The Classification of Finite Generalized Quadrangles Admitting a Group Acting Transitively on Ordered Pentagons

J. A. Thas H. Van Maldeghem *

August 29, 2013

Abstract

Let \mathcal{S} be a thick generalized quadrangle and let G be a group of automorphisms of \mathcal{S}. If G acts transitively on the set of non-degenerate ordered pentagons, then \mathcal{S} is one of the classical generalized quadrangles $W(q), Q(4, q), Q(5, q)$ or $H\left(3, q^{2}\right)$. The possibilities for G in each case are determined. We do not use the classification of the finite simple groups (from which this result also follows).

1 Introduction and Main Result

A finite generalized quadrangle (GQ) of order $(s, t), s, t \in \mathbf{N} \backslash\{0\}$, is an incidence geometry $\mathcal{S}=(\mathcal{P}, \mathcal{B}, \mathcal{I})$ in which \mathcal{P} and \mathcal{B} are disjoint non-empty sets of objects called points and lines respectively, and for which I is a symmetric point-line incidence relation satisfying axioms (GQ1), (GQ2) and (GQ3).

[^0](GQ1) Each point is incident with $1+t$ lines and two distinct points are incident with at most one line.
(GQ2) Each line is incident with $1+s$ points and two distinct lines are incident with at most one point.
(GQ3) For every non-incident pair $(x, L) \in \mathcal{P} \times \mathcal{B}$, there exists a unique pair $(y, M) \in \mathcal{P} \times \mathcal{B}$ for which $x I M$ I y I L.

For terminology, notation, results, etc., concerning finite GQ, see the monograph [5], hereafter denoted by FGQ. We now introduce some further terminology. A finite GQ of order (s, t) is thick if $s, t \geq 2$ (the non-thick GQ are the grids (order $(s, 1)$) and the dual grids (order $(1, t))$). A pentagon in a GQ is a subconfiguration consisting of five distinct points and five distinct lines such that each line (respectively point) is incident with exactly two points (respectively lines). An ordered pentagon is a pentagon in which the elements are ordered in such a way that two consecutive elements are incident. A skeleton is a subconfiguration $\Omega=(Q ; L, p)$ where Q is a quadrilateral (i. e. a subquadrangle of order $(1,1)$) and L (respectively p) is a line (respectively point) not in Q but incident with a point p_{1} (respectively line L_{1}) of Q, where $p_{1} I L_{1}$.
It follows easily from 9.8 .3 of FGQ that the classical GQ $W(q), Q(4, q)$, $Q(5, q)$ and $H\left(3, q^{2}\right)$ admit an automorphism group G acting transitively on the set of skeletons (the automorphism group of the GQ $H\left(4, q^{2}\right)$ is not transitive on ordered triples of concurrent lines). We will see in 2.1.1 that this is equivalent with G acting transitively on the set of ordered pentagons. The converse is also true. Suppose the GQ \mathcal{S} admits a group G acting transitively on the set of ordered pentagons. Then G is a group with a (B, N)-pair of type B_{2} and using the classification of the finite simple groups one can show that \mathcal{S} must be classical (for an explicit proof, see [1]), but in the present case different from $H\left(4, q^{2}\right)$. The aim of this paper is to give a proof of this result without using the classification of the finite simple groups. We will also characterize the groups G. Therefore, we need the following notation.

Let $P_{5} O_{5}(q)$ be the projective general orthogonal group in 4-dimensional projective space over the field $G F(q)$ and let q be odd. This group has a unique normal subgroup of index 2 , namely the simple group $\operatorname{PSO}_{5}(q)$, sometimes denoted by $O_{5}(q)$. Now let θ be a field automorphism of $G F(q)$ and denote by g_{θ} the element of $P \Gamma L_{5}(q)$ corresponding to the semilinear
transformation with identity matrix and field automorphism θ. Let g be any element of $P G O_{5}(q) \backslash P S O_{5}(q)$. Then we denote by $P G O_{5}^{\theta}(q)$ the group generated by $\mathrm{PSO}_{5}(q)$ and $g_{\theta} g$. Now consider the projective general unitary group $\mathrm{PGU}_{4}(q)$ (still assuming q odd). This group has a unique normal subgroup of index $2($ if $q \equiv 1 \bmod 4)$ or $4($ if $q \equiv 3 \bmod 4)$, namely the simple group $\mathrm{PSU}_{4}(q)$, also denoted by $U_{4}(q)$. The corresponding quotient group is cyclic and hence $P G U_{4}(q)$ has a unique subgroup H of index 2 containing $P S U_{4}(q)$. Let θ be a field automorphism of $G F\left(q^{2}\right)$ and let $g_{\theta} \in P \Gamma L_{4}\left(q^{2}\right)$ be defined similarly as above. Then we denote by $P G U_{4}^{\theta}(q)$ the group generated by H and $g_{\theta} g$, where $g \in P G U_{4}(q) \backslash H$.
In this paper we will show :
MAIN RESULT. Let \mathcal{S} be a finite thick generalized quadrangle and let G be a group of automorphisms of \mathcal{S}. Then G acts transitively on the set of ordered pentagons if and only if \mathcal{S} is one of the classical generalized quadrangles $W(q)$, $Q(4, q), Q(5, q)$ or $H\left(3, q^{2}\right)$, and G contains one of the following groups:
(i) $P G O_{5}(q)$, if $\mathcal{S} \cong \mathcal{W}(\amalg)$ or $\mathcal{S} \cong \mathcal{Q}(\triangle, \amalg)$,
(ii) $\operatorname{PGO}_{5}^{\theta}(q)$, if $\mathcal{S} \cong \mathcal{W}(\amalg)$ or $\mathcal{S} \cong \mathcal{Q}(\triangle, \amalg)$ with q an odd square and θ a field automorphism of $G F(q)$ of order a power of 2,
(iii) $P G U_{4}(q)$, if $\mathcal{S} \cong \mathcal{Q}(\nabla, \amalg)$ or $\mathcal{S} \cong \mathcal{H}\left(\ni, \amalg^{\epsilon}\right)$,
(iv) $\operatorname{PGU}_{4}^{\theta}(q)$, if $\mathcal{S} \cong \mathcal{Q}(\nabla, \amalg)$ or $\mathcal{S} \cong \mathcal{H}\left(\ni, \amalg^{€}\right)$ with q odd and θ a field automorphism of $G F\left(q^{2}\right)$ of order a power of 2.

