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THE CLASSIFICATION PROBLEM FOR TORSION-FREE
ABELIAN GROUPS OF FINITE RANK

SIMON THOMAS

1. Introduction

In 1937, Baer [5] introduced the notion of the type of an element in a torsion-free
abelian group and showed that this notion provided a complete invariant for the
classification problem for torsion-free abelian groups of rank 1. Since then, despite
the efforts of such mathematicians as Kurosh [23] and Malcev [25], no satisfactory
system of complete invariants has been found for the torsion-free abelian groups
of finite rank n ≥ 2. So it is natural to ask whether the classification problem is
genuinely more difficult for the groups of rank n ≥ 2. Of course, if we wish to
show that the classification problem for the groups of rank n ≥ 2 is intractible, it is
not enough merely to prove that there are 2ω such groups up to isomorphism. For
there are 2ω pairwise nonisomorphic groups of rank 1, and we have already pointed
out that Baer has given a satisfactory classification for this class of groups. In this
paper, following Friedman-Stanley [11] and Hjorth-Kechris [15], we shall use the
more sensitive notions of descriptive set theory to measure the complexity of the
classification problem for the groups of rank n ≥ 2.

Recall that, up to isomorphism, the torsion-free abelian groups of rank n are
exactly the additive subgroups of the n-dimensional vector space Qn which contain
n linearly independent elements. Thus the collection of torsion-free abelian groups
of rank 1 ≤ r ≤ n can be naturally identified with the set S(Qn) of all nontrivial
additive subgroups of Qn. Notice that S(Qn) is a Borel subset of the Polish space
P(Qn) of all subsets of Qn, and hence S(Qn) can be regarded as a standard Borel
space; i.e. a Polish space equipped with its associated σ-algebra of Borel subsets.
(Here we are identifying P(Qn) with the space 2Q

n

of all functions h : Qn → {0, 1}
equipped with the product topology.) Furthermore, the natural action of GLn(Q)
on the vector space Qn induces a corresponding Borel action on S(Qn); and it
is easily checked that if A, B ∈ S(Qn), then A ∼= B iff there exists an element
ϕ ∈ GLn(Q) such that ϕ(A) = B. It follows that the isomorphism relation on
S(Qn) is a countable Borel equivalence relation. (If X is a standard Borel space,
then a Borel equivalence relation on X is an equivalence relation E ⊆ X2 which is
a Borel subset of X2. The Borel equivalence relation E is said to be countable iff
every E-equivalence class is countable.)
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Notation 1.1. Throughout this paper, the isomorphism relation on S(Qn) will be
denoted by ∼=n.

The notion of Borel reducibility will enable us to compare the complexity of the
isomorphism relations for n ≥ 1. If E, F are Borel equivalence relations on the
standard Borel spaces X , Y , respectively, then we say that E is Borel reducible to
F and write E ≤B F if there exists a Borel map f : X → Y such that xEy iff
f(x)Ff(y). We say that E and F are Borel bireducible and write E ∼B F if both
E ≤B F and F ≤B E. Finally we write E <B F if both E ≤B F and F �B E.
Most of the Borel equivalence relations that we shall consider in this paper arise
from group actions as follows. Let G be a lcsc group; i.e. a locally compact sec-
ond countable group. Then a standard Borel G-space is a standard Borel space X
equipped with a Borel action (g, x) 7→ g.x of G on X . The corresponding G-orbit
equivalence relation on X , which we shall denote by EXG , is a Borel equivalence
relation. In fact, by Kechris [18], EXG is Borel bireducible with a countable Borel
equivalence relation. Conversely, by Feldman-Moore [10], if E is an arbitrary count-
able Borel equivalence relation on the standard Borel space X , then there exists a
countable group G and a Borel action of G on X such that E = EXG .

It is clear that (∼=n) ≤B (∼=n+1) for all n ≥ 1; and our earlier question on
the difficulty of the classification problem for the torsion-free abelian groups of
rank n ≥ 2 can be rephrased as the question of whether (∼=1) <B (∼=n) when n ≥ 2.
Before we discuss Hjorth’s solution [14] of this problem and state the main theorems
of this paper, it will be helpful to first give a brief account of some of the general
theory of countable Borel equivalence relations. (A detailed development of the
theory can be found in Jackson-Kechris-Louveau [16].)

The least complex countable Borel equivalence relations are those which are
smooth; i.e. those countable Borel equivalence relationsE on a standard Borel space
X for which there exists a Borel function f : X → Y into a standard Borel space
Y such that xEy iff f(x) = f(y). Next in complexity come those countable Borel
equivalence relations E such that E is Borel bireducible with the Vitali equivalence
relation E0 defined on 2N by xE0y iff x(n) = y(n) for almost all n. More precisely,
by Harrington-Kechris-Louveau [13], if E is a countable Borel equivalence relation,
then E is nonsmooth iff E0 ≤B E. Furthermore, by Dougherty-Jackson-Kechris
[9], if E is a countable Borel equivalence relation on a standard Borel space X , then
the following three properties are equivalent:

(1) E ≤B E0.
(2) E is hyperfinite; i.e. there exists an increasing sequence

F0 ⊆ F1 ⊆ · · · ⊆ Fn ⊆ · · ·
of finite Borel equivalence relations on X such that E =

⋃
n∈N Fn. (Here

an equivalence relation F is said to be finite iff every F -equivalence class
is finite.)

