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THE CLASSIFICATION OF SINGLY PERIODIC MINIMAL
SURFACES WITH GENUS ZERO AND SCHERK-TYPE ENDS

JOAQUÍN PÉREZ AND MARTIN TRAIZET

Abstract. Given an integer k ≥ 2, let S(k) be the space of complete embed-
ded singly periodic minimal surfaces in R3, which in the quotient have genus
zero and 2k Scherk-type ends. Surfaces in S(k) can be proven to be proper, a
condition under which the asymptotic geometry of the surfaces is well known.
It is also known that S(2) consists of the 1-parameter family of singly periodic
Scherk minimal surfaces. We prove that for each k ≥ 3, there exists a natu-
ral one-to-one correspondence between S(k) and the space of convex unitary
nonspecial polygons through the map which assigns to each M ∈ S(k) the
polygon whose edges are the flux vectors at the ends of M (a special polygon
is a parallelogram with two sides of length 1 and two sides of length k − 1).
As consequence, S(k) reduces to the saddle towers constructed by Karcher.

1. Introduction

In 1834, Scherk [18] discovered a 1-parameter family of singly periodic, complete,
properly embedded minimal surfaces in Euclidean space R3. Each of these surfaces
may be seen as the desingularisation of two vertical planes: the angle θ ∈ (0, π/2]
between the planes is the parameter of the family. These surfaces are now called
Scherk singly periodic minimal surfaces. In the quotient R

3/T by the shortest
orientation-preserving translation T , these surfaces have genus zero and four ends
asymptotic to flat vertical annuli (namely the quotients of vertical half-planes by
T ). Such ends are called Scherk-type ends.

In 1988, Karcher [5] constructed for each integer k ≥ 3 a (2k − 3)-parameter
family of properly embedded singly periodic minimal surfaces which have 2k Scherk-
type ends and genus zero in the quotient by the period. These surfaces are now
called Karcher saddle towers.

The main result of this paper is

Theorem 1.1. Let M be a complete embedded singly periodic minimal surface in
R3 with a finite number of Scherk-type ends and genus zero in the quotient by the
period. Then M is a singly periodic Scherk surface or a Karcher saddle tower.

An interesting problem is to classify all complete embedded minimal surfaces
in complete flat 3-manifolds, which have genus zero and finite topology (namely, a
finite number of ends). An important property of these surfaces is that they are
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966 JOAQUÍN PÉREZ AND MARTIN TRAIZET

always proper, as follows from Proposition 1.3 below. The above theorem allows
us to complete the classification in the case of the flat manifold R2 × S1 = R3/T .
Indeed, by a theorem of Meeks and Rosenberg [11], in this case all ends must
be simultaneously asymptotic to horizontal planes, helicoids or vertical halfplanes
(Scherk-type ends). The first case when M has genus zero leads to a plane by the
maximum principle for minimal surfaces. In the second case, the only example is
the helicoid by a theorem of Pérez and Ros [14]. Therefore we obtain the following
result.

Corollary 1.2. Let M be a nonflat complete embedded minimal surface in R2×S1.
Assume M has genus zero and finite topology. Then M is a helicoid, a singly
periodic Scherk minimal surface, or a Karcher saddle tower.

The classification of the complete embedded nonflat minimal planar domains
with finitely many ends is also complete in the following ambient spaces: In R

3,
M must be a catenoid (Collin [1], López and Ros [7]) or a helicoid (Meeks and
Rosenberg [12]). In T2 × R, M must be a doubly periodic Scherk surface (Lazard-
Holly and Meeks [6]). In T

3 there are no examples, since M must have genus at
least 3 (Meeks [8]). The only case that remains open is the flat manifold R3/Sθ

where Sθ is a screw motion.
We mentioned above that the classification of complete embedded minimal sur-

faces of genus zero in complete flat 3-manifolds can be reduced to the proper ones.
This reduction is an immediate consequence of arguments in the proof of the recent
minimal lamination closure theorem by Meeks and Rosenberg [10].

Proposition 1.3. Let M ⊂ N3 be a complete embedded minimal surface with finite
topology in a complete flat 3-manifold. Then, M is proper.

For the sake of completeness, we briefly sketch a proof of Proposition 1.3. We
claim that M has positive injectivity radius. Otherwise, there exists a divergent
sequence γn of closed geodesics of M , each one smooth except at one point, with
lengths tending to zero. By the Gauss-Bonnet formula, γn cannot bound a disk
on M . Since M has finite topology and {γn}n diverges, we can assume (after
passing to a subsequence) that the γn all lie in an annular end E of M . Applying
again the Gauss-Bonnet formula to the compact annulus bounded by γ1 and γn

and then taking limits, one easily concludes that E has finite total curvature. Since
E is complete and embedded, it must be asymptotic to a plane, a half-catenoid, a
flat annulus or to the end of a helicoid. But all these ends have positive or infinite
injectivity radius, which is a contradiction. Hence, M has positive injectivity radius,
and the same holds for the periodic minimal surface M̃ ⊂ R3 produced by lifting
M . By the minimal lamination closure theorem, M̃ is proper in R

3. Since it is also
periodic, the induced surface M is proper as well, which finishes the proof.

The proof of Theorem 1.1 is a modified application of the machinery developed
by Meeks, Pérez and Ros in their characterization of Riemann minimal examples
[9]. It is known [11] that M must have an even number 2k ≥ 4 of ends (this is a
simple consequence of embeddedness). For k ≥ 2, let S(k) be the space of properly
embedded singly periodic minimal surfaces with genus zero and 2k Scherk-type
ends. In the case k = 2, it is elementary to see that S(2) reduces to the family
of Scherk singly periodic surfaces. When k ≥ 3, the goal is to prove that S(k)
reduces to the space K(k) of Karcher saddle towers with 2k ends. The argument
is based on modeling S(k) as an analytical subset in a complex manifold W(k) of
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SINGLY PERIODIC MINIMAL SURFACES 967

finite dimension (roughly, W(k) consists of all admissible Weierstrass data for our
problem). Then the procedure has three steps:

• Properness: Uniform curvature estimates are proven for a sequence of sur-
faces in S(k), provided one has some control on the flux at the ends.

• Openness: Any surface in S(k)\K(k) may be deformed into another surface
in S(k) \ K(k) by locally perturbing the flux at the ends. Together with
the properness property, this implies that if S(k) \ K(k) is nonempty, then
any configuration of flux may be achieved by surfaces in S(k) \ K(k).

• Local uniqueness: We prove that some particular configuration of fluxes
may only be achieved by surfaces in K(k). This proves that S(k) \ K(k) is
empty.

The paper is organized as follows. In Section 2 we recall the necessary back-
ground for our problem. Furthermore, we provide an elementary proof of the case
k = 2, we remind the construction of the Karcher saddle towers and we define the
flux map, which is the main tool to prove our main theorem. In Section 3 we study
the space of admissible Weierstrass data. In Section 4 we prove our main theorem
assuming the properness, openness and local uniqueness statements. Properness is
studied in Section 5 and openness in Section 6. In Sections 7 and 8 we prove local
uniqueness in a neighborhood of some limit cases.

2. Preliminaries

Let M̃ ⊂ R
3 be a complete embedded minimal surface invariant by the trans-

lation of vector T = (0, 0, 2π). M̃ induces a complete embedded minimal surface
M = M̃/T ⊂ R3/T = R2 × S1. From now on, assume that M has finite topology
(hence, it is proper by Proposition 1.3). Meeks and Rosenberg [11] proved that
M has finite total curvature, and so M is conformally a finitely punctured closed
Riemann surface. Furthermore, M has an even number of ends, all of them simul-
taneously asymptotic to nonvertical planes, vertical helicoids or flat vertical annuli.
These asymptotic behaviors are called respectively planar, helicoidal or Scherk-type
ends. In the sequel we will assume that M has genus zero and Scherk-type ends.

For a fixed integer k ≥ 2, we will denote by S(k) the space of properly em-
bedded singly periodic minimal surfaces which are invariant by the translation
T = (0, 0, 2π), with genus zero in the quotient and 2k Scherk-type ends, modulo
translations and rotations around the x3-axis. S(k) can be naturally endowed with
the uniform topology on compact sets of R3/T . Any surface M ∈ S(k) is confor-
mally equivalent to the Riemann sphere C = C ∪ {∞} minus 2k points p1, . . . , p2k

that correspond to the ends of M . The Gauss map (stereographically projected) g

of the singly periodic lifting M̃ ⊂ R3 of M descends to the quotient surface, giv-
ing rise to a meromorphic map on M that extends holomorphically through each
puncture (with |g(pj)| = 1 because the ends are asymptotic to flat vertical an-
nuli). The degree of such an extension g : C → C is given by the Meeks-Rosenberg
formula [11], which in this setting writes

(2.1) deg(g) = k − 1.

The height differential φ = ∂x3
∂z dz, where x3 is the third coordinate function on M̃

and z is a local conformal coordinate, also descends to a meromorphic differential
on M which extends through each pj having a simple pole with residue ±i (this
comes from the normalization of the period vector to be ±T ). Hence the flux vector
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968 JOAQUÍN PÉREZ AND MARTIN TRAIZET

Fj at the end pj , defined as the integral of the inner unit conormal vector to M
along the boundary of an end representative of pj , is given by

(2.2) Fj = 2πuj ,

where uj is a unitary horizontal vector in R3 (in fact, uj is orthogonal to the limit
normal vector at pj). The divergence theorem implies that

(2.3)
2k∑

j=1

uj = 0.

For the remainder of the paper, we will use the identification R3 ≡ C×R given by
(a, b, c) ≡ (a + ib, c). Hence, we can write uj = eiθj ∈ S1 = {|z| = 1} ⊂ C with
θi ∈ R.