The groups will be further discussed in Section 2.4.
Part of the motivation of our proof is to stimulate people to aim for weaker hypotheses (such as the (B, N)-pair hypothesis above), still giving a proof without relying on the classification of the finite simple groups.

2 Proof of the Main Result

In this section, we denote by $\mathcal{S}=(\mathcal{P}, \mathcal{B}, \mathcal{I})$ a finite thick generalized quadrangle of order (s, t) and by G a group of automorphisms of \mathcal{S} acting transitively on the set of ordered pentagons.

2.1 Some General Facts

2.1.1 Skeletons

Let $\Pi=\left(p_{1}, L_{1}, \ldots, p_{5}, L_{5}\right)$, with $p_{1} I L_{1} I p_{2} I \ldots I p_{5} I L_{5} I p_{1}$, be an ordered pentagon in \mathcal{S}. Let p_{i}^{\prime} be the point of L_{i+2} collinear with p_{i} (where indices are taken modulo 5). Consider the skeleton $\Omega=\left(Q ; L_{5}, p_{4}^{\prime}\right)$, where Q is the quadrilateral ($p_{1}, L_{1}, p_{2}, L_{2}, p_{3}, L_{3}, p_{1}^{\prime}, p_{1} p_{1}^{\prime}$). Then Π completely determines Ω and vice versa. Hence G acts transitively on the set of skeletons.

2.1.2 Property (H)

Fix a point u of \mathcal{S} and let (x, y, z) be a triad of points of u^{\perp}. Suppose $z \in \operatorname{cl}(x, y)$. If $z \in\{x, y\}^{\perp \perp}$, then $y \in\{x, z\}^{\perp \perp}$. Now suppose $z \notin$ $\{x, y\}^{\perp \perp}$ and let v respectively v^{\prime} be a point in $\{x, y\}^{\perp} \backslash z^{\perp}$ respectively $\{x, z\}^{\perp} \backslash y^{\perp}$. This defines a unique skeleton $\left(Q ; L_{0}, z^{\prime}\right)$ respectively $\left(Q^{\prime}, L_{0}^{\prime}, y^{\prime}\right)$, where $u z \sim L_{0} I v$ respectively $u y \sim L_{0}^{\prime} I v^{\prime}$, where $z \sim z^{\prime} I v y$ respectively $y \sim y^{\prime} I v^{\prime} z$, and where $Q=(v, v y, y, y u, u, u x, x, x v)$ respectively $Q^{\prime}=\left(v^{\prime}, v^{\prime} z, z, z u, u, u x, x, x v^{\prime}\right)$. By the transitivity of G on skeletons, we see that there is an automorphism mapping the ordered quadruple (u, x, y, z) onto the ordered quadruple (u, x, z, y). Indeed, z is collinear with z^{\prime} and incident with the unique line $u y$ containing u and concurrent with $L_{0} ; z^{\prime}$ is mapped onto y^{\prime}, and the unique line containing u and concurrent with L_{0}^{\prime} is the line $u y$. As $y^{\prime} \sim y I u y$, the point z is mapped onto y. Hence $y \in c l(x, z)$ and so u has property (H). By transitivity, every point of \mathcal{S} has property (H), and dually, every line has property (H). By 5.6.2 of FGQ \mathcal{S} must satisfy, up to duality, one of the following conditions:
(i) \mathcal{S} is isomorphic to $H\left(4, q^{2}\right), q^{2}=s$.
(ii) Every point and every line in \mathcal{S} are regular.
(iii) Every hyperbolic line has exactly 2 points, and dually.
(iv) Every hyperbolic line in \mathcal{S} has exactly 2 points and every line of \mathcal{S} is regular.

It is readily seen that $H\left(4, q^{2}\right)$ does not admit a group of automorphisms acting transitively on the set of skeletons. Also, case (ii) implies that \mathcal{S} is isomorphic to $W\left(2^{e}\right)$ for some positive integer e (see 5.2.1 and 3.2.1 of FGQ). So from now on, we may assume that every hyperbolic line has exactly 2 points. Using the same kind of argument to show property (H), one produces a collineation mapping (u, x, y, z) onto $\left(u, x^{\prime}, y^{\prime}, z^{\prime}\right)$, where (x, y, z) and $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ are two arbitrary triads in u^{\perp} (note that $z \notin\{x, y\}^{\perp \perp}$ as required for the argument). So all triads in u^{\perp} have a constant number of centers. By 1.7.1(i) of FGQ, this constant equals $1+t / s$, so s divides t.

Now we consider the cases (iii) and (iv) separately.

2.2 Case (iii)

In this case, also the dual of \mathcal{S} has hyperbolic lines of length 2 , hence also $1+s / t$ is an integer. It follows that $s=t$. As each triad of points has either 0 or 2 centers, each point of \mathcal{S} is antiregular (cf. 1.3.6(iii) of FGQ). Dually, each line of \mathcal{S} is antiregular. Also $s=t$ is odd by 1.5.1(i) of FGQ.

Assume that \mathcal{S}^{\prime} is a thick subquadrangle of \mathcal{S} of order $\left(s^{\prime}, t^{\prime}\right)$, and that \mathcal{S}^{\prime} does not admit a proper thick subquadrangle. Let Ω and Ω^{\prime} be skeletons contained in \mathcal{S}^{\prime}. Further, let θ be an automorphism of \mathcal{S} mapping Ω to Ω^{\prime}. If $\mathcal{S}^{\prime \theta} \neq \mathcal{S}^{\prime}$, then $\mathcal{S}^{\prime} \cap \mathcal{S}^{\prime \theta}$ is a proper thick subquadrangle of \mathcal{S}^{\prime}, a contradiction. Consequently $\mathcal{S}^{\prime \theta}=\mathcal{S}^{\prime}$, and so the automorphism group G^{\prime} of \mathcal{S}^{\prime} acts transitively on the set of skeletons of \mathcal{S}^{\prime}.

