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Abstract

A finite non-abelian group G is called metahamiltonian if every subgroup of G
is either abelian or normal in G. If G is non-nilpotent, then the structure of G has
been determined. If G is nilpotent, then the structure of G is determined by the
structure of its Sylow subgroups. However, the classification of finite metahamil-
tonian p-groups is an unsolved problem. In this paper, finite metahamiltonian
p-groups are completely classified up to isomorphism.
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1 Introduction

To determine a finite group by using its subgroup structure is an important theme in

the group theory. Let G be a finite non-abelian p-group. If every proper subgroup of G

is abelian then G is called minimal non-abelian, which was classified by Redei [19]. If

every subgroup of G is normal in G then G is called Hamiltonian, which was classified

by Dedekind [9]. The classifications of minimal non-abelian p-groups and Hamiltonian

groups are two classical results in the theory of finite p-groups.

As a generalization of minimal non-abelian group, many authors investigate finite

p-groups with many abelian subgroups. Among these works, the classification of A2-

groups is the most important one. A finite non-abelian p-group G is called an A2-group

if G is not minimal non-abelian and all of its subgroups of index p are either abelian

or minimal non-abelian. Many scholars studied and classified A2-groups, see [6, 7, 10,

11, 20, 26]. Resent years, several important classes of p-groups which contain A2-group

are determined. For example, Xu et al. [21] classified finite p-groups all of whose non-

abelian proper subgroups are generated by two elements. An et al. [1, 2, 16, 17, 18]

classified finite p-groups with a minimal non-abelian subgroup of index p. Zhang et al.

[27] classified finite p-groups all of its subgroups of index p3 are abelian.

∗This work was supported by NSFC (No. 11471198 & 10171006).
†Corresponding author. e-mail: anlj@sxnu.edu.cn
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As a generalization of Hamilton groups, many authors investigate finite p-groups

with many normal subgroups. For example, Passman [15] classified finite p-groups all

of whose non-normal subgroups are cyclic. Zhang et al. [23, 24, 25] classified finite

p-groups all of whose non-normal subgroups have orders ≤ p3.

A non-abelian group G is called metahamiltonian if every proper subgroup of G

is either abelian or normal in G. Obviously, A2-groups are metahamiltonian. Groups

in [15, 23] are also metahamiltonian. Thus the class of metahamiltonian p-groups is

much larger than that of minimal non-abelian p-groups and Hamilton p-groups. The

classification of metahamiltonian p-groups is an old problem. The present paper is

devoted to the classification.

By the way, Nagrebeckii [13] determined the structure of finite non-nilpotent meta-

hamiltonian groups. Obviously, a nilpotent group is metahamiltonian if and only if all

its Sylow subgroups are metahamiltonian. Hence finite metahamiltonian groups are

completely determined.

This paper is divided into four sections. Section 2 is a preliminary. In section 3, we

classify finite metahamiltonian p-groups whose derived group is of exponent p, and the

case of exponent > p is dealt with in section 4.

The sketch of the classification of metahamiltonian p-groups is as follows.

G is a finite metahamiltonian p-group

✑
✑

✑
✑

✑
✑✰

◗
◗
◗
◗
◗
◗s

exp(G′) = p exp(G′) > p

✚
✚

✚
✚

✚
✚❂

❩
❩
❩
❩
❩
❩⑦

✚
✚

✚
✚

✚
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❩
❩
❩
❩
❩
❩⑦

c(G) = 3 c(G) = 2 G is metacyclic G is not metacyclic
❩
❩
❩
❩
❩
❩⑦❄

✚
✚

✚
✚

✚
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G′ ∼= Cp G′ ∼= C2
p G′ ∼= C3

p

❄ ❄

10 types 7 types

❩
❩
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❩
❩
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✚
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G′ is cyclic G′ is not cyclic

❄
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❄
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❄ ❄

5 types 2 types
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2 Preliminaries

Let G be a finite p-group. For a positive integer t, G is said to be an At-group if the

greatest index of non-abelian subgroups is pt−1. So A1-groups are just the minimal

non-abelian p-groups.

Let G be a finite p-group. We define

Λm(G) = {a ∈ G
∣

∣ ap
m

= 1}, Vm(G) = {ap
m ∣

∣ a ∈ G},

Ωm(G) = 〈Λm(G)〉 = 〈a ∈ G
∣

∣ ap
m

= 1〉, and ℧m(G) = 〈Vm(G)〉 = 〈ap
m ∣

∣ a ∈ G〉.

G is called p-abelian if (ab)p = apbp for all a, b ∈ G. We use c(G) and d(G) to denote

the nilpotency class and minimal number of generators, respectively.

We use Cn and Cm
n to denote the cyclic group and the direct product of m cyclic

groups of order n, respectively. We use Mp(m,n) to denote groups

〈a, b
∣

∣ ap
m
= bp

n
= 1, ab = a1+pm−1

〉, where m ≥ 2,

and use Mp(m,n, 1) to denote groups

〈a, b, c
∣

∣ ap
m
= bp

n
= cp = 1, [a, b] = c, [c, a] = [c, b] = 1〉,

where m + n ≥ 3 for p = 2 and m ≥ n. We can give a presentation of minimal

non-abelian p-groups as follows:

Theorem 2.1. (See [19]) Let G be a minimal non-abelian p-group. Then G is Q8,

Mp(m,n), or Mp(m,n, 1).

A finite p-group G is called metacyclic if it has a cyclic normal subgroup N such

that G/N is also cyclic.

In 1973 King [12] classified metacyclic p-groups. In 1988 Newman and Xu (see

[14, 22]) found new presentations for these groups. Theorem 2.2 is quoted from [22].

Theorem 2.2. (1) Any metacyclic p-group G, p odd, has the following presentation:

G = 〈a, b
∣

∣ ap
r+s+u

= 1, bp
r+s+t

= ap
r+s

, ab = a1+pr〉

where r, s, t, u are non-negative integers with r ≥ 1 and u ≤ r. Different values of

the parameters r, s, t and u with the above conditions give non-isomorphic metacyclic

p-groups. It is denoted to < r, s, t, u >p in this paper.

(2) Let G be a metacyclic 2-group. Then G has one of the following three kinds of

presentations:

(I) G has a cyclic maximal subgroup. Hence G is dihedral, semi-dihedral, generalized

quaternion, or an ordinary metacyclic group presented by

G = 〈a, b
∣

∣ a2
n

= 1, b2 = 1, ab = a1+2n−1

〉.
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(II) Ordinary metacyclic 2-groups:

G = 〈a, b
∣

∣ a2
r+s+u

= 1, b2
r+s+t

= a2
r+s

, ab = a1+2r〉,

where r, s, t, u are non-negative integers with r ≥ 2 and u ≤ r. It is denoted to be

< r, s, t, u >2 in this paper.

(III) Exceptional metacyclic 2-groups:

G = 〈a, b
∣

∣ a2
r+s+v+t′+u

= 1, b2
r+s+t

= a2
r+s+v+t′

, ab = a−1+2r+v

〉,

where r, s, v, t, t′, u are non-negative integers with r ≥ 2, t′ ≤ r, u ≤ 1, tt′ = sv =

tv = 0, and if t′ ≥ r − 1 then u = 0. Groups of different types or of the same type but

with different values of parameters are not isomorphic to each other. It is denoted to

be < r, s, v, t, t′, u >2 in this paper.

Lemma 2.3. (See [8]) Suppose that G is a finite p-group. Then G is metacyclic if and

only if G/Φ(G′)G3 is metacyclic.

Lemma 2.4. (See [5, Lemma J(i)]) Let G be a metacyclic p-group. Then G is an

An-group if and only if |G′| = pn.

In [4], the properties of metahamiltonian p-groups are given as follows:

Theorem 2.5. Let G be a metahamiltonian p-group. Then c(G) ≤ 3. In particular, G

is metabelian.

Theorem 2.6. Let G be a finite p-group. G is metahamiltonian if and only if G′ is

contained in every non-abelian subgroup of G.

Theorem 2.7. Suppose that G is a finite metahamilton p-group. If d(G) = 2 and

exp(G′) > p, then G is metacyclic.

Theorem 2.8. Suppose that G is a finite metahamiltonian p-group having an elemen-

tary abelian derived group. If c(G) = 3, then G is an A2-group.

Corollary 2.9. Suppose that G is a finite metahamiltonian p-group having an elemen-

tary abelian derived group. If c(G) = 3, then d(G) = 2 and p is odd.

3 Finite metahamiltonian p-groups whose derived group

is of exponent p

In this section, we determine finite metahamiltonian p-groups whose derived group is

of exponent p. In order to avoid tedious calculations, we provide a proof which relies

on some results obtained in other papers. These papers are [2, 3, 17, 26].

