~ (2,4), one corresponding 

to p > o and one to p < o. tiith Eqs. (2.8) and (2.16), Eq. (2.4) 

finally gives the rranck Condon amplitude as 
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(2 .17) 

where the F
2 

- generators are given by Eq. (2.5) and (2.6) and x is 

evaluated at the "crossing point" [the root of Eq. (2.11)]. This 

1 h b b . d b f 17- 19 f h . d' . 1 resu t as een o ta1n~ e ore ~· rom ot er more tra 1t1ona 

approaches, but it is interesting to see that it results directly 

from the general correspondence relations. If there· is more than 

one value of x which satisfies Eq. (2.11), then Eq. (2.17) is a 

sum of similar terms, one for each such value of x. 

If one discards the interference term between the two terms 

that contribute to Eq. (2.17), then the classical Franck-Condon 

factor is obtained: 

m Ea '(n) Eb' (~) 
2 

2nfi I pI I LW '(x) I (2.18) 

the factor of 2 appearing because of the two terms that contribute 

equa~ly~ It is interesting (and useful) tb show that this purely 

classical expression'can also be obtained from simpler phase space 

considerations. The Franck-Condon factor in Eq. (2.18) is the joint 

probability .that na and nb have certain specific values; it can thus 

be written as the following phase space integral: 

P(n ,n ) 
b a 

X O[n - n (P,Q)] 
a a 

(2.19) 
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where. J.' and Q are any set of canonically conjugate variaoles (since 

phase. space integrals are invariant to a. canori.icc:ll transformation)' 

and nb (P,Q) and na (P,Q) are these var:Lafiles expressed in tems of 

P and Q. Choosing (P,Q) to oe the-ya;riaoles (n~,qa)' for example, 

leads to 

-1 

(2. 20) 

Since one of the derivative relations for an F
4 

-_type generator 

. 13 
lS 

one sees that 

so that Eq. (2.20) thus oecomes 

I 2rn 

·~ 

(2.21) 

(2.22) 

which is the same pre-exponential factor as iri Eq. (2.4) and thus the 

same classical Franck-Condon factor as Eq. (2.18). · 
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c. · Natrix ·Elements. 

The correspondence relations summarized in Section IIA show 

ho,.v· any unitary transformation element can be evaluated within the 

classical limit. Sometimes, however, one is interested in matrix 

elements of operators which are not unitary. Consider, for example, 

the one~dimensional system discussed in the previous section; if A 

is some operator, the question is how does one obtain·the classical 

limit of the matrix element <~IAina>. 

Let I~> be some yet unspecified set of states; then 

<n lAin > 
b a 

(2.23) 

To evaluate this semiclassically one should choose the basis 

I~> so that the representation o;f A is local and :multiplicative~ 

(2.24) 

and where A(~) is non-singular as -ft-+- o. If A is an operator with a 

simple classical analog, as is usually the case, then the choice of 

the-ba~is I~> is obvious. If A is the kinetic energy, A= p
2

/2m, for 

example, the basis should be chosen to be the cartesian momentum states 

-lp>-. If A is a simple functi.on of the cartesian coordinates, A = A(x), 

then one skould use a cartesian coordinate :representation. 

In this latter case, fo:r example, Eq. (2.23) becomes 
• 

.. -· 

!dx <~ l:x> A(x) <xlna?- (2 .25) 
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stationary phase evaluation of which. clearly gives 

<n lAin > = A(x) <nblna> 
b a . 

(2.26) 

. _ ......... 

. ···. 

where X = x(nb,n ) and <nb .. ln > is the Franck-Condon factor discussed 
a . a · 

.. in the previous section. Probably the most common exan:ple of this 

result is the case the A is the dipole operator, A(x) = ex, e being 

.the electron ~harge; this is the application made in discussing·· 
... · 

photodissociation in Section III E below. 
·.··. 

:I. 

··'.,. 
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III. CLASSICAL S-HATRIX: ·CLASSICALLY ALLOh'ED PROCESSES. 

In a collision system such as an atom A colliding vrith a. diatomic 

molecule BC, one is interested in the transition amplitudes, or S-matrix 

elements, which describe transitions between specific quantum states of 

the molecule BC. From the S-matrix elements one can construct scatter-

ing amplitudes for any collision process resulting from A + BC, the 

square modulU$of the amplitudes being the cross sections. 

Several derivations of the classical limit of the S-matrix, the 

·"classical s.:.matrix", for complex collisions (i.e. those for which the 

collision partners have internal degrees of freedom) have been given;
1

'
2

'
9 

the results follow almost directly from the fundamental correspondence 

relations, Eq. (2.3), the only modifications being those required to 

factor out an energy-conserving delta function. This section first 

summarizes the general expression and then discusses their application. 

A. Basic Formulae. 

For ease of presentation a non-reactive collision is considered 

first; the modifications required to include reactive processes are 

straight-fon-:rard and simple. 
1

' 
9 

The general system consists of N 

degrees of freedom, one being relative translation of the collision 

partners and the other (N-1) being internal degrees of freedom· which 

are quantized in the asymptotic regions. The translational degree of 

freedom is described by the center of mass coordinate R and momentum P, 

while the internal degrees of freedom are described by their action 

angle variables (n,q) = (n.,q.), i = 1,2, ••• , N-1. The action variables 
- - -1 -1 

{n.} are the classical counterpart of the quantum numbers for these 
1 

degrees of freedom and will thus be referred to simply as the "quantum 
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numbers" although classically, of course, they are continuous functions 

of time like any other (generalized) momenta; in the asymptotic regions 

(R + oo) before and after collision they are required to be integers.
20 

The classical Hamiltonian function for the system is given in 

terms of these variables by 

0 2 
H(P,R,n,q) = P /2p + E(n) + V(R,~,2) (3.1) 

where p is the reduced mass of relative motion, E(n) is the 1-lKB 

eigenvalue function for the internal degrees of freedom, and V is an 

interaction which vanishes as R + 00 • It is the dependence of V on 

R and q which prevents P and n from being constants of the motion; 

since V + 0 as R + oo, P and n are conserved asymptotically, and as 

noted above the asymptotically constant values of n must be integers. 

The quantities of interest are the on-shell S-matrix elements, 

S (E) 
~2'~1 '· 

which are the probability amplitudes for the ~l + ~ 2 transition. Their 

classical-limit approximation, the classical S-matrix, is constructed 

from the classical trajectory.(or trajectories) with initial conditions
21 

at time t (t + -oo) 
1 1 

~(t 1 ) ~l (a specific set of integers) 

R(t
1

) = large 

(3.2a) 

(3. 2b) 
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-{2~[E - E(n
1

)]}
1

/
2 

aEC:;l) 
~1 + a:;l ~R(tl)/P(tl) 

and with final-conditions at time t
2 

(t
2 

+ +oo) 

~(t2) "" :;
2 

(another set of integers) 

R(t
2

) large 

P(t
2

) +{2~[E - €{~2)]}1/2 

~(t2) anything 

(3.2c) 

(3. 2d) 

(3.3a) 

(3.3b) 

(3.3c) 

(3. 3d) 

For a system with several degrees of freedom the trajectories must, of 

course,. be determined by numerical integration of Hamilton's equations .. " 

step by step in time. To find the trajectory (or trajectories) ·which 

obey the boundary conditions in Eq. (3.2) and (3.3) it is convenient 

to introduce the function ~ 2 Cg 1 ,~ 1 ;E), the final value of the quantum 

numbers that result from a trajectory with the initial conditions of 

Eq. (3.2); in general, of course, ~ 2 Cg 1 ,~ 1 ;E) is non-integral. For 

a given total energy E and a given set of initial integral quantum 

numbers ~l' the task is to find the particularvalues of the angle 

variables g
1 

for w?ich ~ 2 Cg 1 ,~ 1 ;E) turn out to be the specific set 

·of integers ~ 2 ;i.e., suppressing the arguments ~land E, one must 

solve the equations 

(3.4) . 
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where ~ 2 on the RHS ~s a given set of integers. This is a set of 

(N-1) equations in N-1 unknowns. 

The classical S-matrix element for the ~l ~ ~ 2 transition is 

then given by
22 

S (E) = 
~2'~1 

where Cl~zlag 1 is the determinant of the N-1 Jacobian, ~l is evaluated 

at the root of Eq.• (3.4), and <I> is the classical action integral 

Jdt[R(t) P(t) + q(t) • n(t)] (3.6) 

evaluated along the trajectory ~vhich satisfies the above double-ended ·~ 

boundary conditions. If there is more than one trajectory at this 

energy corresponding to the same initial and final quantum numbers 

~l and ~ 2 , Eq. (3.5) is a sum ~f similar terms, one for each such 

trajectory. 

Before proceeding to discuss more substantive examples it is 

interesting to see that the above expressions do reproduce the stan-

dard WKB results for one-dimensional dynamical systems. For a system 

with only a translational degree of freedom, i.e. no internal degrees 

of freedom, the pre-exponential factor in Eq. (3.5) is unity and the 

phase <I> is 

<I> (E) 
t2 

-[ dt R(t) P(t) 
t 

1 

(3.7) 
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If the interaction potential V(R) has a repulsive core and R< is 

the classical turning point, then Eq. (3.7) becomes 

R 

~(E)= -2RP +~ dR' P(R') (3.8) 

R< 

where R :: R
1 

- R + oo p - -P p2 2 ' 1 

1/2 
(2mE) , and P (R) {2m[E -

V(R) ]}
1

/
2 

• 

The S-matrix is thus 

S(E) = exp [ i<P (E) /-1'1] 

exp [2in(E)] 

where the phase shift n(E) is given by the usual WKB expression: 

n(E) lim 
R+oo 

R 

[~kR + f dR' k(R')] 
R. - ~ 

where k = (2mE/-!1
2

)
1

/
2 

and 

k(R) = "{2m[E - V(R)] /-112 }
1

/
2 

For a single particle moving in three dimensions under the 

(3.9) 

(3.10t 

influence of a spherically symmetric potential V(R), the classical 

Hamiltonian is 

·•, '-1 2 2 2 
H(P,R,9-,qQ_~m,~) =(:2).1) (P + 9, /R) + V(R) (3.11) 

and one sees that the quantum numbers 9, (orbital angular momentum) and 

m ··(its z-componant) for the two "internal" degrees of freedom· are 

conserved since their conjugate variables q9, and qm do not appear in 
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the Hamiltonian. The dynamical system thus reduces to a one-

dimensional one with a Hamiltonian 

(3 .12) 

that depends parametrically on L Because of the centri;fugal term 

~ 2 /2UR 2 , however, the Hamiltonian in Eq. (3.12) is not precisely of 

the form in Eq. (3.1). To remedy this one transforms from variables 

P and R to the new variables P and R, where 

-2 p (3.13) 

The classical generator which effects this canonical transformation 

is 

F
2

(R,P) = /dR (P2 
.,.. P-

2
/R

2
)
1

/
2 

R(P2 _ P-2/R2)1/2 

-1 ""' 
- ~ cos (9-/PR) 

By invoking the derivation relations ;!;or an F
2 

- type generator, 

p 
aF

2
(R,P) 

::::: 

ClR 

R 
C'lF

2
(R,P) 

= 
ClP 

., 

(3.14) 

C3 .1-sa.) 

(3 .lSb) 
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one can easily verify that Eq. (3.13) ·is fulfilled and that R is given 

in terms of the ne\>7 variables by 

.. 
.(3.16) 

The Hamiltonian thus takes the desired form in terms of the ne~r · 

.. ·variables . '·~· 

(3.17) 

·'; 

.and the S-matrix in this angular momentum representation has the 

one-dimensional form 

~. . 
(3.18) 

where. 

(3.19) 

Use:ofEq. (3.15) shows that 

= PR + RP 
·' 

(3. 20) 

so that the phase in Eq. (3.19) is equivalently given by 
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t t 

(l:>£ (E) ,..p2(R,P)I
2 

+f·''
2 

dt P(t) R(t) (3.21) 

tl tl 

By eliminating t in favor of R in the usual way it is then easy to 

show that 

(l:>£(E) Rin£(E) 

i.e., 

sf(E) exp [2in£(E)] (3. 22) 

where the phase shift is given by the standard WKB expression 

R ._.. 

- kR + f q·f..' kt (R') 
R 

(3. 23) 

< 

where R ~ oo and kt(R) 
1/2 

{21J[E- V(R)] - £
2

/R
2

} /~; in practice
6 

the 

replacement £ ~ i+l/2 is usually made. 

B. Applications. 

The first calculations using the theory described in the 

preceeding section were carried out by Miller
23 

for the non-reactive 

24 
collinear A + BC collision system for which Secrest and Johnson had 

earlier obtained accurate quantum mechanical transition probabilities. 

Since this is a system of tw"O degrees of freedo.m, and thus only one 

internal degree of freedom, Eq. (3.1) - (3.6) apply 1;o1ith the vector 

designation removed from the pair of action-angle variables (n,q). 

Thus the n
1 
~ n

2 
vibrational transition is constructed from those 

trajectories which satisfy 
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(3.24) 

vrhere n
2 

(q
1

) (with the ar~uments n
1 

and E suppressed) is the final 

vibrational quantum number, not necessarily integral, which result 

from the trajectory with the initial conditions in Eq. (3.2). Figure 

1 shows this function for the case n
1 

= 1, E l~w. and for the 

potential parameters chosen to correspond to a H~ + H
2 

collision. 

It is clear from the figure that there are tHo roots to Eq. (3.24) 

for the case n
2 

= 2, for example, i.e., there are two classical 

trajectories that contribute to the 1 -+ 2 vibrational transition. 