The goal of this paper is to classify all elements in S(k) for each k ≥ 3. Although
the case k = 2 is well known, we include an elementary proof of the description of
S(2) for the sake of completeness.

Lemma 2.1. S(2) consists of the 1-parameter family of singly periodic Scherk
surfaces.

Proof. Fix M ∈ S(2), with ends p1, p2, p3, p4 cyclically ordered. Using (2.2) and
(2.3), it is easy to check that F1 = −F3 and F2 = −F4. This implies that, up to a
rotation around the x3-axis, the values at the ends of the stereographically projected
extended Gauss map g of M are g(p1) = eiθ, g(p2) = e−iθ, g(p3) = −g(p1) and
g(p4) = −g(p2) for certain θ ∈ (0, π/2). Since (2.1) says that deg(g) = 1, we
can parametrize M by its Gauss map, i.e. M = C \ {±e±iθ} with g(z) = z. As
the height differential φ of M has simple poles at ±e±iθ and simple zeros at 0,∞
(because 0,∞ are finite points of M), we have

φ = c
z dz∏

(z ± e±iθ)
,

where c ∈ C∗ = C − {0}. Finally, as Res pj
φ = ±i for each j we deduce that

c = 4 sin(2θ), hence the Weierstrass data (g, φ) represent a singly periodic Scherk
minimal surface. �

For the remainder of the paper we will only deal with 2k-ended surfaces, k ≥ 3.
Given M ∈ S(k) with ends p1, . . . , p2k, there is a natural cyclic ordering on the set
of ends so that the arguments θj of the flux vectors Fj = 2πeiθj satisfy

(2.4) θ1 ≤ θ2 ≤ · · · ≤ θ2k ≤ θ1 + 2π,

but there is no natural choice for the first end p1. The surface M together with the
choice of the first end p1 is what we will call a marked surface (unless it leads to
confusion, we will keep the notation M for a marked surface). Let S̃(k) be the set
of such marked minimal surfaces, which naturally inherits the uniform topology on
compact sets. Since our surfaces are defined up to rotations about the x3-axis, we
can assume that F1 = 1 for each M ∈ S̃(k).

Let U(k) be the set of marked convex 2k-gons in C with edges of unit length. By
marked we mean that for each polygon we choose a vertex. To avoid translations
and rotations, we normalize so that the points z = 0 and z = 1 are consecutive
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vertices of each element in U(k) and the chosen vertex is 0. We will identify U(k)
with the space{

u = (u1, . . . , u2k) = (1, eiθ2 , · · · , eiθ2k) ∈ (S1)2k | (2.3) and (2.4) hold
}

,

so that a list u corresponds to the marked polygon Pu of consecutive vertices Z1 = 0,
Zj = Zj−1+eiθj for j = 1, . . . , 2k. U(k) can be seen as a subset of the space V(k) of
unitary 2k-gons, not necessarily convex or embedded. V(k) has a natural structure
of real analytic manifold of dimension 2k−3 (with the angles at consecutive vertices
as local parameters). Since polygons in U(k) are convex but not necessarily strictly
convex, U(k) is a closed subset of V(k). Clearly U(k) is connected, and its boundary
consists of those convex 2k-gons with at least one edge of length 2 (viewed as two
consecutive edges).

Definition 2.2. An element u ∈ U(k) is said to be a special polygon if there exist
v, w ∈ S1 so that two edges of Pu are equal to ±v and all other edges are equal to
±w. In other words, Pu is a (possibly degenerated) parallelogram with two edges of
length 1 and two edges of length k−1, these last ones considered as k−1 consecutive
unitary edges of Pu. We will denote by U0(k) the subset of special polygons. The
limit case v = ±w represents a parallelogram that degenerates in the segment with
end points 0, k. We will call u0(k) this degenerate parallelogram.

Definition 2.3. With the notation above, we define the flux map F : S̃(k) → U(k)
as M ∈ S̃(k) 	→ F (M) = u, where u = (u1, . . . , u2k) is defined by (2.2). Since the
uj are the flux vectors at the ends of M (up to 1

2π ), F is clearly continuous. A
marked surface M ∈ S̃(k) is called special if its flux polygon F (M) is special. We
will denote by S̃0(k) = F−1(U0(k)) the space of special marked surfaces.

Remark 2.4. A simple consequence of the maximum principle for minimal surfaces
insures that F−1(u0(k)) = Ø.

2.1. Karcher saddle towers. We now recall how to construct a surface M ∈ S̃(k)
from a given nonspecial 2k-gon (for details, see Karcher [5]). Given u ∈ U(k)\U0(k),
a theorem by Jenkins-Serrin [4] insures that there exists a minimal graph Gu with
boundary values alternately +∞ and −∞ on the sides of the polygon Pu (which
we see inside the plane {z = 0} ⊂ R3). Since Gu is bounded by vertical lines over
the vertices of Pu, the conjugate surface G∗

u of Gu is bounded by horizontal arcs
which lie alternately in two horizontal planes. G∗

u can be extended by reflection in
such horizontal arcs to a surface Mu ∈ S(k) called a Karcher saddle tower, whose
flux polygon is u. Since U(k) has 2k − 3 freedom parameters, we deduce that the
Karcher saddle towers come in a (2k − 3)-parameter family K(k) of examples.

Since each surface Mu ∈ K(k) has genus zero and admits a reflective symmetry
RΠ across a horizontal plane Π such that the set of fixed points of RΠ coincides
with Mu∩Π, Theorem 1 in Cośın and Ros [2] insures that the only bounded Jacobi
functions on Mu are linear functions of its Gauss map. This condition and an
implicit function theorem argument (see for instance Pérez and Ros [15]) imply
that K(k) is open in S(k). By construction, K(k) is also closed in S(k). The
continuous dependence on the 2k-gon u of the Jenkins-Serrin graph Gu gives that
the map u ∈ U(k) \ U0(k) 	→ Mu ∈ S̃(k) is continuous. Since U(k) \ U0(k) is
connected, we deduce that K(k) forms a component of S(k). Similarly as with
other spaces of surfaces, K̃(k) will stand for the space of marked Karcher saddle
towers, which is open and closed in S̃(k).
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Remark 2.5. The hypothesis of the Jenkins-Serrin theorem is as follows: for each
strict sub-polygon Q of Pu (which means that the vertices of Q form a strict subset
of those of Pu), the perimeter of Q must be strictly larger than twice the number
of edges of Q∩Pu marked with +∞ (resp. −∞). While this hypothesis is satisfied
by any polygon in U(k) \ U0(k), it fails to be true for special polygons: simply
consider any sub-rhombus of a special polygon u ∈ U0(k) (we thank Barbara Nelli
for pointing out this fact to us).

Another consequence of the continuity of the map u ∈ U(k)\U0(k) 	→ Mu ∈ S̃(k)
is that we can equivalently state Lemma 2.1 by saying that F : S̃(2) → U(2) \
{u0(2)} is a homeomorphism. Our main theorem is now stated as follows.

Theorem 2.6. Assume k ≥ 3. Then S(k) = K(k) and the map F : S̃(k) →
U(k) \ U0(k) is a homeomorphism, whose inverse map is u 	→ Mu (in particular,
S̃0(k) = Ø).

Since each Karcher saddle tower Mu is obtained by symmetrization of the con-
jugate graph G∗

u across the horizontal planes containing ∂G∗
u, we directly obtain

the following corollary.

Corollary 2.7. Any properly embedded singly periodic minimal surface with genus
zero and a finite number of Scherk-type ends has a horizontal plane of symmetry.

3. The space of Weierstrass representations

Let M ∈ S̃(k) be an embedded marked surface with ends p1, . . . , p2k, flux polygon
F (M) = u = (u1, . . . , u2k), complex Gauss map g and height differential φ. The
limit normal values are g(pj) = ±iuj , 1 ≤ j ≤ 2k. Since M is embedded, the
normal vector always points to the same component of (R3/T ) \M , hence we may
assume without loss of generality that

(3.1) g(pj) = (−1)j+1iuj ,

and thus the flux at the end pj is given in terms of (g, φ) by

Fj = 2πuj = −2πg(pj) Res pj
φ = 2π(−1)jiuj Res pj

φ,

which yields

(3.2) Res pj
φ = (−1)ji, 1 ≤ j ≤ 2k.

Let W(k) be the set of lists (g, p1, . . . , p2k) where g is a degree k − 1 meromorphic
function on C and p1, . . . , p2k ∈ C∗ are 2k distinct points. Elements in W(k) will
be simply denoted by g. By using Hurwitz schemes, one can naturally endow W(k)
with a structure of a complex analytic manifold of dimension 4k−4 (the symmetric
polynomials on the 2k − 4 branch values of each g ∈ W(k) together with the 2k
points pj ∈ C∗ give a local chart for W(k)). Given an element g ∈ W(k), we define
the height differential φ associated to g as the unique meromorphic 1-form on C

with polar divisor

(φ)∞ =
2k∏

j=1

pj ,
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whose residues are given by (3.2). Let M(k) be the set of elements g ∈ W(k) such
that (g, φ) is the Weierstrass pair of a complete immersed minimal surface in R3/T
with Scherk-type ends, or equivalently

M(k) = {g ∈ W(k) | (φ)0 = (g)0(g)∞ and |g(pj)| = 1, 1 ≤ j ≤ 2k}
= {g ∈ W(k) | (φ)0 = (g)0(g)∞ and |Res pj

(gφ)| = 1, 1 ≤ j ≤ 2k}.
(Here (h)0, (h)∞ denote the zero and polar divisors of a meromorphic function
or differential on C.) We can see the set of marked embedded surfaces S̃(k) as
a subset of M(k). Note that S̃(k) is not open in M(k) (because the directions
of the ends are not fixed; compare with the situation in Meeks-Pérez-Ros [9] or
Pérez-Rodŕıguez-Traizet [13]).