In \mathcal{S}^{\prime} any triad of points has at most two centers, that is, each point of \mathcal{S}^{\prime} is antiregular. Hence $s^{\prime} \geq t^{\prime}$ by 1.3.6(i) of FGQ. Similarly, $t^{\prime} \geq s^{\prime}$. Consequently, $s^{\prime}=t^{\prime}$ and then by 1.3.6(iii) of FGQ each triad of points respectively lines has 0 or 2 centers. Also, $s^{\prime}=t^{\prime}$ is odd. Let us now forget the GQ \mathcal{S}; so " \perp " means perpendicular in \mathcal{S}^{\prime}, etc.
Since \mathcal{S}^{\prime} has no proper thick subquadrangles, the identity is the only automorphism of \mathcal{S}^{\prime} fixing a given skeleton of \mathcal{S}^{\prime}. The group H^{\prime} of automorphisms of \mathcal{S}^{\prime} fixing an ordered quadrilateral $Q:=\left(p_{1}, L_{1}, p_{2}, \ldots, L_{4}\right)$ and a line L through $p_{1}, L_{4} \neq L \neq L_{1}$, has even order $s^{\prime}-1$. Let σ be an involution of the group H^{\prime}.
By 1.3.2 of FGQ an affine plane $\pi\left(p_{4}, p_{1}\right)$ of order s^{\prime} may be constructed as follows. Points of $\pi\left(p_{4}, p_{1}\right)$ are the points of p_{4}^{\perp} that are not on L_{4}. Lines
are the pointsets $\left\{p_{4}, z\right\}^{\perp \perp} \backslash\left\{p_{4}\right\}$, with $p_{4} \sim z \nsim p_{1}$, and $\left\{p_{4}, u\right\}^{\perp} \backslash\left\{p_{1}\right\}$, with $p_{1} \sim u \nsim p_{4}$. Let us denote the pointset of a line M of \mathcal{S}^{\prime} by M^{*}. The involution σ induces either the identity or an involution σ^{\prime} in the plane $\pi\left(p_{4}, p_{1}\right)$. In the latter case, σ^{\prime} fixes the point p_{3}, the line L_{3}^{*}, the parallel class of lines defined by L_{3}^{*}, the line $\left\{p_{4}, p_{2}\right\}^{\perp} \backslash\left\{p_{1}\right\}=U$ which contains p_{3}, the parallel class of lines defined by U (as $L_{1}^{\sigma}=L_{1}$), and the parallel class containing the line $\left\{p_{4}, v\right\}^{\perp} \backslash\left\{p_{1}\right\}=V$ with $p_{1} \neq v I L$ (as $L^{\sigma}=L$)
If σ^{\prime} is the identity, then, by 2.4 of FGQ, σ is the identity, a contradiction; if σ^{\prime} is a Baer involution, then, again by 2.4 of FGQ, the fixed elements of σ form a subquadrangle of order $\left(\sqrt{s^{\prime}}, \sqrt{s^{\prime}}\right)$ of \mathcal{S}^{\prime}, a contradiction. Hence σ^{\prime} is a homothety of $\pi\left(p_{4}, p_{1}\right)$ with center p_{3}. Consequently σ fixes every line through p_{1} and every point of $\left\{p_{1}, p_{3}\right\}^{\perp}$. As \mathcal{S}^{\prime} does not contain a proper thick subquadrangle, the fixed elements of σ are p_{1}, p_{3}, the points of $\left\{p_{1}, p_{3}\right\}^{\perp}$, the lines through p_{1}, and the lines through p_{3}.
Now let x and y be distinct points of \mathcal{S}^{\prime} on the line N of \mathcal{S}^{\prime}, with p_{1} not incident with N. By the transitivity properties of G^{\prime} there is an involution γ of \mathcal{S}^{\prime} fixing p_{1} linewise and fixing N. Let $r^{\gamma} \neq r$, with r a point of \mathcal{S}^{\prime} on N. Further, let δ be an element of G^{\prime} fixing p_{1}, N, and for which $r^{\delta}=x$ and $r^{\gamma \delta}=y$. Then $\delta^{-1} \gamma \delta$ fixes p_{1} linewise and maps x onto y. Now it is clear that the subgroup of G^{\prime} fixing p_{1} linewise acts transitively on $\mathcal{P}^{\prime} \backslash \frac{1}{\sqrt{\infty}}$, with \mathcal{P}^{\prime} the pointset of \mathcal{S}^{\prime}. Then by 8.2.4 of FGQ the GQ \mathcal{S}^{\prime} is an EGQ (elation generalized quadrangle) with base point p_{1} and elation group \bar{G}.
Let u_{1} and u_{2} be distinct points of the plane $\pi\left(p_{4}, p_{1}\right)$. If ζ is the elation in \bar{G} mapping u_{1} onto u_{2}, then ζ induces a translation ζ^{\prime} in $\pi\left(p_{4}, p_{1}\right)$ mapping u_{1} onto u_{2}. Consequently $\pi\left(p_{4}, p_{1}\right)$ is a translation plane. Interchanging the roles of p_{1} and p_{4}, we see that $\pi\left(p_{1}, p_{4}\right)$ is also a translation plane. It follows that, if ∞ is the point at infinity of $\pi\left(p_{4}, p_{1}\right)$ defined by the parallel class of lines containing L_{3}^{*}, then the projective completion $\overline{\pi\left(p_{4}, p_{1}\right)}$ of $\pi\left(p_{4}, p_{1}\right)$ is a dual translation plane with translation point ∞.
Next, let x_{1} and x_{2} be points of $\pi\left(p_{4}, p_{1}\right)$ not on L_{3}^{*} and not on $\left\{p_{2}, p_{4}\right\}^{\perp} \backslash$ $\left\{p_{1}\right\}=U$. By the transitivity of G^{\prime} on the skeletons of \mathcal{S}^{\prime}, there is an automorphism η in G^{\prime} fixing $p_{1}, p_{2}, p_{3}, p_{4}$ mapping $x_{1} p_{4}$ onto $x_{2} p_{4}$ and mapping x_{1} onto x_{2}. Then η induces an automorphism η^{\prime} of $\pi\left(p_{4}, p_{1}\right)$ fixing L_{3}^{*}, U and mapping x_{1} onto x_{2}. Hence $\pi\left(p_{4}, p_{1}\right)$ is Desarguesian [4]. Then by 5.2.7 of FGQ, the GQ \mathcal{S}^{\prime} is isomorphic to $Q\left(4, s^{\prime}\right)$. Consequently every line of \mathcal{S}^{\prime} is regular, a contradiction.