(3) There exists a Borel action of Z on X such that E = EXZ .
It turns out that there is also a most complex countable Borel equivalence rela-

tion E∞, which is universal in the sense that F ≤B E∞ for every countable Borel
equivalence relation F , and that E0 <B E∞. (Clearly this universality property
uniquely determines E∞ up to Borel bireducibility.) E∞ has a number of nat-
ural realisations in many areas of mathematics, including algebra, topology and
recursion theory. (See Jackson-Kechris-Louveau [16].) For example, E∞ is Borel
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TORSION-FREE ABELIAN GROUPS OF FINITE RANK 235

bireducible to both the isomorphism relation for finitely generated groups [31] and
the isomorphism relation for fields of finite transcendence degree [32].

For many years, it was an open problem whether, up to Borel bireducibility,
there existed infinitely many countable Borel equivalence relations E such that
E0 <B E <B E∞. This problem was finally resolved by Adams-Kechris [3], who
used Zimmer’s superrigidity theory [34] to show that there are actually 2ω such
relations E up to Borel bireducibility. Of these, the only ones which have been
extensively studied are the treeable relations, which were originally introduced by
Adams [1]. The countable Borel equivalence relation E on the standard Borel space
X is said to be treeable iff there exists a Borel relation R ⊆ X ×X such that:

(a) 〈X ;R〉 is an acyclic graph; and
(b) the connected components of 〈X ;R〉 are precisely the E-equivalence classes.

For example, whenever a countable free group F has a free Borel action on a
standard Borel space X , then the corresponding orbit equivalence relation EXF
is treeable. (Here F is said to act freely on X iff g.x 6= x for all 1 6= g ∈ F
and x ∈ X .) The class of treeable relations is not nearly so well understood as
that of the hyperfinite relations. It is known that there exists a universal treeable
countable Borel equivalence relation ET∞; but it remains open whether there exists
a (necessarily treeable) countable Borel equivalence relation E such that

E0 <B E <B ET∞,

or even whether ET∞ ≤B E for every non-hyperfinite countable Borel equiva-
lence relation E. (A fuller account of the notion of treeability can be found in
Hjorth-Kechris [15] and Jackson-Kechris-Louveau [16].) We shall return to a fur-
ther consideration of these questions at the end of Section 5.

Returning to our discussion of the complexity of the isomorphism relation ∼=n on
S(Qn), it is easily checked that Baer’s classification of the rank 1 groups implies that
(∼=1) ∼B E0. (For example, see [31] or [21].) In [15], Hjorth-Kechris conjectured
that (∼=n) ∼B E∞ for all n ≥ 2; in other words, the classification problem for
the torsion-free abelian groups of rank 2 is already as complex as that for arbitrary
finitely generated groups. In [14], Hjorth provided some evidence for this conjecture
by proving that E0 <B (∼=n) for all n ≥ 2. (For n ≥ 3, Hjorth actually proved
the stronger result that ∼=n is not treeable. More recently, Kechris [21] has shown
that ∼=2 is also not treeable.) Later Adams-Kechris [3] used Zimmer’s superrigidity
theorem for cocycles [34, Theorem 5.2.5] to prove that

(∼=∗1) <B (∼=∗2) <B · · · <B (∼=∗n) <B · · ·

where (∼=∗n) is the restriction of the isomorphism relation to the class of rigid torsion-
free abelian groups A ∈ S(Qn). Here an abelian groupA is said to be rigid if its only
automorphisms are the obvious ones: a 7→ a and a 7→ −a. In particular, none of the
relations ∼=∗n is a universal countable Borel equivalence relation. It was not clear
whether the Adams-Kechris result should be regarded as evidence for or against the
Hjorth-Kechris conjecture, since very little was known concerning the relationship
between ∼=∗n and ∼=m for n, m ≥ 1. Of course, it is clear that (∼=∗n) ≤B (∼=n) for all
n ≥ 1; and it is easily seen that (∼=∗1) ∼B E0 and so (∼=∗1) ∼B (∼=1). But, apart from
these easy observations, essentially nothing else was known. Recently, Thomas [29]
disproved the Hjorth-Kechris conjecture by showing that (∼=∗3) �B (∼=2). However,
Thomas [29] left open the possibility that there might exist an integer n > 2 such
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that (∼=n) ∼B E∞. The main result in this paper shows that none of the relations
∼=n is universal.

Theorem 1.2. (∼=∗n+1) �B (∼=n) for all n ≥ 1.

As an immediate consequence, we also see that the classification problem for
S(Qn+1) is strictly more complex than that for S(Qn).

Theorem 1.3. (∼=n) <B (∼=n+1) for all n ≥ 1.