The classical.S-ma.trix element [Eq. (3.5)] for it is thus the sum 

of two terms 

., -1/2 

[2Titn
2

-1(qi).IJ exp(i~ + i<PI/11) 

~ -1/2 

+ [2TIIn2 '(qii) I] exp(-i* + i<lli/fi) (3.25) 

where qi and qii are the two roots of Eq. (3. 24), and <PI and 4> II are 

the action integrals for these two trajectories. The transition 

probability, 

(3.26) 

is therefore the sum of the probabilities associated with the two 

trajectories plus an interference between the two: 
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(3.27) 

where 

. -1 

PK = [2nln2''(qK) I] 

K = I,II. The situation is quite analogous to the usual discussion
25 

of the "two slit experiment", and just as there, it is not proper to 

say that the n
1 

+ n
2 

transition takes place via trajectory I or 

trajectory II, for logic would then demand that the probabilities 

add; rather there is a probability amnlitude for the trajectory being 

I or II, and these amplitudes add.
25 

Th 1 1 . 23,26 h~ h . 1 • 1 1 b . e ca cu at1ons s ow t e sem1c ass1ca resu ts to e 1n 

..... 
excellent agreement with the accurate quantum mechanical values. 

Furthermore, the interference term in Eq. (3. 27) is quite significant 

in that the completely classical transition probability, 

(3.28) 

gives poor results for individual transition probabilities. On the 

average, however, the classical transition probability lEq. (3.28)] is 

correct, as seen in Figure 2, so that the purely classical treatment is 

adequate if one is interested in collision properties that involve an 

average over some initial and/or final quantum states. 

The atom-rigid rotor collision in three-dimensions has also been 

27 
treated by Miller , and the comparison with accurate quantum mechanical 
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values is similar to the collinear results discussed above: individual 

S . 1 d .b d 1 1 b . 1 . 28 
-matrlx·e ements are escr1 e accurate yon y y proper 1nc us1on 

of interference bet\•J"een the various trajectories "~o!hich contribute to 

the transition. If the transition probabilities are summed over 

several quantum states, however, the interference effects are quenched 

and the purely classical probability gives accurate results. 

The conclusion which seems to be emerging from these examples, 

therefore, is that individual S-matrix elements, and thus the tran-

sition probability between a complete set of initial and final 

quantum numbers,, cannot be described accurately without proper 

inclusion
28 

of the interference terms provided by the classical 

S-matrix approach. If the transition probabilities or cross sec-

tions of interest are summed and/or averaged over some of the final 

or initial quantum numbers, however, the interference terms tend 

to average to zero so that the completely classical treatment becomes 

adequate. 

The fact which makes interference effects so "fragile" is that 

there can be interference only bet~·reen those processes which are ·in 

' ' ·. ' ' '' 25 
principle indistinguishible. This means that only the transition 

probability, or cross section, for a·campletely state~selected 

quantity is given by the square modulus of an amplitude; an averaged 
' ' 

cross section is not given by the square modulus o;f an average am-

plitude but rather by the average of the square modulus of tne 

completely state-selected amplitude -- i.e. 

<a> = < [_f 12>:· 

t l<f>l 2 
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With regard to simple potential (elastic) scattering, for example, 

since there are no internal degrees of freedom the "completely 

state-selected" quantity is the differential cross section; thus 

(3.29) 

d f (e) . d . 1 . 11 5 ' 6 ' 2 9 f h . . an E 1s constructe sem1c ass1ca y rom t e traJector1es 

which satisfy the appropriate double-ended boundary conditions (i.e., 

that the energy beE and that the scattering angle be 8). Interference 

structure is thus readily observed in crE(8), whereas it is usually 

quenched in the total cross section: 

1T 

cr(E) - 2n J d8 .sine crE (8) 
0' 

1T 00 

=- 1: 
~2 t 

2 

(29, + 1) Is Q, (E) - 1 I 
0 

i.e., even though the individual "transition probabilities" . 

(3.30) 

(3. 31) 

show prominent interference between the scattered particle and its 

11 shadow", the sum over Q, quenches it. (Under certain conditions a 

residual oscillatory term in cr(E) does survive the average over 9-; 

this is the "glory" effect. 
6

) 

F h d ' ' 1 A + BC 11 . . l h 1 1 or t ree- 1mens1ona co 1s1ons t e camp ete y state-

selected quantity is the differential cross section from a given 
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initial state ln
1

j 
1
m:fto a spedfic f-inaL_state ln

2
j

2
m

2
>;' it _is 

:thus--:· g1ven~by the square modulus of an amplitude 

(3.32) 

where the "classical amplitude" is constructed from the trajectories 

with the appropriate initial and final boundary conditions.
1

•
9 

There 

should undoubtedly be significant interference effects in these 

completely state-selected differential cross sections, but any less 

detailed quantity, being an average of Eq. (3.32), will nave the 

interference more or less quenched. 

Although the practical difficulty- of observing quantum 

interference effects on complex collisions is discouraging from ·c 

one point ·of view (because a completely state-selected experiment 

is clearly quite difficult), it is encouraging to one w-ho desires 

a relatively easy way of calculating observed scattering properties, 

for if interference is neglected the semiclassical expressions 

degenerate to purely classical. ones. For classically allmred 

processes which involve an average over some of the initial or 

final quantum numbers, and/or the scattering angle, one therefore 

expects a purely classical (e. g. }Ionte Carlo) treatment to be 

adequate. This conclusion has been one of tfte reasons that most. 

of the recent semiclassical work lias dealt with classically forbidden 

processes (see Section IV) for which purely classical treatments are 

inapplicable. 
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With regard to reactive processes, there have been several 

attempts at applying classical S-matrix theory to the 

reaction in the energy region above the classical threshold.
30 

Bo,~an and Kuppermann
31 

and Wu and Levine
32 

have treated it 

within the collinear model, and Tyson, Saxon, and Light
33 

have 

considered the coplanar model. (George and Miller
34 

and Doll, 

George, and Miller
35 

have treated this same process within a 

collinear and fully three-dimensional models, respectively, in 

the energy region below the classical threshold for reaction,· 

(3.32) 

but this "classically forbidden" case will be discussed in Section 

IV.) For the collinear model the quantity of interest is the 

reaction probability as a function of collision energy; both 

31 32 . 
groups of workers ' fJ.nd rough agreement bet\veen the semi-

classical transition probability and their quantum mechanical 

results (apart from a resonance structure which is not reproduced 

semiclassically) for energies not too close to the classical 

threshold, with the semiclassical values becoming poor as the 

energy decreases to the classical threshold. The coplanar 

. . 33 
calculations of Tyson et al are at one collision energy, for --,-

jl = j
2 

= O, and the differential, as well as total cross section 

has been considered; they also find rough agreement between the 

'"primitive" semiclassical and quantum mechanical cross sections. 
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In neither the collinear nor the coplanar cases, however, 

is the agreement as quantitative as for the non-reactive appli-

cations discussed above. The difficulty lies in applying the 

appropriate uniform semiclassical expression, for the small 

differences between action integrals of the various trajectories 

which contribute to the 0 -+ 0 transition makes the "primitive" 

semiclassical expressions inaccurate. For the collinear case, 

for example, Figure 3 sho-.;.rs the reactive quantum number function 

n
2

(q
1

) of Wu and Levine
32 

for the case n
1 

0 and a total energy 

of 14.7 kcal/mole. Because the function is so "flat", i.e., 

for all q
1

, the uniform semiclassical expression based on Airy 

functions
23 

(which, was used by Bo-...rman and Kuppermann
31 

and \vu 

and Levine
32

) is not applicable. (This is also true for an 

elastic non-reactive transition· \vhen all inelastic transitions 

are classically forbidden; this is of little concern, however, 

since one is usually not interested in the elastic transition 

probability in such cases.) A uniform semiclassical expression 

based on Bessel functions
36

•
37 

is the appropriate one for this 

case, and one would expect it to give much more satisfactory 

31 32 
.results than those reported. ' 

{Briefly, the Bessel function uniform expression is generated 

from the primitive semiclassical expression 
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( 1/2 1/2)
2 

. 2 (1T !::,¢) 
Pr + Pn ~_1.n 4 + 2 

( 
1/2 1/2)

2 
2 . M! + p p cos (1T + -·-) 

I - II 4 2 
(3.33) 

by the replacement 

(3.34a) 

(3.34b) 

where n = ln
2 

- n
1

1 and z is defined by the equation 

2 2 112 -1 . . !::,~ 
(z - n ) - n cos (n/ z:) = 2 (3.J5) 

See reference 37 for a derivation. In cases where the Airy:function 

expression is valid, the tvJci -unifoxm semiclassical expressions are 

essentially equivalent. For the case of present interest, n
1 

= n
2 

= 0, and Eqs. (3.33) and (3.34) become 

(3. 36) 

where the fact has been used t,hat J 
0

1 (:.:q = .,..J 
1 

(?:).] 

Figure 4 sho-vrs another example of the collinear reactive 

quantum number function n
2

(q
1

) from the paper of Wu and Levine;
2 
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this one also for n
1 

= 0 and for a total energy of 13.7 kcal. 

Here the function is considerably more complicated than those 

of Figure 1 or Figure 3, there being four trajectories that 

contribute to the 0 ~ 0 reaction. At first glance one might 

expect no semiclassical treatment to be possible; Connor,
38 

however, has developed more general uniform semiclassical 

formulae which take account of four terms, and it would 

clearly be desirable to see if these expressions give more 

accurate results for this application. 

In highly quantum-like situations such as these, therefore, 

it is necessary to use the appropriate uniform semiclassical 

expressions to obtain quantitative results ior transitions 

between individual quantum states. -There will~ too, un.,.. 

doubtedly be cases for whic1i the quantum numoer function :is 

too highly structured for any semiclassical treatment to oe 

q uant:f:ta ti-vel y useful. 

Finally, I ·would like to discuss briefly the bi-modal 

structure that has been observed recently in product vibra-

tional state distributions in three-dimensional classical 

. 1 1 . 39 traJectory ca cu atlons. It is illustrative to see how 

this arises even in the simplest situation, the non-reactive 

collinear model. Within a completely classical framework, 

. neglecting semiclassical interference terms, the n
1 

+ n
2 

vibrational transition probability of Eq. (3.28) is 
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- -1 
[2TI ln

2
' (q

1
) I] 

-1 

+ [2rr ln2" (qii) I] (3.37) 

where q
1 

and qii are the roots of Eq. (3. 24) . Considering n
2 

for the moment to be a continuous variable, as n
2 

approaches 

the maximum or the minimum of n
2

(q
1

) (See Figure 1) it is 

clear that the transition probability in Eq. (3.37) becomes 

infinite (because n
2

-'Cq
1

) -+ b.) As a continuous function of 

n
2

, the n
1 

-+ n
2 

transition probability will thus have the 

qualitative shape sketched in Figure 5 (which also shows 

the semiclassical interference). 

In a Monte Carlo calculation the classical probability 

of Eq. (3.37) is actually not the quantity calculated, but 

rather this transition probability averaged over the final 

quantum number: 

n
2 

+ 1/2 

_ fdn2 
n

2 
- 1/2 

and one can easily see that this gives 

where ~q 1 is the increment of the q
1 

interval for which 

(3.38) 

(3.39) 

(3.40) 
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This averaging procedure rounds off the two classical infinites, 

leaving finite peaks; for the case n
1 

= 0 the two peaks usually 

overlap so that there is just one peak, but this need not always 

be the case. 

The bimodal structure of the vibrational state distribution 

is thus simply a result of the fact that n
2

Cq
1

) has one maximum 

and one minimum. The effect is entirely analogous to the 

1 . 1 . b 5 • 6 . 1 . . l . h 1 c ass1ca ra1n ow 1n e ast1c scatter1ng WllCL resu ts 

because the deflection function G(b) has a minimum. It is 

possible, too, that n
2

(q
1

) could have more than one relative 

maximum and minimum, hence the classical vibrational state 

distribution would have more than two maxima. If semiclassical 

interference is taken account of, then there can of course be 

any number of peaks in the vibrational state distribution even 

though n
2 

(q
1

) has just .one maximum and one minimmn (cf. Figure 2). 

c. Complex Forn.ation; ··Resonances.· 

As noted in the Introduction, all quantmn effects are 

a direct result of the superposition principle and must there.,.. 

fore be contained~ at least qualitatively within the semiclassical 

model. This section discusses more explicitly how scattering 

resonances arise semiclassically • 

. Consider first the case of a potential, or "single particle" 

resonance which·results from one-dimensional tunneling through 

a potential barrier (see Figure 6). T, the probability of 
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tunneling through the barrier,· is given by
40 

T 

where e is the ba.rrier penetration integral 

e 
r . . . 

2 
1/2 

! 3 
dr {2m[V(r)-E] /-'6. } .· .. 

r , 
2 

·: I 

. . . . ' 
·· .... 

R - 1-T, the probability of reflection from the barrier, is 

R 
-28 ~ 1 

(1 + e ) 

The one-dimensional·S-matrix is given by a sum of amplitudes, 

one for each possible trajectory. · (There is more than one 

(3 .. 41) . 