We conclude that case (iii) cannot occur.

2.3 Case (iv)

2.3.1 Some general observations

We first fix the notation.
Throughout, Ω will denote the skeleton $\left(\left(p_{1}, L_{1}, p_{2}, L_{2}, p_{3}, L_{3}, p_{4}, L_{4}\right) ; L, p\right)$, where $Q=\left(p_{1}, \ldots, L_{4}\right), L I p_{1}$ and $p I L_{1}$. The group G_{Ω} of automorphisms in G fixing Ω has order $k \in \mathbf{N} \backslash\{0\}$.
The line L_{1} is regular in \mathcal{S}. For any two lines M and M^{\prime} meeting L_{1} in different points, we call the collection $\left\{M, M^{\prime}\right\}^{\perp \perp}$ of $s+1$ lines the regulus through M and M^{\prime}; it is denoted by $M M^{\prime}$. Every line of the regulus $M M^{\prime}$ meets L_{1}. The set of all lines through a point p will be denoted by p^{*}.
Consider an involution σ that fixes p_{1}, L_{1} and p_{2}. Suppose that σ does not fix all points on L_{1}. Let x be such a point on L_{1} which is not fixed by σ, and let M be a line through x different from L_{1}. The regulus $M M^{\sigma}$ meets p_{1}^{*} respectively p_{2}^{*} in exactly one line R_{1} respectively R_{2}. Clearly the regulus $M M^{\sigma}$ is fixed by σ, and since p_{1} and p_{2} are fixed by σ, also R_{1} and R_{2} are fixed. Varying M through x, one sees that the number of fixed reguli $M M^{\sigma}$ is t. But this number also equals $t_{1} t_{2}$, where t_{i} is the number of lines through p_{i}, different from L_{1} and fixed by $\sigma, i=1,2$. If moreover σ fixes a third point u on L_{1}, then the number t_{u} of fixed lines through u (different from L_{1}) satisfies $t_{1} t_{u}=t_{2} t_{u}=t_{1} t_{2}=t$ implying $t_{1}=t_{2}=t_{u}=\sqrt{t}$.

2.3.2 A useful lemma

Let $\theta(\neq 1)$ be an automorphism in G fixing all points on L_{1} and the lines L_{2}, L_{4} and L. Let $r I L_{1}, p_{2} \neq r \neq p_{1}, p_{1} I M, M \neq L_{1}, r I N, N \neq L_{1}$. Then the regulus $M N$ is fixed by θ if and only if $M^{\theta}=M$ and $N^{\theta}=N$. Let $t_{i}+1$ be the number of fixed lines through $p_{i}, i=1,2$, and let $t^{\prime}+1$ be the number of fixed lines through r. If w is the number of fixed reguli consisting of $s+1$ lines concurrent with L_{1}, then clearly $w=t_{1} t^{\prime}$. Analogously, $w=t_{2} t^{\prime}$ and $w=t_{1} t_{2}$. Hence $t_{1}=t_{2}=t^{\prime}$. So θ fixes a constant number $t^{\prime}+1$ of lines through every point of L_{1}. Let \mathcal{P}^{\prime} be the union of the points on all
these lines and let \mathcal{B}^{\prime} be the set of lines meeting \mathcal{P}^{\prime} in at least two points. Clearly, every element of \mathcal{B}^{\prime} is incident with exactly $s+1$ elements of \mathcal{P}^{\prime} (by the regularity of $\left.L_{1}\right)$. By 2.3 .1 of $\mathrm{FGQ}, \mathcal{S}^{\prime}=\left(\mathcal{P}^{\prime}, \mathcal{B}^{\prime}, \mathcal{I}^{\prime}\right)$, with I^{\prime} the restriction of I to $\mathcal{P}^{\prime} \times \mathcal{B}^{\prime} \cup \mathcal{B}^{\prime} \times \mathcal{P}^{\prime}$, is a subquadrangle of order $\left(s, t^{\prime}\right)$. If $t^{\prime}<t$, then by 5.3.5 of FGQ and the transitivity properties of G, the GQ \mathcal{S} is the classical GQ $Q(5, s)$. Now let $t=t^{\prime}$. As $\theta \neq 1$, we have $p_{3}^{\theta} \neq p_{3}$ by 2.4.1 of FGQ. For every point x on L_{2} with $p_{2} \neq x \neq p_{3}$, the conjugate θ^{η} of θ, where η is a collineation fixing $L_{1}, L_{2}, L_{4}, p_{3}$ and mapping p_{3}^{θ} to x, fixes every line concurrent with L_{1} and maps p_{3} to x. Therefore \mathcal{S} is half Moufang and hence Moufang by $[7]$. Since all lines are regular, we have $\mathcal{S} \cong \mathcal{Q}\left(\triangle, \int\right)$ or $\mathcal{S} \cong \mathcal{Q}\left(\nabla, \int\right)$ by 3.3.1 of FGQ.
Now we distinguish between several numerical cases.