Theorem 1.2 is an easy consequence of Theorem 1.5. But before we can state
Theorem 1.5, we need to recall some notions from ergodic theory and group theory.
Let G be a lcsc group and let X be a standard Borel G-space. Throughout this
paper, a probability measure onX will always mean a Borel probability measure; i.e.
a measure which is defined on the collection of Borel subsets of X . The probability
measure µ on X is said to be nonatomic if µ({x}) = 0 for all x ∈ X ; and µ is said
to be G-invariant iff µ(g(A)) = µ(A) for every g ∈ G and Borel subset A ⊆ X . The
G-invariant probability measure µ is ergodic iff for every G-invariant Borel subset
A ⊆ X , either µ(A) = 0 or µ(A) = 1. It is well known that the following two
properties are equivalent:

(i) µ is ergodic.
(ii) If Y is a standard Borel space and f : X → Y is a G-invariant Borel

function, then there exists a G-invariant Borel subset M ⊆ X with µ(M) =
1 such that f �M is a constant function.

For later use, we shall now also recall the notions of a Kazhdan group and an
amenable group. Let G be a lcsc group and let π : G→ U(H) be a unitary repre-
sentation of G on the separable Hilbert space H. Then π almost admits invariant
vectors if for every ε > 0 and every compact subset K ⊆ G, there exists a unit
vector v ∈ H such that ||π(g).v − v|| < ε for all g ∈ K. We say that G is a Kazh-
dan group if for every unitary representation π of G, if π almost admits invariant
vectors, then π has a non-zero invariant vector. If G is a connected semisimple
R-group, each of whose almost R-simple factors has R-rank at least 2, and Γ is a
lattice in G, then Γ is a Kazhdan group. (For example, see Margulis [26] or Zimmer
[34].) In particular, SLm(Z) is a Kazhdan group for each m ≥ 3.

A countable (discrete) group G is amenable if there exists a finitely additive
G-invariant probability measure ν : P(G) → [0, 1] defined on every subset of G.
During the proof of Theorem 2.3, we shall make use of the fact that if the countable
G is soluble-by-finite, then G is amenable. (For example, see Wagon [33, Theorem
10.4].)

In the first three sections of this paper, we shall only discuss countable groups
equipped with the discrete topology. In the later sections, we shall also need to
consider various linear algebraic K-groups G(K) 6 GLn(K), where K is a local
field. Throughout this paper, a field K is said to be local if K is a non-discrete
locally compact field of characteristic 0. Each local field K is isomorphic to either R,
C or a finite extension of the field Qp of p-adic numbers for some prime p. If K is a
local field and G(K) 6 GLn(K) is an algebraic K-group, then G(K) is a lcsc group
with respect to the Hausdorff topology; i.e. the topology obtained by restricting the
natural topology on Kn2

to G(K). Any topological notions concerning the group
G(K) will always refer to the Hausdorff topology.
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Notation 1.4. Throughout this paper, R(Qn) will denote the Borel set consisting
of the groups A ∈ S(Qn) of rank exactly n.

Theorem 1.5. Let m ≥ 3 and let X be a standard Borel SLm(Z)-space with
an invariant ergodic probability measure µ. Suppose that 1 ≤ n < m and that
f : X → R(Qn) is a Borel function such that xEXSLm(Z)y implies f(x) ∼=n f(y).
Then there exists an SLm(Z)-invariant Borel subset M with µ(M) = 1 such that f
maps M into a single ∼=n-class.

We shall prove Theorem 1.5 in Section 3.

Proof of Theorem 1.2. The case when n = 1 was dealt with in Hjorth [14]. So
suppose that n ≥ 2. Let R(Qn+1,Zn+1) be the Borel set consisting of those A ∈
R(Qn+1) such that Zn+1 6 A. Then R(Qn+1,Zn+1) is invariant under the action
of the subgroup SLn+1(Z) of GLn+1(Q); and Hjorth [14] has shown that there
exists an SLn+1(Z)-invariant Borel subset X of R(Qn+1,Zn+1) with the following
properties:

(i) Each A ∈ X is rigid.
(ii) There exists an SLn+1(Z)-invariant nonatomic probability measure µ on

X .
Furthermore, Adams-Kechris [3, Section 6] have shown that we can also suppose
that:

(iii) µ is ergodic.
Suppose that (∼=∗n+1) ≤B (∼=n). Then there exists a Borel function f : X → S(Qn)
such thatA ∼=∗n+1 B iff f(A) ∼=n f(B). By the ergodicity of µ, there exists an integer
1 ≤ ` ≤ n and an SLn+1(Z)-invariant Borel subset X0 ⊆ X with µ(X0) = 1 such
that f(A) has rank ` for each A ∈ X0. Let S`(Qn) be the Borel subset consisting
of those A ∈ S(Qn) such that A has rank exactly `. Let g : S`(Qn) → R(Q`) be
a Borel function such that C ∼=n D iff g(C) ∼=` g(D) and let h = (g ◦ f) � X0.
Then h : X0 → R(Q`) is a Borel function such that A ∼=∗n+1 B iff h(A) ∼=` h(B).
Clearly if A is EX0

SLn+1(Z)-equivalent to B, then A ∼=∗n+1 B and so h(A) ∼=` h(B).
Hence by Theorem 1.5, there exists an SLn+1(Z)-invariant Borel subset M ⊆ X0

with µ(M) = 1 such that h maps M into a single ∼=`-class C. But clearly h−1(C)
consists of only countably many EX0

SLn+1(Z)-classes, which contradicts the fact that
µ is nonatomic. Hence (∼=∗n+1) �B (∼=n). �

The above argument also shows that the analogue of Theorem 1.3 holds for the
isomorphism relations ∼=n� R(Qn) on the groups of rank exactly n. (To see that
(∼=n� R(Qn)) ≤B (∼=n+1� R(Qn+1)), notice that we can define a Borel reduction
f : R(Qn)→ R(Qn+1) by f(A) = A⊕Q.)