(3.42) 

trajectory because tuimeling ·is being allowed for.) The simplest 

possible .trajectory is one that comes in from large r and is 

reflected at r = r
3

; the amplitude associated·with this is 

\·Jhere 

. ···'· 

r 

~im [ -kr + f 
r -+ co 

·. , 

dr' k(r')J 

1/2 
k:,(r:) = {2m[E - V(r) ]/11

2
} · 

k = k(oo) 

·.\ 

.(3.43) 

(3 .44) 
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The pre-exponential factor is the square root of the probability for 

. ·1f 
this trajectory (a reflection at the barrier), the phase -z- results 

any time a reflection occurs, and the phase n
0 

is the usual semi-

classical phase shift for motion from r = oo to r = r and back to 
3 

r = oo • 

Another possible trajectory is one that comes in from infinity, 

travels through the barrier, moves across the potential well and 

back, and then tunnels back out through the barrier.· The amplitude 

associated with this trajectory is 

.• 1f 
-r

e 2 
2icJ> · 2in 

e e 0 

lvhere <P is the phase integral across the potential well 

r2 . 
4> = f dr k(r) 

rl 

(3.45) 

the probability factor corresponds to the fact that two tunnelings 

are required. A third possible trajectory is similar to the previous 

one except that instead of tunneling back out of the potential well, 

it is reflected at the barrier and makes an additional passage back 

and forth across the well before tu~neling out. This trajectory 

involves tvm tunnelings, one barrier reflection, and two reflections 

at r = r
1

, so that the amplitude associated with it is 

3 

e 
4i¢ 

(3.46) 
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These three trajectories are depicted schematically in Figure 

7. Clearly there are an infinite number of possible trajectories 

arising from the various number of oscillations the particle may 

make back and forth across the ·Hell before it tunnels back out 

thr.ough the barrier. The amplitude for the trajectory that 

makes N round trips across the vlell is 

.rr 2N-l 
(e

-1..,..,) 2iN¢ 2in · 
If.. e e o. 

The S-matrix, being the sum of the amplitudes for all possible 

trajectories, is thus given by 

s + 
00 

2: 
N==l 

2iN<jl 
e 

and this geometric series can be summed to give 

s 

:Furthermore, it is not difficult to shm·7 that 

(3.47) 

(3.48) 

(3.49) 

(3. 50) 

(3. 51) 



where 

tan tan~ -11 
[

(1 + 

(1 + 

-38-

e-2e//2 

e-28)1/2 

so that the net phase shift is 

n 

: :] I (3.52) 

(3. 53) 

Eqs. (3.52) and (3.53) are the semiclassical result that has been 

5 41 42 
obtained previously by a number of other approaches. ' , 

A "resonance" thus occurs from the constructive interference 

of the many trajectories which contribute to the process (elastic 

scattering in this case). To !3ee this more explicitly, suppose 

the energy E is far below the top of the barrier so that 

R ~ 1 

T « 1 

the sum of multiply reflected terms in Eq. (3.48) is then given 

approximately by 

(3.54) 

Each__ term contriEutes very- little (since T <;< 1), out there are 

many of them. If !P := !P (E) is such that 

(3. 55) 
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n being an integer, then 

2iN(¢ - 1T) 
e 2 1 

(3.56) 

for all N, and the sum in Eq. (3.54) is infinite. Eq. (3.55) is thus 

the condition that all the terms in Eq. (3. Slf) add up in phase and 

cause a resonance; it is also recognized as the HKB (Bohr-Sommerfeld) 

d • • 43 f L . • 1 11 quantum con 1t1on or tne potent1a we • 

44 
Proceeding more formally, the definition of a resonance is 

that the S-matrix, considered as a function of the (complex-valued) 

energy, have a pole; the real part of this complex pole is the 

energy at which the resonance occurs) and its imaginary part is 

the width of the resonance, or reciprocal lifetime of the collisi~n 

complex. Referring to Eq. (3.50), the semiclassical S-matrix has 

a pole if 

or 

-28 l/2 2 A, 

Cl. + e ) + e i'P = 0 

or 

1 -28 l/2 
P = 2i ~rt [~(1 + e ) ] 

or 

p(E) (3. 57) 

where it has been emphacized th2t ¢ and 8 are both functions of E. 

For the case that the energy is far belovT the top of the· barrier, 
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and one can write. 

E E 
r 

- if/2 

with 

r .<< E 
r 

thus 

4> (E) cp(E .r) - - 1-
r 2 

~ ~r) - ir ¢, (E ) 
2 r 

and 

.R-n(l + e-
28

) 
-28 

~ e 

so that from these approximations and Eq. (3.57) one identifies E 
r 

as determined by the quantum condition of Eq. (3.55) with f given 

by 

(3.58) 

The potential resonances discussed above are "classically 

forbidden" processes (see Section IV) in that theyinvolve tunneling. 

'Classically allowed" complex formation is possible only for systems 

that have internal degrees of freedom in addition to translation;. 

i.e.' classically allo\-red resonances must be. "multiparticle 

resonances". These internal excitation, or Feshbach resonances 

result from an energy transfer mechanism: if the interaction 
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between A and BC is attractive, when they collide more energy may 

be transferred into excitation of the internal degrees of freedom 

than is energetically possible when A and BC are infinitely 

separated. As A and BC attempt to separate, therefore, a 

translational turning point is encountered so that A and BC 

suffer another collision, and so forth, until the internal 

degrees of freedom loose sufficient energy for A and BC (or 

AB and C, for ex~mple, if reactive processes are possible) to 

separate. 

Classical complex formation such as outlined above has been 

observed in a number of classical .Monte Carlo trajectory studies,
45 

46 
and Brumer and Karplus have recently reported an extensive 

study of alkali halide - alkali halide reactions which involve 

long-lived collision complexes. These purely classically studies 

cannot, of course, describe the resonance structure in the energy 
"' 

dependence of scattering properties, but rather give an average 

energy dependence; the resonance structure, a quantum effect, is 

described only by a theory which contains the quantum principle 

of superposition. 

To see how Feshbach resonances appear in classical S-matrix 

theory, consider the collinear H + c£
2 

collision as studied by 

Rankin and Miller.
47 

Figure 8 shows the quantum number function 

n
2

(qi); for one region of q
1 

the function is smooth, these trajectories 

being "direct"-. The remaining interval of (i
1 

leads to complex 

-trajectories, those which spend a number of additional vibrational 

periods in the interaction region; for this region of (i
1 

values 
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the final vibrational quantum number changes dramatically with 

small changes in q
1

• The S-matrix for the particular· transition 

indicated in Figure 8 thus has the form 

(3.59) 

where SD is the ''direct 11 contribution which is constructed in the 

usual semiclassical fashion from the two direct trajectories; the 

"complex11 contribution is the sum of many terms 

(3. 60) 

Analogous to Eq. (3.54) in the discussion of potential resonances, 

each tenn in Eq. (3.60) makes a sreall contribution (because n
2 

l(qK) 

is very large), but there are many such terms. Since the various 

complex trajectories differ from one another essentially by the 

number of oscillations of the collision complex before it decomposes, 

the action integrals <l>K differ roughly by integer multiples of the 

action integral for an oscillation of the complex. Thus if the 

· energy is such that 

the terms in Eq. (3.60) will add up in phase to cause a resonance 

in the scattering; at other energies the interference is destructive 

and SR ~ 0. The ~erage" resonance contribution to the transition 
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probability--i.e., the quantity obtained in classical Monte Carlo 

. ' 1 1 ' 45 ' 46 1 . f d. d . f traJectory ca cu at1ons --resu ts 1 one 1scar s 1nter erence 

terms in jsR! 2 
(since they are quenched by averaging over an energy 

interval larger than the resonance widths) and averages over the 

final vibrational quantum number (cf. the discussion related to 

Eqs. (3.38) - (3.40)): 

1 
n2 + 2 

~ f dn2. 

1 
2 

t-q
1 

being the increment of the q
1 

interval for 't-Jhich n
2 

(q
1

) is in 

1 1 
the interval (n

2
- 2• n

2 
+ 2). This average probability is also 

the quantity for which statistical approximations are often good.
46

•
47 
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The reader will recognize that the semiclassical origin of 

the resonance, namely the constructive interference of the 

amplitudes associated with the many trajectories that arise 

from a collision complex,· is the same for Feshbach (multi-

particle) resonances as for potential (single-particle) 

resonances. The physical mechanism causing the collision 

complex is quite different, however, being barrier tunneling 

for the case of a single degree of freedom and an energy 

transfer between degrees of freedom for the Feshbach case. 

From the point of view of numerical calculations it \oTOuld 

appear that the semiclassical treatment of Feshbach resonances 

is quite impractical. By looking at Figure 8 it is clear the 

difficulty one would have in finding all the roots of the 

semiclassical relation 

\irricn are needed to construct the resonance contribution to the 

S-matrix [Eq. (3.60)]. 
48 

Recently Marcus has developed a semi-

c la'ssical treatment, of' Feshbach resonances that attempts to go 

beyond the "primitive',' semiclassical description outlined above. 

It may be that this could turn out to have some practical utility. 

As another application of classical S-matrix theory it 

is interesting to see how the scattering of atoms from a solid 

sur;face is described. (The extension to scattering of molecules 
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·should also be clear.) This has been worked out by Do11
49 

and 

. 50 
closely parallels Wolken's quantum mechanical formulation of 

· the problem. · 

.· By "solid surface" one means that the surface is being .... 

.. ·· 
-+ 

represented by a potential, V(r), ·.so that the Hamiltonian 

~or the particle is 

H(p, t) 
z· . 

p /2ll + V(r) (3.61) ; 

· where r ;::; (x.y.z) and n ;::; p p p ) • '.z··· is the directio.n perpendicular .. 
• '\J ~ ' · ~. x' y' z 

to the surface, i.e~,. 

.Hm V(x>y,z) = 0 
... z-?oo 

£im V(x,y,z) + oo 

z-+-oo 

and the surface periodicity is 

V(x,y,z) = V(x +rna .,y + na .. -~~z) 
. X Y: :' 

. ··: 

q 62) 

where m and n are. integers of (a a \') are the unit . cell dimensions. 
J{' y 

If ~l is the initial wave vector of the particle, i.e. ,..fl~-;t:;,.: 

i.s the initial momentrnn, then the quantity of interest.is 

.. , :.,· 

. . 

. ·"·' 

..... :·.· 
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the probability that 'the final wave vector is ){;
2

; quantum mechanically, 

this is given by the square modulus of a probability amplitude, or 

S-matrix element 

p 
. ~<:2 +- k 

·- ~1 

2 

jsk +-k I 
_2 ..,1 

Since internal degrees of freedom of the surface are being neglected, 

the scattering of the atom must be elastic, i.e. 

(3. 63) 

so that only two components of the wave vector can change independently, 

kx and ky, say. Thus one actually seeks the S-matrix on the "energy 

shell" 

(E) (3.64) 

Since the desired S-matrix element is in a cartesian momentun 

representation, it is clear from the general prescription outlined in 

Section III A that the classical S-matrix is given by 

3(k ,k ) -l/2 

~ c L(x:~ y:~ J +-
(E) exp r i\1> <Js2, ~1) /..K] 

(3.65) 

where the action integral \I> is 
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<I>(~2'~1) 
t2 

dt (r p) -J 
tl 

t· 
-!2 dt (xp + yp + zp ) 
tl 

X y Z 
(3.66) 

The meaning of Eq. (3.65) is analogous to Eq. (3.5): the initial 

51 
conditions for a trajectory are specified as 

2 2 1/2 
:::: :o-(2mE - D- - p ) 

·xl Y1 

~ large and positive 

yl 
;:: yl + p z /p 

yl 1 z
1 

xl ;:: _x + p 
1 x

1 
zl/p 

_· zl 
(3.67) 

K_x
2 
Cil' y 

1
) and Ky 

2 
(x

1
, y 

1
) are the final values of kx and ky that 

result from this trajectory, and the S-matrix element in Eq. (3.65) 

is constructed from the trajectory (or trajectories) "t-7hich satisfies 

Kx Cxl,yl) ::; k 
2 x2 

KY c:xl'y1) ;:: k (3.68) 
2 y2 

The constant C in Eq. (3.65) is a normalization factor that will be 

specified below. As usual, if there is more than one root to Eq. 

(3.68), Eq. (3:65) is a sum of terms, one for each such trajectory. 
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+ 
(E) be the S-matrix of Eq. (3.65) 

that is constructed from all roots of Eq. (3.68) for which x
1 

and y
1 

lie in one unit cell: 

0~ 
-
xl.S... a 

X 

p~ yl~ a 
y 

-

(3.69) 

If x
1 

and y
1 

satisfy Eq. (3.68), then it is clear from the symmetry. 

of the potential energy function [Eq. (3.62)] that a root to 

Eq. (3.68) will also result if one makes the replacement 

.. 

:xl -+ xl + ma···, 
X 

~ 

(3.70) yl -+ yl + na -

y 

where m and n are integers. The resulting trajectory is identical 

to the original one,simply shifted an integral number of unit cell 

dimension parallel to the surface: 

:x{t) -+ x(t) + ma: 
:X 

y(t) -+ y{t) + na·' 
y 

z (t) -+ z (t) 

pCt} -+ p (t} 

for all t. The p_re-expprfential factor in: Eq.(3.65) is the same for the 
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two synim.etrically related trajectories, but the phase, defined by 

Eq. (3.66), is changed according to 

' . 

~ <52'~1) 

+ z (t) p } . z 

= ¢(~2'~1) - ma:z:(p - p ). - nay(P - p ) 
. x2 xl . y2 yl 

The contribution to the S-matrix from this new trajectory is 

therefore .. given by 

where & 
X 

k 
X ' 
'1 

- ina ·· :{),k ) 
y y 

llk.-k 
Y Y2 

(E) exp (-ima ilk 
x· x. 

... · 
'. 

. (3. 71) 

.. ~ · .. 

. '~- .. .• 

(3 .12) 

Since the above arguments are valid for any integers m and n, the 

S-matrix element that results from all roots, 

-:--0? < xl < 00 

-.:-fX> -< Yr <; = 

is 
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-ina ~k ] 
y y 

00 

L exp[-ima ~k 
X X 

m,n=-oo · 

r; Sk k + k k (E) (~ _ exp ( -imax~k)) 
x2 Y2 • xl Y1 · m--oo 

If 

a ~k = 2TI x(integer) 
X X 

x (~ exp (-ina ~k ) ) 
n=-oo . Y y 

(3.73) 

then the sum over m will be infinite (since all the terms are unity); 

it vanishes otherwise. Stated more precisely, the Poisson sum 

formula implies that 

00 00 .. a. ~k 
Z exp(-ima 6k ) ~ L: 

X X 
m=-00 m=-oo 

o(m - X X ) 
2TI ' 

(3 .74) 

and similarly for the sum over n: 

00 00 

L: exp (-ina L1k ) = L: 6 (n 
n=-oo y y n=-oo 

(3. 7 5) 

The interference of all symmetrically related trajectories, i.e., 

the quantum principle of superposition, thus leads.to the Bragg 

diffraction law which allows only certain discrete changes in the 

x and y components of momentum. The S-matrix element S
0

, wf..ich is 
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constru~ted from those trajectories with initial values x
1 

and y
1 

restricted to one cell, is the S-matrix on the "diffraction spot 

shell". 