2.3.3 k and s both odd

The subgroup H of G fixing Q and L has order $(s-1) k$ and hence contains some involution σ. If σ would fix a third point u on L_{1}, then σ would be inside G_{Ω} (taking without loss of generality $u=p$), contradicting the hypothesis k odd. Hence σ has no fixed points, different from p_{1} and p_{2}, on L_{1}. From Section 2.3.1 follows immediately that $t_{1} t_{2}=t$, where $t_{i}+1$ is the number of fixed lines (for σ) through $p_{i}, i=1,2$.
Suppose $t_{i}>1$ for $i=1,2$. Let $M_{i} \neq L_{1}$ be any line fixed by σ and incident with p_{i} and let x_{i} be the point of M_{i} collinear with $p_{i+2}, i=1,2$. Clearly x_{i} is also fixed by σ and considering the point x_{2}^{\prime} of M_{2} collinear with x_{1}, one sees that σ fixes a skeleton unless $x_{2}^{\prime}=x_{2}$. Since k is odd, σ cannot fix a skeleton and hence there arises a dual $\left(t_{1}+1\right) \times\left(t_{2}+1\right)$-grid having as points the points p_{1}, p_{2}, the t_{1} points x_{1} and the t_{2} points x_{2} (obtained by letting vary M_{1} and M_{2}). So there are three points with at least $t_{1}+1$ centers and three points with at least $t_{2}+1$ centers. By the observation in 2.1.2, $t_{i} \leq t / s$ and hence $t=t_{1} t_{2} \leq t^{2} / s^{2}$, implying $s^{2} \leq t$, so $t=s^{2}$ (cf. 1.2.3 of FGQ) and $t_{1}=t_{2}=t / s=s$. So we have $\left|\left\{p_{1}, p_{3}, x_{2}\right\}^{\perp \perp}\right| \geq 1+s$, hence the left hand side is actually equal to $1+s$. By the transitivity on triads in x_{1}^{\perp}, we have that x_{1} is 3 -regular. By transitivity every point of \mathcal{S} is 3 -regular, and consequently, by 5.3.2(i) of $\mathrm{FGQ}, \mathcal{S}$ is the classical GQ $Q(5, s)$.

Next we consider the case $t_{2}=1$. Then of course $t_{1}=t$ and so σ fixes all lines through p_{1}. Consider two arbitrary points y, z on L_{2} with $z \neq p_{2} \neq y$
and $y \neq p_{3}$. The subgroup H^{*} of G fixing p_{1}, p_{2}, y, L_{4} and L has also order $(s-1) k$ and acts transitively on the points of L_{2} different from p_{2} and y. Let $\theta \in H^{*}$ map y^{σ} (which is different from y) to z. Then the map $\theta^{-1} \sigma \theta$ maps y to z and fixes all lines through p_{1}. Varying the point p_{2} on L_{1} and varying afterwards the line L_{1} through p_{1}, we see that there exists a group K of automorphisms of \mathcal{S} fixing all lines through p_{1} and acting transitively on $\mathcal{P} \backslash \underset{\sqrt{ }^{\infty}}{\stackrel{\perp}{0}}$. By 8.2.4(iv) of FGQ , there is a unique subgroup $E \unlhd K$ of order $s^{2} t$ acting regularly on $\mathcal{P} \backslash_{\sqrt{ }}^{\perp}$; this normal subgroup is the set of all automorphisms of \mathcal{S} fixing all lines through p_{1} and having no fixed point in $\mathcal{P} \backslash \underset{{ }^{\infty}}{\stackrel{\perp}{\infty}}$. Let $E_{L_{2}}$ be the subgroup of E, of order s, fixing L_{2}.
Now consider the subgroup H_{1} of G which fixes $L_{4}, p_{1}, L_{1}, p_{2}, L_{2}$ and L. This group acts transitively on the points of L_{1} different from p_{1} and p_{2}. Clearly $E_{L_{2}} \leq H_{1}$. If $\eta \in E_{L_{2}} \backslash\{1\}$ and $\delta \in H_{1}$, then $\delta^{-1} \eta \delta$ fixes p_{1} linewise, fixes L_{2}, and has no fixed point collinear with p_{1}. Hence $\delta^{-1} \eta \delta \in E_{L_{2}}$, and so $E_{L_{2}} \unlhd H_{1}$. Hence $E_{L_{2}}$ acts on the points of L_{1} different from p_{1} and p_{2} in orbits of equal length d. So d has to divide both $s-1$ and s, hence $d=1$. It follows that every element of $E_{L_{2}}$ fixes all points on L_{1}. By the regularity of L_{1} it is immediately clear that every element of $E_{L_{2}}$ fixes each line of $\left\{L_{4}, L_{2}\right\}^{\perp \perp}$. Now let M be a line meeting L_{1}, with p_{1} not incident with M, p_{2} not incident with M, and $M \notin\left\{L_{4}, L_{2}\right\}^{\perp \perp}$. Let N be the line through p_{1} which belongs to $\left\{M, L_{2}\right\}^{\perp \perp}$. Each element of $E_{L_{2}}$ fixes $\left\{N, L_{2}\right\}^{\perp \perp}$ and the common point of M and L_{1}. Hence each element of $E_{L_{2}}$ fixes M. It easily follows that each element of $E_{L_{2}}$ fixes each line concurrent with L_{1}. By transitivity of G on the lines of \mathcal{S}, \mathcal{S} is half Moufang and hence Moufang by [7]. So, by [3], \mathcal{S} is classical (cf. 9.1 of FGQ). Since all lines of \mathcal{S} are regular, we have $\mathcal{S} \cong \mathcal{Q}\left(\triangle, \int\right)$ or $\mathcal{S} \cong \mathcal{Q}\left(\nabla, \int\right)$.
This completes the case k and s both odd.