The analogue of Theorem 1.3 also holds for the class of p-local torsion-free abelian
groups, which is defined as follows. Throughout this paper, P will denote the set of
primes. If p ∈ P, then a group A ∈ S(Qn) is said to be p-local iff A = qA for every
prime q 6= p; i.e. A is a Z(p)-module, where

Z(p) = {a/b ∈ Q | b is relatively prime to p}.

Let S(p)(Qn) and R(p)(Qn) be the Borel sets consisting of the p-local groups A such
that A ∈ S(Qn), A ∈ R(Qn), respectively; and let ∼=(p)

n be the restriction of the
isomorphism relation to S(p)(Qn).
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Theorem 1.6. Let p ∈ P be a prime. Then (∼=(p)
n ) <B (∼=(p)

n+1) for all n ≥ 1.

Proof. It is easily checked that |S(p)(Q)| = ω and that |S(p)(Q2)| = 2ω; and
clearly this implies that (∼=(p)

1 ) <B (∼=(p)
2 ). So we can suppose that n ≥ 2. Let

R(p)(Qn+1,Zn+1
(p) ) be the Borel set consisting of those A ∈ R(p)(Qn+1) such that

Zn+1
(p) 6 A. Then R(p)(Qn+1,Zn+1

(p) ) is invariant under the action of the subgroup
SLn+1(Z) of GLn+1(Q); and Hjorth [14] has shown that there exists an SLn+1(Z)-
invariant Borel subset X of R(p)(Qn+1,Zn+1

(p) ) with the following properties:

(i) There exists an SLn+1(Z)-invariant nonatomic probability measure µ on
X .

(ii) There exists an infinite subgroup L 6 SLn+1(Z) which acts freely on X .

Arguing as in Adams-Kechris [3, Section 6], we can also suppose that:

(iii) µ is ergodic.

Now arguing as in the proof of Theorem 1.2, we see that (∼=(p)
n+1) �B (∼=n). Hence

(∼=(p)
n ) <B (∼=(p)

n+1). �

(Once again, it is easily seen that the analogue of Theorem 1.6 also holds for the
isomorphism relations on p-local groups of rank exactly n.) Of course, the above
proof is not completely satisfactory, since it gives no information concerning the
complexity of the relation ∼=(p)

2 . In particular, it leaves open the possibility that
∼=(p)

2 is smooth. This situation will be remedied in Section 5, where we shall show
that ∼=(p)

2 is not treeable.
In an earlier version of this paper, I conjectured that if p 6= q are distinct primes

and n ≥ 2, then the isomorphism relations ∼=(p)
n and ∼=(q)

n are incomparable with
respect to Borel reducibility. In Thomas [30], this was proved in the case when
n ≥ 3. However, the case when n = 2 still remains open.

This paper is organised as follows. In Section 2, we shall discuss the notion
of a cocycle of a group action and state the two cocycle reduction results which
are needed in the proof of Theorem 1.5. In Sections 3 and 4, we shall consider the
quasi-equality and quasi-isomorphism relations onR(Qn). These relations were first
introduced by Jónsson [17], who showed that much of the pathological behaviour of
the class of finite rank torsion-free abelian groups disappears when the isomorphism
relation is replaced by the coarser quasi-isomorphism relation. In Section 3, we shall
initially prove the analogue of Theorem 1.5 for the quasi-isomorphism relation,
modulo the result that the quasi-equality relation is hyperfinite, which will be
proved in Section 4. Theorem 1.5 will then follow easily. In Section 5, we shall
study the class of p-local torsion-free abelian groups of finite rank. In particular,
we shall show that the isomorphism relation for the class of p-local groups of rank
2 is not treeable. Finally in Section 6, we shall prove our main cocycle reduction
result.

Throughout this paper, we shall identify linear transformations π : Qn → Qn
with the corresponding matrices Mπ ∈Matn(Q) with respect to the standard basis
e1, . . . , en. If π ∈Matn(Q), then πt denotes the transpose of π. If J is a ring, then
J∗ denotes the group of multiplicative units of J . If K is a field, then K denotes
the algebraic closure of K.
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2. Cocycles

In this section, we shall discuss the notion of a cocycle of a group action and
state the two cocycle reduction results which are needed in the proof of Theorem
1.5. (Clear accounts of the theory of cocycles can be found in Zimmer [34] and
Adams-Kechris [3]. In particular, Adams-Kechris [3, Section 2] provides a conve-
nient introduction to the basic techniques and results in this area, written for the
non-expert in the ergodic theory of groups.) Let G be a lcsc group and let X be a
standard Borel G-space with an invariant probability measure µ.

Definition 2.1. If H is a lcsc group, then a Borel function α : G × X → H is
called a cocycle if for all g, h ∈ G,

α(hg, x) = α(h, g.x)α(g, x) µ-a.e.(x).