Remark 3.1. Essentially what we do in the paper is prove that the only elements of
M(k) which give embedded surfaces are the Karcher saddle towers. We will do this
using a rather elaborate machinery developed in previous papers [9]. As elements
of M(k) are defined by simple algebraic equations, one may wonder if there is a
purely algebraic proof (following, for example, the method in Wei [20]). So, let us
explain why a purely computational proof cannot succeed.

We have used embeddedness to obtain algebraic restrictions on the Weierstrass
data (such as (3.1) above). However, there are examples of singly periodic minimal
surfaces with Scherk-type ends and genus zero which satisfy all conditions we have
written so far and yet are not embedded. Here is one example:

g =
z4 − 4iz2 + 3
z4 + 4iz2 + 3

, φ =
(z4 − 4iz2 + 3)(z4 + 4iz2 + 3)i dz

(z2 + 3)(z2 − 3)(z2 + 1)(z2 − 1)z
.

This example has 10 ends. The value of the complex Gauss map at the ends 0,∞
is 1, while the ends at ±1,±i,±

√
3,±i

√
3 have Gauss map ±i. This is an example

of a special surface, and it is not embedded. Hence embeddedness must be used in
a rather strong way, which is hard to perform in a purely computational proof.

Definition 3.2. The flux map F : W(k) → C2k is given by

F (g) = (Res p1(gφ), . . . , Res p2k
(gφ)) ,

which is clearly holomorphic. Given u ∈ U(k), let Mu(k) = F−1(u) ∩ M(k)
and S̃u(k) = F−1(u) ∩ S̃(k) (note that F−1(u) is not necessarily contained in
M(k), since φ might not satisfy the regularity condition of the induced metric:
(φ)0 = (g)0(g)∞).

Lemma 3.3. Given u ∈ U(k), the subset S̃u(k) is open and closed in Mu(k).

Proof. Closeness follows since a limit of embedded surfaces is itself embedded. Any
embedded surface in S̃u(k) admits a regular neighborhood of constant positive
radius (this is a consequence of the maximum principle if u is in the interior of
U(k), and of the maximum principle at infinity if u ∈ ∂U(k); see Ros [17] for a
similar argument). From here the desired openness is standard. �

We will later need the following property.

Lemma 3.4. Compact analytic subvarieties of W(k) are finite sets.

Proof. (Inspired in Meeks-Pérez-Ros [9].) We may assume after composition with
Möbius transformations that for any element g ∈ W(k) we have p1 = ∞, p2 =
0, p3 = 1. Then any element in W(k) has k − 1 zeros and k − 1 poles in C∗ − {1}.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Consider the elementary symmetric functions σ1, . . . , σk−1 of the zeros, which are
holomorphic functions on W(k). Let A be a compact analytic subvariety of W(k).
As σj(A) is a compact analytic subvariety of C, σj(A) is finite. Since this works
for any j, we deduce that there are only a finite number of possibilities in C∗ −{1}
for zeros of elements of A. In the same way, there are only a finite number of
possibilities for poles of elements of A. Finally, the function g ∈ W(k) 	→ g(p1)
is holomorphic, so again there are only a finite number of possibilities for g(p1),
g ∈ A. As any g ∈ W is locally determined by its zeros, poles and its value in C∗

at one point, this proves that A is discrete. As A is compact, it must be finite. �

3.1. The ligature map. The ligature map L will be a holomorphic mapping from
W(k) to C4k−4 that expresses when an element g ∈ W(k) lies in M(k). To define
L we cannot simply consider the value of φ/dz at the zeros and poles of g, because
g might have multiple zeros and in this case these zeros do not depend analytically
on g. We may again assume by normalization that p1 = ∞, p2 = 0 and p3 = 1, and
consequently write

g = λ
P1(z)
P2(z)

, φ = i
P3(z)∏

j≥2(z − pj)
dz,

where λ ∈ C∗, and P1, P2, P3 are unitary polynomials of respective degrees k − 1,
k−1 and 2k−2 (this last degree comes from the fact that φ must have a simple pole
at ∞; the factor i in front of P3∏

j≥2(z−pj)
dz comes from the equation Res∞φ = −i,

which follows from (3.2)). Note that the polynomials P1, P2, P3 depend analytically
on g. On the other hand, the regularity condition (φ)0 = (g)0(g)∞ is equivalent to
P1P2 = P3, or also to

Remainder
(

P3

P1P2

)
= 0.

As the above remainder of the euclidean division of P3 by P1P2 is a complex poly-
nomial of degree less than 2k − 2, we can see it as a tuple in C2k−2 by considering
its coefficients.

Definition 3.5. The ligature map L : W(k) → C4k−4 is the holomorphic map

g ∈ W(k) 	→ L(g) = (Remainder(P3/(P1P2)), Res p3(gφ), . . . , Res p2k
(gφ)) .

We only consider the above residues for 3 ≤ j ≤ 2k, since the equations to solve
(expressing when g ∈ W(k) lies in M(k)) are not independent. Indeed, by the
residue theorem ∑

zeros of g

Res (g−1φ) +
2k∑

j=1

Res pj
(g−1φ) = 0,

∑
poles of g

Res (gφ) +
2k∑

j=1

Res pj
(gφ) = 0.

Also observe that

Res pj
(g−1φ) =

(−1)ji

g(pj)
=

−1
Res pj

gφ
.

Thus if L(g) = (0, (2k−2). . . , 0, u3, . . . , u2k) with u = (u1, . . . , uk) ∈ U(k), then we
obtain a system of two equations for ( Res p1(gφ), Res p2(gφ)), whose two solutions
are (u1, u2) and (u2, u1). Hence Mu(k) is a union of components of the subset of
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SINGLY PERIODIC MINIMAL SURFACES 973

W(k) defined by L(g) = (0, u3, . . . , u2k). Since L is holomorphic, we deduce the
following lemma.

Lemma 3.6. Given u ∈ U(k), Mu(k) is a complex analytic subvariety of W(k).

4. Proof of Theorem 2.6

The proof of Theorem 2.6 is by induction on k ≥ 3. Suppose that the theorem
holds for any k′ < k, and we will prove it for k (note that the theorem holds for
k = 2). We will assume the following three propositions, to be proven in further
sections. Recall that S̃0(k) = F−1(U0(k)) is the set of special surfaces with 2k ends.

Proposition 4.1 (Properness).
(i) The flux map F : S̃(k) \ S̃0(k) → U(k) \ U0(k) is proper.
(ii) The flux map F : S̃0(k) → U0(k) is proper.

Proposition 4.2 (Openness). The flux map F : S̃(k) → U(k) is open.

Proposition 4.3 (Local uniqueness). There exists a point u∗ ∈ U0(k) and ε > 0
such that if u ∈ U(k) satisfies ‖u − u∗‖ < ε, then F−1(u) ⊂ K̃(k).

Assuming these results, we now prove Theorem 2.6. We first check that S̃0(k)
is empty. By Proposition 4.2 and an elementary topological argument, the flux
map F : S̃0(k) → U0(k) is open. The same map is proper by point (ii) of Proposi-
tion 4.1. Hence the image by F of any component of S̃0(k) is an entire component
of U0(k). Note that U0(k) is not connected, but in any component of U0(k) there is
a degenerate polygon which reduces to a segment. By the maximum principle (see
Remark 2.4), such a polygon cannot lie in the image of F . Therefore S̃0(k) = Ø.

Then by Proposition 4.2 and elementary topology, the flux map F : S̃(k) →
U(k) \ U0(k) is open. By point (i) of Proposition 4.1, it is also proper. Hence the
image by F of any component of S̃(k) is all of U(k)\U0(k) (which is connected). By
Proposition 4.3, any component of S̃(k) must contain some Karcher saddle towers.
Since the set of saddle towers K̃(k) forms a component of S̃(k), we deduce that
S̃(k) = K̃(k). Now the remaining assertions in the statement of Theorem 2.6 follow
easily.

Remark 4.4. Although we did not use the hypothesis of induction in the last para-
graph, the proof of Proposition 4.1 needs Theorem 2.6 to be true for any k′ < k.

5. Properness

Along this section, {Mn}n ⊂ S̃(k) will denote a sequence of marked surfaces
whose associated flux polygons un = F (Mn) converge as n → ∞ to a polygon
u∞ ∈ U(k). The goal of this section is to understand the limit of (a subsequence
of) {Mn}n.

5.1. Preliminaries on convex polygons. We need an elementary fact about
convex unitary polygons. Recall that to each element u = (u1, u2, . . . , u2k) ∈ U(k)
we associate a convex polygon Pu with vertices Z1, . . . , Z2k such that for each
j = 1, . . . , 2k, uj = Zj −Zj−1 (here we set Z0 = Z2k). Let αj be the angle between
uj and uj+1. Thus βj = π − αj is the inner angle of the polygon at the vertex Zj .
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974 JOAQUÍN PÉREZ AND MARTIN TRAIZET

Figure 1. Definition of αj , Lj and Qj (k = 4).

Lemma 5.1. Given u ∈ U(k) and i = 1, . . . , 2k, it holds that αi + αi+1 ≤ π, with
equality for some i if and only if u ∈ U0(k).

Proof. To simplify notation, we do not lose generality assuming that i = 2k in
the proposition. Then for j = 1, . . . , k we consider the length Lj = ZjZ2k−j+1 =
|ZjZ2k−j+1|, and for j = 1, . . . , k − 1 the quadrilaterals Qj with vertices Zj , Zj+1,
Z2k−j , Z2k−j+1; see Figure 1. Since Pu is convex, each Qj is a convex quadrilateral.