2.3.4 k odd and s even

We consider here the subgroup H_{1} of G fixing $L_{4}, p_{1}, L_{1}, p_{2}, L_{2}, L$ and p. This group has order $s k$ and hence it contains an involution σ. If σ would fix a point not incident with L_{1}, then it would fix a skeleton and this contradicts the fact that k is odd. So the only fixed points for σ are on L_{1}. Let x be any point on L_{1} and let y be any point collinear with x but not on L_{1}. If
$y^{\sigma} \sim y$, then clearly x is fixed by σ. If $y \nsim y^{\sigma}=y^{\prime}$, then $\left\{y, y^{\prime}\right\}^{\perp}$ contains a fixed point (indeed, it contains $t+1$ elements and since s divides t, t is even). Hence there is a point collinear with y which is fixed by σ. This must clearly be x and so we showed that σ fixes every point on L_{1}. By Lemma 2.3.2, $\mathcal{S} \cong \mathcal{Q}\left(\triangle, \int\right)$ or $\mathcal{S} \cong \mathcal{Q}\left(\nabla, \int\right)$.

2.3.5 k and s both even

From these assumptions follows the existence of an involution σ fixing the skeleton Ω. This involution has as fixed elements the points and lines of a thick proper subquadrangle \mathcal{S}^{\prime} of order $\left(s^{\prime}, t^{\prime}\right)$. If $s=s^{\prime}$, then by the transitivity properties of G, it follows from 5.3.5 of FGQ that \mathcal{S} is the classical GQ $Q(5, s)$. Hence suppose $s \neq s^{\prime}$. By Section 2.3.1, $t^{\prime}=\sqrt{t}$.

Let R be a line of \mathcal{S}^{\prime} and let z be a point of R not in \mathcal{S}^{\prime}. Then any line through z, different from R, has no point in common with \mathcal{S}^{\prime}; so there exists a line M external to \mathcal{S}^{\prime}. The line $M^{\prime}=M^{\sigma}$ does not meet M and the $s+1$ lines of $\left\{M, M^{\prime}\right\}^{\perp \perp}$ are permuted by σ. Since $s+1$ is odd, $\left\{M, M^{\prime}\right\}^{\perp \perp}$ contains at least one fixed line N, which contains in turn exactly $s^{\prime}+1$ fixed points. A line containing any of these $s^{\prime}+1$ points and concurrent with both M and M^{\prime} is fixed by σ. Hence there are exactly $s^{\prime}+1$ lines of \mathcal{S}^{\prime} concurrent with a given external line. By Proposition 2.2.1 of FGQ, we have $1+s^{\prime}=1+t^{\prime}$. But again by 2.2.1 of FGQ, we also have $s \geq s^{\prime} t^{\prime}=t$. Hence $s=t$ and \mathcal{S} is the classical GQ $Q(4, q)$ (by the regularity of every line).

2.3.6 k even and s odd

We subdivide this case in two subcases: t odd and t even.

Subcase t even. Here we consider the subgroup H_{2} of G fixing $L_{4}, p_{1}, L_{1}, p_{2}, L$ and p. This group has order $s t k$ and hence contains a non-trivial Sylow 2subgroup S. Suppose 2^{n} respectively 2^{m} divides t respectively k and 2^{n+1} respectively 2^{m+1} does not. Then $|S|=2^{n+m}$. Let σ be an involution in the center of S and suppose that σ fixes a second line through p_{2}, say L_{2}. Since s is odd σ fixes a second point on L_{4} respectively L_{2}. If σ would fix all points on L_{1}, then its fixed elements would be the points and lines of a thick proper subquadrangle of order $\left(s, t^{\prime}\right)$. Then, by the transitivity properties of G, it
again follows from 5.3.5 of FGQ , that $\mathcal{S} \cong \mathcal{Q}\left(\nabla, \int\right)$. Hence we assume now that σ does not fix all points of L_{1}. By Section 2.3.1, σ fixes \sqrt{t} lines different from L_{1} through p_{2}. The group S acts on these lines and the stabilizer S_{M} in S of any of these lines M has at most order 2^{m}, since S_{M} is a subgroup of a conjugate of the group G_{Ω} of order k. So the length of the orbit of M under S has at least order $|S| / 2^{m}=2^{n}$. Since M was arbitrary, this means that \sqrt{t} must be divisible by 2^{n}, hence $2^{2 n}$ divides t, a contradiction. Hence σ does not fix any line through p_{2} besides L_{1}. But then, by 2.3.1, σ fixes every point on L_{1}. On L_{4} there is a second fixed point p_{4}. If σ does not fix all points of L_{4}, then, by 2.3.1, p_{4} is on at least two fixed lines, a contradiction as every fixed line contains p_{1}. Hence σ fixes every point of L_{4}, and similarly it fixes every point of L. Now consider the group T generated by all conjugates of σ by elements of the subgroup H_{3} of G fixing p_{1}, L_{1}, p_{2}. Every element of T fixes each point of L_{1}. Let M be a line different from L_{1} containing p_{1}, and let $M^{\prime}, \bar{M}^{\prime}$ be distinct lines different from L_{1} containing p_{2}. Then there is a $\delta \in H_{3}$ such that $L_{4}^{\delta}=M, N^{\delta}=\bar{M}^{\prime}, N^{\sigma \delta}=M^{\prime}$, where N is any line through p_{2} different from L_{1}. Then $\delta^{-1} \sigma \delta \in T$ fixes each point of M and maps M^{\prime} onto \bar{M}^{\prime}. Now let x be a point collinear with p_{2} and not incident with L_{1}. Denote by O_{x} the orbit of x under T. Clearly, we have $\left|O_{x}\right| \geq t$. If $\left|O_{x}\right|=t$, then by the transitivity property just mentioned, all points of O_{x} are collinear to one single point of $M, M \neq L_{1}$ and M through p_{1}. But M is arbitrary, so we obtain a dual $(t+1) \times(t+1)$-grid. Consequently we have a regular pair of points and by 1.3.6(i) of FGQ, $s \geq t$. But all lines are regular, so $t \geq s$ implying $s=t$, which means that \mathcal{S} is the classical GQ $Q(4, s)$. Hence we may assume $\left|O_{x}\right|>t$. This means that there exists a collineation γ in T preserving L_{2} and not inducing the identity map on the set of points of L_{2}. By interchanging roles of p_{1} and p_{2}, we see that there exists an element $\xi \in G$ fixing all points of L_{1}, all points of L_{2} and mapping L_{4}^{γ} onto L_{4}. Then $\gamma \xi=\zeta$ fixes L_{2}, L_{4}, all points of L_{1}, but not every point of L_{2}. Let $x^{\zeta} \neq x, x I L_{2}$. Choose on L_{2} distinct points y, z, not on L_{1}. By the transitivity properties of G, there is an element $\delta \in H_{3}$ which fixes L_{4}, maps x onto y, and x^{ζ} onto z. Then $\delta^{-1} \zeta \delta$ fixes all points of L_{1}, fixes L_{4} and L_{2}, and maps y onto z. Consequently the group T_{0} generated by all conjugates of ζ by elements of H_{3} fixes all points of L_{1}, fixes L_{4} and L_{2}, and acts transitively on the s points of L_{2} not on L_{1}. Hence s divides $\left|T_{0}\right|$. Assume that no element of $T_{0} \backslash\{1\}$ fixes a third line through p_{1}. Then T_{0} acts faithfully and semi-regularly on the lines through p_{1}, different from L_{1} and L_{4}. Hence $\left|T_{0}\right|$ divides $t-1$, so s divides $t-1$. As s divides t, we have a contradiction.