If the above equation holds for all g, h ∈ G and all x ∈ X , then α is said to be a
strict cocycle. By Zimmer [34, Theorem B.9], if α : G×X → H is a Borel cocycle,
then there exists a strict cocycle β : G×X → H such that for all g ∈ G,

β(g, x) = α(g, x) µ-a.e.(x).

The standard example of a cocycle arises in the following fashion. Suppose that Y
is a standard Borel H-space and that H acts freely on Y . If f : X → Y is a Borel
function such that xEXG y implies f(x)EYHf(y), then we can define a strict Borel
cocycle α : G×X → H by letting α(g, x) be the unique element of H such that

α(g, x).f(x) = f(g.x).

Suppose now that B : X → H is a Borel function and that f ′ : X → Y is
defined by f ′(x) = B(x).f(x). Then xEXG y also implies that f ′(x)EYHf

′(y); and
the corresponding cocycle α′ : G×X → H satisfies

α′(g, x) = B(g.x)α(g, x)B(x)−1

for all g ∈ G and x ∈ X . This observation motivates the following definition.

Definition 2.2. Let H be a lcsc group. Then the cocycles α, β : G×X → H are
equivalent , written α ∼ β, iff there exists a Borel function B : X → H such that
for all g ∈ G,

β(g, x) = B(g.x)α(g, x)B(x)−1 µ-a.e.(x).

The proof of Theorem 1.5 is based upon a number of cocycle reduction results;
i.e. theorems which say that under suitable hypotheses on G and H , every cocycle
α : Γ × X → H is equivalent to a cocycle β such that β(Γ × X) is contained in
a “small” subgroup of H . Before we state our main cocycle reduction theorem,
we need to review some notions from the theory of algebraic groups. Throughout
this paper, Ω will denote a fixed algebraically closed field of characteristic 0 which
contains R and all of the p-adic fields Qp. By an algebraic group, we shall always
mean a subgroup G of some general linear group GLn(Ω) which is Zariski closed in
GLn(Ω). If G can be defined using polynomials with coefficients in the subfield k
of Ω, then we say that G is an algebraic k-group. For any subring R ⊆ Ω, we define

GLn(R) = {(rij) ∈ GLn(Ω) | rij ∈ R and det(rij)−1 ∈ R};
and if G 6 GLn(Ω) is an algebraic group, then we define

G(R) = G ∩GLn(R).
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In particular, if R = k is a subfield of Ω and G is an algebraic k-group, then G(k)
is the group of all matrices in G with entries in k.

The following cocycle reduction theorem is a straightforward consequence of
Zimmer’s superrigidity theorem [34, Theorem 5.2.5] and the ideas of Adams-Kechris
[3].

Theorem 2.3. Let m ≥ 3 and let X be a standard Borel SLm(Z)-space with
an invariant ergodic probability measure. Suppose that G is an algebraic Q-group
such that dimG < m2 − 1 and that H 6 G(Q). Then for every Borel cocycle
α : SLm(Z)×X → H, there exists an equivalent cocycle γ such that γ(SLm(Z)×X)
is contained in a finite subgroup of H.

We shall prove Theorem 2.3 in Section 6. In the proof of Theorem 1.5, we shall
also make use of the following cocycle reduction result, which is a special case of
Hjorth-Kechris [15, Theorem 10.5]. (It should be pointed out that this particular
special case is a consequence of Zimmer [34, Theorem 9.1.1].)

Theorem 2.4. Let m ≥ 3 and let X be a standard Borel SLm(Z)-space with an
invariant ergodic probability measure µ. Suppose that Y is a standard Borel space
and that F is a hyperfinite equivalence relation on Y . If f : X → Y is a Borel
function such that xEXSLm(Z)y implies f(x)Ff(y), then there exists an SLm(Z)-
invariant Borel subset M with µ(M) = 1 such that f maps M into a single F -class.

3. The quasi-isomorphism relation

In this section, we shall use our cocycle reduction theorems to prove Theorem 1.5.
We shall begin by saying a few words about the strategy of the proof. So suppose
that m ≥ 3 and that X is a standard Borel SLm(Z)-space with an invariant ergodic
probability measure µ. Suppose that 1 ≤ n < m and that f : X → R(Qn) is a
Borel function such that xEXSLm(Z)y implies f(x) ∼=n f(y). Because GLn(Q) does
not act freely on R(Qn), we are initially unable to define a corresponding cocycle
α : SLm(Z) ×X → GLn(Q).

In Thomas [29], we were able to get around this difficulty, in the case when
n = 2, by reducing to the situation where there exists a Borel subset X0 ⊆ X with
µ(X0) = 1 such that Aut(f(x)) is a fixed subgroup L of GL2(Q) for all x ∈ X0.
This meant that ∼=2� f(X0) was induced by a free action of the quotient group

H = NGL2(Q)(L)/L;

and so we could define a corresponding cocycle α : SLm(Z) ×X → H . However,
this would not have been useful unless there existed a suitable cocycle reduction
result for cocycles taking values in H ; and for such a result to exist, it was necessary
that H should be a “reasonably classical” group. Fortunately, using Król’s analysis
[22] of the automorphism groups of the torsion-free abelian groups of rank 2, we
were able to explicitly enumerate the possibilities for L; and it turned out that we
could make a further reduction to the situation when H was a slight variant of
PGL2(Q).