Now assume that α2k +α1 ≥ π. We want to prove that u is special. By convexity
of Pu and since β2k + β1 ≤ π, for each j = 1, . . . , k − 1 the quadrilateral Qj has
the following property: the sum of the inner angles of Qj at the two endpoints
corresponding to Lj (do not confuse these inner angles with those of Pu, which are
βj and β2k−j+1) is not greater than π. By Lemma 5.2 below, we have Lj+1 ≤ Lj ,
with equality if and only if Qj is a parallelogram. This gives L1 ≥ L2 ≥ . . . ≥ Lk.
But L1 = Lk = 1 because these are edges of the polygon Pu. Hence equality holds
everywhere, which implies that all Qj are parallelograms, so u is special. �

Lemma 5.2. Let ABCD be a convex quadrilateral. Let Â and B̂ be the inner
angles at A and B. Assume that BC = AD and Â+ B̂ ≤ π. Then DC ≤ AB, with
equality if and only if ABCD is a parallelogram.

Proof. Without loss of generality we may assume that BC = AD = 1. Let us fix
the points A, B, D and see how the length l(t) = DCt = |DCt| varies as a function
of B̂ = t. Then

1
2

d

dt
(l(t)2) = 〈

→
DCt,

dCt

dt
〉 = 〈

→
DCt,

→
ut〉,

where
→
ut is a unitary vector perpendicular to

→
BCt. But provided the quadrilateral

is convex, this scalar product is positive, so l(t) is an increasing function of t = B̂

(in fact l(t) is minimum precisely when B, Ct, D are on a line). When t = π − Â,
the quadrilateral ABCtD is a parallelogram, in which case l(π − Â) = AB. Thus
l(t) ≤ l(π − Â) whenever t ≤ π − Â, which proves the lemma. �

Remark 5.3. Clearly Lemma 5.1 does not hold for convex unitary polygons with
an odd number of vertices.

5.2. Area, flux and curvature estimates. As usual, we denote by M̃ the lift
to R

3 of a surface M ⊂ R
3/T , by B(x, R) the open ball centered at x ∈ R

3 with
radius R > 0, by C(R) ⊂ R3/T the solid vertical cylinder of radius R and axis RT
modded out by T , and by KΣ the Gauss curvature function of a surface Σ ⊂ R3.
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Lemma 5.4. Given M ∈ M(k), the area of M̃ ∩ B(R) is less than kπR2 for any
R > 0.

Proof. Since M̃ is asymptotic to 2k vertical halfplanes, the limit of Area(M̃∩B(R))
R2

when R → ∞ is kπ. Now the result follows from the monotonicity formula. �

The fact that the genus of our surfaces is zero allows us to control the flux of
vertical sections of our sequence {Mn}n ⊂ S̃(k) with {un = F (Mn)}n → u∞ ∈
U(k).

Lemma 5.5. There exist a ∈ S1 and ε > 0 depending only on u∞, such that for
any flat vertical annulus Π ⊂ R3/T , n ∈ N and any component γn of Mn ∩ Π,

(5.1) |Flux(γn) ± 2πa| ≥ ε.

Proof. Fix a flat vertical annulus Π ⊂ R3/T and a component γn of Mn ∩Π. Since
Mn has genus zero, γn separates Mn in two components. Hence the flux of Mn

along γn is equal to the sum of the fluxes at some of the ends of Mn. In particular,
Flux(γn) is horizontal (we will see it in C) and for n fixed there are only a finite
number of values in C for Flux(γn), that only depend on un. Now the existence of
a ∈ S1 and ε > 0 verifying (5.1) follows from the fact that {un}n converges to u∞
as n → ∞. �

Let gn be the Gauss map of Mn (stereographically projected from the north
pole). A direct consequence of Lemma 5.5 is that for all n large, none of the ends
of Mn has limit normal vector ia.

Lemma 5.6. Let a ∈ S
1 be the unit complex number given by Lemma 5.5. Then,

there exists δ > 0 depending only on u∞ such that for all n ∈ N and pn ∈ Mn such
that gn(pn) = ia,

sup
∣∣K(Mn−pn)∩C(10)

∣∣ ≥ δ.

Proof. By contradiction, if sup
∣∣K(Mn−pn)∩C(10)

∣∣ converges to zero as n → ∞, then
{(Mn − pn) ∩ C(10)}n converges uniformly to the flat vertical annulus Π1 with
normal ia. Now take a flat vertical annulus Π perpendicular to Π1. Then, the
flux of Mn along Mn ∩ Π = γn converges to ±2πa as n → ∞, which contradicts
Lemma 5.5. �

5.3. Weak limits. We now prove that {Mn}n converges in some weak sense to a
finite number of limit minimal surfaces. This ought to be true in a quite general
setup, although we will give a proof enough for our setting.

Let a ∈ S1 be given by Lemma 5.5. For each n ∈ N let p1,n, . . . , pk−1,n ∈ Mn be
the points such that gn(pj,n) = ia for 1 ≤ j ≤ k − 1 (counting with multiplicity).
Let p̃1,n, . . . , p̃k−1,n ∈ M̃n be their corresponding liftings to a fundamental domain
of M̃n. Fix j = 1, . . . , k−1. Since the degree of gn is fixed k−1, given R > 0 there
exists c1 > 0 such that the absolute total curvature of (M̃n − p̃j,n) ∩ B(R) is not
greater than c1 for all n ∈ N. Furthermore, Lemma 5.4 implies that there exists
c2 > 0 such that Area

(
(M̃n − p̃j,n) ∩ B(R)

)
≤ c2 for all n ∈ N. In this situation, a

standard result (see e.g. Theorem 4.40 in [16]) insures that there exists a discrete
set Xj ⊂ R3 and a properly embedded minimal surface M̃j,∞ ⊂ R3 such that up to
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a subsequence, {M̃n − p̃j,n}n converges with finite multiplicity in R
3 −Xj to M̃j,∞.

Furthermore, for each point p ∈ Xj and µ > 0, it holds that

(5.2) lim sup
k

∫
(M̃n−p̃j,n)∩B(p,µ)

|Kn| ≥ 4π.

We now distinguish two possibilities, depending on whether M̃j,∞ is flat or not:

I. If M̃j,∞ is not flat, then by a standard argument (see e.g. Section 4 of [16])
the multiplicity of the convergence of {M̃n − p̃j,n}n to M̃j,∞ is one and
Xj = Ø. Since each M̃j,n is T -periodic, the same holds for M̃j,∞. The
quotient surface Mj,∞ = M̃j,∞/T is a planar domain since all the Mn have
genus zero, and its absolute total curvature is at most 4π(k−1). Therefore
all ends of Mj,∞ are simultaneously planar, helicoidal or Scherk-type by a
theorem of Meeks and Rosenberg [11]. As Mj,∞ is an embedded nonflat
planar domain, the maximum principle implies that Mj,∞ does have planar
ends. If the ends of Mj,∞ are helicoidal, then it is a helicoid (Pérez and
Ros [14]). As T is vertical, such a helicoid must also be vertical. Otherwise,
Mj,∞ has genus zero and at most 2k Scherk-type ends.

II. If M̃j,∞ is flat, then Xj �= Ø by Lemma 5.6. The proof of Theorem 4.40
in [16] implies that there exists a sequence of real numbers λn → +∞
such that λn(M̃n− p̃j,n) converges to a properly embedded nonflat minimal
surface M̂j,∞. Since the Mn are planar domains, M̂j,∞ must have genus
zero and so, it is a catenoid (López and Ros [7]). As the neck of M̂j,∞ is
a closed curve with nonzero period, it must be the uniform limit of closed
curves with nonzero flux in the Mn (rescaled by λn). As all of such curves
on Mn have horizontal flux, M̂j,∞ is a horizontal catenoid.

Lemma 5.7. In the situation above, suppose that Mj,∞ is a limit surface of the
type I. Then, none of the ends of Mj,∞ has limit normal vector ia.

Proof. If the ends of Mj,∞ are helicoidal, then the lemma is trivial. Arguing by
contradiction, suppose that Mj,∞ has Scherk-type ends (which must be vertical
because M̃j,∞ is T -invariant), one of which has limit normal vector ia. Thus we
can find a flat vertical annulus Π ⊂ R3/T orthogonal to a such that the flux of
Mj,∞ along a certain component γj,∞ of Mj,∞ ∩ Π is ±2πa. γj,∞ is the uniform
limit of components γn of Mn ∩ Π, which therefore have flux converging to ±2πa,
a contradiction with Lemma 5.5. �

We now need to get rid of duplicate limits.

Lemma 5.8. In the situation of Lemma 5.7, let dj be the degree of the Gauss map
on Mj,∞ (thus dj ≤ k−1). Then, there are another dj−1 points q1,n(j), . . . , qdj−1(j)
∈ {p̃1,n, . . . , p̃k−1,n} \ {p̃j,n} such that for every h = 1 . . . , dj − 1, a translation of
M̃j,∞ is also the limit of {M̃n − qh,n(j)}n as n → ∞.

Proof. By Lemma 5.7, there exists a compact region C ⊂ R3/T such that for n
large, gn takes the value ia at dj points in C counting multiplicity (one of these
points is the origin). The remaining di − 1 points correspond to other points
q1,n, . . . , qdj−1 ∈ {p̃1,n, . . . , p̃k−1,n} \ {p̃j,n}, and clearly {M̃n − qh,n}n converges
to M̃j,∞ (up to a translation) as n → ∞. �
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For the remainder of this section, we forget about the repeated limits as n → ∞
of the Mn − qh,n(j) in Lemma 5.8, since they are the same as Mj,∞. Let r be
the number of limit surfaces that remain. After re-indexing, we obtain that for
each j = 1, . . . , r the sequence {Mn − pj,n}n converges (up to possibly blowing-up)
to Mj,∞ which is either singly periodic or a horizontal catenoid. By counting the
number of times where the Gauss map takes the value ia we deduce that the degrees
of the Gauss maps of all the Mj,∞ add up to k−1. Furthermore, there exist r disjoint
metric balls Bj,n in R3/T such that Mn ∩Bj,n traps all the interesting geometry of
the limit Mj,∞, and the total curvature of Mn∩Bj,n is arbitrarily close to the total
curvature of Mj,∞. In particular, the total curvature of Mn \ (B1,n ∪ . . . ∪ Br,n) is
arbitrarily small.