To summarize in more convenient notation,, let E be the 

initial translational energy and (e.,¢.) the polar and azimuthal 
l l 

angles of incidence. The initial conditions for a trajectory 

are specified by 

px = -hk sine; cos¢. 
1 

1 1.. 

Pyl 
=-trk sine. sin¢. 

l l 

P. ,..flk. case . (3.76) 
zl .:;t 

From the final values of the x and y components of momentum one 

defines the "diffraction order 11 functions 

MCxl,Y:l) (k 
xz 

- k ) 
xl 

a /2n 
X. 

N(;;l ,y 1) = (k - k ) a /2Tf (3.77) 
Yz yl y 

The relative intensity of the (m,n) diffraction spot is then given 

by 

2 
p (E) ;:; Is (E) I 
nm mn 

(3.78) 
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where 

S (E) 
mn = L: [a a 

X y 
(3. 79) 

with x
1 

and y
1 

determined by the "quantum conditionsn 

n (3.80) 
" -

and where <P is given by Eq. (3.66); the sum in Eq. (3.79) is over 
mn 

all the roots x
1 

and Y:
1 

in the intervals ( o,ax) and O,a ) , respec"'
y 

tively. The proper constants have been supplied in Eq. (3. 79) SO:~ 

that the relative intensities are normalized to unity within the 

usual classical limit: 

2 

z: Pmn z !dm! dn 1 smnl 
m,n 

1 

With a semiclassical description such as this it. is possible to 

d . . b h. 53 . 11 1 h . 1scuss ra1n ow p enomena 1n a manner para e to t e treatment 1n 

1 
. . 5,6 

e ast1c scatter1ng. _ Do11
49 

has also discussed the "quenching" of 

the diffraction spots which results when imperfect periodicities of 

the lattice are taken into account. 
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E. Photodissociation. 

The final application of classical S-matrix theory to 

be discussed is the description of photodissociation of a complex 

(e.g., triatomic) molecule. The completely classical description, 

essentially the "half-collision" model of Holdy, Klutz, and 

Wilson,
54 

is discussed first, and then the semiclassical version 

of the theory is presented. A completely quantum mechanical 

description of the process has been developed in detail recently 

b Sh 
. 55 

y ap1ro. 

The quantity of interest is the transition dipole, 

which describes the process 

(3. 81) 

(3 .82) 

where the total energy of the final (dissociated) state, E
2

, is 

related to the photon's energy by 

hv (3.83) 

from this dipole matrix element the absorption coefficient is given 

56 
by standard formulae. The classical Hamiltonian for the ground 

electronic state is of the form 
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2 
£ /2m + V£9 (3.84) 

where (p,r) are the cartesian coordinates and momenta of the.system. 

To define the initial state 1~ 1 > semiclassically, however, it is 

necessary to introduce the action-angle variables (~,g) for the 

grbund state potential energy surface v
1

; this requires that v
1 

C:) 

be separable, and in most applications one would probably go 

further and assume it to be harmonic. A parttcular set of integer 

values of the action variables ~· ~ 1 , is the classical, or semi

classical equivalent of the quantum state 1~ 1 >, and the energy 

E 1 (~ 1 ) is simply the Hamiltonian H
1 

expressed in terms of the 

action-angle variables: 

(3.85) 

(Note that rotational effects are being neglected in this simplified 

discussion; if one assumes that rotation and vibration are separable, 

then it is a trivial matter to incorporate,rotation explicitly.) The 

state I E 2 '~:[ in Eq. (3.81) is a scattering state on the excited elec

tronic potential surface V 
2 

Ct;), the state corresponding to total 

energy E
2 

and to BC being ··asymptotically in state 1~ 2 >; since the 

quantum numbers ~ 2 ref~r to the diatomic fragment BC with A infinitely 

separated, no assumptions about the potential surface V 
2

:C:) are 

required. 
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It is simplest first to use the phase space approach discussed 

in Section II B to construct the purely classical expression for 

the square modulus of the dipole matrix element in Eq. (3.81). 

Thus if H denotes the total number of degrees of freedom, one 

has 

-H 
= (2n~) !dp !d£1 

2 

ll (_: Cpl ':§.1) ) 

where (p;- ,~ 1 ) is an arbitrary set of canonical variables (since 
~1-

phase space integrals are invariant to a canonical transformation), 

it C£c{;g
1

) is the set of H-1 quantum numbers of BC that result from 

a (dissociative) trajectory that begins on the excited potential 

surface v
2

(:)_, with initial conditions (~: 1 ,i 1 ), and ~Ce 1 ,1 1 ) is the 

set of M vibrational quantum numbers of the ground state potential 

surface expressed in terms of the variables C£
1
,g

1
); the subscripts 

on the delta functions denote their dimensionality. H
2

(B
1
,1

1
) is 

the classical Hamiltonian for the excited potential surface express-

d . f ('":"' .,.. .) d -+( ) • h . . d. 1 f . . 57 
e 1n terms o ~l'Sh , an 11 E· _1s t e trans1t1on 1po e unct1on. 

In terms of cartesian coordinates and momenta the Hamiltonian H
2 

is 

£
2

/Zm + v2 (2;) (3 .87) 

but in order to evaluate:Eq. (3.86) it is most convenient to choose 

(p,q) to be the action-angle variables (N,Q); Eq. (3.86) then becomes 
1". ...., ..,.;'. \'< 
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-H 2 
(27fh) !dg,l JJ(:(~)_,g·l)) 

\ihere ~V = v
2 

- v
1

, Eq. (3.88) becomes 

-11 2 

= C2n-ti) f dSh JJ C.r.l) 

(3.88) 

(3.89) 

where El = E(~ 1 ,g,
1
). Because of the M delta function factors in · 

Eq. (3.89)
1 

theM-fold integral over Q
1 

can be carried out, giving 

the final result 

l""E . 1'"*]1\T >12 - J1(.·_,..·1)·2 h.tz·~)Mj·a(~~~V) 1] -1 
"' 2e2 ]J ::1· ,.. L" lf!.l 

(3. 90) 

where the M~imensional Jacobian determinant is evaluated at the 
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values of Q
1

== {Qi(t
1

)} determined by the H equations 

(3.9la) 

(3.9lb) 

,::t<~r 1 ;_g 1 ) is the set of H-1 asymptotic quantum numbers of BC that 

result from a dissociative trajectory beginning on potential 

surface V 
2 

(£) "t-rith initial conditions 

·~·1 ::c~l~31) (3.92a) 

·R1 ;: 

12·c~l ·S1) 
(3.92b) 

If there is more than one root to Eq. (3.91), then Eq. (3.90) is a 

sum of such terms over all roots. 

The ph:ysical picture whichma:y be attached to Eq. (3.90) and 

C 
\ . . 54 

3. 911 is as follo~rs: up until time t
1

, say, the system is in 

. 
state jN

1
>, i.e., the action variables have these particular integer 

\l 

values and the conjugate angle variables at time t 1 ,~ 1 , have random 

values in the internal (0,2n); the corresponding values of the 

cartesian coordinates and momenta at t 1 are C'l = :<~ 1 ,8 1 ), El = 

£ (~ 1 ,g
1

). A photon is absorbed at ttine t
1

, \<Jhich changes the 

potential function from v
1 

(_:) to v
2
c9, but which conserves the 

instantaneous values of the cartesian coordinates and momenta. 

Since the absorption.~ process conserves the cartesian variables, the 
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2 . . 
kinetic energy, p /2m, cannot change, so that the photon's energy 

hv :: E
2 

- E
1 

must be matched exactly by the instantaneous change 

in the potential energy [Eq. (3.91 b)]. A classical trajectory 

begins at time t
1 

on the excited potential surface with initial 

conditions (-EJ., El), leading to dissociation of ABC into A + BC (:Q). 

In order for the M-1 quantum numbers of BC to turn out to be the 

specific integer values r::z• and for the potential energy difference 

!:N to be exactly hv, the M variables :g
1

.:: {Qi (t
1

)}, i = 1, ••. ,M, 

must be chosen to be certain specific values [Eq. (3.91)]. The 

intensity of the transition is the square modulus of the transi-

tion dipole function at :_
1

, weighted by the Jacobian which maps 

the initial ra:ndom variables 9J._ onto specific final values of 

n and ./JV. 

It would not be practical or even desirable, however, to 

carry out a classical calculation in the above framework. • The 

practical difficulty would be related to finding the roots of 

Eq. (3.91), the usual multi-dimensional root-search problem, and 

the result would be undesirable because ~e'fd~ >:in the Jacobian 
.. --v«' ... · 

determinant cause singularities, classical nrainbowsn, in the 

classical probability distribution in Eq. (3.90). To remedy_ 

· both of these features one averages the classical expression 

over a quantum number increment about ~ 2 and over some increment 

(3. 93) 
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.. ··. 
• • .' '.~ :. t ~ •• 

and from Eq. · (3.88) this is seen to give 

where 

if 

and 

X 1 

1 
~2 -2. < 

E: 

.2 
El + ~ 2. 

. ..1.. 1 
:1z · 2 

·.; 

and X·= 0 otherwise. A Honte Carlo procedure "rould probabiy be the · . 

. 54 
most efficient tvay to carry out such a calculation; · thus· with 

~l fixed~ _g
1 

would be chosen at random 

21T~. 
1 

;<' 

.. ·~· 

.. ' 
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2 
are then determined and the value of ~(E 1 ) /E added to the 

appropriate quantum number and energy "box"~ with the procedure 

repeated many times. 

The semiclassical version of the above classical description 

is fairly obvious; the matrix element itself (i.e. the amplitude) 

is constructed first and then the square modulus formed. The 

classical limit of the amplitude is the square root of the class-

ical expression in Eq. (3.90) times a phase factor, and analogous 

to the discussion in Section II B one can see that the appropriate 

phase is 

(3.95) 

. C) 
where F

2 
1. is the F

2
-type generator for potential surface i. 

Since ;:
1 

and ~l refer to the same time, t
1

, and since v
1 

(£) is 

separable, the first term in Eq. (3.95) is simply the sum of one 

dimensional generators of the form in Eq. (2.5) for each vibrational 

:mode. In the second term o.f Eq. (3. 95), however, t
1 

and, ,Q
2

E
2 

refer 

to diJferent times, so it is convenient to think first of a canonical 

transformation from ,:
1 

to ·'5z• t~e cartesian coordinates at time t
2

, 

and then a transformation from ~ 2 to (~ 2 ,E 2 ); by the general 

. . f b" . . . 1 f . l, 9 
prescr1.pt1.on. or com 1.n1.ng success1.ve canon1.ca trans ormat1.ons, 

one has 

(3.96) 
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and the first term here, the generator of the dynamical transformation 

from ~l to ~ 2 , is known
58 

to be the action integral along the trajectory 

t2 

= -f dt g . i:, 
t 

~ 

::·1 

(3. 97) 

in the second term of Eq. (3.96) ~ and (~ 2 ,E 2 ) both refer to time t
2

, 

so that it is simply the :~? 2 -generator for potential surface v
2

(:s_) at 

'&' (2) (. E ) p R + f BC ( M-1 ) 
/-; 2 'S2 ';!-2 2 = 2 2 2 ~2 , t;z (3. 98) 

· BC 
where f

2 
is the J?

2
.-type generator for diatomic molecule BC. 

The semi.classical expression for the dipole matrix element is 

therefore given by 

[ 

. ] -1/2 . H 9 (r;,,t.V) 
2Til) dQ 

!:"1 

(3.99) 

where 

(3.100) 
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There will typically be more than one trajectory that obeys the 

appropriate double-ended boundary conditions, i.e., more than 

one root to Eq. (3.91), so that Eq. (3.99) will be the sumof 

several such terms. 

If the excited state potential surface is repulsive, so 

that the dissociative trajectories. are "direct", the dipole 

matrix element will be a smooth function of E
2

, i.e., the 

aosorption spectrum is "continuous". If, on the other hand, 

V
2 

({) is attractive so that the complex ABC lives a':long time 

before dissociating into A and BC, the quantum number function 

:r_:<t~ ,g
1

) will be highly structured (cf. Figure 8) and thus a 

la:l:·ge number of terms. vrill contribute to Eq. (3. 99). Analogous 

to the semiclassical discussion of resonances in Section II D, 

these many terms will interfere destructively at all but certain 

specific values of E
2 

at which the interference is constructive 

and the matrix element extremely large. In such cases, therefore, 

there w·ill be a "line spectrum", with the width of the absorption 

lines related to the time the excited state lives before dissociating. 
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IV. CLASSICAL S-1·1ATRIX: CLASSICi\LLY FORBIDDEN ·pROCESSES. 

Classically forbidden processes are those that do not take 

place via ordinary classical dynamics. The simplest example of 

such a process is one-dimensional tunneling through a potential 

barrier, and the "classically forbidden" concept is essentially 

a generalization of tunneling to dynamical systems of more than 

one degree of freedom. In addition to being one of the most 

intrinsically interesting aspects of classical S-matrix theory, 

the ability to describe classically forbidden processes - for 

.which a completely classical theory is obviously inadequate -

provides an extension of classical trajectory methods that may 

have practical utility, particularly the "partial averaging" mode 

of calculation discussed in Section IV C. 