Theorem 3.1. Suppose that G is a finite metahamiltonian p-group with exp(G′) = p.

Then G is one of the following non-isomorphic groups:

4



(A) groups with |G′| = p.

(B) c(G) = 3. In this case, p is odd, d(G) = 2 and G ∈ A2.

(B1) 〈a1, b
∣

∣ ap1 = ap2 = ap3 = bp
m

= 1, [a1, b] = a2, [a2, b] = a3, [a3, b] = 1, [ai, aj ] =

1〉, where p ≥ 5 for m = 1, p ≥ 3 and 1 ≤ i, j ≤ 3;

(B2) 〈a1, b
∣

∣ ap1 = ap2 = bp
m+1

= 1, [a1, b] = a2, [a2, b] = bp
m

, [a1, a2] = 1〉, where

p ≥ 3;

(B3) 〈a1, b
∣

∣ ap
2

1 = ap2 = bp
m

= 1, [a1, b] = a2, [a2, b] = aνp1 , [a1, a2] = 1〉, where

p ≥ 3 and ν = 1 or a fixed quadratic non-residue modulo p;

(B4) 〈a1, a2, b
∣

∣ a91 = a32 = 1, b3 = a31, [a1, b] = a2, [a2, b] = a−3
1 , [a2, a1] = 1〉.

(B5) 〈a, b
∣

∣ ap
2

= bp
2

= cp = 1, [a, b] = c, [c, a] = bνp, [c, b] = ap〉, where p ≥ 5, ν is

a fixed square non-residue modulo p;

(B6) 〈a, b
∣

∣ ap
2

= bp
2

= cp = 1, [a, b] = c, [c, a] = a−pb−lp, [c, b] = a−p〉, where

p ≥ 5, 4l = ρ2r+1−1, r = 1, 2, . . . , 12(p−1), ρ is the smallest positive integer

which is a primitive root modulo p;

(B7) 〈a, b
∣

∣ a9 = b9 = c3 = 1, [a, b] = c, [c, a] = b−3, [c, b] = a3〉;

(B8) 〈a, b
∣

∣ a9 = b9 = c3 = 1, [a, b] = c, [c, a] = b−3, [c, b] = a−3〉.

(C) c(G) = 2 and G′ ∼= C2
p .

(C1) K × A, where K = 〈a1, a2, b
∣

∣ a41 = a42 = 1, b2 = a21, [a1, a2] = 1, [a1, b] =

a22, [a2, b] = a21〉 and A is abelian such that exp(A) ≤ 2;

(C2) K × A, where K = 〈a1, a2, b, d
∣

∣ a41 = a42 = 1, b2 = a21, d
2 = a22, [a1, a2] =

1, [a1, b] = a22, [a2, b] = a21, [a1, d] = a21, [a2, d] = a21a
2
2, [b, d] = 1〉 and A is

abelian such that exp(A) ≤ 2.

(C3) K × A, where K = 〈a1, a2, a3
∣

∣ ap
m1+1

1 = ap
m2+1

2 = ap
m3

3 = 1, [a1, a2] =

ap
m1

1 , [a1, a3] = ap
m2

2 , [a2, a3] = 1〉, m1 > 1 for p = 2, m1 ≥ m2 ≥ m3, and A

is abelian such that exp(A) ≤ pm2 ;

(C4) K × A, where K = 〈a1, a2, a3
∣

∣ ap
m1+1

1 = ap
m2+1

2 = ap
m3

3 = 1, [a1, a2] =

1, [a1, a3] = ap
m2

2 , [a2, a3] = aνp
m1

1 〉, p > 2, ν is a fixed square non-residue

modulo p, m1 − 1 = m2 ≥ m3 or m1 = m2 ≥ m3, and A is abelian such that

exp(A) ≤ pm2 ;

(C5) K × A, where K = 〈a1, a2, a3
∣

∣ ap
m1+1

1 = ap
m2+1

2 = ap
m3

3 = 1, [a1, a2] =

1, [a1, a3] = ap
m2

2 , [a2, a3] = akp
m1

1 a−pm2

2 〉, 1+4k 6∈ (Fp)
2 for p > 2, k = 1 for

p = 2, m1 = m2 ≥ m3 and A is abelian such that exp(A) ≤ pm2 ;

(C6) K × A, where K = 〈a1, a2, a3
∣

∣ ap
m1+1

1 = ap
m2+1

2 = ap
m3

3 = 1, [a1, a2] =

1, [a1, a3] = ap
m2

2 , [a2, a3] = ap
m1

1 〉, m1 − 1 = m2 ≥ m3 and A is abelian such

that exp(A) ≤ pm2 ;
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(C7) K × A, where K = 〈a1, a2, a3
∣

∣ ap
m1

1 = ap
m2+1

2 = ap
m3+1

3 = 1, [a1, a2] =

ap
m3

3 , [a1, a3] = ap
m2

2 , [a2, a3] = 1〉, m1 ≥ m2 = m3 + 1 and A is abelian such

that exp(A) ≤ pm3 ;

(C8) K × A, where K = 〈a1, a2, a3
∣

∣ ap
m1

1 = ap
m2+1

2 = ap
m3+1

3 = 1, [a1, a2] =

ap
m3

3 , [a1, a3] = aνp
m2

2 , [a2, a3] = 1〉, p > 2, ν is a fixed square non-residue

modulo p, m1 ≥ m2 = m3 + 1 or m1 > m2 = m3 and A is abelian such that

exp(A) ≤ pm3 ;

(C9) K × A, where K = 〈a1, a2, a3
∣

∣ ap
m1

1 = ap
m2+1

2 = ap
m3+1

3 = 1, [a1, a2] =

ap
m3

3 , [a1, a3] = akp
m2

2 a−pm3

3 , [a2, a3] = 1〉, 1+4k 6∈ (Fp)
2 for p > 2, k = 1 for

p = 2, m1 > m2 = m3 and A is abelian such that exp(A) ≤ pm3 ;

(C10) K × A, where K = 〈a1, a2, a3
∣

∣ ap
m1+1

1 = ap
m2

2 = ap
m3+1

3 = 1, [a1, a2] =

ap
m3

3 , [a1, a3] = ap
m1

1 , [a2, a3] = 1〉, m1 ≥ m2 = m3 + 1 and A is abelian such

that exp(A) ≤ pm3 .

(D) c(G) = 2 and G′ ∼= C3
p .

(D1) K × A, where K = 〈a1, a2, a3
∣

∣ ap
m1+1

1 = ap
m2+1

2 = ap
m3+1

3 = 1, [a2, a3] =

ap
m1

1 , [a1, a3] = aηp
m2

2 , [a1, a2] = ap
m3

3 , [ap3, a1] = [ap3, a2] = 1〉, where p is odd,

m1 = m2 +1 = m3 +1 and η is a fixed square non-residue modulo p, and A

is abelian with exp(A) ≤ pm3 ;

(D2) K × A, where K = 〈a1, a2, a3
∣

∣ ap
m1+1

1 = ap
m2+1

2 = ap
m3+1

3 = 1, [a2, a3] =

ap
m1

1 , [a1, a3] = alp
m2

2 a−pm2

3 , [a1, a2] = ap
m3

3 , [ap3, a1] = [ap3, a2] = 1〉, where p

is odd, m1 = m2 + 1 = m3 + 1 and 1 + 4l 6∈ (Fp)
2, and A is abelian with

exp(A) ≤ pm3 ;

(D3) K × A, where K = 〈a1, a2, a3
∣

∣ a2
m1+1

1 = a2
m2+1

2 = a2
m3+1

3 = 1, [a2, a3] =

a2
m1

1 , [a3, a1] = a2
m2

2 , [a1, a2] = a2
m2

2 a2
m3

3 , [a23, a1] = [a23, a2] = 1〉, where m1 =

m2 + 1 = m3 + 1, and A is abelian with exp(A) ≤ 2m3 ;

(D4) K × A, where K = 〈a1, a2, a3
∣

∣ ap
m1+1

1 = ap
m2+1

2 = ap
m3+1

3 = 1, [a2, a3] =

ap
m1

1 , [a1, a3] = aηp
m2

2 , [a1, a2] = ap
m3

3 , [ap3, a1] = [ap3, a2] = 1〉, where p is odd,

m1 = m2 = m3 + 1 and η is a fixed square non-residue modulo p, and A is

abelian with exp(A) ≤ pm3 ;

(D5) K × A, where K = 〈a1, a2, a3
∣

∣ ap
m1+1

1 = ap
m2+1

2 = ap
m3+1

3 = 1, [a2, a3] =

ap
m1

1 , [a1, a3] = ap
m1

1 alp
m2

2 , [a1, a2] = ap
m3

3 , [ap3, a1] = [ap3, a2] = 1〉, where p

is odd, m1 = m2 = m3 + 1 and 1 + 4l 6∈ (Fp)
2, and A is abelian with

exp(A) ≤ pm3 ;

(D6) K × A, where K = 〈a1, a2, a3
∣

∣ a2
m1+1

1 = a2
m2+1

2 = a2
m3+1

3 = 1, [a2, a3] =

a2
m1

1 a2
m2

2 , [a3, a1] = a2
m2

2 , [a1, a2] = a2
m3

3 , [a23, a1] = [a23, a2] = 1〉, where m1 =

m2 = m3 + 1, and A is abelian with exp(A) ≤ 2m3 ;
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(D7) K × A, where K = 〈a, b, c
∣

∣ a4 = b4 = c4 = 1, [b, c] = a2b2, [c, a] =

b2c2, [a, b] = c2, [c2, a] = [c2, b] = 1〉, and A is abelian with exp(A) ≤ 2.