Note that for j = 1, . . . , r fixed, the Gauss map at each end representative of
Mj,∞ is close to a constant that depends on the end. For n large, let Ω be a
component of Mn \ (B1,n ∪ . . . ∪ Br,n). By the open mapping theorem, the Gauss
map gn of Mn has to be close to a constant c(Ω) on Ω (otherwise gn(Ω) would
cover almost all the sphere). Hence Ω is an extremely flat graph over a certain plane
(quotiented by T ). Now let Ω be a noncompact component of Mn\(B1,n∪. . .∪Br,n).
Since the ends of Mn have a horizontal limit normal vector, we have |c(Ω)| = 1.
As the Gauss map of a helicoid in R3/T is vertical at its ends, we deduce that for
any ball Bj0,n such that ∂Bj0,n ∩ ∂Ω �= Ø, the associated limit surface Mj0,∞ is
either a horizontal catenoid or a properly embedded planar domain with vertical
Scherk-type ends. Therefore for any component Ω′ of Mn \ (B1,n ∪ . . . ∪ Br,n)
with ∂Bj0,n ∩ ∂Ω′ �= Ø, it holds that |c(Ω′)| = 1. We now repeat inductively this
process exchanging Ω by Ω′, to finally conclude that all the limit surfaces Mj,∞ are
horizontal catenoids or properly embedded minimal planar domains with vertical
Scherk-type ends.

We now summarize what we have proven in the following statement.

Proposition 5.9. There exists a collection M1,∞, . . . , Mr,∞ of minimal surfaces
and r sequences of homotheties {hj,n}n satisfying

(1) Each Mj,∞ is a horizontal catenoid or a properly embedded minimal surface
of genus zero in R

3/T with at most 2k Scherk-type ends.
(2)

∫
Mn

|KMn
| =
∑n

j=1

∫
Mj,∞

|KMj,∞ |, for each n ∈ N.
(3) If Mj,∞ is a catenoid, then the sequence of scaling factors of hn blows-up

and {hj,n(Mn)}n converges smoothly to Mj,∞ in R3.
(4) If Mj,∞ has Scherk-type ends, then each hn is a translation and {hj,n(Mn)}n

converges smoothly to Mj,∞ in R
3/T .

(5) For R, n large, there exist r disjoint metric balls Bj,n ⊂ R3/T such that
hj,n(Bj,n) is either the ball B(0, R) ⊂ R3 (when Mj,∞ is a catenoid) or
the metric ball of radius R centered at the origin in R3/T (when Mj,∞ has
Scherk-type ends), and Mn decomposes as

Mn = (Mn ∩ B1,n) ∪ . . . ∪ (Mn ∩ Br,n) ∪ Ω1,n ∪ . . . ∪ Ωm,n.

Furthermore, each Ωh,n is a graph over a domain in a flat vertical annulus
Π ⊂ R3/T .

In the sequel, we will use the term connection piece to refer to each of the domains
Ωh,n. Note that a connection piece could be compact (if it does not contains ends
of Mn); see Figure 2 left.
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B1,n

B3,n

B2,n

p1́́

α2́́

p3́́α3́́

p3́

α2́

M´

M´́

p1́

α3́
Ω

Figure 2. Left: A weak limit configuration with 3 limit surfaces
(M1,∞ is a catenoid, M2,∞ a Scherk surface and M3,∞ a surface of
genus zero with six Scherk-type ends) and 11 connection pieces (3
of them being compact). Right: See Lemma 5.10.

5.4. Strong compactness. In this section we shall prove that if u∞ ∈ U(k)\U0(k),
then the collection of limit surfaces in Proposition 5.9 reduces to a single surface
in S̃(k) (this is usually referred to in the literature as strong compactness of the
original sequence {Mn}n ⊂ S̃(k)), and obtain further information for the possibly
noncompact case, i.e. u∞ ∈ U0(k).

Assume that r ≥ 2 (we use the notation in Proposition 5.9). Consider two limit
surfaces M ′ = Mj1,∞ and M ′′ = Mj2,∞ which are attached in Mn by a compact
connection piece Ω. We label the ends of M ′ as p′j and those of M ′′ as p′′j , in
such a way that the ends p′2 and p′′2 are attached along Ω. Let u′

j and u′′
j be the

corresponding flux vectors. As in Subsection 5.1, let α′
j be the angle between u′

j−1

and u′
j , and define α′′

j analogously with u′′
j−1, u

′′
j ; see Figure 2 right.

Lemma 5.10. In the above situation, α′
2 + α′′

3 ≥ π and α′′
2 + α′

3 ≥ π.

Proof. By contradiction, suppose α′
2 + α′′

3 < π. If both connection pieces that glue
to p′1, p

′′
3 are noncompact, then these connection pieces are graphs over flat vertical

halfplanes (quotiented by T ) hence they intersect, which contradicts that Mn is
embedded. Hence at least one of the connection pieces Ω′, say that which glues to
p′1, is compact. So p′1 is attached along Ω′ to an end of another weak limit M ′′′,
and we repeat the discussion with the same p′′3 , exchanging p′1 by a suitable end
of M ′′′. After a finite chain of compact connection pieces and weak limits, either
p′1 and p′′3 glue to different ends of Mn, or they glue each other through an almost
horizontal compact arc Γ that only intersects the closure of Ω at the end points of
Γ. In the first case we find a contradiction as above, while in the second case we
join Γ with a suitable almost horizontal arc Γ′ ⊂ Ω, so that Γ∪Γ′ is a closed curve
in Mn. Since the metric balls Bj,n in Proposition 5.9 all have bounded radius and
for n sufficiently large the length of the parts of Γ ∪ Γ′ in the connection pieces is
as large as we desire, we deduce that for n large, the flux of Mn along Γ∪Γ′ is not
horizontal, which contradicts the fact that such a flux vector is a sum of fluxes at
the ends of Mn. Thus α′

2 + α′′
3 ≥ π, and similarly α′′

2 + α′
3 ≥ π. �
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We continue analyzing the case r ≥ 2. With the notation above, suppose that
M ′, M ′′ have Scherk-type ends. By Lemma 5.1 applied to the corresponding poly-
gon fluxes F (M ′), F (M ′′), it holds that α′

2 + α′
3 ≤ π and α′′

2 + α′′
3 ≤ π. Adding

these inequalities and using Lemma 5.10 we conclude that α′
2 + α′

3 = α′′
2 + α′′

3 = π,
so Lemma 5.1 gives that F (M ′) ∈ U0(k′), F (M ′′) ∈ U0(k′′), where k′, k′′ are half of
the number of ends of M ′, M ′′ respectively. Furthermore, F (M ′) and F (M ′′) have
parallel sides. Thus all the fluxes at ends of M ′ are ±2πu′ except two of them which
are ±2πv (here u, v are distinct points in S1), and similarly with M ′′. Note that
the connection piece Ω between M ′ and M ′′ is attached to ends with flux ±2πv
of M ′, M ′′ (otherwise we again produce a closed curve in Mn with a nonhorizontal
flux vector).

Another consequence of these arguments is that all remaining weak limits Mj,∞
other that M ′, M ′′ have necessarily Scherk-type ends, so we can repeat the argu-
ments in the last paragraph to obtain that u∞ = limF (Mn) belongs to U0(k). Now
we can deduce the main result of this section. Recall that u0(k) is the degenerated
special polygon all of whose edges are parallel (namely, the segment with endpoints
0, k), and that F−1(u0(k)) = Ø by the maximum principle.

Proposition 5.11. Let {Mn}n ⊂ S̃(k) with {F (Mn) = un}n → u∞.

(A) If u∞ �∈ U0(k), then after passing to a subsequence, {Mn}n converges to
a single marked surface M∞ ∈ S̃(k) \ S̃0(k).

(B) If u∞ ∈ U0(k)\{u0(k)}, then after passing to a subsequence either {Mn}n

converges to a single marked surface M∞ ∈ S̃0(k), or all weak limit surfaces
Mj,∞ are special surfaces with less than 2k ends.

(C) If u∞ = u0(k), then after passing to a subsequence {Mn}n converges
weakly to k − 1 horizontal catenoids.

We finish this section by proving Proposition 4.1. Item (i) of this proposition is
precisely point (A) of Proposition 5.11. To prove item (ii), consider a sequence of
special surfaces {Mn}n ⊂ S̃0(k) with {F (Mn) = un}n → u∞ ∈ U0(k).

If u∞ ∈ U0(k) \ {u0(k)}, then Proposition 5.11(B) asserts that either the Mn

converge to a single marked surface M∞ ∈ S̃0(k) (which is what we want to prove),
or all weak limit surfaces M1,∞, . . . , Mr,∞ of the sequence {Mn}n are special sur-
faces with less than 2k ends. By induction hypothesis, Theorem 2.6 holds for any
k′ < k, so we have S̃0(k′) = Ø for each k′ < k unless k′ = 2, hence M1,∞, . . . , Mr,∞
are singly periodic Scherk minimal surfaces. These weak limits are in fact the same
Scherk surface, because u∞ ∈ U0(k). We will call this limit configuration with
k − 1 copies of a singly periodic Scherk surface a Scherk limit (note there exists a
1-parameter family of Scherk limits). In Section 7 we will study each Scherk limit,
proving in particular that a sequence of special surfaces cannot converge to a Scherk
limit, so this case does not happen.

