The Classification of Finite Metahamiltonian p-Groups *

Xingui Fang
School of Mathematics Science, Peking University
Beijing, 100087 PR China
Lijian An^{\dagger}
Department of Mathematics, Shanxi Normal University
Linfen, Shanxi, 041004 PR China

Abstract

A finite non-abelian group G is called metahamiltonian if every subgroup of G is either abelian or normal in G. If G is non-nilpotent, then the structure of G has been determined. If G is nilpotent, then the structure of G is determined by the structure of its Sylow subgroups. However, the classification of finite metahamiltonian p-groups is an unsolved problem. In this paper, finite metahamiltonian p-groups are completely classified up to isomorphism.

Keywords minimal non-abelian groups, Hamiltonian groups, metahamiltonian groups, \mathcal{A}_{2}-groups 2000 Mathematics subject classification: 20 D 15.

1 Introduction

To determine a finite group by using its subgroup structure is an important theme in the group theory. Let G be a finite non-abelian p-group. If every proper subgroup of G is abelian then G is called minimal non-abelian, which was classified by Redei [19]. If every subgroup of G is normal in G then G is called Hamiltonian, which was classified by Dedekind $[9$. The classifications of minimal non-abelian p-groups and Hamiltonian groups are two classical results in the theory of finite p-groups.

As a generalization of minimal non-abelian group, many authors investigate finite p-groups with many abelian subgroups. Among these works, the classification of $\mathcal{A}_{2^{-}}$ groups is the most important one. A finite non-abelian p-group G is called an \mathcal{A}_{2}-group if G is not minimal non-abelian and all of its subgroups of index p are either abelian or minimal non-abelian. Many scholars studied and classified \mathcal{A}_{2}-groups, see [6, 7, 10, [11, 20, 26]. Resent years, several important classes of p-groups which contain \mathcal{A}_{2}-group are determined. For example, Xu et al. [21] classified finite p-groups all of whose nonabelian proper subgroups are generated by two elements. An et al. [1, 2, 16, 17, 18] classified finite p-groups with a minimal non-abelian subgroup of index p. Zhang et al. [27] classified finite p-groups all of its subgroups of index p^{3} are abelian.

[^0]As a generalization of Hamilton groups, many authors investigate finite p-groups with many normal subgroups. For example, Passman [15] classified finite p-groups all of whose non-normal subgroups are cyclic. Zhang et al. [23, 24, 25] classified finite p-groups all of whose non-normal subgroups have orders $\leq p^{3}$.

A non-abelian group G is called metahamiltonian if every proper subgroup of G is either abelian or normal in G. Obviously, \mathcal{A}_{2}-groups are metahamiltonian. Groups in [15, 23] are also metahamiltonian. Thus the class of metahamiltonian p-groups is much larger than that of minimal non-abelian p-groups and Hamilton p-groups. The classification of metahamiltonian p-groups is an old problem. The present paper is devoted to the classification.

By the way, Nagrebeckii [13] determined the structure of finite non-nilpotent metahamiltonian groups. Obviously, a nilpotent group is metahamiltonian if and only if all its Sylow subgroups are metahamiltonian. Hence finite metahamiltonian groups are completely determined.

This paper is divided into four sections. Section 2 is a preliminary. In section 3, we classify finite metahamiltonian p-groups whose derived group is of exponent p, and the case of exponent $>p$ is dealt with in section 4 .

The sketch of the classification of metahamiltonian p-groups is as follows.
G is a finite metahamiltonian p-group

2 Preliminaries

Let G be a finite p-group. For a positive integer t, G is said to be an \mathcal{A}_{t}-group if the greatest index of non-abelian subgroups is p^{t-1}. So \mathcal{A}_{1}-groups are just the minimal non-abelian p-groups.

Let G be a finite p-group. We define

$$
\begin{array}{rlrl}
\Lambda_{m}(G) & =\left\{a \in G \mid a^{p^{m}}=1\right\}, \quad V_{m}(G) & =\left\{a^{p^{m}} \mid a \in G\right\}, \\
\Omega_{m}(G)=\left\langle\Lambda_{m}(G)\right\rangle & =\left\langle a \in G \mid a^{p^{m}}=1\right\rangle, & \text { and } \mho_{m}(G) & =\left\langle V_{m}(G)\right\rangle=\left\langle a^{p^{m}} \mid a \in G\right\rangle .
\end{array}
$$

G is called p-abelian if $(a b)^{p}=a^{p} b^{p}$ for all $a, b \in G$. We use $c(G)$ and $d(G)$ to denote the nilpotency class and minimal number of generators, respectively.

We use C_{n} and C_{n}^{m} to denote the cyclic group and the direct product of m cyclic groups of order n, respectively. We use $M_{p}(m, n)$ to denote groups

$$
\left\langle a, b \mid a^{p^{m}}=b^{p^{n}}=1, a^{b}=a^{1+p^{m-1}}\right\rangle, \text { where } m \geq 2
$$

and use $M_{p}(m, n, 1)$ to denote groups

$$
\left\langle a, b, c \mid a^{p^{m}}=b^{p^{n}}=c^{p}=1,[a, b]=c,[c, a]=[c, b]=1\right\rangle,
$$

where $m+n \geq 3$ for $p=2$ and $m \geq n$. We can give a presentation of minimal non-abelian p-groups as follows:

Theorem 2.1. (See [19]) Let G be a minimal non-abelian p-group. Then G is Q_{8}, $M_{p}(m, n)$, or $M_{p}(m, n, 1)$.

A finite p-group G is called metacyclic if it has a cyclic normal subgroup N such that G / N is also cyclic.

In 1973 King [12] classified metacyclic p-groups. In 1988 Newman and Xu (see [14, 22]) found new presentations for these groups. Theorem [2.2 is quoted from [22].

Theorem 2.2. (1) Any metacyclic p-group G, p odd, has the following presentation:

$$
G=\left\langle a, b \mid a^{p^{r+s+u}}=1, b^{p^{r+s+t}}=a^{p^{p+s}}, a^{b}=a^{1+p^{r}}\right\rangle
$$

where r, s, t, u are non-negative integers with $r \geq 1$ and $u \leq r$. Different values of the parameters r, s, t and u with the above conditions give non-isomorphic metacyclic p-groups. It is denoted to $\langle r, s, t, u\rangle_{p}$ in this paper.
(2) Let G be a metacyclic 2-group. Then G has one of the following three kinds of presentations:
(I) G has a cyclic maximal subgroup. Hence G is dihedral, semi-dihedral, generalized quaternion, or an ordinary metacyclic group presented by

$$
G=\left\langle a, b \mid a^{2^{n}}=1, b^{2}=1, a^{b}=a^{1+2^{n-1}}\right\rangle .
$$

(II) Ordinary metacyclic 2-groups:

$$
G=\left\langle a, b \mid a^{2^{r+s+u}}=1, b^{2^{r+s+t}}=a^{2^{r+s}}, a^{b}=a^{1+2^{r}}\right\rangle
$$

where r, s, t, u are non-negative integers with $r \geq 2$ and $u \leq r$. It is denoted to be $<r, s, t, u>_{2}$ in this paper.
(III) Exceptional metacyclic 2-groups:

$$
G=\left\langle a, b \mid a^{2^{r+s+v+t^{\prime}+u}}=1, b^{2^{r+s+t}}=a^{2^{r+s+v+t^{\prime}}}, a^{b}=a^{-1+2^{r+v}}\right\rangle
$$

where $r, s, v, t, t^{\prime}, u$ are non-negative integers with $r \geq 2, t^{\prime} \leq r, u \leq 1, t t^{\prime}=s v=$ $t v=0$, and if $t^{\prime} \geq r-1$ then $u=0$. Groups of different types or of the same type but with different values of parameters are not isomorphic to each other. It is denoted to be $<r, s, v, t, t^{\prime}, u>_{2}$ in this paper.

Lemma 2.3. (See [8]) Suppose that G is a finite p-group. Then G is metacyclic if and only if $G / \Phi\left(G^{\prime}\right) G_{3}$ is metacyclic.

Lemma 2.4. (See [5, Lemma J(i)]) Let G be a metacyclic p-group. Then G is an \mathcal{A}_{n}-group if and only if $\left|G^{\prime}\right|=p^{n}$.

In [4], the properties of metahamiltonian p-groups are given as follows:
Theorem 2.5. Let G be a metahamiltonian p-group. Then $c(G) \leq 3$. In particular, G is metabelian.

Theorem 2.6. Let G be a finite p-group. G is metahamiltonian if and only if G^{\prime} is contained in every non-abelian subgroup of G.

Theorem 2.7. Suppose that G is a finite metahamilton p-group. If $d(G)=2$ and $\exp \left(G^{\prime}\right)>p$, then G is metacyclic.

Theorem 2.8. Suppose that G is a finite metahamiltonian p-group having an elementary abelian derived group. If $c(G)=3$, then G is an \mathcal{A}_{2}-group.

Corollary 2.9. Suppose that G is a finite metahamiltonian p-group having an elementary abelian derived group. If $c(G)=3$, then $d(G)=2$ and p is odd.

3 Finite metahamiltonian p-groups whose derived group is of exponent p

In this section, we determine finite metahamiltonian p-groups whose derived group is of exponent p. In order to avoid tedious calculations, we provide a proof which relies on some results obtained in other papers. These papers are [2, 3, 17, 26].