A. · ·Introductory Discussion. 

The essential idea is that classical forbidden transitions 

are treated by analytic continuation. To motivate the approach, 

consider evaluation of the definite integral 

00 

·I .-: f dt g(t) exp IH(t)/11_] (4 .1) 

14 
by the method of stationary phase; this is an asymptotic approxi-

mation which becomes exact as~+ o and which is the basic semi-

classical approximation. If t is the point of stationary phase, 
0 

i.e., the root of the equation 

fl(t) F 0 (4. 2) 
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then this approximation gives
14 

. t2Tiin. j 1/ 2 
I ~ g (t ) f' ' {t ) 

0 . 0 . 

exp [if (t ) /-TI.] 
0 

(4.3) 

IK there is more than one point of stationary phase, i.e., more 

than one root to Eq. (4.2), then Eq. (4.3) is a sum of similar 

terms~ one for each such root. 

If there are no roots to Eq. (Lf.2), then the "primitive" 

stationary phase approximation implies 

I ~ 0 

although it is true that in such. cases the value of the integral 

is small~ one o;ften w:ishes to know how small -2 . 10-4. 10' , say, or 

To determine tlie asymptotic approximation to the integral in such 

cases one analytically continues Eq. (4.3), the mathematical 

apparatus for which is the "method of steepest descent".
59 

This 

approach notes that although there are no real values of t which 

satisfy Eq. (4. 2), there will in general be complex values y_rhich 

do so - provided, of course, that it is possible to analytically 

continue the function f(t) into the complex t-plane. The method 

of steepest descent then deforms the path of integration in Eq. 

(4.1) ;from the real t-axis, 

I ~ fdt g(t) expiif(t)fliJ 
c 

(4.4) 
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where C is a contour in the complex t-plane which pases through 

the "complex point of stationary phase" u~. The resulting ap
o 

proximation
59 

for the integral is exactly the same as Eq. (4.3), 

the only difference being that t , the root of Eq. (4.2), is 
0 

now complex, and g(t ) and f(t ) are the (unique) analytic 
0 0 

continuatiop.s of g(t) and f(t). Since t is complex, g(t ) 
0 0 

and f(t
0

) are in general also complex, so .that the sqtiare~·modulus of 

the integral·~ which~ ;i.s. ust1al-ly :the quantity of interest, is given by 

2 

I I I 
2 

~ lg<t. ) I· 
0 

27f'l'l 
lf''(t )I exp[-2Imf(t 0 )/~]. 

0 

The original integr,al in Eq. (4.1) requires the functions f(t) 

and g(t) only at real values of t, and it is the asymptotic 

approximation to the integral which introduces their analytic 

continuation to.complex t. 

(4.5) 

To illustrate how classically forbidden processes are described 

with this type of approximation, consider tunneling through a 

one-dimensional potential barrier as sketched in Figure 9. Apart 

from some irrelevant constants, the amplitude for the particle 

going from the left to the right of the barrier at fixed energy E 

is a matrix element of the green 1 s function, which in tur.tf is 

a Fourier transform of the propagator: 

·<tx~] G (E) lxl> ;=; (Hi) -1 ! d t e iEt/11- <Jezl e~iHt/11 ]xl> . 

0 

(4.6) 
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i 
I 

(4. 7) 

where the classical.,...limit propagator has oeen invoked in Eq. (4.7). 

Consistent with- classical-limit quantum mechanics,
9 

the integral 

over t is evaluated by stationary phase, the time of stationary 

phase being determined by 

(4.8) 

But classical mechanics implies that the time derivative of the 

action integral along a trajectory is the negative of the energy 

of the trajectory: 

(4. 9) 

E Cx
2 

,x
1

; t) being the energy of the trajectory that goes from x
1 

to x
2 

in timet. It is clear intuitively (and·can be shown 

rigorously) that the trajectory which connects x
1 

and x
2 

in a 

very short time must correspond to a very high energy, and the 

one that takes a long time to go from .x_
1 

to x
2 

corresponds to an 

energy just slightly above Vmax; i.e., 

~im E(x2 ,x1
; t) "" 'it oo 

t-+· 0 
(4.10a) 



.Hm E(x
2

,x
1
;t) 

t-t= 

v 
max 

~66-

Thus for any value of E on the range 

V <E<;co 
max 

there is a real value of t, .0 < t < co, which satisfies the 

stationary phase condition, Eq. (4.8); this corresponds to 

the :..ordinary classical trajectory which goes from x
1 

to x
2 

(4.10b) 

if E > V • For E < V ·, however, it is clear from Eq. (4.10) 
1ll8.X max 

·that no real value of t satisfies Eq. (4.8), and the transition 

is thus classi.cally ;forbidden, i.e., there is no real-valued 

trajectory at this energy· >vh.icli ooeys the appropriate double-

., 
ended boundary conditions. It is possible to analytically 

continue ~ Cx
2 

,.x
1

; t), however, and find a complex value of t v7hich 

satisfies Eq. (4 .8); the stationary phase approximation then 

proceeds in the manner discussed above, and the resulting · 

expression from the transition amplitude is the same as if 

the transition l;vere classically allmved. 

except that the timet , the root of Eq. (4.8), is complex. 
0 

(4 .11) 

The action integral <P (x
2 

,x
1

; t) is the time integral of the 

Lagrangian 



t 

! dt' 
0 

-67-

(4.12) 

where x(t') is the trajectory determined by solving the equations 

of motion with the boundary conditions x(O) = x
1

, x(t) = x
2

• 

ln order to analytically continue ¢ to complex time, therefore, 

it is necessary to analytically continue the trajectory x(t') 

itself to complex time. For systems >vith more than one degree 

of freedom trajectories must of course be determined by numerical 

int~gration of the classical equations of motion step by step in 

time, so that the <l::tnalyt,ic:continuation of a trajectory (and 

therefore the action integral) to complex values of time in 

general proceeds as follows: rather than incrementing the 

time -variable along the reai t .... axis, one increments it along the 

desired contour in the complex ·t plane. Since numerical integra-

. fh .. f · 3 . h t1on o t e equations o mot:;wn amounts to approximat1ng t1 e 

coordinates and momenta at e.ach integration step by polyn9mials 

in t .,-. a manifestly analytic representation .,... it is clear that 

numerical integration step by step along a complex time contour 

does indeed generate the analytic continuation of the coordinates 

and momenta, and thus the action integral, from which the classical 

S4!latrix is constructed. The expression for the classical S-matrix 

element for a classically forbidden process is the same as for a 

cl~ssically allowed one IEq. (3.5)], the orLly diff~rence being 

that the appropriate trajectory is complex-valued. 

Analogous to the present use of complex time to construct 

amplitudes which refer to a definite energy is the more familiar 
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use o;E complex energy to describe time dependence. The most 

common example of this occurs when considering the decay:of a 

60 
prepared state; The probability amplitude that the system 

has: not decayed from its initial state I¢> is a diagonal matrix 

element of the propagator, -v1hich is conveniently ,m~itten as a 

transform of the green's function {essentially the inverse of 

Eq. (4. 6)]; 

• (4.13) 

Clearly only real values of E appear in this expression, but 

:::;:Lnce the analytic continuation of the green's function G +(E) 

into tl1e lower half E-plane often has a pole in that region, 

A/(E '""'E + if/2) 
r 

it is· conven'ient to· convert tlte above real integral into a 

60 
contour integral enclosing the lower half E-plane. If there 

is only the one such pole, then evaluation of this contour 

integral is trivial, giving 

(4.14) 

(4 .15) 

the square modulus of; whi.ch gives the probability that the system 

bas. not yet left i.ts initial state; 
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e 
-ft/-K 

(4.16) 

Thus although energy and time are obviously real physical 

quantities~ it is a useful mathematical devise to invoke the idea·:_ 

of complex energy (a 11complex :'eigenvalue"· or complex pole of the 

green's function) when considering time evolution, and conversely, 

the notion of complex time ~vhen constructing amplitudes that 

refer to processes at a definite energy. 

B. · Applications! 

Classical S-matrix theory has been applied to classically 

f.oroidden processes in A + BC collision systems, both collinear 

and three-dimensional models, reactive as well as non-reactive 

processes having been studied. This section discusses some of 

these results. 

Consider first the simplest case, the non-reactive collinear 

system, for which there is just one internal degree of freedom. 

To construct the classical S-matrix for the n
1 
~ n

2 
transition 

one must find the roots of the equation 

(4.17) 

~zhere the meaning o£ the quantities is the same as discussed in 

Section III B. ;Figure 10 shows the function n
2 

CCr
1

) for n
1 

= 1 

and for an energy such that all inelastic·· transitions are 

classically·forbidden, meaning simply that they have small 
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probabilities; this is actually the typical situation for 

vibrationally inelastic processes in thermal energy kinetics. 

J?or n
2 
+ n

1 
there are thus no real values of q

1 
vrhich satisfy 

Eq. (4.17); there are, hovmver, complex values of q
1 

which do 

so - provided of course that one can analytically continue the 

function n
2

(q
1

) to find them. 

To evaluate n
2 

(Cj
1

) for complex values of q
1 

one must 

integrate the classical equations of motionwith complex-

valued initial condi.tions. During the course of such a· 

trajectory, all coordinates and momenta become comple:x

valued~61 but this causes no difficulties since the objects 

. o£ physical meaning, the quantum numbers in the asymptotic 

regions, are real.,..valued for the trajectories which satisfy 

the appr.opria te double-e,nded boundary conditions; Section IV B 

o£ reference 9 discusses these points in some detail. The 

classical S..,-matri:x is still given by Eq. (3.25), but there is 

no~r typically just one complex root of Eq •. C4.17) for which 

Im <I> > 0. so that the vibrational transition probability is 

where <I> is the action integral of Eq. (3.6). The exponential 

damping factor which multiplies· the "classicaln probability 

factor (the reciprocal Jacobian) is the multidimensional 

(4 .18) 

generalization o£ the tunneling probability for one-dimensional 
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barrier penetration, i.e., classically forbidden processes are 

essentially a generalized kind of tunneling. 

The first calculations of the type outlined above were 

62 
carried out by Miller and George; similar calculations ·were 

63 
carried out.independently by Stine and Marcus. These results 

are in excellent agreement (a few %) with the accurate quantum 

24 . 
mechanical values obtained by Secrest and Johnson even for 

-11 
extremely weak transitions with a probability as small as 10 • 

It is thus encouraging-that the semiclassical model is able 

to describe such quantum-like phenomena for which ordinary 

(i.e., real-valued) classical trajectory methods would clearly 

be inapplicable. 

It should be noted in passing that for this non-reactive 

collinear system a completely quantum mechanical (i.e., coupled 

channel) calculation may actually be no more difficult - i.e. 

require no more computer time - than these semiclassical cal-

culations. Whether this is true or not is beside the point, 

of course, for the obvious .interest in the semiclassical model 

is that it can be applied to physically realistic three-dimen-

sional systems (see Section IV C) for which coupled channel 

calculations are usually unr'easonable-·uilles.s s:f.rrplifyj~ng, ·aP.prbximations are 

introduced. The purpose for carrying out semiclassical cal-

culations for collinear systems is to obtain definitive 

comparisons- with reliable quantum mechanical values (which 

exist only for collinear systems). 
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Do11
64 

has applied classical S-matrix theory to the 

collinear A + BC collision 'vhere atom A and B interact via. 

a hard sphere collision; this is the model studied quantum 

mechanically by Shuler and Zwanzig.
65 

Doll treats classi-

cally allowed and forbidden processes and finds good agree-

ment between semiclassical and quantum mechanical transition 

probabilities. This is a reilk1.rkable achievement for the 

semiclassical theory, for the hard sphere interaction is 

far from the llsmooth" potential that one normally assumes 

to be necessary for the dynamics to be classical-like. 

George and Miller
34 

have also treated classically 

forbidden transitions in the collinear reactive system 

H + H
2 

Cn
1 

= O) + H
2 

(n
2 

= :0) + H at collision energies 

below the classical threshold for reaction. The reaction 

probability is given by Eq. (4.18) for this case also, and 

the only new feature of the calculation is that the complex 

time path must be chosen to insure that the reaction does 

occur; choice of a purely real time path would of course lead 

to a non-reactive trajectory at these energies. Section IV D 

discusses some of these aspects of the calculation in more 

detail. 

Since this calculation by George and Miller
34 

there 

have been several extensive quantum mechanical calculations 

of the reaction probability in this energy region on the 

66 
Porter-Karplus potential surface; the results of Schatz 
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and iKuppermann
67 

and Duff and Truhlar
68 

are in excellent 

agreement and can be considered to be the numerically exact 

quantum mechanical values. Figure 11 shows the comparison 

. 34 • 67 68 
of the semiclassical and quantum mechan1cal ' values 

from an energy just below the classical threshold down to 

-10 
where the transition probability has dropped to belm.r 10 • 

The agreement over the entire range of ten orders of magni-

tude, for this process which should be as highly quantum-like 

as any encountered in molecular dynamics, is impressive. The 

relative error in the semiclassical values, 35-50%, however, 

is greater than that for the non-reactive collinear examples 

discussed above (typically a few% relative error). Whether 

this is due to inherent limitations of the semiclassical 

model or to some semiclassical effect which has been over-

looked, is not clear at present. The direction of the error 

is mystifying since arguments based on the analogy to one-

dimensional tunneling imply that the semiclassical result 

should err by being too large, the opposite of ~.;hat is seen 

in Figure 11. 

With regard to three dimensional A + BC collision systems, 

Doll and Miller
69 

have calculated a few specific S-matrix 

elements .for classically forbidden ;~;~~~~o~;-,a~~;.:;~;;-~;~;·-_;;} 
<,'R~+ H

2 
collisions. Agreement with quantum mechanical values 

is good, within the uncertainty of the correct quantum mechanical 

values. A number of S-matrix elements have also been calculated 

by Doll, George? and Miller
35 

for reactive collisions of 
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in three dimensions on the Porter-Karplus
66 

potential surface, 

again in the tunneling region. Agreement with the quantum 

70 
mechanical calculations of Wolken and Karplus is quite 

reasonable (within·a factor of 2), but here again the quantum 

mechanical values, aithough the most serious treatment thus 

far, are p-robably not the numerically exact quantum results 

for this potential surface. 