Hence there is an element $\theta \in T_{0}$ fixing all points of L_{1}, fixing L_{2} and L_{4}, and fixing a third line, say L, containing p_{1}. By Lemma 2.3.2, $\mathcal{S} \cong \mathcal{Q}(\triangle, \delta)$ or $\mathcal{S} \cong \mathcal{Q}\left(\nabla, \int\right)$, so s and t have the same parity, a contradiction.

Subcase t odd. Here we consider the subgroup H_{4} of G fixing Q and p, which has order $(t-1) k$. We consider a Sylow 2 -subgroup S in H_{4}. Suppose 2^{n} respectively 2^{m} divides $t-1$ respectively k and 2^{n+1} respectively 2^{m+1} does not. Then $|S|=2^{n+m}$. Let σ be an involution in the center of S. If σ does not fix every point on L_{1}, then it fixes exactly $\sqrt{t}-1$ lines different from L_{1} and L_{4} through p_{1}. Let M be one of these lines. The group S acts on these $\sqrt{t}-1$ fixed lines and similarly as in the previous case, we obtain that the size of the orbit of M is divisible by 2^{n}. Hence 2^{n} divides $\sqrt{t}-1$, so 2^{n+1} divides $(\sqrt{t}-1)(\sqrt{t}+1)=t-1$, a contradiction. Hence σ fixes all points on L_{1}. Assume there is no element of G fixing all points of L_{1}, the lines L_{2}, L_{4}, and at least three lines containing p_{1} or p_{2}. Let T^{\prime} be the group generated by the congugates of σ by the elements of the subgroup H_{5} of G fixing L_{4}, p_{1}, L_{1}, p_{2} and L_{2}. Then the elements of T^{\prime} fix all points of L_{1}, fix L_{2} and L_{4}. Suppose first that σ does not fix all points of L_{2}. Then T^{\prime} acts transitively on the set A of points of L_{2} different from p_{2}. By an argument similar to the one in the case t even, we obtain a collineation of \mathcal{S} fixing all points of L_{1}, the line L_{2} and at least three lines containing p_{1}. Hence σ fixes all points of L_{2}. Then the fixed elements of σ are all elements of the $(s+1) \times(s+1)$-grid containing the lines L_{2} and L_{4}. Let N be a line through p_{2} different from L_{1} and L_{2}. Then $N^{\sigma} \neq N$. Let H_{3} be the subgroup of G fixing p_{1}, L_{1}, p_{2}, let M be a line different from L_{1} containing p_{1}, and let $M^{\prime}, \bar{M}^{\prime}$ be distinct lines different from L_{1} containing p_{2}. Then there is a $\delta \in H_{3}$ such that $L_{4}^{\delta}=M$, $N^{\delta}=\bar{M}^{\prime}, N^{\sigma \delta}=M^{\prime}$. So $\delta^{-1} \sigma \delta$ fixes each point of L_{1}, fixes each point of M and maps M^{\prime} onto \bar{M}^{\prime}. Let $T^{\prime \prime}$ be the subgroup of G generated by the conjugates of σ by the elements of the group H_{3}. Then the elements of $T^{\prime \prime}$ fix all points of L_{1}. Using an argument analogous to the one in the case t even (replacing T by $T^{\prime \prime}$), we find that necessarily $\mathcal{S} \cong \mathcal{Q}\left(\triangle, \int\right)$. So we may assume that \mathcal{S} admits a collineation fixing all points of L_{1}, the lines L_{2}, L_{4}, and at least three lines containing p_{1} or p_{2}. Then by Lemma 2.3.2, the GQ \mathcal{S} is isomorphic to either $Q(4, s)$ or $Q(5, s)$.