Proof By Theorem 2.5, c(G) ≤ 3. If c(G) = 3, then, by Theorem 2.8, G ∈ A2.

Checking groups listed in [4, Lemma 2.4], we get groups (B1)–(B8). In the following,

we may assume that c(G) = 2. Let N be a minimal non-abelian subgroup of G. By

Theorem 2.6, G′ ≤ N . Since G′ ≤ Z(G), G′ ≤ Ω1(Z(N)) = Ω1(Φ(N)). It follows

from Theorem 2.1 that G′ ≤ C3
p . If G′ ∼= Cp, then G is of Type (A) in the theorem.

If G′ ∼= C2
p , then, by the following Lemma 3.2, G is a group of Type (C1)–(C10) in

the theorem. For the case of G′ ∼= C3
p , Lemma 3.3 gives groups of Type (D1)–(D5)

in the theorem. Finally, it is omitted to check that such groups are non-isomorphic

metahamiltonian p-groups. �

Lemma 3.2. Suppose that G is a metahamilton p-group. If G′ ∼= C2
p and c(G) = 2,

then G is a group of Type (C1)–(C10) as defined in Theorem 3.1.

Proof Let the type of G/G′ be (pm1 , pm2 , . . . , pmr), where m1 ≥ m2 ≥ · · · ≥ mr. Let

G/G′ = 〈a1G
′〉 × 〈a2G

′〉 × · · · × 〈arG
′〉, where o(aiG

′) = pmi , i = 1, 2, . . . , r.

Then G = 〈a1, a2, . . . , ar〉.

If m1 = 1, then G/G′ is elementary abelian. By Theorem 2.6, G′ ≤ 〈x, y〉 for every

non-commutative pair x, y ∈ G and hence 〈x, y〉 is minimal non-abelian with order p4.

Such groups were classified in [3]. By checking the results in [3], we get the groups

(C3)–(C5) where m1 = m2 = m3 = 1 and (C1)–(C2). In the following, we may assume

that m1 > 1.

Let i be the minimal integer such that ai 6∈ Z(G). That is, there exists j > i such

that [ai, aj ] 6= 1. If i 6= 1, then a1 ∈ Z(G). Replacing a1 with a1aj , we get a1 6∈ Z(G).

If i = 1, then we also have a1 6∈ Z(G).

Let j be the minimal integer such that [a1, aj ] 6= 1. If j 6= 2, then [a1, a2] = 1.

Replacing a2 with a2aj, we get [a1, a2] 6= 1. If j = 2, then we also have [a1, a2] 6= 1.

Let k be the minimal integer such that [ak, al] 6∈ 〈[a1, a2]〉. If k > 2, then, for all

integer s, we have

[a1, as] ∈ 〈[a1, a2]〉 and [a2, as] ∈ 〈[a1, a2]〉.

(1) If [a1, al] = 1, then, replacing a2 with a2al, we have [a2, ak] 6∈ 〈[a1, a2]〉. (2) If

[a1, al] = [a1, a2]
α where (α, p) = 1, then, letting [a1, ak] = [a1, a2]

β and replacing a2

with a2aka
α−1β
l , we have [a2, al] 6∈ 〈[a1, a2]〉. Hence we may assume that k ≤ 2.

Let l be the minimal integer such that [ak, al] 6∈ 〈[a1, a2]〉. If l 6= 3, then [a1, a3] ∈

〈[a1, a2]〉 and [a2, a3] ∈ 〈[a1, a2]〉. Replacing a3 with a3al, we have [ak, a3] 6∈ 〈[a1, a2]〉.

Hence we may assume that l = 3.
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Let K = 〈a1, a2, a3〉. Then |K ′| = |G′| = p2. Such groups K were determined in [2].

By checking [2, Table 4], K is one of the groups (C3)–(C10) in Theorem 3.1. If r = 3,

then G = K. In the following we may assume that r ≥ 4.

Case 1: K is one of the groups of Type (C3)–(C6) in Theorem 3.1.

In this case, G′ = 〈ap
m1

1 , ap
m2

2 〉 and [a1, a3] = ap
m2

2 . Assume that ap
m4

4 = aαp
m1

1 aβp
m2

2 .

Replacing a4 with a4a
−αpm1−m4

1 , we have ap
m4

4 = aβp
m2

2 since m1 > 1.

If p > 2 or m2 > 1, then, replacing a4 with a4a
−βpm2−m4

2 , we have ap
m4

4 = 1. If p = 2

and m2 = 1, then we claim that there exists an x ∈ {a4, a4a2} such that x2 ∈ 〈a2
m1

1 〉.

Otherwise, a24 = a22. Since [a4, a2] = (a4a2)
2 6∈ 〈a2

m1

1 〉, 〈a4, a2〉 is not abelian. It follows

from Theorem 2.6 that a2
m1

1 ∈ 〈a4, a2〉. Hence [a4, a2] = a2
m1

1 a22. Thus 〈a4a2, a2a
2m1−1

1 〉

is neither abelian nor normal in G, a contradiction. Replacing a4 with x or xa2
m1−1

1 ,

we have a24 = 1.

Hence we may assume that ap
m4

4 = 1. We claim that [a1, a4] ∈ 〈ap
m2

2 〉. Otherwise,

we may assume that [a1, a4] = aγp
m1

1 aαp
m2

2 where (γ, p) = 1. By calculation, 〈a1, a4a
−α
3 〉

is neither abelian nor normal in G, a contradiction. Hence [a1, a4] ∈ 〈ap
m2

2 〉.

Let L = 〈a1, a2, a4〉. If [a1, a4] 6= 1, then, by suitable replacement, we may assume

that [a1, a4] = ap
m2

2 . In this case, we claim that L′ = G′. If not, then L′ = 〈ap
m2

2 〉.

Since G′ 6≤ 〈a2, a4〉, [a2, a4] = 1 by Theorem 2.6. Since K ′ = G′, K ′ = 〈ap
m2

2 , [a2, a3]〉.

Hence we may assume that [a2, a3] = asp
m1

1 atp
m2

2 where (s, p) = 1. If (t, p) = 1, then

〈asp
m1−m2

1 at2, a3a
−1
4 〉 is neither abelian nor normal in G, a contradiction. If t = 0 and

m1 > m2, then 〈a1a2, a3a
−1
4 〉 is neither abelian nor normal in G, a contradiction. If

t = 0 and m1 = m2, then 〈a1a2, a3a
s−1
4 〉 is neither abelian nor normal in G, also a

contradiction.

By a similar argument as above, for 4 ≤ i ≤ r, we may assume that ap
mi

i = 1 and

[a1, ai] = 1 or ap
m2

2 . Moreover, we have:

(*) If [a1, ai] = ap
m2

2 , then L′ = G′ where L = 〈a1, a2, ai〉.

For 3 ≤ i < j ≤ r, [ai, aj] = 1 by Theorem 2.6.

Let j be the maximal integer such that [a1, aj ] = ap
m2

2 . Then [a1, ak] = 1 for

j < k ≤ r. For 3 ≤ k < j, if [a1, ak] = ap
m2

2 , then [a1, aka
−1
j ] = 1. Replacing ak with

aka
−1
j if necessary, we get [a1, ak] = 1.

Let J = 〈a1, a2, aj〉. Then J is one of the groups of Type (C3)–(C6) in Theorem

3.1 since J ′ = 〈ap
m1

1 , ap
m2

2 〉. We claim that [a2, ak] = 1 for 3 ≤ k ≤ r and k 6= j. If not,

then we will reduce contradictions on two subcases respectively.

Subcase 1: J is the group of Type (C3) in Theorem 3.1.