Theorem 3.1. Suppose that G is a finite metahamiltonian p-group with $\exp \left(G^{\prime}\right)=p$. Then G is one of the following non-isomorphic groups:
(A) groups with $\left|G^{\prime}\right|=p$.
(B) $c(G)=3$. In this case, p is odd, $d(G)=2$ and $G \in \mathcal{A}_{2}$.
(B1) $\left\langle a_{1}, b\right| a_{1}^{p}=a_{2}^{p}=a_{3}^{p}=b^{p^{m}}=1,\left[a_{1}, b\right]=a_{2},\left[a_{2}, b\right]=a_{3},\left[a_{3}, b\right]=1,\left[a_{i}, a_{j}\right]=$ $1\rangle$, where $p \geq 5$ for $m=1, p \geq 3$ and $1 \leq i, j \leq 3$;
(B2) $\left\langle a_{1}, b \mid a_{1}^{p}=a_{2}^{p}=b^{p^{m+1}}=1,\left[a_{1}, b\right]=a_{2},\left[a_{2}, b\right]=b^{p^{m}},\left[a_{1}, a_{2}\right]=1\right\rangle$, where $p \geq 3 ;$
(B3) $\left\langle a_{1}, b \mid a_{1}^{p^{2}}=a_{2}^{p}=b^{p^{m}}=1,\left[a_{1}, b\right]=a_{2},\left[a_{2}, b\right]=a_{1}^{\nu p},\left[a_{1}, a_{2}\right]=1\right\rangle$, where $p \geq 3$ and $\nu=1$ or a fixed quadratic non-residue modulo p;
(B4) $\left\langle a_{1}, a_{2}, b \mid a_{1}^{9}=a_{2}^{3}=1, b^{3}=a_{1}^{3},\left[a_{1}, b\right]=a_{2},\left[a_{2}, b\right]=a_{1}^{-3},\left[a_{2}, a_{1}\right]=1\right\rangle$.
(B5) $\left\langle a, b \mid a^{p^{2}}=b^{p^{2}}=c^{p}=1,[a, b]=c,[c, a]=b^{\nu p},[c, b]=a^{p}\right\rangle$, where $p \geq 5, \nu$ is a fixed square non-residue modulo p;
(B6) $\left\langle a, b \mid a^{p^{2}}=b^{p^{2}}=c^{p}=1,[a, b]=c,[c, a]=a^{-p} b^{-l p},[c, b]=a^{-p}\right\rangle$, where $p \geq 5,4 l=\rho^{2 r+1}-1, r=1,2, \ldots, \frac{1}{2}(p-1), \rho$ is the smallest positive integer which is a primitive root modulo p;
(B7) $\left\langle a, b \mid a^{9}=b^{9}=c^{3}=1,[a, b]=c,[c, a]=b^{-3},[c, b]=a^{3}\right\rangle$;
(B8) $\left\langle a, b \mid a^{9}=b^{9}=c^{3}=1,[a, b]=c,[c, a]=b^{-3},[c, b]=a^{-3}\right\rangle$.
(C) $c(G)=2$ and $G^{\prime} \cong C_{p}^{2}$.
(C1) $K \times A$, where $K=\left\langle a_{1}, a_{2}, b\right| a_{1}^{4}=a_{2}^{4}=1, b^{2}=a_{1}^{2},\left[a_{1}, a_{2}\right]=1,\left[a_{1}, b\right]=$ $\left.a_{2}^{2},\left[a_{2}, b\right]=a_{1}^{2}\right\rangle$ and A is abelian such that $\exp (A) \leq 2$;
(C2) $K \times A$, where $K=\left\langle a_{1}, a_{2}, b, d\right| a_{1}^{4}=a_{2}^{4}=1, b^{2}=a_{1}^{2}, d^{2}=a_{2}^{2},\left[a_{1}, a_{2}\right]=$ $\left.1,\left[a_{1}, b\right]=a_{2}^{2},\left[a_{2}, b\right]=a_{1}^{2},\left[a_{1}, d\right]=a_{1}^{2},\left[a_{2}, d\right]=a_{1}^{2} a_{2}^{2},[b, d]=1\right\rangle$ and A is abelian such that $\exp (A) \leq 2$.
(C3) $K \times A$, where $K=\left\langle a_{1}, a_{2}, a_{3}\right| a_{1}^{p^{m_{1}+1}}=a_{2}^{p^{m_{2}+1}}=a_{3}^{p^{m_{3}}}=1,\left[a_{1}, a_{2}\right]=$ $\left.a_{1}^{p^{m_{1}}},\left[a_{1}, a_{3}\right]=a_{2}^{p^{m_{2}}},\left[a_{2}, a_{3}\right]=1\right\rangle, m_{1}>1$ for $p=2, m_{1} \geq m_{2} \geq m_{3}$, and A is abelian such that $\exp (A) \leq p^{m_{2}}$;
(C4) $K \times A$, where $K=\left\langle a_{1}, a_{2}, a_{3}\right| a_{1}^{p^{m_{1}+1}}=a_{2}^{p^{m_{2}+1}}=a_{3}^{p^{m_{3}}}=1,\left[a_{1}, a_{2}\right]=$ $\left.1,\left[a_{1}, a_{3}\right]=a_{2}^{p^{m_{2}}},\left[a_{2}, a_{3}\right]=a_{1}^{\nu p^{m_{1}}}\right\rangle, p>2, \nu$ is a fixed square non-residue modulo p, $m_{1}-1=m_{2} \geq m_{3}$ or $m_{1}=m_{2} \geq m_{3}$, and A is abelian such that $\exp (A) \leq p^{m_{2}} ;$
(C5) $K \times A$, where $K=\left\langle a_{1}, a_{2}, a_{3}\right| a_{1}^{p^{m_{1}+1}}=a_{2}^{p^{m_{2}+1}}=a_{3}^{p^{m_{3}}}=1,\left[a_{1}, a_{2}\right]=$ $\left.1,\left[a_{1}, a_{3}\right]=a_{2}^{p^{m_{2}}},\left[a_{2}, a_{3}\right]=a_{1}^{k p^{m_{1}}} a_{2}^{-p^{m_{2}}}\right\rangle, 1+4 k \notin\left(F_{p}\right)^{2}$ for $p>2, k=1$ for $p=2, m_{1}=m_{2} \geq m_{3}$ and A is abelian such that $\exp (A) \leq p^{m_{2}}$;
(C6) $K \times A$, where $K=\left\langle a_{1}, a_{2}, a_{3}\right| a_{1}^{p^{m_{1}+1}}=a_{2}^{p^{m_{2}+1}}=a_{3}^{p^{m_{3}}}=1,\left[a_{1}, a_{2}\right]=$ $\left.1,\left[a_{1}, a_{3}\right]=a_{2}^{p^{m_{2}}},\left[a_{2}, a_{3}\right]=a_{1}^{p^{m_{1}}}\right\rangle, m_{1}-1=m_{2} \geq m_{3}$ and A is abelian such that $\exp (A) \leq p^{m_{2}}$;
(C7) $K \times A$, where $K=\left\langle a_{1}, a_{2}, a_{3}\right| a_{1}^{p^{m_{1}}}=a_{2}^{p^{m_{2}+1}}=a_{3}^{p^{m_{3}+1}}=1,\left[a_{1}, a_{2}\right]=$ $\left.a_{3}^{p^{m_{3}}},\left[a_{1}, a_{3}\right]=a_{2}^{p^{m_{2}}},\left[a_{2}, a_{3}\right]=1\right\rangle, m_{1} \geq m_{2}=m_{3}+1$ and A is abelian such that $\exp (A) \leq p^{m_{3}}$;
(C8) $K \times A$, where $K=\left\langle a_{1}, a_{2}, a_{3}\right| a_{1}^{p^{m_{1}}}=a_{2}^{p^{m_{2}+1}}=a_{3}^{p^{m_{3}+1}}=1,\left[a_{1}, a_{2}\right]=$ $\left.a_{3}^{p^{m_{3}}},\left[a_{1}, a_{3}\right]=a_{2}^{\nu p^{m_{2}}},\left[a_{2}, a_{3}\right]=1\right\rangle, p>2$, ν is a fixed square non-residue modulo $p, m_{1} \geq m_{2}=m_{3}+1$ or $m_{1}>m_{2}=m_{3}$ and A is abelian such that $\exp (A) \leq p^{m_{3}} ;$
(C9) $K \times A$, where $K=\left\langle a_{1}, a_{2}, a_{3}\right| a_{1}^{p^{m_{1}}}=a_{2}^{p^{m_{2}+1}}=a_{3}^{p^{m_{3}+1}}=1,\left[a_{1}, a_{2}\right]=$ $\left.a_{3}^{p^{m_{3}}},\left[a_{1}, a_{3}\right]=a_{2}^{k p^{m_{2}}} a_{3}^{-p^{m_{3}}},\left[a_{2}, a_{3}\right]=1\right\rangle, 1+4 k \notin\left(F_{p}\right)^{2}$ for $p>2, k=1$ for $p=2, m_{1}>m_{2}=m_{3}$ and A is abelian such that $\exp (A) \leq p^{m_{3}}$;
(C10) $K \times A$, where $K=\left\langle a_{1}, a_{2}, a_{3}\right| a_{1}^{p^{m_{1}+1}}=a_{2}^{p^{m_{2}}}=a_{3}^{p^{m_{3}+1}}=1,\left[a_{1}, a_{2}\right]=$ $\left.a_{3}^{p^{m_{3}}},\left[a_{1}, a_{3}\right]=a_{1}^{p^{m_{1}}},\left[a_{2}, a_{3}\right]=1\right\rangle, m_{1} \geq m_{2}=m_{3}+1$ and A is abelian such that $\exp (A) \leq p^{m_{3}}$.
(D) $c(G)=2$ and $G^{\prime} \cong C_{p}^{3}$.
(D1) $K \times A$, where $K=\left\langle a_{1}, a_{2}, a_{3}\right| a_{1}^{p^{m_{1}+1}}=a_{2}^{p^{m_{2}+1}}=a_{3}^{p^{m 3+1}}=1,\left[a_{2}, a_{3}\right]=$ $\left.a_{1}^{p^{m_{1}}},\left[a_{1}, a_{3}\right]=a_{2}^{\eta m^{m_{2}}},\left[a_{1}, a_{2}\right]=a_{3}^{p^{m_{3}}},\left[a_{3}^{p}, a_{1}\right]=\left[a_{3}^{p}, a_{2}\right]=1\right\rangle$, where p is odd, $m_{1}=m_{2}+1=m_{3}+1$ and η is a fixed square non-residue modulo p, and A is abelian with $\exp (A) \leq p^{m_{3}}$;
(D2) $K \times A$, where $K=\left\langle a_{1}, a_{2}, a_{3}\right| a_{1}^{p^{m_{1}+1}}=a_{2}^{p^{m_{2}+1}}=a_{3}^{p^{m_{3}+1}}=1,\left[a_{2}, a_{3}\right]=$ $\left.a_{1}^{p^{m_{1}}},\left[a_{1}, a_{3}\right]=a_{2}^{l p^{m_{2}}} a_{3}^{-p^{m_{2}}},\left[a_{1}, a_{2}\right]=a_{3}^{p^{m_{3}}},\left[a_{3}^{p}, a_{1}\right]=\left[a_{3}^{p}, a_{2}\right]=1\right\rangle$, where p is odd, $m_{1}=m_{2}+1=m_{3}+1$ and $1+4 l \notin\left(F_{p}\right)^{2}$, and A is abelian with $\exp (A) \leq p^{m_{3}} ;$
(D3) $K \times A$, where $K=\left\langle a_{1}, a_{2}, a_{3}\right| a_{1}^{2^{m_{1}+1}}=a_{2}^{2^{m_{2}+1}}=a_{3}^{2^{m_{3}+1}}=1,\left[a_{2}, a_{3}\right]=$ $\left.a_{1}^{2^{m_{1}}},\left[a_{3}, a_{1}\right]=a_{2}^{2^{m_{2}}},\left[a_{1}, a_{2}\right]=a_{2}^{2^{m_{2}}} a_{3}^{2_{3}},\left[a_{3}^{2}, a_{1}\right]=\left[a_{3}^{2}, a_{2}\right]=1\right\rangle$, where $m_{1}=$ $m_{2}+1=m_{3}+1$, and A is abelian with $\exp (A) \leq 2^{m_{3}}$;
(D4) $K \times A$, where $K=\left\langle a_{1}, a_{2}, a_{3}\right| a_{1}^{p^{m_{1}+1}}=a_{2}^{p^{m_{2}+1}}=a_{3}^{p^{m_{3}+1}}=1,\left[a_{2}, a_{3}\right]=$ $\left.a_{1}^{p^{m_{1}}},\left[a_{1}, a_{3}\right]=a_{2}^{\eta p^{m_{2}}},\left[a_{1}, a_{2}\right]=a_{3}^{p^{m_{3}}},\left[a_{3}^{p}, a_{1}\right]=\left[a_{3}^{p}, a_{2}\right]=1\right\rangle$, where p is odd, $m_{1}=m_{2}=m_{3}+1$ and η is a fixed square non-residue modulo p, and A is abelian with $\exp (A) \leq p^{m_{3}}$;
(D5) $K \times A$, where $K=\left\langle a_{1}, a_{2}, a_{3}\right| a_{1}^{p^{m_{1}+1}}=a_{2}^{p^{m_{2}+1}}=a_{3}^{p^{m_{3}+1}}=1,\left[a_{2}, a_{3}\right]=$ $a_{1}^{p^{m_{1}}},\left[a_{1}, a_{3}\right]=a_{1}^{p^{m_{1}}} a_{2}^{p^{m_{2}}},\left[a_{1}, a_{2}\right]=a_{3}^{p^{m_{3}}},\left[a_{3}^{p}, a_{1}\right]=\left[a_{3}^{p}, a_{2}\right]=1$, where p is odd, $m_{1}=m_{2}=m_{3}+1$ and $1+4 l \notin\left(F_{p}\right)^{2}$, and A is abelian with $\exp (A) \leq p^{m_{3}} ;$
(D6) $K \times A$, where $K=\left\langle a_{1}, a_{2}, a_{3}\right| a_{1}^{2^{m_{1}+1}}=a_{2}^{2^{m_{2}+1}}=a_{3}^{2^{m_{3}+1}}=1,\left[a_{2}, a_{3}\right]=$ $\left.a_{1}^{2^{m_{1}}} a_{2}^{2^{m_{2}}},\left[a_{3}, a_{1}\right]=a_{2}^{2^{m_{2}}},\left[a_{1}, a_{2}\right]=a_{3}^{2^{m_{3}}},\left[a_{3}^{2}, a_{1}\right]=\left[a_{3}^{2}, a_{2}\right]=1\right\rangle$, where $m_{1}=$ $m_{2}=m_{3}+1$, and A is abelian with $\exp (A) \leq 2^{m_{3}}$;
(D7) $K \times A$, where $K=\langle a, b, c| a^{4}=b^{4}=c^{4}=1,[b, c]=a^{2} b^{2},[c, a]=$ $\left.b^{2} c^{2},[a, b]=c^{2},\left[c^{2}, a\right]=\left[c^{2}, b\right]=1\right\rangle$, and A is abelian with $\exp (A) \leq 2$.

Proof By Theorem [2.5, $c(G) \leq 3$. If $c(G)=3$, then, by Theorem [2.8, $G \in \mathcal{A}_{2}$. Checking groups listed in [4, Lemma 2.4], we get groups (B1)-(B8). In the following, we may assume that $c(G)=2$. Let N be a minimal non-abelian subgroup of G. By Theorem [2.6, $G^{\prime} \leq N$. Since $G^{\prime} \leq Z(G), G^{\prime} \leq \Omega_{1}(Z(N))=\Omega_{1}(\Phi(N))$. It follows from Theorem 2.1 that $G^{\prime} \leq C_{p}^{3}$. If $G^{\prime} \cong C_{p}$, then G is of Type (A) in the theorem. If $G^{\prime} \cong C_{p}^{2}$, then, by the following Lemma 3.2, G is a group of Type (C 1$)-(\mathrm{C} 10)$ in the theorem. For the case of $G^{\prime} \cong C_{p}^{3}$, Lemma 3.3 gives groups of Type (D1)-(D5) in the theorem. Finally, it is omitted to check that such groups are non-isomorphic metahamiltonian p-groups.

Lemma 3.2. Suppose that G is a metahamilton p-group. If $G^{\prime} \cong C_{p}^{2}$ and $c(G)=2$, then G is a group of Type (C1)-(C10) as defined in Theorem 3.1.

Proof Let the type of G / G^{\prime} be $\left(p^{m_{1}}, p^{m_{2}}, \ldots, p^{m_{r}}\right)$, where $m_{1} \geq m_{2} \geq \cdots \geq m_{r}$. Let
$G / G^{\prime}=\left\langle a_{1} G^{\prime}\right\rangle \times\left\langle a_{2} G^{\prime}\right\rangle \times \cdots \times\left\langle a_{r} G^{\prime}\right\rangle$, where $o\left(a_{i} G^{\prime}\right)=p^{m_{i}}, i=1,2, \ldots, r$.
Then $G=\left\langle a_{1}, a_{2}, \ldots, a_{r}\right\rangle$.
If $m_{1}=1$, then G / G^{\prime} is elementary abelian. By Theorem [2.6, $G^{\prime} \leq\langle x, y\rangle$ for every non-commutative pair $x, y \in G$ and hence $\langle x, y\rangle$ is minimal non-abelian with order p^{4}. Such groups were classified in [3]. By checking the results in [3], we get the groups (C3)-(C5) where $m_{1}=m_{2}=m_{3}=1$ and (C1)-(C2). In the following, we may assume that $m_{1}>1$.

Let i be the minimal integer such that $a_{i} \notin Z(G)$. That is, there exists $j>i$ such that $\left[a_{i}, a_{j}\right] \neq 1$. If $i \neq 1$, then $a_{1} \in Z(G)$. Replacing a_{1} with $a_{1} a_{j}$, we get $a_{1} \notin Z(G)$. If $i=1$, then we also have $a_{1} \notin Z(G)$.