Now suppose that n > 2. Then it seems likely that, using Arnold [4], we can
once again reduce to the situation where there exists a Borel subset X0 ⊆ X with
µ(X0) = 1 such that Aut(f(x)) is a fixed subgroup L of GLn(Q) for all x ∈
X0. Unfortunately, as n gets larger, the possibilities for L become more and more
complex. In fact, by Corner’s Theorem [7], L can be isomorphic to the group of units
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of an arbitrary reduced subring of Matd(Q), where d = bn/2c; and it is far from clear
whether H = NGLn(Q)(L)/L will always be a “reasonably classical” group. In order
to avoid these algebraic complications, we shall initially replace the isomorphism
relation on R(Qn) by the coarser relation of quasi-isomorphism. This relation was
first introduced in Jónsson [17], where it was shown that the class of torsion-free
abelian groups of finite rank has a better decomposition theory with respect to
quasi-isomorphism than with respect to isomorphism. This decomposition theory
will not concern us in this paper. Rather we shall exploit the fact that much
of the number-theoretical complexity of a finite rank torsion-free abelian group is
lost when we work with respect to quasi-isomorphism; and this turns out to be
enough to ensure that the cocycles that arise in our analysis always take values
in a “reasonably classical” group. As a bonus, we obtain that the problem of
classifying the torsion-free abelian groups of finite rank up to quasi-isomorphism
is also intractible. (However, we should point out that the shift from isomorphism
to quasi-isomorphism comes at a cost. In Thomas [29], the proof yields an explicit
decomposition of ∼=2 as a direct sum of amenable relations and orbit relations
induced by free actions of homomorphic images of GL2(Q). It does not seem
possible to extract an analogous decomposition of ∼=n from the current proof.)

Definition 3.1. Suppose that A, B ∈ R(Qn). Then A is said to be quasi-contained
in B, written A ≺n B, if there exists an integer m > 0 such that mA 6 B. If
A ≺n B and B ≺n A, then A and B are said to be quasi-equal and we write
A ≈n B.

Recall that if A ∈ R(Qn) and m > 0, then [A : mA] <∞. (For example, see [12,
Exercise 92.5].) It follows that if A, B ∈ R(Qn), then A ≈n B iff A ∩ B has finite
index in both A and B.

Lemma 3.2. ≈n is a countable Borel equivalence relation on R(Qn).

Proof. It is clear that ≈n is a Borel equivalence relation. Thus it is enough to show
that if A ∈ R(Qn), then there only exist countably many B ∈ R(Qn) such that
A ≈n B. To see this, suppose that A ≈n B and let r, s > 0 be integers such that
rA 6 B and sB 6 A. Then rA 6 B 6 (1/s)A and

[(1/s)A : rA] = [A : rsA] <∞.

It follows that there are only countably many possibilities for B. �

Definition 3.3. Suppose that A, B ∈ R(Qn). Then A and B are said to be quasi-
isomorphic, written A ∼n B, if there exists ϕ ∈ GLn(Q) such that ϕ(A) ≈n B.

Using Lemma 3.2, it follows that each ∼n-class consists of only countably many
∼=n-classes. In particular, ∼n is also a countable Borel equivalence relation on
R(Qn). Most of our effort in this section will be devoted to proving the following
analogue of Theorem 1.5 for the quasi-isomorphism relation.

Theorem 3.4. Let m ≥ 3 and let X be a standard Borel SLm(Z)-space with
an invariant ergodic probability measure µ. Suppose that 1 ≤ n < m and that
f : X → R(Qn) is a Borel function such that xEXSLm(Z)y implies f(x) ∼n f(y).
Then there exists an SLm(Z)-invariant Borel subset M with µ(M) = 1 such that f
maps M into a single ∼n-class.
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Arguing as in the proof of Theorem 1.2, we now easily obtain the following result.

Theorem 3.5. (∼n) <B (∼n+1) for all n ≥ 1.

(Of course, since ∼n is defined to be the quasi-isomorphism relation on the space
R(Qn) of groups of rank exactly n, it is necessary to explain why (∼n) ≤B (∼n+1).
To see this, let f : R(Qn)→ R(Qn+1) be the Borel map defined by f(A) = A⊕Q.
Using Fuchs [12, Theorem 92.5], it follows easily that f is a Borel reduction from
∼n to ∼n+1.) Before we begin the proof of Theorem 3.4, we shall show how to
derive Theorem 1.5.