In this subcase, [a2, aj ] = 1. We may assume that [a2, ak] = aγp
m2

2 aβp
m1

1 where

(β, p) = 1. If (γ, p) = 1, then 〈aβp
m1−m2

1 aγ2 , ak〉 is neither abelian nor normal in G, a

contradiction. If α = 0 and m1 > m2, then 〈a1a2, ak〉 is neither abelian nor normal in

G, a contradiction. If α = 0 and m1 = m2, then 〈a1a2, aka
β
j 〉 is neither abelian nor

normal in G, also a contradiction.
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Subcase 2: J is one of the groups of Type (C4)–(C7) in Theorem 3.1.

In this subcase, [a1, a2] = 1 and G′ = 〈[a2, aj ], a
pm2

2 〉. Hence we may assume that

[a2, ak] = aγp
m2

2 [a2, aj ]
β where (β, p) = 1. Let x = a−β−1

k aj . Then [a1, x] = ap
m2

2 and

[a2, x] = a−β−1γpm2

2 . If (γ, p) = 1, then 〈a2, aka
−β
j 〉 is neither abelian nor normal in G,

a contradiction. If α = 0, then 〈a1, a2, x〉
′ = 〈ap

m2

2 〉. This contradicts (*).

In this case, G = J ×A where A = 〈a3〉 × · · · × 〈aj−1〉 × 〈aj+1〉 × · · · × 〈ar〉. Hence

we get the groups (C3)–(C7) in Theorem 3.1.

Case 2: K is one of the groups of Type (C7)–(C10) in Theorem 3.1.

In this case, G′ = 〈ap
ms

s , ap
m3

3 〉 where s = 1 or 2, [a1, a2] = ap
m3

3 and [a2, a3] = 1.

Assume that ap
m4

4 = aαp
ms

s aβp
m3

3 .

If p > 2 or m3 > 1, then, replacing a4 with a4a
−αpms−m4

s a−βpm3−m4

3 , we have

ap
m4

4 = 1. If p = 2, m3 = 1 and ms > 1, then, we claim that there exists an

x ∈ {a4, a4a3} such that x2 ∈ 〈a2
ms

s 〉. Otherwise, a24 = aα2
ms

s a23. Replacing a4 with

a4a
−αpms−m4

s , we have a24 = a23. Since [a4, a3] = (a4a3)
2 6∈ 〈a2

ms

s 〉, 〈a4, a3〉 is non-abelian.

It follows from Theorem 2.6 that G′ ≤ 〈a4, a3〉. Hence [a4, a3] = a2
ms

s a23. By calcula-

tion, 〈a4a3, a3a
2ms−1

s 〉 is neither abelian nor normal in G, a contradiction. Replacing

a4 with x or xa2
ms−1

s , we have a24 = 1. If p = 2 and ms = m3 = 1, then s = 2 since

m1 > 1. Hence K is a group of Type (C9). In this case, [a1, a3] = a22a
2
3. we claim that

there exists an involution in {a4, a4a2, a4a3, a4a2a3}. Otherwise, since a24 6= 1, we have

a24 = a22, a
2
3 or a22a

2
3.

If a24 = a23, then, by replacing a2, a3 with a3, a2a3 respectively, it is reduced to a24 = a22.

If a24 = a22a
2
3, then, by replacing a2, a3 with a2a3, a2 respectively, it is also reduced

to a24 = a22. Hence we may assume that a24 = a22. Since (a4a2)
2 = [a4, a2] 6= 1,

L = 〈a4, a2〉 is not abelian. It follows from Theorem 2.6 that G′ ≤ L. Hence we may

assume that [a4, a2] = a23a
2α
2 . If [a4, a2] = a23a

2
2, then 〈a1a4, a2〉 is neither abelian nor

normal in G, a contradiction. If [a4, a2] = a23, then (a4a2)
2 = a23. Since (a4a2a3)

2 6= 1,

[a4a2, a3] = [a4, a3] = (a4a2a3)
2 6= 1. Since M = 〈a4a2, a3〉 is not abelian, G′ ≤

〈a4a2, a3〉 by Theorem 2.6. Hence we may assume that [a4, a3] = [a4a2, a3] = a22a
2α
3 .

Since (a4a3)
2 6= 1, [a4, a3] 6= a22a

3
3. Hence [a4, a3] = a22. In this case, 〈a1a4a2, a3〉 is

neither abelian nor normal in G, a contradiction.

By the above argument, we may assume that ap
m4

4 = 1. Let {s, t} = {1, 2}. Since

G′ 6≤ 〈at, a4〉, [at, a4] = 1 by Theorem 2.6. By the definition relations of (C7)–(C10),

mt > m3. It follows from Theorem 2.6 that [ata3, a4] = 1 since G′ 6≤ 〈ata3, a4〉.

Hence [a3, a4] = 1. We claim that [as, a4] ∈ 〈ap
m3

3 〉. Otherwise, we may assume that

[as, a4] = aαp
ms

s aβp
m3

3 where (α, p) = 1. By calculation, 〈as, a
β
t a

s−t
4 〉 is neither abelian

or normal in G, a contradiction. Hence we may assume that [as, a4] = aβp
m3

3 .

We claim that [as, a4] = 1. If not, then, (β, p) = 1 and we may assume that

[as, a4] = ap
m3

3 by suitable replacement. We will reduce contradictions on three subcases

respectively.
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Subcase 1: s = 2, t = 1 and m2 > m3.

In this subcase, K is one of the groups of Type (C7)–(C8). By the definition

relations of Type (C7)–(C8), [a1, a3] = aηp
m2

2 where η = 1 or ν. By calculation,

〈a1a4, a2a3〉 is neither abelian or normal in G, a contradiction.

Subcase 2: s = 2, t = 1 and m2 = m3.

In this subcase, K is one of the groups of Type (C8)–(C9). If K is one of the

groups of Type (C8), then [a1, a3] = aνp
m2

2 . By calculation, 〈a1a
1−ν
4 , a2a3〉 is neither

abelian or normal in G, a contradiction. If K is one of the groups of Type (C9), then

[a1, a3] = akp
m2

2 a−pm3

3 where (k, p) = 1. By calculation, 〈a1a4, a
k
2a

−1
3 〉 is neither abelian

or normal in G, a contradiction.

subcase 3: s = 1, t = 2.

In this subcase, K is a group of Type (C10). By the definition relations of Type

(C10), [a1, a3] = ap
m3

1 . By calculation, 〈a1, a2a3a
−1
4 〉 is neither abelian or normal in G,

also a contradiction.

Hence [as, a4] = 1. By a similar argument, for 4 ≤ i ≤ r, we may assume that

ap
mi

i = 1. Moreover, [a1, ai] = [a2, ai] = [a3, ai] = 1. For 4 ≤ i < j ≤ r, [ai, aj ] = 1 by

Theorem 2.6. In this case, G = K × A where A = 〈a4〉 × 〈a5〉 × · · · × 〈ar〉. Hence we

get the groups of Type (C7)–(C10) in Theorem 3.1. �

Lemma 3.3. Suppose that G is a metahamilton p-group. If G′ ∼= C3
p and c(G) = 2,

then G is a group of Type (D1)–(D7) as defined in Theorem 3.1.

Proof Let the type of G/G′ be (pm1 , pm2 , . . . , pmr ), where m1 ≥ m2 ≥ · · · ≥ mr,

G/G′ = 〈a1G
′〉 × 〈a2G

′〉 × · · · × 〈arG
′〉, where o(aiG

′) = pmi , i = 1, 2, . . . , r. Then

G = 〈a1, a2, . . . , ar〉. If [ai, aj ] 6= 1, then G′ = 〈ap
mi

i , ap
mj

j , [ai, aj ]〉 by Theorem 2.6.

Hence we have:

(*) If ap
mi

i = 1, then ai ∈ Z(G).

Let i be the minimal integer such that ap
mi

i 6= 1. If i 6= 1, then

ap
m1

1 = · · · = ap
mi−1

i−1 = 1

and hence a1, . . . ai−1 ∈ Z(G) by (*). We claim that mi = m1. If not, then (a1aj)
pm1 =

1 for j ≥ i. It follows that a1aj ∈ Z(G) by (*) and hence aj ∈ Z(G) for j ≥ i. This

contradicts |G′| = p3. Hence we may assume that ap
m1

1 6= 1.

Let j be the minimal integer such that ap
mj

j 6∈ 〈ap
m1

1 〉. If j 6= 2, then we may assume

that ap
mk

k = aαkp
m1

1 for 2 ≤ k ≤ j− 1. By Theorem 2.6, [ak, a1] = 1. Replacing ak with

aka
−αkp

m1−mk

1 , we get ap
mk

k = 1. By (*), ak ∈ Z(G) for 2 ≤ k ≤ j − 1. We claim that

mj = m2. If not, then (a2ak)
pm2 = 1 for k ≥ j. It follows that a2ak ∈ Z(G) by (*) and

hence ak ∈ Z(G) for k ≥ j. This contradicts |G′| = p3. Hence we may assume that

ap
m2

2 6∈ 〈ap
m1

1 〉.
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Let k be the minimal integer such that ap
mk

k 6∈ 〈ap
m1

1 , ap
m2

2 〉. If k 6= 3, then we

may assume that ap
mw

w = aαwpm1

1 aβwpm2

2 for 3 ≤ w ≤ k − 1. We claim that mk = m3.