Let j be the minimal integer such that $\left[a_{1}, a_{j}\right] \neq 1$. If $j \neq 2$, then $\left[a_{1}, a_{2}\right]=1$. Replacing a_{2} with $a_{2} a_{j}$, we get $\left[a_{1}, a_{2}\right] \neq 1$. If $j=2$, then we also have $\left[a_{1}, a_{2}\right] \neq 1$.

Let k be the minimal integer such that $\left[a_{k}, a_{l}\right] \notin\left\langle\left[a_{1}, a_{2}\right]\right\rangle$. If $k>2$, then, for all integer s, we have

$$
\left[a_{1}, a_{s}\right] \in\left\langle\left[a_{1}, a_{2}\right]\right\rangle \text { and }\left[a_{2}, a_{s}\right] \in\left\langle\left[a_{1}, a_{2}\right]\right\rangle .
$$

(1) If $\left[a_{1}, a_{l}\right]=1$, then, replacing a_{2} with $a_{2} a_{l}$, we have $\left[a_{2}, a_{k}\right] \notin\left\langle\left[a_{1}, a_{2}\right]\right\rangle$. (2) If $\left[a_{1}, a_{l}\right]=\left[a_{1}, a_{2}\right]^{\alpha}$ where $(\alpha, p)=1$, then, letting $\left[a_{1}, a_{k}\right]=\left[a_{1}, a_{2}\right]^{\beta}$ and replacing a_{2} with $a_{2} a_{k} a_{l}^{\alpha^{-1} \beta}$, we have $\left[a_{2}, a_{l}\right] \notin\left\langle\left[a_{1}, a_{2}\right]\right\rangle$. Hence we may assume that $k \leq 2$.

Let l be the minimal integer such that $\left[a_{k}, a_{l}\right] \notin\left\langle\left[a_{1}, a_{2}\right]\right\rangle$. If $l \neq 3$, then $\left[a_{1}, a_{3}\right] \in$ $\left\langle\left[a_{1}, a_{2}\right]\right\rangle$ and $\left[a_{2}, a_{3}\right] \in\left\langle\left[a_{1}, a_{2}\right]\right\rangle$. Replacing a_{3} with $a_{3} a_{l}$, we have $\left[a_{k}, a_{3}\right] \notin\left\langle\left[a_{1}, a_{2}\right]\right\rangle$. Hence we may assume that $l=3$.

Let $K=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$. Then $\left|K^{\prime}\right|=\left|G^{\prime}\right|=p^{2}$. Such groups K were determined in [2]. By checking [2, Table 4], K is one of the groups (C3)-(C10) in Theorem 3.1, If $r=3$, then $G=K$. In the following we may assume that $r \geq 4$.

Case 1: K is one of the groups of Type (C3)-(C6) in Theorem 3.1.
In this case, $G^{\prime}=\left\langle a_{1}^{p^{m_{1}}}, a_{2}^{p^{m_{2}}}\right\rangle$ and $\left[a_{1}, a_{3}\right]=a_{2}^{p^{m_{2}}}$. Assume that $a_{4}^{p^{m_{4}}}=a_{1}^{\alpha p^{m_{1}}} a_{2}^{\beta p^{m_{2}}}$. Replacing a_{4} with $a_{4} a_{1}^{-\alpha p^{m_{1}-m_{4}}}$, we have $a_{4}^{p^{m_{4}}}=a_{2}^{\beta p^{m_{2}}}$ since $m_{1}>1$.

If $p>2$ or $m_{2}>1$, then, replacing a_{4} with $a_{4} a_{2}^{-\beta p^{m_{2}-m_{4}}}$, we have $a_{4}^{p^{m_{4}}}=1$. If $p=2$ and $m_{2}=1$, then we claim that there exists an $x \in\left\{a_{4}, a_{4} a_{2}\right\}$ such that $x^{2} \in\left\langle a_{1}^{2^{m}}\right\rangle$. Otherwise, $a_{4}^{2}=a_{2}^{2}$. Since $\left[a_{4}, a_{2}\right]=\left(a_{4} a_{2}\right)^{2} \notin\left\langle a_{1}^{2^{m_{1}}}\right\rangle,\left\langle a_{4}, a_{2}\right\rangle$ is not abelian. It follows from Theorem [2.6 that $a_{1}^{2^{m_{1}}} \in\left\langle a_{4}, a_{2}\right\rangle$. Hence $\left[a_{4}, a_{2}\right]=a_{1}^{2^{m_{1}}} a_{2}^{2}$. Thus $\left\langle a_{4} a_{2}, a_{2} a_{1}^{2_{1}^{m_{1}-1}}\right\rangle$ is neither abelian nor normal in G, a contradiction. Replacing a_{4} with x or $x a_{1}^{2_{1}-1}$, we have $a_{4}^{2}=1$.

Hence we may assume that $a_{4}^{p^{m_{4}}}=1$. We claim that $\left[a_{1}, a_{4}\right] \in\left\langle a_{2}^{p^{m_{2}}}\right\rangle$. Otherwise, we may assume that $\left[a_{1}, a_{4}\right]=a_{1}^{\gamma p^{m_{1}}} a_{2}^{\alpha p^{m_{2}}}$ where $(\gamma, p)=1$. By calculation, $\left\langle a_{1}, a_{4} a_{3}^{-\alpha}\right\rangle$ is neither abelian nor normal in G, a contradiction. Hence $\left[a_{1}, a_{4}\right] \in\left\langle a_{2}^{p^{m}}\right\rangle$.

Let $L=\left\langle a_{1}, a_{2}, a_{4}\right\rangle$. If $\left[a_{1}, a_{4}\right] \neq 1$, then, by suitable replacement, we may assume that $\left[a_{1}, a_{4}\right]=a_{2}^{p^{m_{2}}}$. In this case, we claim that $L^{\prime}=G^{\prime}$. If not, then $L^{\prime}=\left\langle a_{2}^{p^{m_{2}}}\right\rangle$. Since $G^{\prime} \not \leq\left\langle a_{2}, a_{4}\right\rangle,\left[a_{2}, a_{4}\right]=1$ by Theorem [2.6, Since $K^{\prime}=G^{\prime}, K^{\prime}=\left\langle a_{2}^{p^{m}},\left[a_{2}, a_{3}\right]\right\rangle$. Hence we may assume that $\left[a_{2}, a_{3}\right]=a_{1}^{s p^{m_{1}}} a_{2}^{t p^{m_{2}}}$ where $(s, p)=1$. If $(t, p)=1$, then $\left\langle a_{1}^{s p^{m_{1}-m_{2}}} a_{2}^{t}, a_{3} a_{4}^{-1}\right\rangle$ is neither abelian nor normal in G, a contradiction. If $t=0$ and $m_{1}>m_{2}$, then $\left\langle a_{1} a_{2}, a_{3} a_{4}^{-1}\right\rangle$ is neither abelian nor normal in G, a contradiction. If $t=0$ and $m_{1}=m_{2}$, then $\left\langle a_{1} a_{2}, a_{3} a_{4}^{s-1}\right\rangle$ is neither abelian nor normal in G, also a contradiction.

By a similar argument as above, for $4 \leq i \leq r$, we may assume that $a_{i}^{p^{m_{i}}}=1$ and $\left[a_{1}, a_{i}\right]=1$ or $a_{2}^{p^{m_{2}}}$. Moreover, we have:
$\left.{ }^{*}\right)$ If $\left[a_{1}, a_{i}\right]=a_{2}^{p^{m_{2}}}$, then $L^{\prime}=G^{\prime}$ where $L=\left\langle a_{1}, a_{2}, a_{i}\right\rangle$.
For $3 \leq i<j \leq r,\left[a_{i}, a_{j}\right]=1$ by Theorem [2.6.
Let j be the maximal integer such that $\left[a_{1}, a_{j}\right]=a_{2}^{p^{m}{ }^{2}}$. Then $\left[a_{1}, a_{k}\right]=1$ for $j<k \leq r$. For $3 \leq k<j$, if $\left[a_{1}, a_{k}\right]=a_{2}^{p^{m_{2}}}$, then $\left[a_{1}, a_{k} a_{j}^{-1}\right]=1$. Replacing a_{k} with $a_{k} a_{j}^{-1}$ if necessary, we get $\left[a_{1}, a_{k}\right]=1$.

Let $J=\left\langle a_{1}, a_{2}, a_{j}\right\rangle$. Then J is one of the groups of Type (C3)-(C6) in Theorem 3.1 since $J^{\prime}=\left\langle a_{1}^{p^{m_{1}}}, a_{2}^{p^{m_{2}}}\right\rangle$. We claim that $\left[a_{2}, a_{k}\right]=1$ for $3 \leq k \leq r$ and $k \neq j$. If not, then we will reduce contradictions on two subcases respectively.

Subcase 1: J is the group of Type (C3) in Theorem 3.1.
In this subcase, $\left[a_{2}, a_{j}\right]=1$. We may assume that $\left[a_{2}, a_{k}\right]=a_{2}^{\gamma p^{m_{2}}} a_{1}^{\beta p^{m_{1}}}$ where $(\beta, p)=1$. If $(\gamma, p)=1$, then $\left\langle a_{1}^{\beta p^{m_{1}-m_{2}}} a_{2}^{\gamma}, a_{k}\right\rangle$ is neither abelian nor normal in G, a contradiction. If $\alpha=0$ and $m_{1}>m_{2}$, then $\left\langle a_{1} a_{2}, a_{k}\right\rangle$ is neither abelian nor normal in G, a contradiction. If $\alpha=0$ and $m_{1}=m_{2}$, then $\left\langle a_{1} a_{2}, a_{k} a_{j}^{\beta}\right\rangle$ is neither abelian nor normal in G, also a contradiction.

Subcase 2: J is one of the groups of Type (C4)-(C7) in Theorem 3.1.
In this subcase, $\left[a_{1}, a_{2}\right]=1$ and $G^{\prime}=\left\langle\left[a_{2}, a_{j}\right], a_{2}^{p^{m}}\right\rangle$. Hence we may assume that $\left[a_{2}, a_{k}\right]=a_{2}^{\gamma p^{m_{2}}}\left[a_{2}, a_{j}\right]^{\beta}$ where $(\beta, p)=1$. Let $x=a_{k}^{-\beta^{-1}} a_{j}$. Then $\left[a_{1}, x\right]=a_{2}^{p^{m_{2}}}$ and $\left[a_{2}, x\right]=a_{2}^{-\beta^{-1} \gamma p^{m_{2}}}$. If $(\gamma, p)=1$, then $\left\langle a_{2}, a_{k} a_{j^{-\beta}}^{-\beta}\right\rangle$ is neither abelian nor normal in G, a contradiction. If $\alpha=0$, then $\left\langle a_{1}, a_{2}, x\right\rangle^{\prime}=\left\langle a_{2}^{p^{m^{2}}}\right\rangle$. This contradicts (${ }^{*}$).

In this case, $G=J \times A$ where $A=\left\langle a_{3}\right\rangle \times \cdots \times\left\langle a_{j-1}\right\rangle \times\left\langle a_{j+1}\right\rangle \times \cdots \times\left\langle a_{r}\right\rangle$. Hence we get the groups (C3)-(C7) in Theorem 3.1.

Case 2: K is one of the groups of Type (C7)-(C10) in Theorem 3.1.
In this case, $G^{\prime}=\left\langle a_{s}^{p^{m_{s}}}, a_{3}^{p^{m_{3}}}\right\rangle$ where $s=1$ or $2,\left[a_{1}, a_{2}\right]=a_{3}^{p^{m_{3}}}$ and $\left[a_{2}, a_{3}\right]=1$. Assume that $a_{4}^{p^{m_{4}}}=a_{s}^{\alpha p^{m_{s}}} a_{3}^{\beta p^{m_{3}}}$.