Finally assume that u∞ = u0(k). By Proposition 5.11(C), after a blow-up
{Mn}n converges to k − 1 copies of the same horizontal catenoid, a configuration
that we will call the catenoid limit. In Section 8 we will see that a sequence of special
surfaces cannot converge to the catenoid limit, so this case is also impossible. This
completes the proof of Proposition 4.1.
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p2k−1
u2k−1=−α u2k−2=−α uk+1=−α

uk−1=α

p2k

p1 p2

p2k−2
pk−1

pk−1

pk
u2k=−1

uk=1

u2=αu1=α

Figure 3. A Scherk limit configuration, with the ends and the
corresponding fluxes uj .

6. Openness

In this section we will prove Proposition 4.2. Since openness is a local property,
it suffices to see that given M ∈ S̃(k), there exists an open neighborhood V of
M in S̃(k) such that F |V : V → U(k) is an open map. Fix M ∈ S̃(k). Consider
the associated element g in W(k) and flux polygon u = F (M) ∈ U(k). Clearly
g ∈ S̃u(k). By Lemma 3.3 and Lemma 3.6, S̃u(k) is an analytic subvariety of W(k).
By the properness Proposition 4.1, S̃u(k) is compact, hence it is finite by Lemma 3.4.
Thus there exists an open set Ω ⊂ W(k) such that g ∈ Ω and L−1(L(g)) = {g}.
Since L is holomorphic between complex manifolds of the same dimension, the open
mapping theorem for finite maps (see [3], page 667) implies there exists an open set
Ω1 ⊂ Ω containing g such that L|Ω1 is open. Now Proposition 4.2 follows directly
using the relationship between L and F .

7. Uniqueness around any Scherk limit

In this section we will study surfaces close to the Scherk limits. We will conclude
from this study two facts: First, that a sequence of special surfaces cannot converge
to a Scherk limit, which was used in the proof of Proposition 4.1. Second, that all
surfaces close to a Scherk limit must be Karcher saddle towers, which will be used
to prove Proposition 4.3.

Recall that a Scherk limit is a configuration of k − 1 copies of the same singly
periodic Scherk minimal surface. In Section 2 we normalized the space U(k) of
convex unitary polygons to have their first component equal 1. In what follows
we will slightly change this normalization, which does not affect the arguments but
simplifies the notation. After rotation and suitable choice of the first end for Mn, we
may assume that the limit of {F (Mn)}n is u∞ = (α, (k−1). . . , α, 1,−α, (k−1). . . ,−α,−1),
where α ∈ S1 − {±1} and the ends p1, . . . , p2k are labeled as indicated in Figure 3.
A little thought of how the normal vector behaves when gluing consecutive copies
of the Scherk surface shows that if we fix the normal map g to be i at the end p2k,
then it alternates the values ±i in consecutive annular connection pieces between
copies of the Scherk surface, finishing at g(pk) = (−1)k+1i.

7.1. Weierstrass data. A model for an element in W(k) close to the Scherk limit
is as follows. Fix u = (u1, . . . , u2k) ∈ C2k close to u∞ (we do not require the
components of u either to be unitary or to satisfy equation (2.3)). Consider k − 1
copies C1, . . . , Ck−1 of C. For 1 < j < k, consider complex numbers aj �= bj close
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p2k=i

p2k−1
p2k−2 pk+1

pk=(−1)k+1i

pk−1
p2p1

b2∼−i

a2∼−i a3∼i

b3∼i

02 0k−101

C1
C2 Ck−1

∞1 ∞2
∞k−1

{|z|=1}

Figure 4. Parametrizing the Gauss map g for the particular case
u ∈ U(k) close to u∞. The points pj , p2k−j ∈ {|z| = 1} are respec-
tively close to α,−α in each copy of C.

to (−1)j+1i. Glue Cj−1 with Cj along a cut from aj to bj in the usual way, so that
the chain of k − 1 copies of C yields a compact surface Σ of genus zero. On Σ we
consider the meromorphic function g defined as g = z in each Cj . Then g has degree
k − 1 and its branch values are aj , bj , 1 < j < k. This function g together with
the ordered collection of points p1, . . . , p2k ∈ Σ given below determine an element
of W(k).

• For 1 ≤ j < k, pj and p2k−j are the unique points in Cj that satisfy
g(pj) = pj = (−1)j+1iuj , g(p2k−j) = p2k−j = (−1)j+1iu2k−j (compare
with (3.1)). Note that since u is close to u∞ and α �= ±1, we deduce that
pj , p2k−j are far from the neck between Cj−1 and Cj .

• pk lies in Ck−1 and p2k in C1, are determined by g(pk) = pk = (−1)k+1iuk,
g(p2k) = p2k = −iu2k. Again pk is far from the neck between Ck−2 and
Ck−1, and p2k is far from the neck between C1 and C2; see Figure 4.

Hence we have defined an element g ∈ W(k) from the 4k−4 complex parameters
aj , bj , uh. Since the roles of aj and bj are symmetric, the right parameters to
consider if we want to parametrize the space of g ∈ W(k) around the Scherk limit
are the uh together with the elementary symmetric functions of aj , bj . Let

xj =
aj + bj

2
, yj = ajbj , 1 < j < k.

We also exchange the variable yj by ζj = yj −x2
j for 1 < j < k (the map (xj , yj) 	→

(xj , ζj) is a diffeomorphism). Next we introduce some notation. Given ε > 0, let

x∞ = (−i, i, . . . , (−1)ki), 0 = (0 . . . , 0) ∈ Ck−2,
D(x∞, ε) = {x ∈ Ck−2 | ‖x − x∞‖ < ε},
D(0, ε) = {ζ ∈ Ck−2 | ‖ζ‖ < ε},
D(u∞, ε) = {u ∈ C

2k | ‖u − u∞‖ < ε},
A = {ζ ∈ D(0, ε) | ζj = 0 for some j}.

Since ζj = −1
4 (aj − bj)2, the equation ζj = 0 means that aj = bj is a node, so A

expresses when Σ pinches into a Riemann surface with nodes. It is easy to show that
the map Θ : D(x∞, ε)×(D(0, ε) \ A)×D(u∞, ε) → W(k) defined by Θ(x, ζ,u) = g
is a local chart for W(k). Given (x, ζ,u) ∈ D(x∞, ε) × (D(0, ε) \ A) × D(u∞, ε),
we call φ to the height differential associated to g = Θ(x, ζ,u) (see Section 3).
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7.2. The equations. Next we study the regularity of the induced metric by the
pair (g, φ). Let 0j ,∞j be the points of Σ given by z = 0 and z = ∞ in Cj . The
equations we have to solve are φ = 0 at 0j and ∞j for 1 ≤ j < k (in which case φ
clearly has necessarily simple zeros at 0j ,∞j because φ has 2k poles in Σ). These
equations can be equivalently written as

Res 0j
(g−1φ) = 0, Res∞j

(gφ) = 0, 1 ≤ j < k.

As was explained in Subsection 3.1, we may forget two of these equations by the
residue theorem, so we will only solve these equations for 1 < j < k.

We saw in Section 3 that the period problem at the ends writes as |g(pj)| = 1
or equivalently |Res pj

(gφ)| = 1 for 1 ≤ j ≤ 2k (these equalities are automatically
satisfied when the components of u lie in S

1 rather than only in C).
Our next goal is to study the behavior of both g, φ and the equations we have to

solve when ζ ∈ A. In this case, Σ decomposes into a number of spheres between 2
and k − 1, g produces nonconstant meromorphic maps on them whose degrees add
up to k − 1 and the values of these meromorphic maps at the node points are ±i.

7.3. Holomorphic extension of φ. Given (x, ζ,u) ∈ D(x∞, ε)× (D(0, ε) \ A)×
D(u∞, ε), let γj be a small circle enclosing the points aj , bj in Cj , with the positive
orientation. By the residue theorem, we have

(7.1)
1

2πi

∫
γj

φ = Res p2k
φ +

j−1∑
�=1

( Res p�
φ + Res p2k−�

φ) = (−1)j+1i.

When aj = bj , the Riemann surface Σ has a node at aj . In this case the definition
of φ must be changed as follows. For each double point aj = bj , we ask that φ has
a simple pole at the point aj ∈ Cj with residue (−1)j+1i (this comes from equation
(7.1)), and it has a simple pole at the point aj ∈ Cj−1 with opposite residue.

Proposition 7.1. φ depends holomorphically on all parameters (x, ζ,u)∈D(x∞, ε)
× D(0, ε) × D(u∞, ε) (including those tuples with ζ ∈ A). By this we mean that if
z ∈ Cj is away from the cuts and poles, then φ(z)/dz depends holomorphically on
(x, ζ,u).

Proof. This result is standard; see e.g. Section 3.4 of [19] for Riemann surfaces
with nodes and arbitrary genus. �

Corollary 7.2. For 1 ≤ j < k, the maps (x, ζ,u) ∈ D(x∞, ε) × D(0, ε) ×
D(u∞, ε) 	→ Res 0j

(g−1φ), Res∞j
(gφ), Res pj

(gφ) are holomorphic.

7.4. The modified ligature map. Let L̃ : D(x∞, ε) × D(0, ε) × D(u∞, ε) →
C4k−4 be the map defined by

L̃ =

⎛⎜⎝Res 0j
(g−1φ)︸ ︷︷ ︸

1<j<k

, Res∞j
(gφ)︸ ︷︷ ︸

1<j<k

, Res pj
(gφ)︸ ︷︷ ︸

1≤j≤2k

⎞⎟⎠ .