If not, then m3 > mk. Without loss of generality, we may assume that mk−1 > mk.

Replacing aw with awa
−αwpm1−mw

1 aβwpm2−mw

2 , we get ap
mw

w = 1. By (*), aw ∈ Z(G)

for 3 ≤ w ≤ k − 1. For w ≥ k, since (a3aw)
pm3 = 1, a3aw ∈ Z(G) by (*). It follows

that aw ∈ Z(G) for w ≥ k. This contradicts |G′| = p3. Hence we may assume that

ap
m3

3 6∈ 〈ap
m1

1 , ap
pm3

2 〉.

If r = 3, then, by [17, Theorem 8.1], G is a group of Type (D1)–(D7) in Theorem

3.1. In the following we may assume that r ≥ 4.

We claim that there are suitable a1, a2, a3 such that the following condition:

(**) For all x ∈ G′, there exists b ∈ 〈a1, a2, a3〉 such that x = bp
m3 .

If (**) holds, then for i > 3, there exists bi ∈ 〈a1, a2, a3〉 such that ap
mi

i = bp
m3

i . By

Theorem 2.6, [ai, bi] = 1. Replacing ai with aib
−pm3−mi

i , we get ap
mi

i = 1. By (*),

ai ∈ Z(G). Hence we get the groups (D1)–(D7) in Theorem 3.1.

In the following, we prove that we may choose suitable a1, a2, a3 satisfying the

condition (**). If p > 2 or m2 > 1, then (**) holds. Hence, we only need to deal with

the case where p = 2 and m2 = 1.

Case 1. m1 > 1.

If [a2, a3] 6= 1, then we may assume that [a2, a3] = a2i2 a
2j
3 a2

m1

1 by Theorem 2.6. If

[a2, a3] = a22a
2j
3 a2

m1

1 , then 〈a2a
2m1−1

1 , a3〉 is neither abelian nor normal in G, a contra-

diction. If [a2, a3] = a32a
2m1

1 = (a3a
2m1−1

1 )2, then 〈a3a
2m1−1

1 , a3〉 is neither abelian nor

normal in G, a contradiction. Hence [a2, a3] = a2
m1

1 . In this case, it is easy to check

that G′ = V1(〈a1, a2, a3〉). Hence (**) holds.

Case 2. m1 = 1.

By an argument similar to the beginning of the proof of Theorem 3.1, we may choose

suitable a1, a2, a3 such that the commutative group of K = 〈a1, a2, a3〉 is of order at

least 4.

If there are two elements in {1, a1, a2, a3, a1a2, a1a3, a2a3, a1a2a3} such that the

squares are equal to each other, then, by Theorem 2.6, they are commutative. It

follows that there is an involution in {a1, a2, a3, a1a2, a1a3, a2a3, a1a2a3}. By (*), this

involution is in the center of K, which contradicts |K ′| ≥ 4. Hence

G′ = V1(K) = {1, a21, a
2
2, a

2
3, (a1a2)

2, (a1a3)
2, (a2a3)

2, (a1a2a3)
2}.

That is, (**) holds. �

4 Finite metahamiltonian p-groups whose derived group

is of exponent > p

Theorem 4.1. Suppose that G is a finite metahamiltonian p-group with exp(G′) > p.

Then G is isomorphic to one of the following non-isomorphic groups:

11



(E) G is metacyclic.

(E1) 〈a, b
∣

∣ ap
r+s+u

= 1, bp
r+s+t

= ap
r+s

, ab = a1+pr〉, where r ≥ 1, u ≤ r,

r + 1 ≥ s+ u ≥ 2, and if p = 2 then r ≥ 2;

(E2) 〈a, b
∣

∣ a2
3

= b2
m

= 1, ab = a−1〉, where m ≥ 1;

(E3) 〈a, b
∣

∣ a2
3

= 1, b2
m

= a4, ab = a−1〉, where m ≥ 1;

(E4) 〈a, b
∣

∣ a2
3

= b2
m

= 1, ab = a3〉, where m ≥ 1.

(F) G is not metacyclic and G′ is cyclic and |G′| ≥ p2.

(F1) K × A, where K = 〈a, b
∣

∣ ap
r+s+u

= 1, bp
r+s

= 1, ab = a1+pr〉, u ≤ r,

r + 1 > s+ u ≥ 2, and A 6= 1 is abelian such that exp(A) ≤ p(r+1)−(s+u);

(F2) K × A, where K = 〈a, b
∣

∣ ap
r+t+u

= 1, bp
r

= 1, ab = a1+pr+t

〉, t ≥ 1,

r ≥ u ≥ 2, and A 6= 1 is abelian such that exp(A) ≤ pt+(r+1)−u;

(F3) K × A, where K = 〈a, b
∣

∣ ap
r+s

= 1, bp
r+s+t

= 1, ab = a1+pr〉, t ≥ 1,

r + 1 > s ≥ 2, and A 6= 1 is abelian such that exp(A) ≤ p(r+1)−s;

(F4) K ×A, where K = 〈a, b
∣

∣ ap
r+s+u

= 1, bp
r+s+t

= ap
r+s

, ab = a1+pr〉, stu 6= 0,

r + 1 > s+ u ≥ 2, and A 6= 1 is abelian such that exp(A) ≤ p(r+1)−(s+u);

(F5) (K ⋊ B) × A, where K = 〈a, b
∣

∣ ap
r+t+u

= 1, bp
r
= 1, ab = a1+pr+t

〉, B =

〈b1〉 × 〈b2〉 × · · · × 〈bf 〉 such that o(bi) = pri, [a, bi] = ap
r+ti , [b, bi] = 1,

max{t, u− 2} < t1 < t2 < · · · < tf < t+ u, r + t > r1 + t1 > r2 + t2 > · · · >

rf + tf ≥ t+ u ≥ t+ 2, and A is abelian such that exp(A) ≤ pt+(r+1)−u.

(G) the type of G′ is (pα, p) where α ≥ 2.

(G1) 〈a1, a2, a3
∣

∣ ap
m1+1+m2

1 = ap
m2+1

2 = ap3 = 1, [a1, a2] = ap
m1

1 , [a1, a3] =

ap
m2

2 , [a2, a3] = 1〉, where p > 2 and m1 > m2 ≥ 1;

(G2) K × A, where K = 〈a1, a2, a3
∣

∣ ap
m1+1+k

1 = ap
m2+1

2 = ap
m3

3 = 1, [a1, a2] =

ap
m1

1 , [a1, a3] = ap
m2

2 , [a2, a3] = 1〉, m1 ≥ m2 ≥ m3, 1 ≤ k ≤ min{m1 −

m3,m2 −m3 + 1,m2 − 1} and A is abelian such that exp(A) ≤ pm2−k.

Proof If G is metacyclic, then, by Lemma 4.2, G is a group of Type (E1)–(E4) in

the theorem. In the following, we may assume that G is not metacyclic. If G′ is cyclic,

then, by Lemma 4.5, G is a group of Type (F1)–(F5) in the theorem. If G′ is not cyclic,

then, by Lemma 4.6, G is a group of Type (G1)–(G2) in theorem. Finally, it is omitted

to check that such groups are non-isomorphic metahamiltonian p-groups. �

Lemma 4.2. Suppose that G is a metacyclic p-group and |G′| ≥ p2. If G is meta-

hamiltonian, then G is a group of Type (E1)–(E4) as defined in Theorem 4.1.

Proof Case 1: p > 2 or G is an ordinary metacyclic 2-group. That is,
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G = 〈a, b
∣

∣ ap
r+s+u

= 1, bp
r+s+t

= ap
r+s

, ab = a1+pr〉,

where r ≥ 1, u ≤ r, and if p = 2 then r ≥ 2.

Since |G′| ≥ p2, we have s + u ≥ 2. We only need to prove that r + 1 ≥ s + u.

Otherwise, r + 1 < s+ u. By calculation,

[ap
r+1

, b] = a−pr+1

(ap
r+1))b = ap

2r+1

6= 1.

Hence 〈ap
r+1

, b〉 is neither abelian nor normal in G, a contradiction. Thus r+1 ≥ s+u

and G is a group of Type (E1) in Theorem 4.1.

Case 2: p = 2 and G is not an ordinary metacyclic 2-group.