In the three dimensional A + BC ~xamples discussed above 

the S-matrix elements 

were calculated semiclassically. Thus with the initial quantum 

numbers n
1
,j

1
,£

1 
- and the total angular momentum J and total 

energy E- held fixed, the conjugate angle variables q , q. , 
nl J1 

q~ must be chosen iteratively so that the final quantum numbers 
1 

take on their desired integer values; i.e., one must solve the 

three equations 

n2 (qn 'qj 'q £ ) = n2 
1 1 1 

j 2 (qn 'qj 'q £ ) = j2 
1 1 1 

~2 (~ ,q. ,q£ ) - ~2 ( 4. 20) 
1 Jl . 1 



-75-

simultaneously. (See Section III E of reference 9 for more 

discussion of the semiclassical description of three dimen-

sional A+ BC collision systems.) Because of the difficulty 

of finding the roots of Eq. (4.20), a multi-dimensional root-

. search problem, it is not practical to calculate the large 

number of individual S-matr.ix elements that would be necessary 

in order to construct actual cross sections. (Although Tyson, 

Saxon, and Light
33 

have, with considerable effort, carried out 

such calculations for coplanar H + H
2 

collisions.) The value 

of these three dimensional calculations has been to show that 

the semiclassical model, fo the extent that it can be applied, 

provides a reasonably accurate description of the quantum 

effects in molecular collision dynamics. As a practical means 

for carrying out calculations for three dimensional A + BC 

collision processes the 11partial averaging" approach described 

in the following section is fortunately much more useful. 

c. Partial Averaging. 

When considering three dimens1onal collision systems 

one is of course not interested in individualS-matrix elements,. 

but rather cross sections that involve sums over many of them. 

Under realistic conditions, too, the cross sections of interest 

are a sum and average over some of the final and initial quantum 

' 
states. For the still quite idealized process 
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for example, where the m-components of the rotational states are 

not observed, the integral cross section is a sum over three 

quantum numbers: 

1T 
l: (2J + 1) 

J,.Q,l,.Q,2 

(4. 21) 

As discussed in Section III B, quantum interference structure 

tends to be quenched by these sums, and if the transition is 

classically allowed, the semiclassical theory then effectively 

degenerates to a completely classical result. 

To see explicitly how the Honte Carlo classical procedure 

emerges, note that if interference terms are discarded the 

square modulus of the classical. S-matrix [Eq. (3.5)] for a 

classically allowed transition is given by (setting-11 = 1) 

(4. 22) 

so that Eq. (4.21) becomes 

(4.23) 
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where it has been assumed that enough quantum numbers contribute 

to the sums in Eq. (4.21) to justify replacing them by integrals. 

If there are at least a few values of n
2 

and j
2 

that are classi

cally allowed transitions from the initial values (n
1

, j
1
), then 

it is permissible to average Eq. (4.23) over a quantum number 

71 
Hidth about the integer values of n

2 
and 

. + 1 
J2 2 

1 
2 

cr. +nJ.(E1),(4.24) 
n2J2 1 1 

and with Eq. (4.23) this becomes 

TI 

2 
/dJ/d~ 1 !dn 2 /dj 2 /d~ 2 r,_ (2jl+l). 

2J + 1 

(2TI)
3 

~1 

(4. 25) 

The advantageous feature of this averaging process is that Eq. (4.25) 

now involves an integral over all the final quantum numbers n
2
,j

2 

and ~ 2 , so that a change of variables of integration from (n 2 ,j 2 ,~ 2 ) 

to their conjugate initial values (q ;c,_. ,"q~ ) 
nl J1 1 

i.e., 

- introduces a Jacobian factor which exactly cancels the one in 

Eq. (4.25). The resulting expression for the cross section is 

considerably simplified: 



.. 
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- - - 2J + 1 
J dJ\ J dJ f dq J dq . J dq .Q, . .. 3 

· nl J1 1 · (2TI) 

where h(x) is the unit step ~unction~ 

b._(x) =: 1 ' .X > a 

i.e. , the product of the two step ;functions is 1 if 

. 1 ( ) +1_ J2 ~- < j2 qn ,q. ,qn < j2 2 2 - 1 J1 hl 
, 

and zero otherwise. To carry out such an integral in_ practice 

one simply sHeeps the integration variables - now all initial 

(4.26) 

conditions- through'their complete ranges and assigns the final 

values n
2

(q ,q. ,q.Q, ) and j
2

(qn ,qJ. ,q£ ) to the appropriate 
nl J1 1 1 1 1 

. quantum number "boxesn, thereby gene.rating in one calculation 

the cross sections from (n
1
,j

1
) to all classically allowed final 

states. 

The limits o;f integration are £ ~ 0 -+ ro and J :=: lj
1 

- .R-
1
1 

-+ (j
1 

+ 9-
1

)· but Eq. (4.26) is cast in a more obvious 11onte Carlo 
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form by replacing .R-
1 

by the impact parameter b, 

'.· ... 

and replacing J by the variable •?j, 

J + 1= [(.R, 
2 1 

.· 1/2 

ji)
2 + (2£

1 
+ 1) (2j

1 
+ l):z] 

;for which the integration limits are ~z "' 0 + 1. . It is also · 

customary to cut the impact parameter integration off at some 

value B beyond.which there are no trajectories which lead to 

the transition of interest; since 

B 

'IT[ db 2b 
0 

., 

. where 

s ,... (b/B) 2 ·• 

. •1. ~ 

<'r~h·~ changes of variables implied· by Eqs. (4 ~ 27) , ( 4.28}, and 

(4.29) lead to'the desired result: 

. I . 

(4.21) 

(4.28) 

(4.29) 

l, 1 1 . 1 1 

0 . + ·• .. CE{)~;,JTB 2 J d~ r •.(fz! d (q /2TI) r d (q. /2rr) fd(q.R, /2rr) 
n2J 2 nlJ 1 · · • · 0 0 0 . nl . 0 J 1 · 0 1 · .. 

(4.30) ' 
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where 

1/2 
+ 1) z] 

The cross section which is suinmed over find rotational states, 

is given by a similar expression: 

1 1 1 1 1 

a-- . (E ) 
n +- n j 1 

2 1 1 
::: TIBZ fdf; fd'i Jd(q /2TI) 

0 0 0 nl 
Jd(q. /2TI) 
0 Jl 

Jd(q9, /27T) 
0 1 

(4.31) 

Since all five integrals in Eqs. (4.30) and (4.31) have limits 

0 -+- 1, implementation of Honte Carlo integration procedures is 

straigh t-fonvard. 

If the n
1 

j 
1 

-~ n
2
j 

2 
transition is classically forbidde~ then 

although the above development is obviously inapplicable as it 

stands, it is still possible to follow it to some extent: Thus it 

is still a good approximation to neglect interference betvreen 

various trajectories which contribute to the same S-matrix element-
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since they will be quenched by the sums - so that Eq. (4.22) is 

modified only by the addition of the exponential damping factor: 

= 

X (4.32) 

Since only a very few vibrational states are involved- because 

the transition is weak - it is not possible to average over the 

vibrational quantum number as was done above •. However there -v1ill 

still typically be a reasonable number of final rotational states 

that have comparable transition probabilities. For the H + H
2 

Cn
1 

= 0, jl = 0) reaction in three dimensions, for example, the 

72 
classical traJectory results of Karplus~ Porter, and Sharma 

shoH that final rotational states j
2 

= 0 + 5 all have comparable 

probability for energies just above the classical threshold even 

though n
2 

= 0 is the only energetically open vibrational state. 

The "partial averaging" procedure is thus to average over 

the final rotational state but not the final vibrational state. 

(The reason one wishes to average over as many final quantum 

numbers as possible is that boundary conditions for those degrees 

of freedom can be replaced by initial conditions, thereby 

eliminating the root-search problem.) Since 

Jd.Q, Jd" 2 ]2 
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the partially averaged expression is 

wliere ~ is not integrated over> in Eq. (4.30) but ratb...er must be 
1 

chosen to oe that spec:Lfic (complex} value for whiJ::Ii 

(4 .34) 

The root-search problem has not been eliminated, but has oeen 

reduced to a one dimensional one which must be carried out many 

. 73 
tJ.:mes. 

The same changes of variables as introduced above in Eqs. (4.30) 

and (4.31) can also be made in Eq. (4.33); so that the more useful 

expression for the cross section, summed over j
2

, is 

where 

1 1 1 1 

= nB
2 fd~fdzfd(q. /2n)fd(qt /2TI) 

0 0 0 Jl 0 1 

•':' 

(4~35). 

(4.36) 

Dimensionally, Pn defined oy;. Eq. (4 •. 36} is a collinear-like 
2 ,nl . 
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vibrational transition probability Icf. Eq. (4.18)] which depends 

parametrically on the initial conditions of the other degrees of 

freedom. The analogy to a collinear collision is purely formal, 

however, for there are no dynamical approximations which have 

fieen introduced; the only approximations involved, beyond that 

of classical S-matrix theory itself, are the neglect of inter-

ference terms bet>reen different traj ect~ries that contribute to 

the same s .... matrix element and the ass1.UT!ption tli..at enough j 
2
-values 

nave comparable probability- for a sum over them to be replaced 

by an integral. 

The classically allowed version o:l; Eq. (4.35}, namely 

Eq. (4.31}, can also fie written in die form of Eq. (4.35) by 

defining the classically allowed vibrational transition probability 

as 

(4.37} 

whl.ch. is also recogntzed as the forn:t of the averaged vinrational 

transition proBability for a collinear -wodel Icf. Eq. (3.39)]. 

(J;or truly collinear systems it is a poor approximation, of 

course, to ignore the interference terns, hmrever, since there 

are. no averages over other var:;tables to quencli them.} In Eoth 

the allowed and forbidden cases the CJ;"os-s section can oe written 

74 
in tile phenomenological form o;t;ten used in ,-energy trans;t;er theory, 
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(4.38) 

where the "average transition probability" is the average over the 

four initial conditions as in Eq. (4.35), with the integrand given 

by Eq; (4.37) and Eq. (4.36) for the classically allowed and. 

forbidden cases, respectively. 

Although only integral cross sections have been discussed, 

:Lt should be clear that dHferent:Lal cross sections, t.e., 

angular distributions, can also be generated within the Honte 

Carlo framework; these are defined by 

Cf + . (E
1
1 ..., fd (cos B) (J 

nj 
(cos 8,E

1
) (4.39a) 

n2 nlJl n2 + 
. 1 1 

;:: [dj 
2
Jd(cos 8) (J 

(cos 8,E
1
). (4.39b) n2j2 +n 

], j 1, 

To obtain the n
1

j
1 

+ n
2 

cross section differential in final rotational 

state and in scattering angle - i.e., a . . (cos 8) 
n2J2 + nlJl ·. 

there-

fore, one simply. defines a set of "?z-boxes" and "cos e -boxes", 

and with the integration variables in Eq. (4.35) chosen by Monte 

Carlo the numerical value of the integrand, i.e., the vibrational 

transition probability, is assigned to the j2 -and cos 8 -box 

which corresponds to the final vaues of j
2 

and cos 8 for the 

trajectory which satisfies Eq. (4.34), i.e., the one from which 

the transition probability in Eq. (3.46) is constructed. The 
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distributions in jz and cos e are thus obtained simultaneously 

with the computation of the integral cross section cr 
nz + nljl' 

the only limitations being the usual Honte Carlo ones - that is, 

the more differential the quantities desired, the more Honte 

Carlo points required. Thus it might require only 50 Monte 

Carlo points, for example, to evaluate the integral cross 

section cr 
nz 

to within 10% statistical error, but a 
+ nljl 

larger number of points would be required to obtain the 

distribution of final rotational states, eJ • • , 
nzJz + n1J1 

and 

a still larger number of points to obtain the "doubly 

differential" cross section, cr • + . (cos 6), differential 
nzJz n1J1 

in j 2 and cos 8~ to within 10%.statistical error. It sounds 

very much like the experimental situation: The more detailed , . 

the information desired, more is the effort which is required. 

Preliminary results of calculations such as these have 

been reported by Miller and ~czkowsk/ 5 
for the 0 -+ 1 vib-

rational excitation of Hz and He. Preliminary calculations 

have also been made
76 

for vibrational excitation of Hz by 

L
.+ 

J_ ' 
and comparison with the coupled channel calculations of 

77 
Lester are quite encouraging. Figure 12 shows the cross 

sections cr . . , for (n
1
,j

1
) = (1,0) and n

2 
= 0, as a 

nzJz + n1J1 

function of the final rotational state, for an initial 

translational energy of 0.684 eV. Since there is a 10-20% 

uncertainty in these preliminary semiclassical results, and 

probably a similar level of uncertainty in the quantum 
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. 78 
mechanical values, the agreement is essentially exact at 

this stage. Also shmm in Figure 12 is a phase space 

distribution 

€(n2 ,j
2

) being the vibrational~rotational energy levels of 

R
2

, which has been normalized to the total cross section of 

the quantum and semiclassical calculations. Tfrus although 

there is consideraBle rotational excitation i.n the. 1 -+ 0 

Yi.nrational deactivati.on, i.t is not nearly- so -much as a 

completely rando111 redist.rioution of the. rotati.onal energy. 