2.4 The possible groups

Let \mathcal{S} be one of the generalized quadrangles $W(q), Q(4, q), Q(5, q)$ or $H\left(3, q^{2}\right)$ and let G be a group of automorphisms acting transitively on the set of ordered pentagons. By duality, we may restrict ourselves to $Q(4, q)$ and $H\left(3, q^{2}\right)$. First let $\mathcal{S} \neq \mathcal{Q}(\triangle, \in)$. By a theorem of Seitz [6], G has to contain the simple group $O_{5}(q)(q \neq 2)$, respectively $U_{4}(q)$. If q is even, then $O_{5}(q)$ respectively $U_{4}(q)$ coincides with $P G O_{5}(q)$ respectively $\operatorname{PGU}(4, q)$ and each of these groups contains all generalized homologies of the corresponding GQ; hence these groups have the desired transitivity properties. If $\mathcal{S}=\mathcal{Q}(\triangle, \in)$, then $O_{5}(2)$ is the full automorphism group of \mathcal{S} and $\left|O_{5}(2)\right|$ is the number of ordered pentagons in \mathcal{S}. As $O_{5}(2)$ acts semiregularly on the set of ordered pentagons, and consequently also regularly, it follows that G must coincide with $O_{5}(2)$ in this case. Suppose now that q is odd.
First let $\mathcal{S} \cong \mathcal{Q}(\triangle, \amalg)$. The full group of automorphisms of $Q(4, q)$ is $P G O_{5}(q) . h=P \Gamma O_{5}(q)$, where $q=p^{h}$ with p a prime number. If h is odd, then the group $O_{5}(q) . h$ does not act transitively on the ordered pentagons since its order is not divisible by the number of ordered pentagons. This number of ordered pentagons equals $2\left|O_{5}(q)\right|$, so $O_{5}(q)$ must have even index in G. Since the outer automorphism group of $O_{5}(q)$ has a unique involution (this is the diagonal automorphism, see [2]), every extension of $O_{5}(q)$ in $P \Gamma O_{5}(q)$ in which $O_{5}(q)$ has even index must contain $P G O_{5}(q)$. Suppose now that h is even. Consider a skeleton $(Q ; L, x)$ in \mathcal{S}. The stabilizer in $O_{5}(q)$ of Q acts transitively on the points not in Q and incident with the line of Q containing x; but the stabilizer in $O_{5}(q)$ of Q and x acts on the set V of lines not in Q but incident with the point of Q on L as the permutation group on $G F(q) \backslash\{0\}$ consisting of the elements $\gamma_{a}: x \mapsto a^{2} x$, $a, x \in G F(q) \backslash\{0\}$. If G does not contain $P_{G} O_{5}(q)$, then it contains an element involving a field automorphism $\theta, \theta \neq 1$. So G contains the group $P G O_{5}^{\theta}(q)$ generated by $O_{5}(q)$ and $g_{\theta} g$, where $g \in P G O_{5}(q)$ and where g_{θ} is the element of $P \Gamma L_{5}(q)$ corresponding to the semilinear transformation with identity matrix and field automorphism θ. Clearly $P G O_{5}^{\theta}(q)$ contains an element that fixes Q and x, and acts on V as the permutation $\gamma: x \mapsto b x^{\theta}$, with b a non-square in $G F(q)$, that is, we may assume that $g \in P G O_{5}(q) \backslash O_{5}(q)$. Also, θ has even order n (otherwise $\left(g_{\theta} g\right)^{n} \in P G O_{5}(q) \backslash O_{5}(q)$ and then G contains $\left.\mathrm{PGO}_{5}(q)\right)$. Conversely, each such $P G O_{5}^{\theta}(q)$ acts transitively on the set of skeletons of \mathcal{S}. Let $n=l .2^{e}$ with l odd and put $\theta^{\prime}=\theta^{l}$. Then θ^{\prime} has
order $2^{e}, P G O_{5}^{\theta^{\prime}}(q) \leq P G O_{5}^{\theta}(q)$, and $P G O_{5}^{\theta^{\prime}}(q)$ also acts transitively on the set of skeletons, and hence on the set of ordered pentagons. This shows (i) and (ii) of the main result.

Now suppose $\mathcal{S} \cong \mathcal{H}_{\ni}\left(\amalg^{\epsilon}\right), q$ odd. First suppose that $q \equiv 3 \bmod 4$. Then the Sylow 2-subgroup P of the outer automorphism group of $U_{4}(q)$ is a semidirect product of a cyclic group C_{4} (of diagonal automorphisms) with a group of order 2 (the unique involutory field automorphism). Now the number of ordered pentagons equals $4\left|U_{4}(q)\right|$ and so G must contain $U_{4}(q)$ as a subgroup of index divisible by 4 . Hence $G / U_{4}(q)$ contains a group isomorphic to a subgroup of P of order at least 4. But every such subgroup clearly contains the unique involutory diagonal automorphism (the unique involution of C_{4}). So G contains the group H (with the notation of the introduction). This is trivially true if $q \equiv 1 \bmod 4$. But now, a similar reasoning as in the case $\mathcal{S} \cong \mathcal{Q}(\triangle, \amalg), q$ odd and h even, of the preceding paragraph shows that only cases (iii) and (iv) of the main result are possible.
This completes the proof of our main result.

ACKNOWLEDGEMENT

The authors thank the referee for the careful reading and interesting suggestions.

References

[1] F. BUEKENHOUT and H. VAN MALDEGHEM, Finite distance transitive generalized polygons, to appear in Geom. Dedicata.
[2] J. H. CONWAY, R. T. CURTIS, S .P .NORTON, R .A. PARKER and R. A. WILSON, Atlas of Finite Groups, Oxford University Press, 1985.
[3] P. FONG and G. M. SEITZ, Groups with a (B, N)-pair of rank 2, I and II, Invent. Math. 21 (1973), $1-57$ and 24 (1974), 191 - 239.
[4] M. J. KALLAHER, A conjecture on semifield planes, Arch. Math. 26 (1975), 436 - 440.
[5] S. E. PAYNE and J. A. THAS, Finite Generalized Quadrangles, Pitman, Boston (1984).
[6] G. M. SEITZ, Flag-transitive subgroups of Chevalley groups, Ann. of Math. 97 (1973), 27 - 56.
[7] J. A. THAS, S. E. PAYNE and H. VAN MALDEGHEM, Half Moufang implies Moufang for finite generalized quadrangles, Invent. Math. 105 (1991), 153 - 156.

Address of the Authors :
Department of Pure Mathematics and Computer Algebra
University of Gent
Krijgslaan 281,
B - 9000 Gent

BELGIUM.

[^0]: *Senior Research Associate of the National Fund for Scientific Research (Belgium)