Let o(a) = 2n and H = 〈a2
n−2

, b〉. Since H ′ = 〈a2
n−1

〉, H is not abelian. It follows

that H E G. By Theorem 2.6, a2 ∈ H. Hence n ≤ 3 and |G′| = 4. By Lemma 2.4,

G ∈ A2. By [4, Lemma 2.4], we get groups of (E2)–(E4) in Theorem 4.1. �

We need the following two lemmas on number theory. Proofs are omitted.

Lemma 4.3. Suppose that U = U(pn) is the multiplicative group containing of all the

invertible elements of Z/pnZ, where p is an odd prime and n is a positive integer. That

is,

U = {x ∈ Z/pnZ | (x, p) = 1}.

Let S(U) ∈ Sylp(U). Then

S(U) = {x ∈ U | x ≡ 1 (mod p)},

and S(U) is cyclic with order pn−1. Si(U) where 0 ≤ i < n, the unique subgroup of

S(U) of order pi, is

Si(U) = {x ∈ U | x ≡ 1 (mod pn−i)}.

Lemma 4.4. Suppose that U = U(2n) is the multiplicative group containing of all

invertible elements of Z/2nZ, where n ≥ 2 is a positive integer. Then

U = 〈−1〉 × 〈1 + 22〉(∼= C2 × C2n−2)
= {ε+ i2m

∣

∣ ε = ±1, 2 ≤ m ≤ n, 1 ≤ i ≤ 2n−m and i is odd}

For m < n, the order of ε+ i2m is 2n−m and 〈ε+ i2m〉 = 〈ε+ j2m〉 for all odd j.

Lemma 4.5. Suppose that G is a metahamilton p-group and G is not metacyclic. If

|G′| ≥ p2 and G′ is cyclic, then G is a group of Type (F1)–(F5) in Theorem 4.1.

Proof By Theorem 2.7, d(G) > 2. LetG′ = 〈c〉, the type ofG/G′ be (pm1 , pm2 , . . . , pmw)

where m1 ≥ m2 ≥ · · · ≥ mw. Let

G/G′ = 〈a1G
′〉 × 〈a2G

′〉 × · · · × 〈awG
′〉 where o(aiG

′) = pmi , i = 1, 2, . . . , w.
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Then G = 〈a1, a2, . . . , aw〉.

Let i be the minimal integer such that ai 6∈ CG(G/℧1(G
′)). Then there exists j > i

such that G′ = 〈[ai, aj ]〉. If i 6= 1, then a1 ∈ CG(G/℧1(G
′)). Replacing a1 with a1aj ,

we have G′ = 〈[a1, ai]〉.

Let j be the minimal integer such that G′ = 〈[a1, aj ]〉. If j 6= 2, then [a1, a2] ∈

℧1(G
′). Replacing a2 with a2aj, we have G′ = 〈[a1, a2]〉.

Let K = 〈a1, a2〉. By Theorem 2.7, K is metacyclic. Hence K is one of the groups

in Theorem 4.2. That is, K is one of the groups (E1)–(E4) in Theorem 4.1.

Step 1: We claim that K is one of the groups of Type (E1) in Theorem 4.1.

If not, then we may assume that K = 〈a, b〉 satisfying the relations of Type (E2)–

(E4) in Theorem 4.1. That is,

a2
3

= 1, b2
m

∈ ℧1(K
′) = 〈a4〉 and [a, b] ≡ a2 (mod ℧1(K

′)).

Obviously, G′ = K ′ = 〈a2〉 and m3 = m4 = · · · = mw = 1.

Case 1: a23 ∈ ℧1(K
′) and [a3, b] ∈ ℧1(K

′).

If [a3, b] = a4, then 〈a3, b〉 is neither abelian nor normal in G, a contradiction. If

[a3, b] = 1, then 〈a3a
2, b〉 is neither abelian nor normal in G, a contradiction.

Case 2: a23 ∈ ℧1(K
′) and [a3, b] ≡ a2 (mod ℧1(K

′)).

If [a3, a] ≡ a2 (mod ℧1(K
′)), then (a3a)

2 ∈ ℧1(K
′) and [a3a, b] ∈ ℧1(K

′). Replacing

a3 with a3a, it is reduced to Case 1. Hence we may assume that [a3, a] ∈ ℧1(K
′). Since

[a3, a
2] = [a3, a]

2 = 1, [a3, G
′] = 1. By calculation, 1 = [a23, b] = [a3, b]

2[a3, b, a3] =

[a3, b]
2. Hence [a3, b] ∈ ℧1(K

′), a contradiction.

Case 3: a23 ≡ a2 (mod ℧1(K
′)).

If [a3, a] ∈ ℧1(K
′), then, replacing a3 with a3a, it is reduced to Case 1 or Case 2.

Hence we may assume that [a3, a] ≡ a2 (mod ℧1(K
′)). Since a23 ≡ a2 (mod ℧1(K

′)),

[a23, b] = [a2, b] = a4. It follows that [a3, b] ≡ a2 (mod ℧1(K
′)). Since (a3a)

2 ≡

a2 (mod ℧1(K
′)), similar reason as above gives that [a3a, b] ≡ a2 (mod ℧1(K

′)). Hence

[a, b] ∈ ℧1(K
′), a contradiction.

Step 2: By suitable replacement, we may assume ap
mi

i = 1, where 3 ≤ i ≤ w.

Moreover, [ai, aj ] = 1 for all 3 ≤ i, j ≤ w.

By Step 1, K ∼=< r, s, t, u >p where r ≥ 1, u ≤ r, r + 1 ≥ s + u, and if p = 2 then

r ≥ 2. Assume that

K = 〈a, b
∣

∣ ap
r+s+u

= 1, bp
r+s+t

= ap
r+s

, ab = a1+pr〉.

Let L = 〈a, ai〉 and xi ∈ L such that L = 〈a, xi〉 and 〈xi〉 ∩ 〈a〉 has minimal order. We

claim that xp
mi

i = 1. Otherwise, we may assume that

〈xi〉 ∩ 〈a〉 = 〈ap
α

〉 and 〈[xi, a]〉 = 〈ap
β

〉 where α ≥ r and β ≥ r.
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Then there exist integers y and z such that (yz, p) = 1, xp
mi

i = ayp
α
and [xi, a] = azp

β
.

By calculation,

(xia
−ypα−mi )p

mi = xp
mi

i [xi, a
ypα−mi ](

pmi

2 )[xi, a
ypα−mi , xi]

(p
mi

3 )a−ypα

= ayzp
α+β−mi(p

mi

2 )[ayzp
α+β−mi(p

mi

3 ), xi]

Noting that β ≥ r ≥ 2 for p = 2, we have (xia
−ypα−mi )p

mi ∈ 〈ap
α+1

〉, which is contrary

to the choice of xi. Replacing ai with xi, we have ap
mi

i = 1 where 3 ≤ i ≤ w.

For 3 ≤ i, j ≤ w, we claim that [ai, aj ] = 1. Otherwise, Theorem 2.6 gives that

G′ ≤ 〈ai, aj〉. It is easy to see that 〈ai, aj〉 is not metacyclic. This contradicts Theorem

2.7.

Step 3: K is one of the following groups:

(A) 〈a, b
∣

∣ ap
r+s+u

= 1, bp
r+s

= 1, ab = a1+pr〉, where r ≥ 2 for p = 2 and r + 1 ≥

s+ u ≥ 2;

(B) 〈a, b
∣

∣ ap
r+t+u

= 1, bp
r

= 1, ab = a1+pr+t

〉, where t ≥ 1 and r ≥ u ≥ 2;

(C) 〈a, b
∣

∣ ap
r+s

= 1, bp
r+s+t

= 1, ab = a1+pr〉, where r ≥ 2 for p = 2, t ≥ 1 and

r + 1 ≥ s ≥ 2;

(D) 〈a, b
∣

∣ ap
r+s+u

= 1, bp
r+s+t

= ap
r+s

, ab = a1+pr〉, where r ≥ 2, stu 6= 0 and

r + 1 ≥ s+ u ≥ 2.

Assume that K = 〈a, b
∣

∣ ap
r+s+u

= 1, bp
r+s+t

= ap
r+s

, ab = a1+pr〉. If t = 0, then we

have (ba−1)p
r+s

= 1 for p > 2 and (ba2
u−2r−1−1)2

r+s

= 1 for p = 2. Replacing b with

ba−1 or ba2
u−2r−1−1 respectively, we get a group of Type (A). In the following we may

assume that t ≥ 1. If s = 0, then (a−1bp
t
)p

r
= 1. Replacing a and b with b and a−1bp

t
,

respectively, we get a group of Type (B). If u = 0, then we get a group of Type (C). If

su 6= 0, then we get a group of Type (D).

Step 4: Determine G in which K is a direct factor. That is, G = K × A. Since

K ′ = G′, A is abelian.