Proof of Theorem 1.5. Suppose that f : X → R(Qn) is a Borel function such that
xEXSLm(Z)y implies f(x) ∼=n f(y). Then obviously xEXSLm(Z)y implies f(x) ∼n f(y);
and so by Theorem 3.4, there exists an SLm(Z)-invariant Borel subset Y with
µ(Y ) = 1 such that f maps Y into a single ∼n-class C. Since C is countable, there
exists a Borel subset Z ⊆ Y with µ(Z) > 0 and a fixed group A ∈ C such that
f(x) = A for all x ∈ Z. Since µ is ergodic, the SLm(Z)-invariant Borel subset
M = SLm(Z).Z satisfies µ(M) = 1; and clearly f maps M into the ∼=n-class
containing A. �

For each A ∈ R(Qn), let [A] be the ≈n-class containing A. During the proof of
Theorem 3.4, we shall consider the action of GLn(Q) on the set of ≈n-classes. In
order to compute the setwise stabiliser in GLn(Q) of a ≈n-class [A] , it is necessary
to introduce the notions of a quasi-endomorphism and a quasi-automorphism. If
A ∈ R(Qn), then a linear transformation ϕ ∈ Matn(Q) is said to be a quasi-
endomorphism of A iff ϕ(A) ≺n A. Equivalently, ϕ is a quasi-endomorphism of A
iff there exists an integer m > 0 such that mϕ ∈ End(A). It is easily checked that
the collection QE(A) of quasi-endomorphisms of A is a Q-subalgebra of Matn(Q)
and that if A ≈n B, then QE(A) = QE(B). A linear transformation ϕ ∈ Matn(Q)
is said to be a quasi-automorphism of A iff ϕ is a unit of the Q-algebra QE(A).
The group of quasi-automorphisms of A is denoted by QAut(A). By Exercise 6.1
[4], if ψ ∈ End(A), then ψ ∈ QAut(A) iff ψ is a monomorphism.

Lemma 3.6. If A ∈ R(Qn), then QAut(A) is the setwise stabiliser of [A] in
GLn(Q).

Proof. First suppose that ϕ ∈ QAut(A). Then there exists an integer m > 0
such that ψ = mϕ ∈ End(A). Clearly ψ is also a unit of QE(A) and so ψ is a
monomorphism. Hence by [12, Exercise 92.5], ψ(A) has finite index in A and so
ψ(A) ≈n A. Since ψ(A) = mϕ(A), it follows that ψ(A) ≈n ϕ(A). Thus ϕ(A) ≈n A
and so ϕ stabilises [A].

Conversely suppose that ϕ ∈ GLn(Q) stabilises [A]. Then ϕ(A) ≈n A and so
there exists an integer m > 0 such that mϕ(A) 6 A. Since mϕ ∈ End(A) is a
monomorphism, it follows that mϕ ∈ QAut(A) and so ϕ ∈ QAut(A). �

Now we are ready to begin the proof of Theorem 3.4. So let m ≥ 3 and let X
be a standard Borel SLm(Z)-space with an invariant ergodic probability measure
µ. Suppose that 1 ≤ n < m and that f : X → R(Qn) is a Borel function such that
xEXSLm(Z)y implies f(x) ∼n f(y). Let E = EXSLm(Z) and for each x ∈ X , let Ax =
f(x) ∈ R(Qn). First notice that there are only countably many possibilities for the
Q-algebra QE(Ax). Hence there exists a Borel subset X1 ⊆ X with µ(X1) > 0 and
a fixed Q-subalgebra S of Matn(Q) such that QE(Ax) = S for all x ∈ X1. By the
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ergodicity of µ, we have that µ(SLm(Z).X1) = 1. In order to simplify notation, we
shall assume that SLm(Z).X1 = X . After slightly adjusting f if necessary, we can
suppose that QE(Ax) = S for all x ∈ X . (More precisely, let c : X → X be a Borel
function such that c(x)Ex and c(x) ∈ X1 for all x ∈ X . Then we can replace f
with f ′ = f ◦ c.) In particular, we have that QAut(Ax) = S∗, the group of units
of S, for each x ∈ X . Now suppose that x, y ∈ X and that xEy. Then Ax ∼n Ay
and so there exists ϕ ∈ GLn(Q) such that ϕ(Ax) ≈n Ay. Notice that

ϕSϕ−1 = ϕQE(Ax)ϕ−1 = QE(ϕ(Ax)) = QE(Ay) = S

and so ϕ ∈ N = NGLn(Q)(S). Clearly we also have that ϕ([Ax]) = [Ay]; and by
Lemma 3.6, for each x ∈ X , the stabiliser of [Ax] in GLn(Q) is QAut(Ax) = S∗.
Let H = N/S∗ and for each ϕ ∈ N , let ϕ = ϕS∗. Then we can define a Borel
cocycle α : SLm(Z) ×X → H by

α(g, x) = the unique element ϕ ∈ H such that ϕ([Ax]) = [Ag.x].

Lemma 3.7. There exists an algebraic Q-group G with dimG < m2 − 1 such that
H 6 G(Q).

Proof. Recall that throughout this paper, Ω denotes a fixed algebraically closed
field containing R and all of the p-adic fields Qp. Let

Λ = Ω⊗ S ⊆Matn(Ω)

be the associated Ω-algebra. Then Λ is an affine Q-variety; and the Cayley-
Hamilton Theorem implies that the group of units of Λ is given by

Λ∗ = {ϕ ∈ Λ | det(ϕ) 6= 0}.

Thus Λ∗ is an algebraic Q-group and Λ∗(Q) = S∗. Furthermore, by [6, Proposition
1.7], Γ = NGLn(Ω)(Λ) is also an algebraic Q-group and clearly Γ(Q) = N . By [6,
Theorem 6.8], G = Γ/Λ∗ is an algebraic Q-group and

H = Γ(Q)/Λ∗(Q) 6 G(Q).