Corollary 7.2 implies that L̃ is holomorphic. A straightforward computation gives
that L̃(x∞,0,u∞) = (0,0,u∞) ∈ (Ck−2)2 × C2k.
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Lemma 7.3. With the notation above, the Jacobian (2k − 4)-matrix

∂
(
Res 0j

(g−1φ), Res∞j
(gφ)

)
∂(x, ζ)

∣∣∣∣∣
(x,ζ,u)=(x∞,0,u∞)

is regular.

Proof. We start with the partial derivatives of Res 0h
(g−1φ), Res∞h

(gφ) with re-
spect to the xj variables. Then we can fix all the ζh as zero for 1 < h < k, which
means that Σ consists of copies C1, . . . , Ck−1 of C joined by k−2 nodes so that the
node between Cj−1 and Cj is placed at xj = aj = bj ∼ (−1)j+1i (here xj must be
thought as a variable) and the remaining nodes are all placed as ±i. For h �= j−1, j
fixed, the corresponding height differential φ in Ch does not depend on xj , hence

∂ Res 0h
(g−1φ)

∂xj
(x∞,0,u∞) =

∂ Res ∞h
(gφ)

∂xj
(x∞,0,u∞) = 0.

Concerning ∂
∂xj

∣∣∣
(x∞,0,u∞)

Res 0j
(g−1φ), the holomorphic extension of φ lets us

write

φ = (−1)ji

(
1

z − pj
+

1
z − p2k−j

− 1
z − xj

− 1
z − x∞,j+1

)
on Cj ,

where x∞,j+1 = (−1)ji (when j = k−1, we should replace x∞,j+1 by pk = (−1)k+1i
in the above formula). This gives

Res 0j
(g−1φ) = (−1)ji

(
1
xj

+
1

x∞,j+1

)
, Res∞j

(gφ) = (−1)ji(xj + x∞,j+1),

hence
∂ Res 0j

(g−1φ)
∂xj

(x∞,0,u∞) =
∂ Res∞j

(gφ)
∂xj

(x∞,0,u∞) = (−1)ji.

Analogously,

∂ Res 0j
(g−1φ)

∂xj+1
(x∞,0,u∞) =

∂ Res∞j
(gφ)

∂xj+1
(x∞,0,u∞) = (−1)ji.

We now compute partial derivatives with respect to ζj , so we fix all the xh as the
corresponding component x∞,h of x∞, ζh = 0 for all h �= j and think of ζj as a
variable close to zero. This means that Σ decomposes into k − 2 spheres joined by
nodes, k − 3 of which correspond to single copies of Ch (that we will call simple
spheres), h �= j−1, j, and just one sphere corresponds to the copies Cj−1, Cj (called
a double sphere). On any simple sphere, neither g nor φ depend on ζj , hence

∂ Res 0h
(g−1φ)

∂ζj
(x∞,0,u∞) =

∂ Res∞h
(gφ)

∂ζj
(x∞,0,u∞) = 0, h �= j − 1, j.

The remaining double sphere can be parametrized as

S = {(z, w) ∈ (C)2 | w2 = (z − aj)(z − bj) = (z − x∞,j)2 + ζj}.

The square root w =
√

(z − x∞,j)2 + ζj is well defined on S, and we fix the sign
of this square root as follows. Away from the cut we have w2 ∼ (z − x∞,j)2. We
ask that w ∼ z − x∞,j in Cj , and consequently w ∼ −(z − x∞,j) in Cj−1. Clearly
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g writes g(z, w) = z on S, and an elementary argument using poles and residues
leads to

φ = (−1)ji

(
w(pj)

z − z(pj)
+

w(p2k−j)
z − z(p2k−j)

− w(x∞,j+1)
z − x∞,j+1

)
dz

w
.

This gives

Res 0j
(g−1φ) =

(−1)ji

w(0)

(
w(pj)
−z(pj)

+
w(p2k−j)
−z(p2k−j)

+
w(x∞,j+1)

x∞,j+1

)
,

Res∞j
(gφ) = (−1)ji

(
− w(pj) − w(p2k−j) + w(x∞,j+1)

)
.

The same formulas with opposite signs hold for the residues at 0j−1 and ∞j−1,
because of the valuation of the square root. Using that x∞,j+1 = (−1)ji and
z(pj) = (−1)j+1iα one easily computes

∂ Res 0j
(g−1φ)

∂ζj
(x∞,0,u∞) =

5 − α2

4(α2 − 1)
,

∂ Res∞j
(gφ)

∂ζj
(x∞,0,u∞) =

3 + α2

4(α2 − 1)
,

and the corresponding partial derivatives of the residues at 0j−1 and ∞j−1 only
differ from the above ones in a sign. Now the regularity of the Jacobian matrix in
Lemma 7.3 follows directly. �

Proposition 7.4. Let {Mn}n ⊂ S̃(k) be a sequence converging weakly to a Scherk
limit. Then Mn ∈ K̃(k) for n large enough.

Proof. Without loss of generality we can assume that the fluxes un = F (Mn)
converge to u∞ = (α, (k−1). . . , α, 1,−α, (k−1). . . ,−α,−1) with α ∈ S

1 − {±1}. Since
{Mn}n converges weakly to the Scherk limit associated to this angle α, we deduce
that for n large enough, the element gn ∈ W(k) that corresponds to Mn can be
represented by gn = Θ(xn, ζn,un) for certain (xn, ζn) ∈ D(x∞, ε) × (D(0, ε) −A)
(with the same notation of this section). Furthermore (xn, ζn) → (x∞,0) as n →
∞.

By Lemma 7.3 and the implicit function theorem, there exists ε′ > 0 small such
that for any u ∈ D(u∞, ε′) there exists a unique pair (x(u), ζ(u)) ∈ D(x∞, ε′) ×
D(0, ε′) so that L̃(x(u), ζ(u),u) = (0, 0,u). Note that we do not know if some
components of ζ(u) vanish, so the Riemann surface associated to (x(u), ζ(u),u)
might have nodes. But this proves that for any u ∈ D(u∞, ε′), there is (locally) at
most one marked minimal surface M(u) ∈ S̃(k) with F (M(u)) = u. On the other
hand, for u ∈ U(k)\U0(k) there exists exactly one Karcher saddle tower Mu ∈ K̃(k)
with F (Mu) = u. Hence if un = F (Mn) lies in U(k) \ U0(k) for n large enough,
then Proposition 7.4 clearly holds.

It only remains to analyze the case that after passing to a subsequence, un ∈
U0(k) for all n. In this case, we can write un = (αn, (k−1). . . , αn, 1,−αn, (k−1). . . ,−αn,−1)
with αn → α as n → ∞. If we take ζj = 0 and xj(n) = (−1)j+1αn for all j, then
the previous computations in this section give that L̃(xn,0,un) = (0,0,un) for all
n, where xn = (x2(n), . . . , xk−1(n)). Geometrically this tuple (xn,0,un) also rep-
resents a Scherk limit, with k − 1 Scherk surfaces whose fluxes at the ends are ±1,
±αn. In particular, (xn,0,un) does not represent a marked surface in S̃(k), hence
locally there are not marked surfaces with flux equal to un, a contradiction. �
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We finish this section by proving Proposition 4.3. Note that this proposition
was not used to prove that S̃0(k) is empty, so we may assume that this has already
been proven (see section 4). Choose an element u∗ ∈ U0(k) \ {u0(k)}. If Proposi-
tion 4.3 does not hold, then there exists a sequence {Mn}n ⊂ S̃(k)\ K̃(k) such that
{un = F (Mn)}n → u∗. By Proposition 5.11(B) and since S̃0(k) is empty, {Mn}n

converges weakly to a Scherk limit. But this contradicts Proposition 7.4.

8. Uniqueness around the catenoid limit

In this section we will study special surfaces close to the catenoid limit and
conclude that a sequence of special surfaces cannot converge to the catenoid limit
if k ≥ 3. This was needed in the proof of Proposition 4.1.

Geometrically, the catenoid limit is the limit behavior of the Scherk limit when
α → 1, with α as in Section 7. If we follow the line of arguments of that section,
what goes wrong is that when α → 1, the poles of φ converge to the nodes, which
is bad to control the limit of φ. For this reason, the geometric setup in this section
if quite different from the previous sections. We consider only special surfaces. We
rotate the surface so that all ends but two are horizontal. We call the remaining
two ends the top and bottom ends. Now φ has only two poles at the top and bottom
ends, and no poles at the horizontal ends. We scale the surface so that the vertical
part of the flux on any horizontal section is, up to sign, equal to 2π. We are now in
a situation very similar to Section 7 of [13], and we will follow the same arguments
there up to some minor modifications.

8.1. Weierstrass data. We now write a model for the Weierstrass data of a special
surface close to the catenoidal limit in the above geometrical setup. Consider k− 1
copies C1, . . . , Ck−1 of the Riemann sphere C, and distinct complex numbers aj , bj ,
1 < j < k, in a punctured neighborhood of 0 if j is odd and of ∞ if j is even.
Glue Cj−1 with Cj along the cut from aj to bj in the usual way. This produces
a Riemann surface Σ of genus 0 together with a meromorphic function g : Σ → C

defined by g = z in each Cj . Its branch values are aj , bj for 1 < j < k.
The horizontal ends are at the 2(k − 1) points of Σ where g = 0 or g = ∞. We

call 0j and ∞j the points 0 and ∞ in Cj . The bottom and top ends are respectively
some points in C1 and Ck−1. We may orient the surface so that the Gauss map at
the bottom end is some nonzero complex number α close to 0 (so the bottom end
is the point z = α in C1). If k is odd, then the Gauss map at the top end is some
nonzero complex number β close to 0. If k is even, then the Gauss map at the top
end is of the form 1/β with β ∈ C − {0}, β close to 0 (see Figure 5). A priori, we
do not impose any relation between α and β. Of course, both complex numbers
are related by flux arguments. We will expose this connection in Subsection 8.2.