Case 1: K is a group of Type (A) in Step 3.

Let d ∈ A and o(d) = pe. By calculation,

[ap
s+u−1

d, b] = ap
r+s+u−1

6= 1.

It follows that

ap
r

∈ 〈(ap
s+u−1

d)p
e

〉 = 〈ap
e+s+u−1

〉.

Hence e+ s+u− 1 ≤ r. By the arbitrariness of d, we get exp(A) ≤ p(r+1)−(s+u). Since

G is not metacyclic, A 6= 1. It follows that r + 1 > s + u. Hence we get a group of

Type (F1) in Theorem 4.1.
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Case 2: K is a group of Type (B) in Step 3.

Let d ∈ A and o(d) = pe. By calculation,

[ap
u−1

d, b] = ap
r+t+u−1

6= 1.

It follows that

ap
r+t

∈ 〈(ap
u−1

d)p
e

〉 = 〈ap
e+u−1

〉.

Hence e+ u− 1 ≤ r + t. By the arbitrariness of d, we get exp(A) ≤ pt+(r+1)−u. Hence

G is a group of Type (F2) in Theorem 4.1.

Case 3: K is a group of Type (C) or (D) in Step 3.

Let d ∈ A and o(d) = pe. By calculation,

[ap
s+u−1

d, b] = ap
r+s+u−1

6= 1.

It follows that

ap
r

∈ 〈(ap
s+u−1

d)p
e

〉 = 〈ap
e+s+u−1

〉.

Hence e+s+u−1 ≤ r. By that arbitrariness of d, we get exp(A) ≤ p(r+1)−(s+u). Since

G is not metacyclic, A 6= 1. It follows that r + 1 > s + u. Hence we get a group of

Type (F3) or (F4) in Theorem 4.1.

Step 5: Determine G in which K is not a direct factor.

Let G = H×A, where K < H and A is as large as possible for K. Since K ′ = G′, A

is abelian. By Step 2, we may assume that H = K⋊B where B = 〈b1〉×〈b2〉×· · ·×〈bf 〉

such that o(bi) = pri , o(bG′) ≥ r1 ≥ r2 ≥ · · · ≥ rf .

We claim that K is neither a group of Type (C) nor (D) in Step 3. Otherwise,

by calculation, 〈ab−pt〉 ∩ 〈a〉 = 1. Since G′ 6≤ 〈ab−pt , bi〉, Theorem 2.6 gives that

[ab−pt , bi] = 1. Similar reason gives that [b, bi] = 1. Hence H = K × B, which is

contrary to the choice of H.

If K is a group of Type (A) in Step 3, then we claim that s = 0. Otherwise, by

calculation, 〈ab〉∩〈a〉 ≤ 〈ap
r+1

〉. Since G′ 6≤ 〈ab, bi〉, Theorem 2.6 gives that [ab, bi] = 1.

Similar reason gives that [b, bi] = 1. Hence H = K ×B, which is contrary to the choice

of H.

By the above argument, we may assume that

K = 〈a, b
∣

∣ ap
r+t+u

= 1, bp
r

= 1, ab = a1+pr+t

〉,

where t ≥ 0 and r ≥ u ≥ 2. Since G′ 6≤ 〈b, bi〉, Theorem 2.6 gives that [b, bi] = 1.

Let j be the minimal positive integer such that [a, bi] has maximal order. We may

assume that j = 1, replacing b1 with b1bj when it is necessary. Similarly, we may

assume that 〈[a, b1]〉 ≥ 〈[a, b2]〉 ≥ · · · ≥ 〈[a, bf ]〉.
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Assume that [a, bi] = aγip
r+ti where (γi, p) = 1. Then t ≤ t1 ≤ t2 ≤ · · · ≤ tf . Note

that ab = a1+γip
r+ti . By Lemma 4.3 and 4.4, there exists positive integer w such that

(1 + γip
r+ti)j ≡ 1 + pr+ti (mod pr+t+u).

Replacing bi with bwi , we have [a, bi] = ap
r+ti .

Case 1: t1 > t.

If t2 = t1, then b1b
−1
2 is a direct factor of H, a contradiction. So t1 < t2. Similarly,

we have

t < t1 < t2 < · · · < tf .

If (b1b
−pt1−t

)p
r1 = 1, then b1b

−pt1−t

is a direct factor of H, a contradiction. Hence

(b1b
−pt1−t

)p
r1 6= 1. It follows that bp

r1+t1−t

6= 1. Hence r1 + t1 − t < r. Thus

r − r1 > t1 − t > 0.

Similarly, we have

ri + ti > ri+1 + ti+1.

By Lemma 4.3 and 4.4, in the multiplicative group consisting of all invertible elements

of Z/pr+t+u
Z, the order of 1 + pr+tf is pt+u−tf . Since [a, bp

rf

f ] = 1, we have

ab
p
rf

f = a(1+p
r+tf )p

rf

= a.

It follows that rf ≥ t+ u− tf . Thus

tf + rf ≥ t+ u.

By calculation,

〈bap
t−t1+u−1

〉 ∩ 〈a〉 = 〈(bap
t−t1+u−1

)p
r

〉 = 〈ap
r+t−t1+u−1

〉.

Let N = 〈bap
t−t1+u−1

, b1〉. Since [bap
t−t1+u−1

, b1] = ap
r+t+u−1

6= 1, N is not abelian. By

Theorem 2.6, G′ ≤ N . It follows that r + t− t1 + u− 1 ≤ r + t. Thus

t1 ≥ u− 1.

Finally, by an argument similar to Step 4, we have exp(A) ≤ pt+(r+1)−u. Hence we get

a group of Type (F5) in Theorem 4.1. In this case, exp(A) ≤ pr.

Case 2: t1 = t.

Suppose that h is the maximal positive integer such that th = t. Let r′ = rh,

t′ = t+ (r − rh) and K̃ = 〈a, bh〉. Then

K̃ = 〈a, bh
∣

∣ ap
r′+t′+u

= 1, bp
r′

h = 1, abh = a1+pr
′
+t′

〉.

If h < f , then we let f ′ = f − h. For 1 ≤ i ≤ f ′, let
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b′i = bh+i, t
′
i = th+i, B̃ = 〈b′1〉 × . . . 〈b′f ′〉, H̃ = K̃ ⋊ B̃, and

Ã = A× 〈bb−1
h 〉 × 〈b1b

−1
h 〉 . . . 〈bh−1b

−1
h 〉.

Then G = H̃ × Ã, where Ã is as large as possible. Notice that t′1 > t′. By a similar

argument to Case 1, we get a group of Type (F5) in Theorem 4.1.

If h = f , then we also have G = H̃ × Ã. The difference in this case from the case

h < f is H̃ = K̃. By an argument similar to Step 4, we have exp(A) ≤ pt
′+(r′+1)−u.

Hence we get a group of Type (F2) in Theorem 4.1. �

Lemma 4.6. Suppose that G is a finite metahamilton p-group. If exp(G′) > p and G′

is not cyclic, then G is a group of Type (G1)–(G2) in Theorem 4.1.

Proof Let H ≤ G such that d(H) = 2 and exp(H ′) > p. By Theorem 2.7, H is

metacyclic. By Theorem 2.6, G′ < H and hence G′ is metacyclic.

Let N = ℧1(G
′) and Ḡ = G/N . Then Ḡ′ ∼= C2

p . By Theorem 2.7, d(G) > 2 and

hence d(Ḡ) > 2. By Corollary 2.9, c(Ḡ) = 2. Hence Ḡ is a group in Theorem 3.2. That

is, Ḡ is a group of Type (C1)–(C10) in Theorem 3.1.

Suppose that Ḡ is a group of Type (C1) in Theorem 3.1. That is, Ḡ = K̄ × Ā,

where

K̄ = 〈ā1, ā2, b̄
∣

∣ ā41 = ā42 = 1, b̄2 = ā21, [ā1, ā2] = 1, [ā1, b̄] = ā22, [ā2, b̄] = ā21〉

and Ā is abelian such that exp(Ā) ≤ 2. Then

G′ = 〈[a1, b], [a2, b],℧1(G
′)〉 = 〈a21, a

2
2〉 and ℧1(G

′) = 〈a41, a
4
2〉.

Let M be a maximal subgroup of ℧1(G
′) such that M EG. Then we may assume that

M = 〈e,℧2(G
′)〉, [a1, a2] ≡ ei (mod M),

b2 ≡ a21e
j (mod M) and [a1, b] ≡ a22e

k (mod M).

It follows from [a1, a2] ≡ ei (mod M) that [a21, a2] ≡ [a1, a
2
2] ≡ 1 (mod M). It follows

from b2 ≡ a21e
j (mod M) that [a21, b] ≡ [a1, b

2] ≡ 1 (mod M). On the other hand, it

follows from [a1, b] ≡ a22e
k (mod M) that [a21, b] ≡ [a1, b]

2[a1, b, a1] ≡ a42 (mod M). It

follows that a42 ∈ M and hence M = 〈a81, a
4
2〉.