If $p>2$ or $m_{3}>1$, then, replacing a_{4} with $a_{4} a_{s}^{-\alpha p^{m_{s}-m_{4}}} a_{3}^{-\beta p^{m_{3}-m_{4}}}$, we have $a_{4}^{p^{m_{4}}}=1$. If $p=2, m_{3}=1$ and $m_{s}>1$, then, we claim that there exists an $x \in\left\{a_{4}, a_{4} a_{3}\right\}$ such that $x^{2} \in\left\langle a_{s}^{2^{m_{s}}}\right\rangle$. Otherwise, $a_{4}^{2}=a_{s}^{\alpha 2^{m_{s}}} a_{3}^{2}$. Replacing a_{4} with $a_{4} a_{s}^{-\alpha p^{m_{s}-m_{4}}}$, we have $a_{4}^{2}=a_{3}^{2}$. Since $\left[a_{4}, a_{3}\right]=\left(a_{4} a_{3}\right)^{2} \notin\left\langle a_{s}^{2_{s}}\right\rangle,\left\langle a_{4}, a_{3}\right\rangle$ is non-abelian. It follows from Theorem $\left[2.6\right.$ that $G^{\prime} \leq\left\langle a_{4}, a_{3}\right\rangle$. Hence $\left[a_{4}, a_{3}\right]=a_{s}^{2^{m_{s}}} a_{3}^{2}$. By calculation, $\left\langle a_{4} a_{3}, a_{3} a_{s}^{2^{m_{s}-1}}\right\rangle$ is neither abelian nor normal in G, a contradiction. Replacing a_{4} with x or $x a_{s}^{2^{m-1}}$, we have $a_{4}^{2}=1$. If $p=2$ and $m_{s}=m_{3}=1$, then $s=2$ since $m_{1}>1$. Hence K is a group of Type (C9). In this case, $\left[a_{1}, a_{3}\right]=a_{2}^{2} a_{3}^{2}$. we claim that there exists an involution in $\left\{a_{4}, a_{4} a_{2}, a_{4} a_{3}, a_{4} a_{2} a_{3}\right\}$. Otherwise, since $a_{4}^{2} \neq 1$, we have

$$
a_{4}^{2}=a_{2}^{2}, a_{3}^{2} \text { or } a_{2}^{2} a_{3}^{2} .
$$

If $a_{4}^{2}=a_{3}^{2}$, then, by replacing a_{2}, a_{3} with $a_{3}, a_{2} a_{3}$ respectively, it is reduced to $a_{4}^{2}=a_{2}^{2}$. If $a_{4}^{2}=a_{2}^{2} a_{3}^{2}$, then, by replacing a_{2}, a_{3} with $a_{2} a_{3}, a_{2}$ respectively, it is also reduced to $a_{4}^{2}=a_{2}^{2}$. Hence we may assume that $a_{4}^{2}=a_{2}^{2}$. Since $\left(a_{4} a_{2}\right)^{2}=\left[a_{4}, a_{2}\right] \neq 1$, $L=\left\langle a_{4}, a_{2}\right\rangle$ is not abelian. It follows from Theorem 2.6 that $G^{\prime} \leq L$. Hence we may assume that $\left[a_{4}, a_{2}\right]=a_{3}^{2} a_{2}^{2 \alpha}$. If $\left[a_{4}, a_{2}\right]=a_{3}^{2} a_{2}^{2}$, then $\left\langle a_{1} a_{4}, a_{2}\right\rangle$ is neither abelian nor normal in G, a contradiction. If $\left[a_{4}, a_{2}\right]=a_{3}^{2}$, then $\left(a_{4} a_{2}\right)^{2}=a_{3}^{2}$. Since $\left(a_{4} a_{2} a_{3}\right)^{2} \neq 1$, $\left[a_{4} a_{2}, a_{3}\right]=\left[a_{4}, a_{3}\right]=\left(a_{4} a_{2} a_{3}\right)^{2} \neq 1$. Since $M=\left\langle a_{4} a_{2}, a_{3}\right\rangle$ is not abelian, $G^{\prime} \leq$ $\left\langle a_{4} a_{2}, a_{3}\right\rangle$ by Theorem [2.6. Hence we may assume that $\left[a_{4}, a_{3}\right]=\left[a_{4} a_{2}, a_{3}\right]=a_{2}^{2} a_{3}^{2 \alpha}$. Since $\left(a_{4} a_{3}\right)^{2} \neq 1,\left[a_{4}, a_{3}\right] \neq a_{2}^{2} a_{3}^{3}$. Hence $\left[a_{4}, a_{3}\right]=a_{2}^{2}$. In this case, $\left\langle a_{1} a_{4} a_{2}, a_{3}\right\rangle$ is neither abelian nor normal in G, a contradiction.

By the above argument, we may assume that $a_{4}^{p^{m_{4}}}=1$. Let $\{s, t\}=\{1,2\}$. Since $G^{\prime} \not \leq\left\langle a_{t}, a_{4}\right\rangle,\left[a_{t}, a_{4}\right]=1$ by Theorem [2.6. By the definition relations of (C7)-(C10), $m_{t}>m_{3}$. It follows from Theorem [2.6 that $\left[a_{t} a_{3}, a_{4}\right]=1$ since $G^{\prime} \not \leq\left\langle a_{t} a_{3}, a_{4}\right\rangle$. Hence $\left[a_{3}, a_{4}\right]=1$. We claim that $\left[a_{s}, a_{4}\right] \in\left\langle a_{3}^{p^{m_{3}}}\right\rangle$. Otherwise, we may assume that $\left[a_{s}, a_{4}\right]=a_{s}^{\alpha p^{m_{s}}} a_{3}^{\beta p^{m_{3}}}$ where $(\alpha, p)=1$. By calculation, $\left\langle a_{s}, a_{t}^{\beta} a_{4}^{s-t}\right\rangle$ is neither abelian or normal in G, a contradiction. Hence we may assume that $\left[a_{s}, a_{4}\right]=a_{3}^{\beta p^{m_{3}}}$.

We claim that $\left[a_{s}, a_{4}\right]=1$. If not, then, $(\beta, p)=1$ and we may assume that $\left[a_{s}, a_{4}\right]=a_{3}^{p^{m_{3}}}$ by suitable replacement. We will reduce contradictions on three subcases respectively.

Subcase 1: $s=2, t=1$ and $m_{2}>m_{3}$.
In this subcase, K is one of the groups of Type (C7)-(C8). By the definition relations of Type (C7)-(C8), $\left[a_{1}, a_{3}\right]=a_{2}^{\eta^{m_{2}}}$ where $\eta=1$ or ν. By calculation, $\left\langle a_{1} a_{4}, a_{2} a_{3}\right\rangle$ is neither abelian or normal in G, a contradiction.

Subcase 2: $s=2, t=1$ and $m_{2}=m_{3}$.
In this subcase, K is one of the groups of Type (C8)-(C9). If K is one of the groups of Type (C8), then $\left[a_{1}, a_{3}\right]=a_{2}^{\nu p^{m_{2}}}$. By calculation, $\left\langle a_{1} a_{4}^{1-\nu}, a_{2} a_{3}\right\rangle$ is neither abelian or normal in G, a contradiction. If K is one of the groups of Type (C9), then $\left[a_{1}, a_{3}\right]=a_{2}^{k p^{m}} a_{3}^{-p^{m_{3}}}$ where $(k, p)=1$. By calculation, $\left\langle a_{1} a_{4}, a_{2}^{k} a_{3}^{-1}\right\rangle$ is neither abelian or normal in G, a contradiction.
subcase 3: $s=1, t=2$.
In this subcase, K is a group of Type (C10). By the definition relations of Type (C10), $\left[a_{1}, a_{3}\right]=a_{1}^{p^{m_{3}}}$. By calculation, $\left\langle a_{1}, a_{2} a_{3} a_{4}^{-1}\right\rangle$ is neither abelian or normal in G, also a contradiction.

Hence $\left[a_{s}, a_{4}\right]=1$. By a similar argument, for $4 \leq i \leq r$, we may assume that $a_{i}^{p^{m_{i}}}=1$. Moreover, $\left[a_{1}, a_{i}\right]=\left[a_{2}, a_{i}\right]=\left[a_{3}, a_{i}\right]=1$. For $4 \leq i<j \leq r,\left[a_{i}, a_{j}\right]=1$ by Theorem [2.6. In this case, $G=K \times A$ where $A=\left\langle a_{4}\right\rangle \times\left\langle a_{5}\right\rangle \times \cdots \times\left\langle a_{r}\right\rangle$. Hence we get the groups of Type (C7)-(C10) in Theorem 3.1.

Lemma 3.3. Suppose that G is a metahamilton p-group. If $G^{\prime} \cong C_{p}^{3}$ and $c(G)=2$, then G is a group of Type (D1)-(D7) as defined in Theorem 3.1.

Proof Let the type of G / G^{\prime} be ($p^{m_{1}}, p^{m_{2}}, \ldots, p^{m_{r}}$), where $m_{1} \geq m_{2} \geq \cdots \geq m_{r}$, $G / G^{\prime}=\left\langle a_{1} G^{\prime}\right\rangle \times\left\langle a_{2} G^{\prime}\right\rangle \times \cdots \times\left\langle a_{r} G^{\prime}\right\rangle$, where $o\left(a_{i} G^{\prime}\right)=p^{m_{i}}, i=1,2, \ldots, r$. Then $G=\left\langle a_{1}, a_{2}, \ldots, a_{r}\right\rangle$. If $\left[a_{i}, a_{j}\right] \neq 1$, then $G^{\prime}=\left\langle a_{i}^{p^{m_{i}}}, a_{j}^{p^{m_{j}}},\left[a_{i}, a_{j}\right]\right\rangle$ by Theorem [2.6. Hence we have:

$$
\left(^{*}\right) \text { If } a_{i}^{p^{m_{i}}}=1 \text {, then } a_{i} \in Z(G) .
$$

Let i be the minimal integer such that $a_{i}^{p^{m_{i}}} \neq 1$. If $i \neq 1$, then

$$
a_{1}^{p^{m_{1}}}=\cdots=a_{i-1}^{p_{i-1}}=1
$$

and hence $a_{1}, \ldots a_{i-1} \in Z(G)$ by $\left(^{*}\right)$. We claim that $m_{i}=m_{1}$. If not, then $\left(a_{1} a_{j}\right)^{p^{m_{1}}}=$ 1 for $j \geq i$. It follows that $a_{1} a_{j} \in Z(G)$ by $\left(^{*}\right)$ and hence $a_{j} \in Z(G)$ for $j \geq i$. This contradicts $\left|G^{\prime}\right|=p^{3}$. Hence we may assume that $a_{1}^{p^{m_{1}}} \neq 1$.

Let j be the minimal integer such that $a_{j}^{p^{m_{j}}} \notin\left\langle a_{1}^{p^{m_{1}}}\right\rangle$. If $j \neq 2$, then we may assume that $a_{k}^{p^{m_{k}}}=a_{1}^{\alpha_{k} p^{m_{1}}}$ for $2 \leq k \leq j-1$. By Theorem 2.6, $\left[a_{k}, a_{1}\right]=1$. Replacing a_{k} with $a_{k} a_{1}^{-\alpha_{k} p^{m_{1}-m_{k}}}$, we get $a_{k}^{p^{m_{k}}}=1$. By $\left(^{*}\right), a_{k} \in Z(G)$ for $2 \leq k \leq j-1$. We claim that $m_{j}=m_{2}$. If not, then $\left(a_{2} a_{k}\right)^{p^{m_{2}}}=1$ for $k \geq j$. It follows that $a_{2} a_{k} \in Z(G)$ by $\left(^{*}\right)$ and hence $a_{k} \in Z(G)$ for $k \geq j$. This contradicts $\left|G^{\prime}\right|=p^{3}$. Hence we may assume that $a_{2}^{p^{m_{2}}} \notin\left\langle a_{1}^{p^{m_{1}}}\right\rangle$.

Let k be the minimal integer such that $a_{k}^{p^{m_{k}}} \notin\left\langle a_{1}^{p^{m_{1}}}, a_{2}^{p^{m_{2}}}\right\rangle$. If $k \neq 3$, then we may assume that $a_{w}^{p^{m_{w}}}=a_{1}^{\alpha_{w} p^{m_{1}}} a_{2}^{\beta_{w} p^{m_{2}}}$ for $3 \leq w \leq k-1$. We claim that $m_{k}=m_{3}$. If not, then $m_{3}>m_{k}$. Without loss of generality, we may assume that $m_{k-1}>m_{k}$. Replacing a_{w} with $a_{w} a_{1}^{-\alpha_{w} p^{m_{1}-m_{w}}} a_{2}^{\beta_{w} p^{m_{2}-m_{w}}}$, we get $a_{w}^{p^{m_{w}}}=1$. By $\left({ }^{*}\right), a_{w} \in Z(G)$ for $3 \leq w \leq k-1$. For $w \geq k$, since $\left(a_{3} a_{w}\right)^{p^{m_{3}}}=1, a_{3} a_{w} \in Z(G)$ by (*). It follows that $a_{w} \in Z(G)$ for $w \geq k$. This contradicts $\left|G^{\prime}\right|=p^{3}$. Hence we may assume that $a_{3}^{p^{m_{3}}} \notin\left\langle a_{1}^{p^{m_{1}}}, a_{2}^{p^{p^{m_{3}}}}\right\rangle$.

If $r=3$, then, by [17, Theorem 8.1], G is a group of Type (D1)-(D7) in Theorem 3.1. In the following we may assume that $r \geq 4$.

We claim that there are suitable a_{1}, a_{2}, a_{3} such that the following condition:
$\left(^{* *}\right)$ For all $x \in G^{\prime}$, there exists $b \in\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ such that $x=b^{p^{m_{3}}}$.
If $\left({ }^{* *}\right)$ holds, then for $i>3$, there exists $b_{i} \in\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ such that $a_{i}^{p^{m_{i}}}=b_{i}^{p^{m_{3}}}$. By Theorem [2.6, $\left[a_{i}, b_{i}\right]=1$. Replacing a_{i} with $a_{i} b_{i}^{-p^{m_{3}-m_{i}}}$, we get $a_{i}^{p^{m_{i}}}=1$. By $\left(^{*}\right)$, $a_{i} \in Z(G)$. Hence we get the groups (D1)-(D7) in Theorem 3.1.

In the following, we prove that we may choose suitable a_{1}, a_{2}, a_{3} satisfying the condition $\left({ }^{* *}\right)$. If $p>2$ or $m_{2}>1$, then $\left({ }^{* *}\right)$ holds. Hence, we only need to deal with the case where $p=2$ and $m_{2}=1$.

Case 1. $m_{1}>1$.
If $\left[a_{2}, a_{3}\right] \neq 1$, then we may assume that $\left[a_{2}, a_{3}\right]=a_{2}^{2 i} a_{3}^{2 j} a_{1}^{2^{m_{1}}}$ by Theorem 2.6. If $\left[a_{2}, a_{3}\right]=a_{2}^{2} a_{3}^{2 j} a_{1}^{2_{1}}$, then $\left\langle a_{2} a_{1}^{m_{1}-1}, a_{3}\right\rangle$ is neither abelian nor normal in G, a contradiction. If $\left[a_{2}, a_{3}\right]=a_{2}^{3} a_{1}^{2^{m_{1}}}=\left(a_{3} a_{1}^{2^{m_{1}-1}}\right)^{2}$, then $\left\langle a_{3} a_{1}^{2^{m_{1}-1}}, a_{3}\right\rangle$ is neither abelian nor normal in G, a contradiction. Hence $\left[a_{2}, a_{3}\right]=a_{1}^{2^{m_{1}}}$. In this case, it is easy to check that $G^{\prime}=V_{1}\left(\left\langle a_{1}, a_{2}, a_{3}\right\rangle\right)$. Hence $\left(^{* *}\right)$ holds.