D. · Numetical Iil'tegration 6f ComJ?l,e.x..:.valued Trajectories. 

Although the f,ormalism of classical S4natrix tlieory 

deals -with initial and ;t;inal values of acti.on-angle variables, 

it is actually most convenient to carry out the numerical 

integration of Hamilton's equations in cartesian coordinates. 

and momenta. The procedure is that one specifies initial 

conditions in terms of action-angle variables (e.g., n
1

,q , 
. nl 

jl,qj ' 9-l.q,Q, 
1 1 

.), transforms these into initial conditions 

for the cartesian variables, carries out the numerical integra-

tion of the trajectory in cartesian variables, and at the end 

of the trajectory transftoms the final values of the cartesian 

variables' into final values of the action-angle variables 

(e.g., n
2
,j

2
,9-

2 
••• ). Appendix C of reference 27 gives the 

expressions for the initial values of the cartesian variables 
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tn terms of the action-angle variables (see also Section II B 

of reference 69). Vlith regard to the transformation at the 

end of the trajectory, the final angular momentum variables 

j
2 

and 9,
2 

are easily determined from the cartesian variables 

By using the classical relations 

J2 L~2 x Et) · <+2 x £'.2) 1
112 

7,2 = [ (~2 x ~2) • C~2 x ~2J 1/2 
! .• 

where C£.
2
,£

2
) are the cartesian variables of the diatom and 

<t:;.,~) the cartesian variables for the atom-diatom separation. 

The final vibrational quantum number is determined from the 

cartesian variables by first computing the total energy of 

the.diatom 

v(r) being tfi.e vibrat:L.onal potential of the diatom, and then 

solving the eq,ua tion 

tor n
2 

. (since j 
2 

is known}, where s Cn,j 1 ts the WI<B energy 

level formula for the diatom; :;Lt is usually knm.v:n as q, .Dunfuun 

(4 .41) 

(4.42) 
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·expansion. Alternatively, with c:
2 

knovm from Eq. · {4.41) n
2 

can be 

computed directly from the WKB quantum condition: 

r> 1/2 
! dr {2m.[c:

2
- v(r)] ~ j

2
2
;r2} (4.43) 

r< 

.. 
To a large extent the actual numerical integration of complex-

valued trajectories is the same as for ordinarr real-valued ones; 

this is possible br taking advantage of the complex arithmetic cap-

abilities of FORTRAN IV. Thus it is only necessary· to declare all 

the coordinates and momenta, and the time increment, to oe COMPLEX 

variables and use essentially- the same numerical integration algor~-

. 79 . . .. 
thm - e.g., Rung-e.,..JZutta, Ada:rris....:£1oulton, etc. - as used for real~ 

valued trajectories~ Since it is often conveni~nt, however, to 

vary the direction in the complex. time plane of the complex time 

increment, Miller and 
. 62 

George developed a variable step-size 

predictor~corrector algorithm; it has the variable step-size and 

self-starting advantages of Runge-Kutta routines with the efficiency 

of a predictor-corrector (e.g., Adams-Houlton) method. Appendix C 

of reference 62 gives the predictor and corrector formulae for the 

. 6 
fifth order [error 'V O(h )] version of the algorithm; U:sed in the 

79 
PECE mode, the integrator has excellent stability characteristics. 

The principal feature \vhich distinguishes the numerical 

integration of complex-valued trajectories from real-valued ones 

lies in the flexibility one has in choosing the complex time path 

along tvhich time is incremented. Although the quantities from which 

the classical S-matrix is constructed are analytic functions and thus 
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.g 
independent of the particular time path, there are practical 

considerations that restrict the choice. Thus although trans-

lational coordinates behave as low order polynomials in time, 

so that nothing' drastic happens to them "Then t 1Jecomes complex, 

the vibrational coordinate is oscillatory -

r(t) - r rv cos(Wt + Q) 
eq 

.,... so that it can become exponentially· large along a complex t:ilne 

path. The' complex ti-me path. must Be chosen, therefore, in order 

to stabilize the vibrational motion.· 

There are a var::Lety- of ways of stabilizing toe vibrational 

motion, but the most satisfactory procedure we have found to date 

i.s to head the oscillati.en always toward its next equilibrium 

position. Thus at timet the values r , i: , i:" Ir ;::: r(t ). etc.] n n n ·n n· n ~ 

are known, so that for t near t one has the approximation 
n 

r(t) - r + i: (t 
n n 

"'" t ) + 1:. i:" (t 
n 2 n 

2 

t ) 
n 

and one wishes to choose the next time, tn + 
1

, so that 

r(t ' · r 
n + 11 = · eq 

solving Eqs. (4.44) and (l •. 4S) gives 

(4.44) 

(4. 45) 
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IJ.t - t 
1 

.,.. t 
n + n 

cr·) -1 {- :r ± [i-
2 

+ 2f' (r = 
n n n n eq 

(4.46) 

with the ± sign chosen to insure Re(IJ.t) > 0. 
80 

Actually one lvishes 

only to cause r(t) to head in the direction of r ; thus the new 
eq 

time increment is chosen to have the phase of that in Eq. (4.46) 

but the magnitude determined by the truncation error .. estimate. of 

h 
. 62 

t e 1ntegrater. If IJ.t is given by Eq. (4.46), then the new 

time increment is chosen as 

ILCLS.t) tl LS.t 1 

where ltJ.tj is the complex absolute value of IJ.t and his the 

magnitude of time increment allowed by the integrater. 

The above algor:i;thm for choosing the complex time path applies 

to non-reactive A + BC collisions, collinear or three-dimensional, 

throughout the entire trajectory. It is currently being used, for 

example, in the "partial averaging" calculations described in the 

previous section. 

34 35 
To describe tunneling in reactive systems, ' 

A + BC -r AB + C 

The above procedure must be modified somewhat. If r is the 
a 

vibrational coordinate of diatom BC, then the above procedure 
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for choosing the time path is followed with regard to the variable 

r until A and BC reach their distance of closest approach. At 
a 

this point the complex time path is chosen to cause the reaction 

to occur; i.e., one wants r (t), the vibrational coordinate of 
c 

AB, to head toward its equilibrium value. Thus the same proced-qre 

is used to choose the time path hut with regard to rc, the vib

rational coordinate of the new diatom. 

The procedures described above for choosing the complex time 

path are the most generally satisfactory ones we have found thus 

far, hut they should not be considered the final answer to the 

J?rohlem. Various di.;fferent approaches are still being actively 

J?Ursued, and it appears that there is still much to be learned 

about analytically continued classical mechanics. 
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V. CONCLUDING REHAPJ.ZS 

One has at hand, therefore, a completely general semiclassical 

mechanics which allows one to construct the classical-limit approxi

mation to any quantum mechanical quantity, incorporating the complete 

classical dynamics with the quantum principle of superposition. As 

lllis been emphasized, and illustrated by a number of examples in'this 

review, all quantum effects-.,..interference, tunneling, resonances, 

selection rules, diffraction laHs, even quantization itself--arise 

from the superposition of probability amplitudes and are thus 

contained at least qualitatively witPin the semiclassical pres

cription. The semiclassical picture thus affords a broad under

standing and clear insight into the nature of quantum effects in 

molecular dynamics. 

In many cases, too? the semiclassical model provides a quanti

tative description of the quantum effects in molecular systems, 

although there will surely be. situations for whicli it ;fails quantita

tively· or is at oest a'tv:kward to app.ly. :From the numerical examples 

which have been carried out thus far--and more are needed before a 

definitive conclusion can be reached~it appea:rs.tbat the 1Ilast 

pract:tcally useful contribution of classical S4Uatrix theo.;r-y is 

the ability to descrilie classically forbidden processes; i.e., 

although completely classical (e.g. Monte Carlo} methods seem to 

be adequate for treating classically allowed processes, they are 

not meaningful for classically forbidden ones. · (~urely classical 

treatments vlill not of course describe quantum interference effects 

whi.ch. are present in classically allo'tlred processes, but under -most 
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practical conditions these are quenched). The semiclassical 

approach thus ,,Tidens the class of phenomena to which classical 

trajectory methods can be applied. 

Two common examples of classically forbidden processes 

have been discussed in Section IV: vibrationally inelastic 

transitions in atom-diatom collisions (V - T energy transfer) 

and tunneling near the threshold of chemical reactions.- Another 

important example, which has been discussed in detail p~eviously, 9 

is electronically non-adiabatic transtions, i.e., transitions from 

. 1 f h 81 
one potent1a energy sur ace to anot er. Miller and George82 

have £ormulated this problem semiclassically in such a way that 

incorporates the exac.t classical dynamics o£ the heavy particle 

motion (i.e., classical trajectories) and the quantum principle 

a£ superposition; the electronic transition is accounted for within 

a Stueckelberg-like model, i.e., by considering complex-valued 

classical trajectories which change from one adiabatic surface 

to anot?-er at a compl~ point o;f intersection. 
83 

(Such processes 

are "classically forbidden", therefore, since only complex......-valued 

classical trajectories can reach these complex intersection points in 

order to change adiabatic potential energy surfaces.} The princi-

ple physical requirement of the model is that the electronic 

transition be locali.zed in space and time, but it is important 

to recqgnize that this does not require that the adi.aoatic 

potential curves _or sur£aces have an "avpidecf _intetsecti9n~' 

for real coordinates; see Section V of reference 9. Recent 

calculations based on this theory have been carri_ed out by Lin, 
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. ·. 
. 84 + 

George:, ·and Horokuma ·(for l-1 + n
2 

. + . 
-+ liD + D) and by Pres ton, 

85 2 . 
. Sloane, and Miller (for F ( P 

312
) 

2 . 
+ Xe -+ F ( P l/ 

2
) + Xe) , and 

it seems clear that there \vill lie much more activity in the .. 

_following years regarding the general topic ofnon.:_adiabatic 

transitions in-1mv energy molecular collisions. · · 

·,: .. : '· 



,! 

-95-

REFERENCES. 

* Supporte'd in part by the National Science Foundation under 

grant GP-34199X and by the U.S. Atomic Energy Conunission. 

t Camille and :Henry Dreyfus Teacher-Scholar. 

1. W. H. Hiller, .:!_. Chem. Phys. 53, 1949 (1970), and other 

references below. 

2. R. A. Marcus, Chern. Phys. Letters 7, 525 (1970); J. Chem. 

Phys. 54, 3965 (1971) and other references below. 

3. D. L. Bunker, Methods in Camp. Phys. t~' 287 (1971). 

4. J. C. Polanyi; Accounts Chem. Res. 5, 161 (1972). 

5. K. H. Ford and J. A. '>Jheeler, Ann. Phys~ (N. Y.) 7, 259, 

287 (1959). 

6. R. B. Bernstein; Advan~ Chern~ Phys. 10, 75 (1966). 

7. R. J. Cross, Jr., J. Chem. Phys. 58, 5178 (1973). 

8. R. J. Cross, Jr.' J. Chem~ Phys. ~Z· 3724 (1967); 48' 4338 

(1968); ~~· 5163 (1969) 

9. w. H. Miller, Advan. Chem. ·phys. ~~. 000 (1974). 

10. M. v. Berry and K. E. Mount; Rep~ Ptog~ ·phys. 35, 315 (1972). 

11. See, for example, (a) N. F. Matt and H. S. W. Massey; The 

· T?eory·~ Atomic ·collisions, Oxford U.P., N.Y., 1965, pp. 

802-808; (b) R. J. Cross, Jr., Proceedings of the International 

School of Physics, Enrico Fermi, Course XLIV·Moleculat Beams and 

Reac'tiori. Kinetics, Academic Press, N.Y., 1970, p. 50; (c) R. W. 

Fenstermacker,.C. F. Curtiss, and R. B. Bernstein; J~ Chem • 
..,...... --.-

· Phys. ~~' 2439 (1969}; (d) M.D. Pattengill,_C. F. 'curtiss, and 



-96-

R. B. Bernstein; ;!_. Chern. Phys. ~~' 2197 (1971); (e) R. D. 

Levine and G. G. Balint-Kurti; Chem. Phys. Lett. 6, 101 

(1970). 

12. For a recent example, see H. B. Nielsen and R. G. Gordon, 

:I_~ Chem. Phys. ~~' 4131, 4149 (1973). 

13. For a clear and concise discussion of canonical transformations 

see H. Goldstein; Classical Mechanics, Addison-1-Jesley, Reading, 

}fass., 1950, pp. 237-247. 

14. A. Erdelyi; AsYmptotic Expansions, Dover, N.Y., 1956, pp. 51-56. 

15. See, for example, reference 13, pp. 288-307. 

16. See, for example, G. Herzberg: Molecular ·spectra and lfcHecular 

· 'Structure~ 1.~ Spectra of ?iatdmic' Molecules, Van Nostrand, 

Princeton, 1950, p. 194 et·seq. 

17. L. D. Landau and E. H. Lifshitz; Qu:=tntum Mechanics, Pergamon, 

N.Y., 1965, pp. 177-181 . 
.... 

18. M. S. Child; ·MoL Phys. 8, 517 (1964). 
~. ---

19. W. H. Miller; J~ Chem~ Ph.ys. 48, 464 (1968}. 
- . ........- --

20. This restricts the treatment to collisions of diatomic molecules 

ox to polyatomic molecules which are described initially by non-

interacting normal modes. 

21. The second term in the expression for q (t) subtracts out the 

asymptotic "free particle" time dependence of the angle variables; 

i.e., since asymptotically IJ. 1\and P are constant and 

R(t) rv (P/~)t + constant 

q(t) "· ·a~(P)t + 
v an constant, 



m 

-97-

it is clear that the phase shift variables, 

q(t) ::: q_(t) - Cl~~"Q) ~R(t)/P 

are asymptotically constant. 

22. Eq. (3.5) takes a manifestly syrrunetrical form by noting that 

23. 

24. 