The height differential φ is defined as the unique meromorphic 1-form on Σ with
simple poles at the bottom and top ends, and respective residues 1 and −1. Let Γj

be the unit circle in Cj with the positive orientation if j is odd and the negative
orientation if j is even. All these curves represent the same homology class in Σ
and

∫
Γj

φ = 2πi.
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∞3

∞1
∞2

a2 a3

b2

C1

C2

b3

∞1 ∞2
∞3

α
α

02 03 01 0302
01

1/β
1/β

C3

Figure 5. Left: A special surface M close to the catenoid limit
in the case k = 4, with the value of the Gauss map at the ends.
Right: The Riemann surface corresponding to M , with the ends
and the branch points of the Gauss map.

Note that the roles of aj and bj , 1 < j < k, are symmetric, so the right parame-
ters are their elementary symmetric functions: we introduce the parameters

xj =
1
2
(aj + bj), yj = ajbj if j is odd,

xj =
1
2

(
1
aj

+
1
bj

)
, yj =

1
ajbj

if j is even,

so all parameters α, β, xj , yj , 1 < j < k, are close to 0. As usual we write
x = (x2, . . . , xk−1) and y = (y2, . . . , yk−1).

8.2. The equations. The period problem reduces to impose that the period at
each end is the same up to sign. This means that there exists λ ∈ C such that at
each end,

Res (g−1φ) + Res (gφ) = ±λ.

The period is then T = ±π(Imλ,−Reλ, 0). We also know that the signs ± alternate
at consecutive ends. This gives the following system of equations:

(8.1)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
α

+ α = λ,

1
β

+ β =
{

λ (k odd),
−λ (k even),

Res 0j

(
g−1φ

)
= (−1)jλ, 1 ≤ j ≤ k − 1,

Res∞j
(gφ) = (−1)jλ, 1 ≤ j ≤ k − 1.

Using the residue theorem, these equations imply that∫
Γj

gφ =
∫

Γ1

gφ = 2πi Res α (gφ) = 2πiα,∫
Γj

g−1φ =
∫

Γ1

g−1φ = 2πi
(
Res α

(
g−1φ

)
+ Res 01

(
g−1φ

))
= 2πi

(
1
α
− λ

)
= −2πiα.

Note that
∫
Γj

g−1φ is conjugate to
∫
Γj

gφ, which means that Γj is a closed curve
on the surface, as expected. For 1 ≤ j < k let

Aj =

⎧⎪⎪⎨⎪⎪⎩
1

2πi

∫
Γj

g−1φ (j odd),

1
2πi

∫
Γj

gφ (j even).
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For 1 < j < k let

Bj =
{

Res 0j−1

(
g−1φ

)
· Res 0j

(
g−1φ

)
(j odd),

Res ∞j−1 (gφ) · Res∞j
(gφ) (j even).

Then (8.1) implies

(8.2)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

β =
{

α (k odd),
−α (k even),

for all 1 ≤ j ≤ k − 2, Aj =
{

−α (j odd),
α (j even),

for all 1 < j < k, Bj =
{

−λ
2

(j odd),
−λ2 (j even),

with λ =
1
α

+ α.

In fact, the system (8.1) is equivalent to (8.2), but we will not need that since we
want to prove a non-existence result. Note that (8.2) is a system of 2(k−1) complex
equations in the 2(k − 1) variables α, β, aj , bj , 1 < j < k. The goal is to prove
that for α �= 0 close to 0, the system (8.2) has no solutions representing a special
surface.

8.3. Holomorphic extension of φ. When aj = bj for some j, the definition of g
gives a Riemann surface with a node between Cj−1 and Cj . In this case, φ needs
two more simple poles at z = aj in Cj and in Cj−1. The residues at these poles are
determined by

∫
Γj

φ = 2πi. Then as in Section 7 we have

Proposition 8.1. φ depends holomorphically on (α, β,x,y) in a neighborhood of
(0, 0,0,0).

Proof. Same as Proposition 7.1. �

Proposition 8.2. For 1 ≤ j ≤ k − 2, the function Aj extends as a holomorphic
function of (α, β,x,y) in a neighborhood of (0, 0,0,0). The same holds with the
function B̃j = yjBj for 1 < j < k.

Proof. The first point is a consequence of the previous proposition, since the curve
Γj stays in the limit Riemann surface minus its nodes. The second point does
not follow from a similar argument because the points 0j−1, 0j (resp. ∞j−1,∞j)
collapse into node points. Instead, we need to control the rate at which the residues
in the definition of Bj blow up. The reader can find this estimate in the proof of
Proposition 10 in [13]. �

Remark 8.3. Res 0j
(g−1φ) is a multi-valued function of the parameters. The reason

for this is that the points 0j and 0j−1 are close to the branch points aj , bj . When
the parameters aj and bj vary, the cut from aj to bj may cross 0, in which case 0j

and 0j−1 exchange sheets and so do not depend continuously on the parameters as
points on the Riemann surface. On the other hand, the unordered pair {0j−1, 0j}
depends continuously on the parameters, which is why the symmetric functions of
the residues at 0j−1 and 0j are well-defined functions. This is the main reason why
we introduced the functions Bj . See also Remark 9 in [13].
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8.4. Partial derivatives.

Proposition 8.4. For each j = 2, . . . , k − 1, it holds that

Aj−1(0, 0,0,0) = 0, B̃j(0, 0,0,0) = −1,
∂Aj−1

∂xj
(0, 0,0,0) = 1.

All remaining partial derivatives of the Ai with respect to xj, yj are zero. We will
not need the partial derivatives of the B̃i.

Proof. By Proposition 8.2, for j fixed we can compute either the value of Aj−1, B̃j

or that of their partial derivatives with respect to xj , yj by assuming α = β = 0 and
xh = yh = 0 for all h �= j. The associated Riemann surface has k − 3 nodes which
disconnect it into k − 2 genus zero components. In each component, the height
differential has two simple poles with residue ±1. These poles are either nodes or
the top end or the bottom end.

On k−3 of these components (which we call simple spheres) the height differential
φ is dz/z. The remaining component S corresponds to Cj−1 glued with Cj (we call
it a double sphere).

First consider the case j odd. Then S can be parametrized by {(z, w) ∈ C
2 | w2 =

(z − a)(z − b)} where a + b = 2xj , ab = yj , so that w =
√

(z − a)(z − b) is well
defined on S. We fix the sign of the square root by asking that w ∼ z in Cj and
w ∼ −z in Cj−1. Now φ has simple poles at ∞j−1 and ∞j with respective residues
1 and −1. As

Res∞j

dz

w
= Res∞

dz

z
√

1 − 2xj/z + yj/z2
= −1,

we conclude that φ = dz/w. Thus

Aj = Aj(xj , yj) =
1

2πi

∫
Γj

dz

zw
= −Res∞j

dz

zw
= 0,

Aj−1(xj , yj) =
1

2πi

∫
Γj−1

zdz

w
= Res∞j−1

z dz

−z
√

1 − 2xj/z + yj/z2
= xj .

Concerning B̃j , we write

Res 0j

(
g−1φ

)
=

1
√

yj
, Res 0j−1 (gφ) =

−1
√

yj
.

The computations in the case j even are similar with the following modifications:

w =

√(
1
z
− 1

a

)(
1
z
− 1

b

)
, φ =

−dz

z2w
,

Aj(xj , yj) =
1

2πi

∫
Γj

−dz

zw
= Res 0j

dz

zw
= 0,

Aj−1(xj , yj) =
1

2πi

∫
Γj−1

−dz

z3w
= Res 0j−1

−dz

−z2
√

1 − 2xjz + yjz2
= xj ,

which finishes the proof of the proposition. �
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8.5. Inverse function theorem. Note that 1/Bj = yj/B̃j . Since B̃j(0, 0,0,0) =
−1, the function 1/Bj extends holomorphically to a neighborhood of (0, 0,0,0).
Moreover

∂B−1
j

∂xi
(0, 0,0,0) = 0,

∂B−1
j

∂yi
(0, 0,0,0) = −δij .

Define

Θ(α, β,x,y) =
(

α, β, A1, . . . , Ak−2,
1

B2
, . . . ,

1
Bk−1

)
.

Then Θ is holomorphic in a neighborhood of (0, 0,0,0), and its Jacobian matrix
at (0, 0,0,0) is invertible. By the inverse function theorem, Θ is a biholomorphism
from a neighborhood of (0, 0,0,0) onto its image. Hence for t ∈ C close to 0, there
exists a unique (α, β,x,y) close to (0, 0,0, 0) such that α = t and β, Aj , Bj have
the values given by the system (8.2).

We now remark that (8.2) has an obvious solution: For t ∈ C − {0} take

α = t, β =
{

t (k odd),
−t (k even), aj = bj =

{
t (j odd),

−1
t

(j even).

The corresponding Riemann surface has k − 2 nodes which disconnect it into k − 1
simple spheres. On each sphere Cj we have

g = z, φ =
dz

z − t
− dz

z + 1
t

.

This is the Weierstrass representation of a singly periodic Scherk minimal surface.
It is straightforward to check (and geometrically clear) that (8.2) is satisfied. Ge-
ometrically, this solution is a Scherk limit, namely a configuration of k − 1 Scherk
surfaces. It is not a true minimal surface (unless, of course, k = 2). By uniqueness
we conclude that (8.2) has no other solutions (α, β,x,y) around (0, 0,0,0), which
means that there are no special surfaces close to the catenoid limit if k ≥ 3.
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