Case 2. $m_{1}=1$.
By an argument similar to the beginning of the proof of Theorem 3.1, we may choose suitable a_{1}, a_{2}, a_{3} such that the commutative group of $K=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ is of order at least 4.

If there are two elements in $\left\{1, a_{1}, a_{2}, a_{3}, a_{1} a_{2}, a_{1} a_{3}, a_{2} a_{3}, a_{1} a_{2} a_{3}\right\}$ such that the squares are equal to each other, then, by Theorem [2.6, they are commutative. It follows that there is an involution in $\left\{a_{1}, a_{2}, a_{3}, a_{1} a_{2}, a_{1} a_{3}, a_{2} a_{3}, a_{1} a_{2} a_{3}\right\}$. By $\left({ }^{*}\right)$, this involution is in the center of K, which contradicts $\left|K^{\prime}\right| \geq 4$. Hence

$$
G^{\prime}=V_{1}(K)=\left\{1, a_{1}^{2}, a_{2}^{2}, a_{3}^{2},\left(a_{1} a_{2}\right)^{2},\left(a_{1} a_{3}\right)^{2},\left(a_{2} a_{3}\right)^{2},\left(a_{1} a_{2} a_{3}\right)^{2}\right\} .
$$

That is, $\left({ }^{* *}\right)$ holds.

4 Finite metahamiltonian p-groups whose derived group is of exponent $>p$

Theorem 4.1. Suppose that G is a finite metahamiltonian p-group with $\exp \left(G^{\prime}\right)>p$. Then G is isomorphic to one of the following non-isomorphic groups:
(E) G is metacyclic.
(E1) $\left\langle a, b \mid a^{p^{r+s+u}}=1, b^{p^{r+s+t}}=a^{p^{r+s}}, a^{b}=a^{1+p^{r}}\right\rangle$, where $r \geq 1, u \leq r$, $r+1 \geq s+u \geq 2$, and if $p=2$ then $r \geq 2$;
(E2) $\left\langle a, b \mid a^{2^{3}}=b^{2^{m}}=1, a^{b}=a^{-1}\right\rangle$, where $m \geq 1$;
(E3) $\left\langle a, b \mid a^{2^{3}}=1, b^{2^{m}}=a^{4}, a^{b}=a^{-1}\right\rangle$, where $m \geq 1$;
(E4) $\left\langle a, b \mid a^{2^{3}}=b^{2^{m}}=1, a^{b}=a^{3}\right\rangle$, where $m \geq 1$.
(F) G is not metacyclic and G^{\prime} is cyclic and $\left|G^{\prime}\right| \geq p^{2}$.
(F1) $K \times A$, where $K=\left\langle a, b \mid a^{p^{p+s+u}}=1, b^{p^{r+s}}=1, a^{b}=a^{1+p^{r}}\right\rangle, u \leq r$, $r+1>s+u \geq 2$, and $A \neq 1$ is abelian such that $\exp (A) \leq p^{(r+1)-(s+u)}$;
(F2) $K \times A$, where $K=\left\langle a, b \mid a^{p^{r+t+u}}=1, b^{p^{r}}=1, a^{b}=a^{1+p^{r+t}}\right\rangle, t \geq 1$, $r \geq u \geq 2$, and $A \neq 1$ is abelian such that $\exp (A) \leq p^{t+(r+1)-u} ;$
(F3) $K \times A$, where $K=\left\langle a, b \mid a^{p^{r+s}}=1, b^{p^{r+s+t}}=1, a^{b}=a^{1+p^{r}}\right\rangle, t \geq 1$, $r+1>s \geq 2$, and $A \neq 1$ is abelian such that $\exp (A) \leq p^{(r+1)-s} ;$
(F4) $K \times A$, where $K=\left\langle a, b \mid a^{p^{r+s+u}}=1, b^{p^{r+s+t}}=a^{p^{r+s}}, a^{b}=a^{1+p^{r}}\right\rangle$, stu $\neq 0$, $r+1>s+u \geq 2$, and $A \neq 1$ is abelian such that $\exp (A) \leq p^{(r+1)-(s+u)}$;
(F5) $(K \rtimes B) \times A$, where $K=\left\langle a, b \mid a^{p^{r+t+u}}=1, b^{p^{r}}=1, a^{b}=a^{1+p^{r+t}}\right\rangle, B=$ $\left\langle b_{1}\right\rangle \times\left\langle b_{2}\right\rangle \times \cdots \times\left\langle b_{f}\right\rangle$ such that $o\left(b_{i}\right)=p^{r_{i}},\left[a, b_{i}\right]=a^{p^{r+t_{i}}},\left[b, b_{i}\right]=1$, $\max \{t, u-2\}<t_{1}<t_{2}<\cdots<t_{f}<t+u, r+t>r_{1}+t_{1}>r_{2}+t_{2}>\cdots>$ $r_{f}+t_{f} \geq t+u \geq t+2$, and A is abelian such that $\exp (A) \leq p^{t+(r+1)-u}$.
(G) the type of G^{\prime} is $\left(p^{\alpha}, p\right)$ where $\alpha \geq 2$.
(G1) $\left\langle a_{1}, a_{2}, a_{3}\right| a_{1}^{p^{m_{1}+1+m_{2}}}=a_{2}^{p^{m_{2}+1}}=a_{3}^{p}=1, \quad\left[a_{1}, a_{2}\right]=a_{1}^{p^{m_{1}}}, \quad\left[a_{1}, a_{3}\right]=$ $\left.a_{2}^{p^{m_{2}}},\left[a_{2}, a_{3}\right]=1\right\rangle$, where $p>2$ and $m_{1}>m_{2} \geq 1$;
(G2) $K \times A$, where $K=\left\langle a_{1}, a_{2}, a_{3}\right| a_{1}^{p^{m_{1}+1+k}}=a_{2}^{p^{m_{2}+1}}=a_{3}^{p^{m_{3}}}=1,\left[a_{1}, a_{2}\right]=$ $\left.a_{1}^{p^{m_{1}}},\left[a_{1}, a_{3}\right]=a_{2}^{p^{m_{2}}},\left[a_{2}, a_{3}\right]=1\right\rangle, m_{1} \geq m_{2} \geq m_{3}, 1 \leq k \leq \min \left\{m_{1}-\right.$ $\left.m_{3}, m_{2}-m_{3}+1, m_{2}-1\right\}$ and A is abelian such that $\exp (A) \leq p^{m_{2}-k}$.

Proof If G is metacyclic, then, by Lemma 4.2, G is a group of Type (E1)-(E4) in the theorem. In the following, we may assume that G is not metacyclic. If G^{\prime} is cyclic, then, by Lemma 4.5, G is a group of Type (F1)-(F5) in the theorem. If G^{\prime} is not cyclic, then, by Lemma4.6, G is a group of Type (G1)-(G2) in theorem. Finally, it is omitted to check that such groups are non-isomorphic metahamiltonian p-groups.

Lemma 4.2. Suppose that G is a metacyclic p-group and $\left|G^{\prime}\right| \geq p^{2}$. If G is metahamiltonian, then G is a group of Type (E1)-(E4) as defined in Theorem 4.1.

Proof Case 1: $p>2$ or G is an ordinary metacyclic 2-group. That is,

$$
G=\left\langle a, b \mid a^{p^{r+s+u}}=1, b^{p^{r+s+t}}=a^{p^{r+s}}, a^{b}=a^{1+p^{r}}\right\rangle,
$$

where $r \geq 1, u \leq r$, and if $p=2$ then $r \geq 2$.
Since $\left|G^{\prime}\right| \geq p^{2}$, we have $s+u \geq 2$. We only need to prove that $r+1 \geq s+u$. Otherwise, $r+1<s+u$. By calculation,

$$
\left.\left[a^{p^{r+1}}, b\right]=a^{-p^{r+1}}\left(a^{p^{r+1}}\right)\right)^{b}=a^{p^{2 r+1}} \neq 1 .
$$

Hence $\left\langle a^{p^{r+1}}, b\right\rangle$ is neither abelian nor normal in G, a contradiction. Thus $r+1 \geq s+u$ and G is a group of Type (E1) in Theorem4.1.

Case 2: $p=2$ and G is not an ordinary metacyclic 2-group.
Let $o(a)=2^{n}$ and $H=\left\langle a^{2^{n-2}}, b\right\rangle$. Since $H^{\prime}=\left\langle a^{2^{n-1}}\right\rangle, H$ is not abelian. It follows that $H \unlhd G$. By Theorem [2.6, $a^{2} \in H$. Hence $n \leq 3$ and $\left|G^{\prime}\right|=4$. By Lemma 2.4, $G \in \mathcal{A}_{2}$. By [4, Lemma 2.4], we get groups of (E2)-(E4) in Theorem 4.1.

We need the following two lemmas on number theory. Proofs are omitted.
Lemma 4.3. Suppose that $U=U\left(p^{n}\right)$ is the multiplicative group containing of all the invertible elements of $\mathbb{Z} / p^{n} \mathbb{Z}$, where p is an odd prime and n is a positive integer. That is,

$$
U=\left\{x \in \mathbb{Z} / p^{n} \mathbb{Z} \mid(x, p)=1\right\} .
$$

Let $S(U) \in \operatorname{Syl}_{p}(U)$. Then

$$
S(U)=\{x \in U \mid x \equiv 1(\bmod p)\},
$$

and $S(U)$ is cyclic with order p^{n-1}. $S_{i}(U)$ where $0 \leq i<n$, the unique subgroup of $S(U)$ of order p^{i}, is

$$
S_{i}(U)=\left\{x \in U \mid x \equiv 1\left(\bmod p^{n-i}\right)\right\} .
$$

Lemma 4.4. Suppose that $U=U\left(2^{n}\right)$ is the multiplicative group containing of all invertible elements of $\mathbb{Z} / 2^{n} \mathbb{Z}$, where $n \geq 2$ is a positive integer. Then

$$
\begin{aligned}
U & =\langle-1\rangle \times\left\langle 1+2^{2}\right\rangle\left(\cong C_{2} \times C_{2^{n-2}}\right) \\
& =\left\{\varepsilon+i 2^{m} \mid \varepsilon= \pm 1,2 \leq m \leq n, 1 \leq i \leq 2^{n-m} \text { and } i \text { is odd }\right\}
\end{aligned}
$$

For $m<n$, the order of $\varepsilon+i 2^{m}$ is 2^{n-m} and $\left\langle\varepsilon+i 2^{m}\right\rangle=\left\langle\varepsilon+j 2^{m}\right\rangle$ for all odd j.
Lemma 4.5. Suppose that G is a metahamilton p-group and G is not metacyclic. If $\left|G^{\prime}\right| \geq p^{2}$ and G^{\prime} is cyclic, then G is a group of Type (F1)-(F5) in Theorem 4.1.

Proof By Theorem[2.7, $d(G)>2$. Let $G^{\prime}=\langle c\rangle$, the type of G / G^{\prime} be $\left(p^{m_{1}}, p^{m_{2}}, \ldots, p^{m_{w}}\right)$ where $m_{1} \geq m_{2} \geq \cdots \geq m_{w}$. Let

$$
G / G^{\prime}=\left\langle a_{1} G^{\prime}\right\rangle \times\left\langle a_{2} G^{\prime}\right\rangle \times \cdots \times\left\langle a_{w} G^{\prime}\right\rangle \text { where } o\left(a_{i} G^{\prime}\right)=p^{m_{i}}, i=1,2, \ldots, w .
$$

Then $G=\left\langle a_{1}, a_{2}, \ldots, a_{w}\right\rangle$.
Let i be the minimal integer such that $a_{i} \notin C_{G}\left(G / \mho_{1}\left(G^{\prime}\right)\right)$. Then there exists $j>i$ such that $G^{\prime}=\left\langle\left[a_{i}, a_{j}\right]\right\rangle$. If $i \neq 1$, then $a_{1} \in C_{G}\left(G / \mho_{1}\left(G^{\prime}\right)\right)$. Replacing a_{1} with $a_{1} a_{j}$, we have $G^{\prime}=\left\langle\left[a_{1}, a_{i}\right]\right\rangle$.

Let j be the minimal integer such that $G^{\prime}=\left\langle\left[a_{1}, a_{j}\right]\right\rangle$. If $j \neq 2$, then $\left[a_{1}, a_{2}\right] \in$ $\mho_{1}\left(G^{\prime}\right)$. Replacing a_{2} with $a_{2} a_{j}$, we have $G^{\prime}=\left\langle\left[a_{1}, a_{2}\right]\right\rangle$.

Let $K=\left\langle a_{1}, a_{2}\right\rangle$. By Theorem 2.7, K is metacyclic. Hence K is one of the groups in Theorem 4.2. That is, K is one of the groups (E1)-(E4) in Theorem 4.1.