Let L = 〈a1M, bM〉. Since exp(L′) = 2, Theorem 2.8 gives that c(L) = 2. It follows

that [a22, b] ≡ 1 (mod M). On the other hand, [a22, b] ≡ [a2, b]
2[a2, b, a2] ≡ a41 (mod M).

It follows that a41 ∈ M . Hence M = ℧1(G), a contradiction.

Similar reasoning gives that Ḡ is not a group of Type (C2) in Theorem 3.1.

Suppose that Ḡ is a group of Type (C4) in Theorem 3.1. That is, Ḡ = K̄ × Ā,

where

K̄ = 〈ā1, ā2, ā3
∣

∣ āp
m1+1

1 = āp
m2+1

2 = āp
m3

3 = 1, [ā1, ā2] = 1, [ā1, ā3] = āp
m2

2 ,

[ā2, ā3] = āνp
m1

1 〉, p > 2, ν is a fixed square non-residue modulo p,

m1 − 1 = m2 ≥ m3 or m1 = m2 ≥ m3, and Ā is abelian such that exp(Ā) ≤ pm2 .

18



Then G′ = 〈[a1, a3], [a2, a3],℧1(G
′)〉 = 〈[a1, a3], [a2, a3]〉 = 〈ap

m1

1 , ap
m2

2 〉. Since 〈ā1, ā3〉

and 〈ā2, ā3〉 are not metacyclic, 〈a1, a2〉 and 〈a1, a3〉 are not metacyclic. By Theorem

2.7, [a1, a2]
p = 1 and [a1, a3]

p = 1. Moreover, exp(G′) = p, a contradiction.

Similar reasoning gives that Ḡ is not a group of Type (C5)–(C10) in Theorem 3.1.

By the above argument, Ḡ is a group of Type (C3) in Theorem 3.1. That is,

Ḡ = K̄ × Ā, where

K̄ = 〈ā1, ā2, ā3
∣

∣ āp
m1+1

1 = āp
m2+1

2 = āp
m3

3 = 1, [ā1, ā2] = āp
m1

1 , [ā1, ā3] = āp
m2

2 ,

[ā2, ā3] = 1〉, m1 > 1 for p = 2,

m1 ≥ m2 ≥ m3 and Ā is abelian such that exp(Ā) ≤ pm2 .

Then G′ = 〈ap
m1

1 , ap
m2

2 〉.

Since G′ 6≤ 〈a2, a3〉, [a2, a3] = 1. Since 〈ā1, ā3〉 is not metacyclic, 〈a1, a3〉 is not

metacyclic. By Theorem 2.7, [a1, a3]
p = 1. Let [a1, a3] = ap

m2

2 d where d ∈ ℧1(G
′).

Then ap
m2+1

2 dp = 1. It follows that ap
m2+1

2 ∈ ℧2(G
′). Hence

o(a1) > pm1+1, N = ℧1(G
′) = 〈ap

m1+1

1 , ap
m2+1

2 〉 = 〈ap
m1+1

1 〉 and ap
m2+1

2 ∈ 〈ap
m1+2

1 〉.

Since G′ 6≤ 〈a2, a3a
pm1

1 〉, [a2, a3a
pm1

1 ] = 1 and hence [ap
m1

1 , a2] = ap
2m1

1 = 1. Assume

that the order of a1 is pm1+1+k where k ≥ 1. Then m1 > k.

Let Ā = 〈ā4〉 × 〈ā5〉 × · · · × 〈āf 〉 and the type of Ā be (pm4 , pm5 , . . . , pmf ). For

4 ≤ i ≤ f and 1 ≤ j ≤ f , since G′ 6≤ 〈ai, aj〉, [ai, aj ] = 1 and hence ai ∈ Z(G).

Assume that ap
mi

i = asp
m1+1

1 . Then (aia
−spm1+1−mi

1 )p
mi = 1. Let bi = aia

−spm1+1−mi

1 ,

A = 〈b4〉 × 〈b5〉 × · · · × 〈bf 〉 and K = 〈a1, a2, a3〉. Then G = K ×A.

Assume that [a1, a2] = ap
m1

1 aup
m1+1

1 . Then aa21 = a
1+(1+up)pm1

1 . By Lemma 4.3 and

Lemma 4.4, there exists a positive integer w such that (1 + (1 + up)pm1)j = 1 + pm1 .

Replacing a2 and a3 with aw2 and aw3 respectively, we have [a1, a2] = ap
m1 .

By Lemma 4.3 and Lemma 4.4, in the multiplicative group consisting of all invertible

elements of Z/pm1+1+k
Z, the order of 1+pm1 is pk+1. Since a

(1+pm1 )p
m2+1

1 = a
a
pm2+1

2

1 =

a1, we have k + 1 ≤ m2 + 1. Hence k ≤ m2.

Case 1: k = m2.

In this case, m1 > m2 and [a1, a
pm2

2 ] 6= 1. It follows that c(〈a1, a3〉) > 2, Corollary

2.9 gives that p > 2 and 〈a1, a3〉 ∈ A2. If m3 > 1, then 〈a1, a
pm2

2 ap3〉 is neither abelian

nor normal in G, a contradiction. Hence we have m3 = 1. If A 6= 1, then, letting

1 6= e ∈ A, 〈a1, a
pm2

2 e〉 is neither abelian nor normal in G, a contradiction. Hence we

have A = 1. Assume that ap3 = avp
m1+1

1 . Replacing a3 with a3a
−vpm1

1 , we have ap3 = 1.

Assume that [a1, a3] = ap
m2

2 awpm1+1

1 . Then ap
m2+1

2 awpm1+2

1 = 1. Since

(a2a
wpm1−m2+1

1 )p
m2+1

= 1,

we may assume that

(a2a
wpm1−m2+1

1 )p
m2

= ap
m2

2 awpm1+1

1 axp
m1+m2

1 .
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Replacing a2 with a2a
wpm1−m2+1

1 a−xpm1

1 , we have ap
m2+1

2 = 1 and [a1, a3] = ap
m2

2 . Hence

G is a group of Type (G1) in Theorem 4.1.

Case 2: k < m2.

In this case [a1, a
pm2

2 ] = 1. Since [a1, a3, a1] = 1, [ap1, a3] = [a1, a3]
p = 1. Since

G′ 6≤ 〈a2, a3a
pm1−m3+1

1 〉, [a2, a3a
pm1−m3+1

1 ] = 1. It follows that

1 = [ap
m1−m3+1

1 , a2] = ap
2m1−m3+1

1 .

Hence 2m1−m3+1 ≥ m1+1+k. That is, m1−m3 ≥ k. Since G′ 6≤ 〈a1, a
pm2−m3+2

2 ap3〉,

[a1, a
pm2−m3+2

2 ap3] = 1. It follows that

a
a
pm2−m3+2

2

1 = a
(1+pm1 )p

m2−m3+2

1 = a1.

By Lemma 4.3 and Lemma 4.4, in the multiplicative group consisting of all invertible

elements of Z/pm1+1+k
Z, the order of 1+pm1 is pk+1. Hence we havem2−m3+2 ≥ k+1.

That is, k ≤ m2 −m3 + 1.

Let b ∈ A and the order of b be pe. Since G′ 6≤ 〈a1, a
pm2−e+1

2 b〉, [a1, a
pm2−e+1

2 b] = 1.

It follows that a
a
pm2−e+1

2

1 = a
(1+pm1 )p

m2−e+1

1 = a1. By Lemma 4.3 and Lemma 4.4, in

the multiplicative group consisting of all invertible elements of Z/pm1+1+k
Z, the order

of 1 + pm1 is pk+1. Hence we have m2 − e + 1 ≥ k + 1. That is, e ≤ m2 − k. By the

arbitrariness of b, exp(A) ≤ pm2−k.

Assume that ap3 = avp
m1+1

1 . Replacing a3 with a3a
−vpm1

1 , we have ap3 = 1.

Assume that [a1, a3] = ap
m2

2 awpm1+1

1 . Then ap
m2+1

2 awpm1+2

1 = 1. Replacing a2 with

a2a
wpm1−m2+1

1 , we have ap
m2+1

2 = 1 and [a1, a3] = ap
m2

2 . Hence G is a group of Type

(G2) in Theorem 4.1. �

Summarizing, we have the following

Main Theorem. Suppose that G is a finite metahamiltonian p-group. If exp(G′) =

p, then G is one of the groups listed in Theorem 3.1. If exp(G′) > p, then G is one of

the groups listed in Theorem 4.1.
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