2 
Cl W(n,,n,

1
;E) 

~ -

since ¢(~,£:1;EF~"<.P.(~]_,~ 2 ;E), the cla.ssical S+matrix is thusc~·-·-- 2.:., 

identically symmetric, i.e., microscopically reversible. The 

fom of the pre-exponential factor in Eq. (3.5), however, is 

usually easier to evaluate numerically\~· 

w. ll. Niller; · J ~-· ·~hem~ l?hys. 53, 3578 (1970); Chern~ Fhys. LHt. 
~:"'-' 

z, 431 (1970}. 

D. Secrest and B. R. Johnson; J~ ·chem~ ~- 45, 4556 (1966). 

25. R. P. :Feynman and A. R. Hibbs; Quanttlltt l1edieirtics and Path. 

· Integrals, McGraw-Hill, N.Y., 1965, pp. 2~9. 

26. W. H. \'Tong and R. A. Marcus; J. _Chern. Pliys. ~~' 5663 (1971). 

27. W. R. Miller;~- Chern~ Pliys. ~~~ 5386 (1971). 

28. Sometimes the "proper inclusion" of inter;fexence terms means 

that an appropriate unifom semiclassical expression must be 

utilized rather than the "primitive" semiclassical expressions 

of Eqs. (3.5) and (3.25). 

30. The .'classical threshold" for any process is the energy below 

which there are no ordinary (i.e. real-valued) classical 

trajectories which. lead to the process. :For the collinear 



31. 

32. 

33. 

-98-

H + H
2 

reaction on the Porter.,-·Karplus potential surface, for 

example, the classical threshold is 'V 0.20-0.ZleV collision 

. energy; quantum mechanically, of course, there is no absolute 

energetic threshold for the 0 -+ 0 reaction. 

J. M. Bowman and A. Kuppermann, Chem. Phys. Lett. 19, 166 (1973). --

s. -f. Hu and R. D. Levine, Mol. Phys. 25, 937 (1973). 

J. J. Tyson, R. P. Saxon, and J. c. Light, J. Chem. Phys. 

~~J 363 (1973). 

34. T. ;F. George. and W. H. Miller, J~ Chem. Phys. 56, 5722 (1972); 

57' 2458 (1972). 
,...~ 

35. J. D. Doll, T. ]! • George, and W. H., Miller; J _. Ch.em.: ·J?h.ys. 

~~. 1343 (1973). 

36. H. R. Hiller, unpublished work. 

3J. J. :R. Stine and R. A. Marcus, J _. Chem~ J?ll_J'$'. 59., 0000 (1973). 

38. J. N. L. Connor, '.Faraday Disc. Chern. Soc. 55, 000 (1973); 
---~ 

MoL l?hys. 25, ooo (1973). -- --- --
39. A. M. G. Ding, L. J. K:i.xsch, D. S. Perry-, J. C. Polanyi, and 

J. L. Schreiber, ',Faraday Disc~ Chem. Soc. 55, 000 (1973); C. A. 

Parr, J. C. :Polanyi~ W. FL. "Hong, and D. C. Tardy; ibid, 000 

(1973); J. C. Polanyi, J. L. Schreiber, and J. J. Sloan; ibid, 

000 (1973). 

40. N. Froman and P. 0. Froman, J~~ Approximation, North-Holland, 
. -. - ~..;;___,..-.,....,.--~-

Amsterdam, 1965. 

41. W. H. Hiller, :J_~ Chem~ Ph.ys. ~~, 1651 (1968). 

42. J, N. L. Connor; Mol. 'P?-ys. 15, 621 (1968). 



-99~ 

43. See, for ~~ample, L. I. Schiff, Quantum Mechanics, McGraw-Hill, 

N,Y., 1968, pp. 275-277. 

44. See, for example, R. G. Ne.,!ton, Scattering Theorz of Waves and 

Particles, Hc_-Graw-Hill, N.Y., 1966, pp. 316.,.::.317; also, J. R. 

Taylor; Scattering Theorz, V.Tiley, N.Y., 1972, pp. 240-244, 

407....:413. 

45. See, for example, G. H. Kwei, B. P. Boffardi, and S. F. Sun, ~ 

J ~ Chem. 'Phzs~ ~~· 1722 (1973). 

46. P. Brumer a~1d M~1Karplus; Faraday Disc. ·chem. Soc. 55, 000 (1973). 

47. C. C. Rankin and W. H. Miller; J~ Chern.· Phys. ~~' 3150 (1971). 

48. R. A. Marcus; Faraday Disc~ Chern. Soc. 55, 000 (1973). -.-- ~-

49. J.D. Doll,'J~·chem.·Phys. 60,000 (1974). 
~ --

50. G. VJ"olken;·h·chem~,·phys. 58, 30lf7 (1973). 
("<~ 

51. The asymptotic free particle time dependence of x(t) and r- (t) is 

subtracted out in the usual way; see reference 21. 

52. See, for example, P. H. Morse and H. Feshbach; Methods of 

Theoretical Physics, McGraw-Hill, N.Y., 1953, pp. 466-467. 

53. J. D. HcClure; ~Chern. Phys. ~~' 2823 (1972). 

54. K. E. Holdy, L. C. Klotz,.and K. R. Wilson, J~ Chern~ Phys. 

52, 4588 (19.70). 
-~ 

55. J'ii. Shapiro; :!i_ Chern~ Phys. 56, 2582 .(19J2). 

56. "See,-for example, reference 43, pp. 404~05. 

57. ~(t) is the electronic matrix.element of the dipole operator 

between two B'of,n-Oppenheimer electronic wavefunctions and 

depends on nuclear coordinates through the parametric dependence 

of the wavefunctions on nuclear coordinates. 



-·100-

58. See, for example, reference 13, pp. 273-284. 

59. See reference 14, pp. 39-41; or reference 52, pp. 437-441. 

60. M. L. Goldberger and K. 1'1. Watson, Collision Theory, 

Wiley, N.Y., 1964, p •. 431 et seq. 

61. When dealing vrith one~dimensional systems it is often convenient 

to eliminate t in favor of x as the independent variable and 

then require x to be real. fc.f. D. W. McLaughlin, J. ·Hath. 

Phys. ~~· 1099 (1972)]. This is no restriction for one-

dimensional systems because it is always possible to choose 

the time path to keep x(t) real; i.e., for any value of Ret 

one can choose Imt to satisfy the equation Im x(t) = 0. One 

sees, however, that thi~ is possible only for one-dimensional 

systems, for as. soon as there are tw-o coordinates, say, one 

cannot in general choose Imt to make the imaginary parts of 
• 

oat~ coordinates vanish; i.e., one cannot satisfy more than 

one equation with only one variable. 

62. W. R. Miller and T. ;F. George,~ Chern, Phys. 56, 5668 (1972). 

63. J. Stine and R. A. l'larcus; Chem~ ·;phys~ Lett. 
~~· 

536 (1972). 

64. \'[. Eastes and J. D. Doll; .:!...!_ Chern~ Phys. 60, 0000 (1974). 

65. K. E. Shuler and R. Zvmnzig; J~ Chern~ 'Phys. ~~. 1778 (1960). 

66. R . N. Porter and M. .,, Karplus; J. Chern.' Phys. · 40, 1105 (1964). 

67. G. c. Schatz and A. Kuppermann, private communication. 

68. J. liT. Duff and D. G. Truhlar, Chern~ Phys~ Lett. 

69. J. b. Doll and W. H. Hiller;~ Chern~ Phys. 57, 5019 (1972). 

70. G. Wolkem.and M. Karplus, .1..:_ Chem. Phys. 



-101-

71. If the diatom is homonuclear so that ~j is required to be even, 

then the width of the quantum number box is of course taken to 

be 2, rather than 1. 

72. M. Karplus, R. N. Porter, and R. D. Sharma,_.:!:. Chern. Phys. 43, 

3259 (1965). 

73; The analysis is slightly Eore complicated because the integrals 

over 

that 

q9, 
1 

and q. are actually contour integrals chosen to insure 
Jl 

Im£ =TmJ·
2

o:=O, .. 2. This does not cause any essential 

difficulty, however, and will be discussed in :rrore detail in 

reference 76. 

74. See, for e.:xa:l!ple, K. f, Herzfeld and T. A. Litovitz, Absorption 

and Dispersion~ UltrasoniC/Waves, Acade:rric Press, N.Y., 1959. 

7 5. TL H. Niller and A. \V:. Raczkowski, faraday Disc. Che1r.. Soc. 55, 

45 (1973). 

76. A. IV:. Raczkowski and K. H. Miller, to be published. 

77. J. Schaefer andl:r. A. Lester, Jr., Che:m. Phys. Lett. 20, 575 (1973). 

78. ~>I:. A. Lester, Jr., private co.nm:Rmication. 

79. See, for exa::rnple, L. Lapidus and J. R. Seinfeld, Nutr.erical Solution 

of Ordinary Differential_ Eouations, Acadend.c Press, N.Y., 1971. 

80. This prevents the possibility of the trajectory backing up to a 

prior ti:n:e at which the equilibriUE position was passed. 

81. E. E. Nikitin, in Che1r~sche ElenentarErozesse, eds. J. Heidberg, 

H. Heydt~nn, and G. R. Kohhmaier, Springer, N.Y., 1968, p. 43; 

E. E. -N.:jJq:t:tit~~ Advan. Quantum Chem._ ~, 135 (1970). 

82. 'if". H. Hiller and T. f. George, .l.:.. Chen::·. Phzs,·.~~, 5637 (1972). 



._I. 

-'102-

' . . ' 

83. E. C. G~ Stueckelberg, Helv. Phys. Acta 5, 369(1932). Also 

see reference 17, ·PP· 185-187. 

. . 

84. Y. -~ . Lin, T. F. ·Gear ge, and K. Norol(U1ffi., Chem. Phys. Lett~ 

85. R. K. Preston, C. Sloane, and ~f. H. :Miller, to be published . 

. . 

.:,;i· 



-103-

FIGURE CAPTIONS 

1. An example of the quantum number function n
2

((i
1

,n
1
), here 

for a collision of He and H
2 

at a total energy E = lotrw 

and with n
1 

= 1. The ordinate is the final value of the 

vibrational quantum number as a function of the initial 

phase q
1 

of the oscillator, along a classical trajectory 

with the initial conditions in Eq. ( ~;3"~2 ) • The dashed 

line at n = 2 indicates the graphical solution for the 
2 

two roots of the equation n
2

(q
1

,1) = 2 .. 

2. Vibrational transition probabilities for collinear He + 

H
2 

at total energy E = lOtt:w for an initial vibrational 

state n
1 

= 0 (top), 1, 2 (bottom). The dashed lines 

connect results of the completely classical approximation, 

Eq. ( 3,28), and the solid lines. connect the uniform 

semiclassical values (which on the scale of the drawing::are 

essentially the same as the exact quantum mechanical values 

of reference 24 • ) 

3. The same quantity as in Figure 1, except for the·reactive 

process H + H
2 

(n
1 

= 0) + H
2 

Cn
2

) + H, for a total energy 

E = 14.7 kcal/mole, as computed by Wu and Levine (reference 

32 ) • There are two roots of the equation n
2 

(([
1

,0) = 0. 
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4. The same as Figure 3, except for a total energy E"" 13.7 

kcal/mole. Here there are four roots to the equation 

5, A qualitative sketch of the classical (upper) and uniform 

semiclassical (low·er) transition probability P as a 
n2,nl 

continuous function of n
2 

(with n
1 

fixed). 

max d min ,; d . h . f h f . n
2 

an n
2 

1n 1cate t e extrema o t e unct1on 

n
2 

(q
1

,n
1

) as a function of (i
1 

(as seen in Figure~·l, for 

example). 

6. A potential curve V(r) and collision energy E for which 

potential (i.e., single~particle) resonances exist. 

7. A schematic representation of three of the trajectories 

which contribute to the elastic scatteriag from the 

potential shown in Figure 6. There are an infinite 

sequence of other trajectories which differ from (c) only 

in the number of oscillations made between r
1 

and r
2

. 

·8. The same quantity as in Figure.:l, except for reactive 

(so~id line and solid points) and non-reactive (open 

points) collisions of H + Cl
2

,(n
1 

= 0) -+ H + Cl
2

{n
2
), 

RCl(n
2

) + Cl> as calculated by Rankin and Hiller 

(reference 47 ) • The total energy (referred to the 

saddle point) is 0.3 eV. The dashed line at n
2 

= 5 
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indicates that t'\vO "direct" trajectores and many "snarled" 

ones contribute to the 0 ~ 5 reactive transition. 

9. A potential barrier and translational energy for which 

tunneling occurs. 

10. The same quantity as in Figure 1, except for a total 

energy E = 3hw. Here all inelastic transitions are 

classically forbidden. 

11. The re~ction probability for H + H
2

Cn
1 

= 0) ~ H
2

Cn
2 

0) 

+.H in the region below the classical threshold for 

reaction; E is the initial translational energy. The 
0 

semiclassical (SC) results are those of George and Hiller 

(reference 34) as given by Eq. (4.18 ), and the quantum 

mechanical (Q11) values are the results of Schatz and 

Kuppermann (reference 67 ). 

12. Cross sections for vibrational deactivation: Li+ + H
2 

(n
1 

= 1, jl'c= O) ~ Li+ + H
2

(n
2

= 0, j
2 

= j), as a function 

of final rotational state, for an initial translational 

energy of 0.684 eV. The semiclassical and quantum mechanical 

values are those of Miller and Raczkowski (reference 76 ) 

and Schaefer and Lester (reference ]] ), respectively, and 

the "statistical" values are those given by Eq. (4.40) 

(normalized so that the cross section summed over j is equal 

to the semiclassical and quantum value). 
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P-----------------LEGALNOTICE------------------~ 

This report was prepared as an account of work sponsored by the 

United States Government. Neither the United States nor the United 

States Atomic Energy Commission, nor any of their employees, nor 

any of their contractors, subcontractors, or their employees, makes 

any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness or usefulness of any 

information, apparatus, product or process disclosed, or represents 

that its use would not infringe privately owned rights . 
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