Step 1: We claim that K is one of the groups of Type (E1) in Theorem 4.1,
If not, then we may assume that $K=\langle a, b\rangle$ satisfying the relations of Type (E2)(E4) in Theorem 4.1. That is,

$$
a^{2^{3}}=1, b^{2^{m}} \in \mho_{1}\left(K^{\prime}\right)=\left\langle a^{4}\right\rangle \text { and }[a, b] \equiv a^{2}\left(\bmod \mho_{1}\left(K^{\prime}\right)\right) .
$$

Obviously, $G^{\prime}=K^{\prime}=\left\langle a^{2}\right\rangle$ and $m_{3}=m_{4}=\cdots=m_{w}=1$.
Case 1: $a_{3}^{2} \in \mho_{1}\left(K^{\prime}\right)$ and $\left[a_{3}, b\right] \in \mho_{1}\left(K^{\prime}\right)$.
If $\left[a_{3}, b\right]=a^{4}$, then $\left\langle a_{3}, b\right\rangle$ is neither abelian nor normal in G, a contradiction. If $\left[a_{3}, b\right]=1$, then $\left\langle a_{3} a^{2}, b\right\rangle$ is neither abelian nor normal in G, a contradiction.

Case 2: $a_{3}^{2} \in \mho_{1}\left(K^{\prime}\right)$ and $\left[a_{3}, b\right] \equiv a^{2}\left(\bmod \mho_{1}\left(K^{\prime}\right)\right)$.
If $\left[a_{3}, a\right] \equiv a^{2}\left(\bmod \mho_{1}\left(K^{\prime}\right)\right)$, then $\left(a_{3} a\right)^{2} \in \mho_{1}\left(K^{\prime}\right)$ and $\left[a_{3} a, b\right] \in \mho_{1}\left(K^{\prime}\right)$. Replacing a_{3} with $a_{3} a$, it is reduced to Case 1 . Hence we may assume that $\left[a_{3}, a\right] \in \mho_{1}\left(K^{\prime}\right)$. Since $\left[a_{3}, a^{2}\right]=\left[a_{3}, a\right]^{2}=1,\left[a_{3}, G^{\prime}\right]=1$. By calculation, $1=\left[a_{3}^{2}, b\right]=\left[a_{3}, b\right]^{2}\left[a_{3}, b, a_{3}\right]=$ $\left[a_{3}, b\right]^{2}$. Hence $\left[a_{3}, b\right] \in \mho_{1}\left(K^{\prime}\right)$, a contradiction.

Case 3: $a_{3}^{2} \equiv a^{2}\left(\bmod \mho_{1}\left(K^{\prime}\right)\right)$.
If $\left[a_{3}, a\right] \in \mho_{1}\left(K^{\prime}\right)$, then, replacing a_{3} with $a_{3} a$, it is reduced to Case 1 or Case 2. Hence we may assume that $\left[a_{3}, a\right] \equiv a^{2}\left(\bmod \mho_{1}\left(K^{\prime}\right)\right)$. Since $a_{3}^{2} \equiv a^{2}\left(\bmod \mho_{1}\left(K^{\prime}\right)\right)$, $\left[a_{3}^{2}, b\right]=\left[a^{2}, b\right]=a^{4}$. It follows that $\left[a_{3}, b\right] \equiv a^{2}\left(\bmod \mho_{1}\left(K^{\prime}\right)\right) . \quad$ Since $\left(a_{3} a\right)^{2} \equiv$ $a^{2}\left(\bmod \mho_{1}\left(K^{\prime}\right)\right)$, similar reason as above gives that $\left[a_{3} a, b\right] \equiv a^{2}\left(\bmod \mho_{1}\left(K^{\prime}\right)\right)$. Hence $[a, b] \in \mho_{1}\left(K^{\prime}\right)$, a contradiction.

Step 2: By suitable replacement, we may assume $a_{i}^{p^{m_{i}}}=1$, where $3 \leq i \leq w$. Moreover, $\left[a_{i}, a_{j}\right]=1$ for all $3 \leq i, j \leq w$.

By Step $1, K \cong<r, s, t, u>_{p}$ where $r \geq 1, u \leq r, r+1 \geq s+u$, and if $p=2$ then $r \geq 2$. Assume that

$$
K=\left\langle a, b \mid a^{p^{r+s+u}}=1, b^{p^{r+s+t}}=a^{p^{p+s}}, a^{b}=a^{1+p^{r}}\right\rangle .
$$

Let $L=\left\langle a, a_{i}\right\rangle$ and $x_{i} \in L$ such that $L=\left\langle a, x_{i}\right\rangle$ and $\left\langle x_{i}\right\rangle \cap\langle a\rangle$ has minimal order. We claim that $x_{i}^{p^{m_{i}}}=1$. Otherwise, we may assume that

$$
\left\langle x_{i}\right\rangle \cap\langle a\rangle=\left\langle a^{p^{\alpha}}\right\rangle \text { and }\left\langle\left[x_{i}, a\right]\right\rangle=\left\langle a^{p^{\beta}}\right\rangle \text { where } \alpha \geq r \text { and } \beta \geq r .
$$

Then there exist integers y and z such that $(y z, p)=1, x_{i}^{p^{m_{i}}}=a^{y p^{\alpha}}$ and $\left[x_{i}, a\right]=a^{z p^{\beta}}$. By calculation,

$$
\begin{aligned}
\left(x_{i} a^{-y p^{\alpha-m_{i}}}\right)^{p^{m_{i}}} & \left.=x_{i}^{p^{m_{i}}}\left[x_{i}, a^{y p^{\alpha-m_{i}}}\right]{ }_{2}^{\left(p^{m_{i}}\right)}\left[x_{i}, a^{y p^{\alpha-m_{i}}}, x_{i}\right]^{\left(p^{m_{i}}\right.}{ }_{3}\right) a^{-y p^{\alpha}} \\
& \left.\left.=a^{y z p^{\alpha+\beta-m_{i}}\left(p_{2}^{m_{i}}\right.} \begin{array}{c}
2
\end{array}\right)\left[a^{y z p^{\alpha+\beta-m_{i}}\left(p^{m_{i}}\right.} \begin{array}{l}
3
\end{array}\right), x_{i}\right]
\end{aligned}
$$

Noting that $\beta \geq r \geq 2$ for $p=2$, we have $\left(x_{i} a^{-y p^{\alpha-m_{i}}}\right)^{p^{m_{i}}} \in\left\langle a^{p^{\alpha+1}}\right\rangle$, which is contrary to the choice of x_{i}. Replacing a_{i} with x_{i}, we have $a_{i}^{p^{m_{i}}}=1$ where $3 \leq i \leq w$.

For $3 \leq i, j \leq w$, we claim that $\left[a_{i}, a_{j}\right]=1$. Otherwise, Theorem [2.6 gives that $G^{\prime} \leq\left\langle a_{i}, a_{j}\right\rangle$. It is easy to see that $\left\langle a_{i}, a_{j}\right\rangle$ is not metacyclic. This contradicts Theorem 2.7.

Step 3: K is one of the following groups:
(A) $\left\langle a, b \mid a^{p^{r+s+u}}=1, b^{p^{r+s}}=1, a^{b}=a^{1+p^{r}}\right\rangle$, where $r \geq 2$ for $p=2$ and $r+1 \geq$ $s+u \geq 2 ;$
(B) $\left\langle a, b \mid a^{p^{r+t+u}}=1, b^{p^{r}}=1, a^{b}=a^{1+p^{r+t}}\right\rangle$, where $t \geq 1$ and $r \geq u \geq 2$;
(C) $\left\langle a, b \mid a^{p^{r+s}}=1, b^{p^{r+s+t}}=1, a^{b}=a^{1+p^{r}}\right\rangle$, where $r \geq 2$ for $p=2, t \geq 1$ and $r+1 \geq s \geq 2 ;$
(D) $\left\langle a, b \mid a^{p^{r+s+u}}=1, b^{p^{r+s+t}}=a^{p^{r+s}}, a^{b}=a^{1+p^{r}}\right\rangle$, where $r \geq 2$, stu $\neq 0$ and $r+1 \geq s+u \geq 2$.

Assume that $K=\left\langle a, b \mid a^{p^{r+s+u}}=1, b^{p^{r+s+t}}=a^{p^{r+s}}, a^{b}=a^{1+p^{r}}\right\rangle$. If $t=0$, then we have $\left(b a^{-1}\right)^{p^{r+s}}=1$ for $p>2$ and $\left(b a^{2^{u}-2^{r-1}-1}\right)^{2^{r+s}}=1$ for $p=2$. Replacing b with $b a^{-1}$ or $b a^{2^{u}-2^{r-1}-1}$ respectively, we get a group of Type (A). In the following we may assume that $t \geq 1$. If $s=0$, then $\left(a^{-1} b^{p^{t}}\right)^{p^{r}}=1$. Replacing a and b with b and $a^{-1} b^{p^{t}}$, respectively, we get a group of Type (B). If $u=0$, then we get a group of Type (C). If $s u \neq 0$, then we get a group of Type (D).

Step 4: Determine G in which K is a direct factor. That is, $G=K \times A$. Since $K^{\prime}=G^{\prime}, A$ is abelian.

Case 1: K is a group of Type (A) in Step 3.
Let $d \in A$ and $o(d)=p^{e}$. By calculation,

$$
\left[a^{p^{s+u-1}} d, b\right]=a^{p^{r+s+u-1}} \neq 1 .
$$

It follows that

$$
a^{p^{r}} \in\left\langle\left(a^{p^{s+u-1}} d\right)^{p^{e}}\right\rangle=\left\langle a^{p^{e+s+u-1}}\right\rangle .
$$

Hence $e+s+u-1 \leq r$. By the arbitrariness of d, we get $\exp (A) \leq p^{(r+1)-(s+u)}$. Since G is not metacyclic, $A \neq 1$. It follows that $r+1>s+u$. Hence we get a group of Type (F1) in Theorem 4.1.

Case 2: K is a group of Type (B) in Step 3.
Let $d \in A$ and $o(d)=p^{e}$. By calculation,

$$
\left[a^{p^{u-1}} d, b\right]=a^{p^{r+t+u-1}} \neq 1 .
$$

It follows that

$$
a^{p^{r+t}} \in\left\langle\left(a^{p^{u-1}} d\right)^{p^{e}}\right\rangle=\left\langle a^{p^{p+u-1}}\right\rangle .
$$

Hence $e+u-1 \leq r+t$. By the arbitrariness of d, we get $\exp (A) \leq p^{t+(r+1)-u}$. Hence G is a group of Type (F2) in Theorem 4.1.

Case 3: K is a group of Type (C) or (D) in Step 3.
Let $d \in A$ and $o(d)=p^{e}$. By calculation,

$$
\left[a^{p^{s+u-1}} d, b\right]=a^{p^{r+s+u-1}} \neq 1 .
$$

It follows that

$$
a^{p^{r}} \in\left\langle\left(a^{p^{s+u-1}} d\right)^{p^{e}}\right\rangle=\left\langle a^{p^{e+s+u-1}}\right\rangle .
$$

Hence $e+s+u-1 \leq r$. By that arbitrariness of d, we get $\exp (A) \leq p^{(r+1)-(s+u)}$. Since G is not metacyclic, $A \neq 1$. It follows that $r+1>s+u$. Hence we get a group of Type (F3) or (F4) in Theorem 4.1.

Step 5: Determine G in which K is not a direct factor.
Let $G=H \times A$, where $K<H$ and A is as large as possible for K. Since $K^{\prime}=G^{\prime}, A$ is abelian. By Step 2, we may assume that $H=K \rtimes B$ where $B=\left\langle b_{1}\right\rangle \times\left\langle b_{2}\right\rangle \times \cdots \times\left\langle b_{f}\right\rangle$ such that $o\left(b_{i}\right)=p^{r_{i}}, o\left(b G^{\prime}\right) \geq r_{1} \geq r_{2} \geq \cdots \geq r_{f}$.

We claim that K is neither a group of Type (C) nor (D) in Step 3. Otherwise, by calculation, $\left\langle a b^{-p^{t}}\right\rangle \cap\langle a\rangle=1$. Since $G^{\prime} \not \leq\left\langle a b^{-p^{t}}, b_{i}\right\rangle$, Theorem 2.6 gives that $\left[a b^{-p^{t}}, b_{i}\right]=1$. Similar reason gives that $\left[b, b_{i}\right]=1$. Hence $H=K \times B$, which is contrary to the choice of H.

If K is a group of Type (A) in Step 3, then we claim that $s=0$. Otherwise, by calculation, $\langle a b\rangle \cap\langle a\rangle \leq\left\langle a^{p^{r+1}}\right\rangle$. Since $G^{\prime} \not \leq\left\langle a b, b_{i}\right\rangle$, Theorem 2.6 gives that $\left[a b, b_{i}\right]=1$. Similar reason gives that $\left[b, b_{i}\right]=1$. Hence $H=K \times B$, which is contrary to the choice of H.

By the above argument, we may assume that

$$
K=\left\langle a, b \mid a^{p^{r+t+u}}=1, b^{p^{r}}=1, a^{b}=a^{1+p^{r+t}}\right\rangle,
$$

where $t \geq 0$ and $r \geq u \geq 2$. Since $G^{\prime} \not \leq\left\langle b, b_{i}\right\rangle$, Theorem 2.6 gives that $\left[b, b_{i}\right]=1$.
Let j be the minimal positive integer such that $\left[a, b_{i}\right]$ has maximal order. We may assume that $j=1$, replacing b_{1} with $b_{1} b_{j}$ when it is necessary. Similarly, we may assume that $\left\langle\left[a, b_{1}\right]\right\rangle \geq\left\langle\left[a, b_{2}\right]\right\rangle \geq \cdots \geq\left\langle\left[a, b_{f}\right]\right\rangle$.

Assume that $\left[a, b_{i}\right]=a^{\gamma_{i} p^{r+t_{i}}}$ where $\left(\gamma_{i}, p\right)=1$. Then $t \leq t_{1} \leq t_{2} \leq \cdots \leq t_{f}$. Note that $a^{b}=a^{1+\gamma_{i} p^{r+t_{i}}}$. By Lemma 4.3 and 4.4, there exists positive integer w such that

$$
\left(1+\gamma_{i} p^{r+t_{i}}\right)^{j} \equiv 1+p^{r+t_{i}}\left(\bmod p^{r+t+u}\right) .
$$

Replacing b_{i} with b_{i}^{w}, we have $\left[a, b_{i}\right]=a^{p^{r+t_{i}}}$.
Case 1: $t_{1}>t$.
If $t_{2}=t_{1}$, then $b_{1} b_{2}^{-1}$ is a direct factor of H, a contradiction. So $t_{1}<t_{2}$. Similarly, we have

$$
t<t_{1}<t_{2}<\cdots<t_{f} .
$$

If $\left(b_{1} b^{-p^{t_{1}-t}}\right)^{p^{r_{1}}}=1$, then $b_{1} b^{-p^{t_{1}-t}}$ is a direct factor of H, a contradiction. Hence $\left(b_{1} b^{-p^{t_{1}-t}}\right)^{p^{r_{1}}} \neq 1$. It follows that $b^{p^{r_{1}+t_{1}-t}} \neq 1$. Hence $r_{1}+t_{1}-t<r$. Thus

$$
r-r_{1}>t_{1}-t>0 .
$$

Similarly, we have

$$
r_{i}+t_{i}>r_{i+1}+t_{i+1} .
$$

By Lemma 4.3 and 4.4, in the multiplicative group consisting of all invertible elements of $\mathbb{Z} / p^{r+t+u} \mathbb{Z}$, the order of $1+p^{r+t_{f}}$ is $p^{t+u-t_{f}}$. Since $\left[a, b_{f}^{p_{f}}\right]=1$, we have

$$
a^{b_{f}^{p_{f}^{r_{f}}}}=a^{\left(1+p^{r+t_{f}}\right)^{p^{r_{f}}}}=a .
$$

It follows that $r_{f} \geq t+u-t_{f}$. Thus

$$
t_{f}+r_{f} \geq t+u
$$

By calculation,

$$
\left\langle b a^{p^{t-t_{1}+u-1}}\right\rangle \cap\langle a\rangle=\left\langle\left(b a^{p^{t-t_{1}+u-1}}\right)^{p^{r}}\right\rangle=\left\langle a^{p^{r+t-t_{1}+u-1}}\right\rangle .
$$

Let $N=\left\langle b a^{p^{t-t_{1}+u-1}}, b_{1}\right\rangle$. Since $\left[b a^{p^{t-t_{1}+u-1}}, b_{1}\right]=a^{p^{r+t+u-1}} \neq 1, N$ is not abelian. By Theorem [2.6, $G^{\prime} \leq N$. It follows that $r+t-t_{1}+u-1 \leq r+t$. Thus

$$
t_{1} \geq u-1
$$

Finally, by an argument similar to Step 4, we have $\exp (A) \leq p^{t+(r+1)-u}$. Hence we get a group of Type (F5) in Theorem 4.1, In this case, $\exp (A) \leq p^{r}$.

Case 2: $t_{1}=t$.
Suppose that h is the maximal positive integer such that $t_{h}=t$. Let $r^{\prime}=r_{h}$, $t^{\prime}=t+\left(r-r_{h}\right)$ and $\tilde{K}=\left\langle a, b_{h}\right\rangle$. Then

$$
\tilde{K}=\left\langle a, b_{h} \mid a^{p^{r^{\prime}+t^{\prime}+u}}=1, b_{h}^{p^{r^{\prime}}}=1, a^{b_{h}}=a^{1+p^{r^{\prime}+t^{\prime}}}\right\rangle .
$$

If $h<f$, then we let $f^{\prime}=f-h$. For $1 \leq i \leq f^{\prime}$, let

$$
\begin{gathered}
b_{i}^{\prime}=b_{h+i}, t_{i}^{\prime}=t_{h+i}, \tilde{B}=\left\langle b_{1}^{\prime}\right\rangle \times \ldots\left\langle b_{f^{\prime}}^{\prime}\right\rangle, \tilde{H}=\tilde{K} \rtimes \tilde{B}, \text { and } \\
\tilde{A}=A \times\left\langle b b_{h}^{-1}\right\rangle \times\left\langle b_{1} b_{h}^{-1}\right\rangle \ldots\left\langle b_{h-1} b_{h}^{-1}\right\rangle .
\end{gathered}
$$

Then $G=\tilde{H} \times \tilde{A}$, where \tilde{A} is as large as possible. Notice that $t_{1}^{\prime}>t^{\prime}$. By a similar argument to Case 1, we get a group of Type (F5) in Theorem 4.1.

If $h=f$, then we also have $G=\tilde{H} \times \tilde{A}$. The difference in this case from the case $h<f$ is $\tilde{H}=\tilde{K}$. By an argument similar to Step 4, we have $\exp (A) \leq p^{t^{\prime}+\left(r^{\prime}+1\right)-u}$. Hence we get a group of Type (F2) in Theorem 4.1.

Lemma 4.6. Suppose that G is a finite metahamilton p-group. If $\exp \left(G^{\prime}\right)>p$ and G^{\prime} is not cyclic, then G is a group of Type $(G 1)-(G 2)$ in Theorem 4.1.

Proof Let $H \leq G$ such that $d(H)=2$ and $\exp \left(H^{\prime}\right)>p$. By Theorem [2.7, H is metacyclic. By Theorem 2.6, $G^{\prime}<H$ and hence G^{\prime} is metacyclic.

Let $N=\mho_{1}\left(G^{\prime}\right)$ and $\bar{G}=G / N$. Then $\bar{G}^{\prime} \cong C_{p}^{2}$. By Theorem 2.7, $d(G)>2$ and hence $d(\bar{G})>2$. By Corollary 2.9, $c(\bar{G})=2$. Hence \bar{G} is a group in Theorem 3.2. That is, \bar{G} is a group of Type (C1)-(C10) in Theorem 3.1.

Suppose that \bar{G} is a group of Type (C1) in Theorem 3.1. That is, $\bar{G}=\bar{K} \times \bar{A}$, where

$$
\bar{K}=\left\langle\bar{a}_{1}, \bar{a}_{2}, \bar{b} \mid \bar{a}_{1}^{4}=\bar{a}_{2}^{4}=1, \bar{b}^{2}=\bar{a}_{1}^{2},\left[\bar{a}_{1}, \bar{a}_{2}\right]=1,\left[\bar{a}_{1}, \bar{b}\right]=\bar{a}_{2}^{2},\left[\bar{a}_{2}, \bar{b}\right]=\bar{a}_{1}^{2}\right\rangle
$$

and \bar{A} is abelian such that $\exp (\bar{A}) \leq 2$. Then

$$
G^{\prime}=\left\langle\left[a_{1}, b\right],\left[a_{2}, b\right], \mho_{1}\left(G^{\prime}\right)\right\rangle=\left\langle a_{1}^{2}, a_{2}^{2}\right\rangle \text { and } \mho_{1}\left(G^{\prime}\right)=\left\langle a_{1}^{4}, a_{2}^{4}\right\rangle .
$$

Let M be a maximal subgroup of $\mho_{1}\left(G^{\prime}\right)$ such that $M \unlhd G$. Then we may assume that

$$
\begin{gathered}
M=\left\langle e, \mho_{2}\left(G^{\prime}\right)\right\rangle,\left[a_{1}, a_{2}\right] \equiv e^{i}(\bmod M) \\
b^{2} \equiv a_{1}^{2} e^{j}(\bmod M) \text { and }\left[a_{1}, b\right] \equiv a_{2}^{2} e^{k}(\bmod M) .
\end{gathered}
$$

It follows from $\left[a_{1}, a_{2}\right] \equiv e^{i}(\bmod M)$ that $\left[a_{1}^{2}, a_{2}\right] \equiv\left[a_{1}, a_{2}^{2}\right] \equiv 1(\bmod M)$. It follows from $b^{2} \equiv a_{1}^{2} e^{j}(\bmod M)$ that $\left[a_{1}^{2}, b\right] \equiv\left[a_{1}, b^{2}\right] \equiv 1(\bmod M)$. On the other hand, it follows from $\left[a_{1}, b\right] \equiv a_{2}^{2} e^{k}(\bmod M)$ that $\left[a_{1}^{2}, b\right] \equiv\left[a_{1}, b\right]^{2}\left[a_{1}, b, a_{1}\right] \equiv a_{2}^{4}(\bmod M)$. It follows that $a_{2}^{4} \in M$ and hence $M=\left\langle a_{1}^{8}, a_{2}^{4}\right\rangle$.

Let $L=\left\langle a_{1} M, b M\right\rangle$. Since $\exp \left(L^{\prime}\right)=2$, Theorem 2.8 gives that $c(L)=2$. It follows that $\left[a_{2}^{2}, b\right] \equiv 1(\bmod M)$. On the other hand, $\left[a_{2}^{2}, b\right] \equiv\left[a_{2}, b\right]^{2}\left[a_{2}, b, a_{2}\right] \equiv a_{1}^{4}(\bmod M)$. It follows that $a_{1}^{4} \in M$. Hence $M=\mho_{1}(G)$, a contradiction.

Similar reasoning gives that \bar{G} is not a group of Type (C2) in Theorem 3.1.
Suppose that \bar{G} is a group of Type (C4) in Theorem 3.1. That is, $\bar{G}=\bar{K} \times \bar{A}$, where

$$
\begin{gathered}
\bar{K}=\left\langle\bar{a}_{1}, \bar{a}_{2}, \bar{a}_{3}\right| \bar{a}_{1}^{p_{1}^{m_{1}+1}}=\bar{a}_{2}^{p^{m_{2}+1}}=\bar{a}_{3}^{p^{m_{3}}}=1,\left[\bar{a}_{1}, \bar{a}_{2}\right]=1,\left[\bar{a}_{1}, \bar{a}_{3}\right]=\bar{a}_{2}^{p^{m_{2}}}, \\
\left.\left[\bar{a}_{2}, \bar{a}_{3}\right]=\bar{a}_{1}^{\nu p^{m_{1}}}\right\rangle, p>2, \nu \text { is a fixed square non-residue modulo } p, \\
m_{1}-1=m_{2} \geq m_{3} \text { or } m_{1}=m_{2} \geq m_{3}, \text { and } \bar{A} \text { is abelian such that } \exp (\bar{A}) \leq p^{m_{2}} .
\end{gathered}
$$

Then $G^{\prime}=\left\langle\left[a_{1}, a_{3}\right],\left[a_{2}, a_{3}\right], \mho_{1}\left(G^{\prime}\right)\right\rangle=\left\langle\left[a_{1}, a_{3}\right],\left[a_{2}, a_{3}\right]\right\rangle=\left\langle a_{1}^{p^{m_{1}}}, a_{2}^{p^{m_{2}}}\right\rangle$. Since $\left\langle\bar{a}_{1}, \bar{a}_{3}\right\rangle$ and $\left\langle\bar{a}_{2}, \bar{a}_{3}\right\rangle$ are not metacyclic, $\left\langle a_{1}, a_{2}\right\rangle$ and $\left\langle a_{1}, a_{3}\right\rangle$ are not metacyclic. By Theorem 2.7. $\left[a_{1}, a_{2}\right]^{p}=1$ and $\left[a_{1}, a_{3}\right]^{p}=1$. Moreover, $\exp \left(G^{\prime}\right)=p$, a contradiction.

Similar reasoning gives that \bar{G} is not a group of Type (C5)-(C10) in Theorem 3.1.
By the above argument, \bar{G} is a group of Type (C3) in Theorem 3.1. That is, $\bar{G}=\bar{K} \times \bar{A}$, where

$$
\begin{gathered}
\bar{K}=\left\langle\bar{a}_{1}, \bar{a}_{2}, \bar{a}_{3}\right| \bar{a}_{1}^{p^{m_{1}+1}}=\bar{a}_{2}^{p^{m_{2}+1}}=\bar{a}_{3}^{p^{m_{3}}}=1,\left[\bar{a}_{1}, \bar{a}_{2}\right]=\bar{a}_{1}^{p^{m_{1}}},\left[\bar{a}_{1}, \bar{a}_{3}\right]=\bar{a}_{2}^{p^{m_{2}}}, \\
\left.\left[\bar{a}_{2}, \bar{a}_{3}\right]=1\right\rangle, m_{1}>1 \text { for } p=2,
\end{gathered}
$$

$$
m_{1} \geq m_{2} \geq m_{3} \text { and } \bar{A} \text { is abelian such that } \exp (\bar{A}) \leq p^{m_{2}}
$$

Then $G^{\prime}=\left\langle a_{1}^{p^{m_{1}}}, a_{2}^{p^{m_{2}}}\right\rangle$.
Since $G^{\prime} \not \leq\left\langle a_{2}, a_{3}\right\rangle,\left[a_{2}, a_{3}\right]=1$. Since $\left\langle\bar{a}_{1}, \bar{a}_{3}\right\rangle$ is not metacyclic, $\left\langle a_{1}, a_{3}\right\rangle$ is not metacyclic. By Theorem [2.7, $\left[a_{1}, a_{3}\right]^{p}=1$. Let $\left[a_{1}, a_{3}\right]=a_{2}^{p^{m_{2}}} d$ where $d \in \mho_{1}\left(G^{\prime}\right)$. Then $a_{2}^{p^{m_{2}+1}} d^{p}=1$. It follows that $a_{2}^{p^{m_{2}+1}} \in \mho_{2}\left(G^{\prime}\right)$. Hence

$$
o\left(a_{1}\right)>p^{m_{1}+1}, N=\mho_{1}\left(G^{\prime}\right)=\left\langle a_{1}^{p^{m_{1}+1}}, a_{2}^{p^{m_{2}+1}}\right\rangle=\left\langle a_{1}^{p^{m_{1}+1}}\right\rangle \text { and } a_{2}^{p^{m_{2}+1}} \in\left\langle a_{1}^{p^{m_{1}+2}}\right\rangle
$$

Since $G^{\prime} \not \leq\left\langle a_{2}, a_{3} a_{1}^{p^{m_{1}}}\right\rangle,\left[a_{2}, a_{3} a_{1}^{p^{m_{1}}}\right]=1$ and hence $\left[a_{1}^{p^{m_{1}}}, a_{2}\right]=a_{1}^{p^{2 m_{1}}}=1$. Assume that the order of a_{1} is $p^{m_{1}+1+k}$ where $k \geq 1$. Then $m_{1}>k$.

Let $\bar{A}=\left\langle\bar{a}_{4}\right\rangle \times\left\langle\bar{a}_{5}\right\rangle \times \cdots \times\left\langle\bar{a}_{f}\right\rangle$ and the type of \bar{A} be $\left(p^{m_{4}}, p^{m_{5}}, \ldots, p^{m_{f}}\right)$. For $4 \leq i \leq f$ and $1 \leq j \leq f$, since $G^{\prime} \not \leq\left\langle a_{i}, a_{j}\right\rangle,\left[a_{i}, a_{j}\right]=1$ and hence $a_{i} \in Z(G)$. Assume that $a_{i}^{p^{m_{i}}}=a_{1}^{s p^{m_{1}+1}}$. Then $\left(a_{i} a_{1}^{-s p^{m_{1}+1-m_{i}}}\right)^{p^{m_{i}}}=1$. Let $b_{i}=a_{i} a_{1}^{-s p^{m_{1}+1-m_{i}}}$, $A=\left\langle b_{4}\right\rangle \times\left\langle b_{5}\right\rangle \times \cdots \times\left\langle b_{f}\right\rangle$ and $K=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$. Then $G=K \times A$.

Assume that $\left[a_{1}, a_{2}\right]=a_{1}^{p^{m_{1}}} a_{1}^{u p^{m_{1}+1}}$. Then $a_{1}^{a_{2}}=a_{1}^{1+(1+u p) p^{m_{1}}}$. By Lemma 4.3 and Lemma 4.4, there exists a positive integer w such that $\left(1+(1+u p) p^{m_{1}}\right)^{j}=1+p^{m_{1}}$. Replacing a_{2} and a_{3} with a_{2}^{w} and a_{3}^{w} respectively, we have $\left[a_{1}, a_{2}\right]=a^{p^{m_{1}}}$.

By Lemma 4.3 and Lemma 4.4, in the multiplicative group consisting of all invertible elements of $\mathbb{Z} / p^{m_{1}+1+k} \mathbb{Z}$, the order of $1+p^{m_{1}}$ is p^{k+1}. Since $a_{1}^{\left(1+p^{m_{1}}\right)^{p^{m_{2}+1}}}=a_{1}^{a_{2}^{p^{m_{2}+1}}}=$ a_{1}, we have $k+1 \leq m_{2}+1$. Hence $k \leq m_{2}$.

Case 1: $k=m_{2}$.
In this case, $m_{1}>m_{2}$ and $\left[a_{1}, a_{2}^{p^{m_{2}}}\right] \neq 1$. It follows that $c\left(\left\langle a_{1}, a_{3}\right\rangle\right)>2$, Corollary 2.9 gives that $p>2$ and $\left\langle a_{1}, a_{3}\right\rangle \in \mathcal{A}_{2}$. If $m_{3}>1$, then $\left\langle a_{1}, a_{2}^{p^{m} 2} a_{3}^{p}\right\rangle$ is neither abelian nor normal in G, a contradiction. Hence we have $m_{3}=1$. If $A \neq 1$, then, letting $1 \neq e \in A,\left\langle a_{1}, a_{2}^{p^{m_{2}}} e\right\rangle$ is neither abelian nor normal in G, a contradiction. Hence we have $A=1$. Assume that $a_{3}^{p}=a_{1}^{v p^{m_{1}+1}}$. Replacing a_{3} with $a_{3} a_{1}^{-v p^{m_{1}}}$, we have $a_{3}^{p}=1$.

Assume that $\left[a_{1}, a_{3}\right]=a_{2}^{p^{m_{2}}} a_{1}^{w p^{m_{1}+1}}$. Then $a_{2}^{p^{m_{2}+1}} a_{1}^{w p^{m_{1}+2}}=1$. Since

$$
\left(a_{2} a_{1}^{w p^{m_{1}-m_{2}+1}}\right)^{p^{m_{2}+1}}=1
$$

we may assume that

$$
\left(a_{2} a_{1}^{w p^{m_{1}-m_{2}+1}}\right)^{p^{m_{2}}}=a_{2}^{p^{m_{2}}} a_{1}^{w p^{m_{1}+1}} a_{1}^{x p^{m_{1}+m_{2}}} .
$$

Replacing a_{2} with $a_{2} a_{1}^{w p^{m_{1}-m_{2}+1}} a_{1}^{-x p^{m_{1}}}$, we have $a_{2}^{p^{m_{2}+1}}=1$ and $\left[a_{1}, a_{3}\right]=a_{2}^{p^{m_{2}}}$. Hence G is a group of Type (G1) in Theorem 4.1.

Case 2: $k<m_{2}$.
In this case $\left[a_{1}, a_{2}^{p^{m 2}}\right]=1$. Since $\left[a_{1}, a_{3}, a_{1}\right]=1,\left[a_{1}^{p}, a_{3}\right]=\left[a_{1}, a_{3}\right]^{p}=1$. Since $G^{\prime} \not \leq\left\langle a_{2}, a_{3} a_{1}^{p^{m_{1}-m_{3}+1}}\right\rangle,\left[a_{2}, a_{3} a_{1}^{p^{m_{1}-m_{3}+1}}\right]=1$. It follows that

$$
1=\left[a_{1}^{p^{m_{1}-m_{3}+1}}, a_{2}\right]=a_{1}^{p^{2 m_{1}-m_{3}+1}}
$$

Hence $2 m_{1}-m_{3}+1 \geq m_{1}+1+k$. That is, $m_{1}-m_{3} \geq k$. Since $G^{\prime} \not \leq\left\langle a_{1}, a_{2}^{p_{2}-m_{3}+2} a_{3}^{p}\right\rangle$, $\left[a_{1}, a_{2}^{p^{m_{2}-m_{3}+2}} a_{3}^{p}\right]=1$. It follows that

$$
a_{1}^{a_{2}^{p^{m_{2}-m_{3}+2}}}=a_{1}^{\left(1+p^{m_{1}}\right)^{p^{m_{2}-m_{3}+2}}}=a_{1} .
$$

By Lemma 4.3 and Lemma 4.4, in the multiplicative group consisting of all invertible elements of $\mathbb{Z} / p^{m_{1}+1+k} \mathbb{Z}$, the order of $1+p^{m_{1}}$ is p^{k+1}. Hence we have $m_{2}-m_{3}+2 \geq k+1$. That is, $k \leq m_{2}-m_{3}+1$.

Let $b \in A$ and the order of b be p^{e}. Since $G^{\prime} \not \leq\left\langle a_{1}, a_{2}^{p^{m_{2}-e+1}} b\right\rangle,\left[a_{1}, a_{2}^{p^{m_{2}-e+1}} b\right]=1$. It follows that $a_{1}^{p_{2}^{p_{2}-e+1}}=a_{1}^{\left(1+p^{m_{1}}\right)^{p^{m_{2}-e+1}}}=a_{1}$. By Lemma 4.3 and Lemma 4.4, in the multiplicative group consisting of all invertible elements of $\mathbb{Z} / p^{m_{1}+1+k} \mathbb{Z}$, the order of $1+p^{m_{1}}$ is p^{k+1}. Hence we have $m_{2}-e+1 \geq k+1$. That is, $e \leq m_{2}-k$. By the arbitrariness of $b, \exp (A) \leq p^{m_{2}-k}$.

Assume that $a_{3}^{p}=a_{1}^{v p^{m_{1}+1}}$. Replacing a_{3} with $a_{3} a_{1}^{-v p^{m_{1}}}$, we have $a_{3}^{p}=1$.
Assume that $\left[a_{1}, a_{3}\right]=a_{2}^{p^{m_{2}}} a_{1}^{w p^{m_{1}+1}}$. Then $a_{2}^{p^{m_{2}+1}} a_{1}^{w p^{m_{1}+2}}=1$. Replacing a_{2} with $a_{2} a_{1}^{w p^{m_{1}-m_{2}+1}}$, we have $a_{2}^{p^{m_{2}+1}}=1$ and $\left[a_{1}, a_{3}\right]=a_{2}^{p^{m_{2}}}$. Hence G is a group of Type (G2) in Theorem 4.1.

Summarizing, we have the following
Main Theorem. Suppose that G is a finite metahamiltonian p-group. If $\exp \left(G^{\prime}\right)=$ p, then G is one of the groups listed in Theorem 3.1. If $\exp \left(G^{\prime}\right)>p$, then G is one of the groups listed in Theorem 4.1.

References

[1] An L J, Hu R F, Zhang Q H. Finite p-groups with a minimal non-abelian subgroup of index p (IV), J Algebra Appl, 2015, 14(2): 1550020, 54pp
[2] An L J, Li L L, Qu H P et al. Finite p-groups with a minimal non-abelian subgroup of index p (II), Sci China Math, 2014, 57: 737-753
[3] An L J, Peng J. Finite p-groups in which any two noncommutative elements generate an inner abelian group of order p^{4}. Algebra Colloq, 2013, 20:215-226
[4] An L J, Zhang Q H. Finite metahamilton p-groups, J Algebra, 2015, 442:23-35
[5] Berkovich Y. Finite p-groups with few minimal nonabelian subgroups, J Algebra, 2006, 297: 62-100
[6] Berkovich Y, Janko Z. Structure of finite p-groups with given subgroups, Contemp Math 402, Amer Math Soc, Providence, RI, 2006: 13-93
[7] Berkovich Y, Janko Z. Groups of Prime Power Order, Vol.2. Berlin: Walter de Gruyter, 2008
[8] Blackburn N. On prime power groups with two generators, Proc Cambrige Phil Soc, 1957, 54: 327-337
[9] Dedekind R. Über Gruppen, deren samtliche Teiler Normalteiler sind. Math Ann, 1897, 48: 548-561
[10] Draganyuk S V. On the structure of finite primary groups all 2-maximal subgroups of which are abelian (Russian), in Complex analysis, Algebra and topology, Akad Nauk Ukrain SSR, Inst Mat, Kiev, 1990: 42-51
[11] Kazarin L S. On certain classes of finite groups. Dokl Akad Nauk SSSR (Russian), 1971, 197: 773-776
[12] King B W. Presentations of metacyclic groups. Bull Austral Math Soc, 1973, 8: 103-131
[13] Nagrebeckii V T. Finite non-nilpotent groups, any non-abelian subgroup of which is normal. Ural Gos Univ Mat Zap, 1967, 6: 80-88
[14] Newman M F, Xu M Y. Metacyclic groups of prime-power order (Research announcement). Adv in Math (Beijing), 1988, 17: 106-107
[15] Passman D S. Nonnormal subgroups of p-groups. J Algebra, 1970, 15: 352-370
[16] Qu H P, Yang S S, Xu M Y et al. Finite p-groups with a minimal non-abelian subgroup of index p (I), J Algebra, 2012, 358: 178-188.
[17] Qu H P, Xu M Y, An L J. Finite p-groups with a minimal non-abelian subgroup of index p (III), Sci China Math, 2015, 58: 763-780
[18] Qu H P, Zhao L P, Gao J et al. Finite p-groups with a minimal non-abelian subgroup of index $p(\mathrm{~V})$, J Algebra Appl, 2014, 13(7): 1450032(35 pages)
[19] Rédei L. Das "schiefe Produkt" in der Gruppentheorie mit Anwendung auf die endlichen nichtkommutativen Gruppen mit lauter kommutativen echten Untergruppen und die Ordnungszahlen, zu denen nur kommutative Gruppen gehören(German). Comm Math Helvet, 1947, 20: 225-264
[20] Sheriev V A. A description of the class of finite p-groups whose 2-maximal subgroups are all abelian II, in Primary groups. Proc Sem Algebraic Systems, 1970, 2: 54-76
[21] Xu M Y, An L J, Zhang Q H. Finite p-groups all of whose non-abelian proper subgroups are generated by two elements, J Algebra, 2008, 319: 3603-3620
[22] Xu M Y, Zhang Q H. A classification of metacyclic 2-groups, Algebra Colloq, 2006, 13: 25-34
[23] Zhang Q H, Guo X Q, Qu H P et al. Finite groups which have many normal subgroups, J Korean Math Soc, 2009, 46: 1165-1178
[24] Zhang Q H, Li X X, Su M J. Finite p-groups whose nonnormal subgroups have orders at most p^{3}, Front Math China, 2014, 9(5): 1169-1194
[25] Zhang Q H, Su M J. Finite 2-groups whose nonnormal subgroups have orders at most 2^{3}, Front Math China, 2012, 7(5): 971-1003
[26] Zhang Q H, Sun X J, An L J, et al. Finite p-groups all of whose subgroups of index p^{2} are abelian, Algebra Colloq, 2008, 15: 167-180
[27] Zhang Q H, Zhao L B, Li M M et al. Finite p-groups all of whose subgroups of index p^{3} are abelian, Commun Math Stat, 2015, 3(1): 69-162

[^0]: *This work was supported by NSFC (No. 11471198 \& 10171006).
 ${ }^{\dagger}$ Corresponding author. e-mail: anlj@sxnu.edu.cn