Finally note that

dimG ≤ dim Γ ≤ dimGLn(Ω) = n2 < m2 − 1.

�

By Theorem 2.3, α is equivalent to a cocycle γ such that γ(SLm(Z) × X) is
contained in a finite subgroup K of H . Let B : X → H be a Borel function such
that:

(*) for all g ∈ SLm(Z), α(g, x) = B(g.x)γ(g, x)B(x)−1 µ-a.e.(x).

It is easily checked that if x satisfies (*) and xEy, then y also satisfies (*). To
simplify notation, we shall assume that (*) holds for all x ∈ X . Now there exists
a Borel subset X1 ⊆ X with µ(X1) > 0 and a fixed element ψ ∈ H such that
B(x) = ψ for all x ∈ X1. Since µ is ergodic, µ(SLm(Z).X1) = 1 and so we can also
assume that X1 intersects every SLm(Z)-orbit on X . Let c : X → X be a Borel
function such that c(x)Ex and c(x) ∈ X1 for each x ∈ X ; and let x1 = c(x). Then
for each x ∈ X ,

Ψ(x) = {α(g, x1) | g.x1 ∈ X1} ⊆ ψKψ
−1
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is a nonempty finite subset of H . Hence for each x ∈ X ,

Φ(x) = {ϕ([Ax1 ]) | ϕ = α(g, x1) for some g.x1 ∈ X1}
= {[Ag.x1 ] | g.x1 ∈ X1}
= {[Ay] | yEx and y ∈ X1}

is a nonempty finite set of ≈n-classes; and clearly if xEy, then Φ(x) = Φ(y). By
the ergodicity of µ, we can suppose that there exists an integer 1 ≤ k ≤ |K| such
that |Φ(x)| = k for all x ∈ X . Now let x 7→ (x1, . . . , xk) be a Borel function from
X to Xk such that for each x ∈ X ,

(a) xiEx and xi ∈ X1; and
(b) Φ(x) = {[Ax1 ], . . . , [Axk ]}.

Finally let f̃ : X → R(Qn)k be the Borel function defined by

f̃(x) = (Ax1 , . . . , Axk);

and let F be the countable Borel equivalence relation on R(Q)k defined by

(A1, . . . , Ak)F (B1, . . . , Bk) iff {[A1], . . . , [Ak]} = {[B1], . . . , [Bk]}.

To complete the proof of Theorem 3.4, we now require the following theorem, which
will be proved in Section 4.

Theorem 3.8. For each n ≥ 1, the relation ≈n is hyperfinite.

Using the fact that ≈n is hyperfinite, it follows easily that F is also hyperfinite.
(For example, see [16, Section 1].) Notice that if xEy, then Φ(x) = Φ(y) and so
f̃(x)F f̃ (y). By Theorem 2.4, there exists an SLm(Z)-invariant Borel subset M ⊆ X
with µ(M) = 1 such that f̃ maps M into a single F -class; and this implies that f
maps M into a single ∼n-class. This completes the proof of Theorem 3.4.

Finally we should point out that both of the following questions remain open.

Question 3.9. Is (∼=n) ≤B (∼n) for n ≥ 2?

Question 3.10. Is (∼n) ≤B (∼=n) for n ≥ 2?

In an earlier version of this paper, I pointed out that a negative answer to
Question 3.9 would be especially interesting, since it was then unknown whether
there existed a pair E, F of countable Borel equivalence relations on a standard
Borel space X such that E ⊆ F and E �B F . Soon afterwards, Adams [2] proved
that there exists a pair E ⊆ F of countable Borel equivalence relations such that
E and F are incomparable with respect to Borel reducibility.

4. The hyperfiniteness of the quasi-equality relation

In this section, we shall prove Theorem 3.8 which says that the quasi-equality
relation ≈n is hyperfinite for each n ≥ 1. The following lemma, which is due to
Lady [24], will enable us to restrict our attention to the class of p-local groups.
Recall that Z(p) is the ring of rational numbers a/b ∈ Q such that b is relatively
prime to p.

Definition 4.1. If A ∈ R(Qn) and p ∈ P, then the localisation of A at p is defined
to be Ap = Z(p) ⊗A.
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Lemma 4.2. If A, B ∈ R(Qn), then A ≈n B iff the following two conditions are
satisfied:

(i) Ap ≈n Bp for all primes p ∈ P; and
(ii) Ap = Bp for all but finitely many primes p ∈ P.

Definition 4.3. For each prime p ∈ P, we define ≈(p)
n to be the restriction of the

quasi-equality relation to the space R(p)(Qn) of p-local groups A ∈ R(Qn).

Most of this section will be devoted to proving the following special case of
Theorem 3.8.

Lemma 4.4. For each prime p ∈ P, the relation ≈(p)
n is smooth.

Before proving Lemma 4.4, we shall show how to complete the proof of Theorem
3.8.

Proof of Theorem 3.8. Let E0 be the Vitali equivalence relation on 2N; and let E∗0
be the corresponding equivalence relation on 2P×N, defined by xE∗0y iff x(p, n) =
y(p, n) for all but finitely many pairs (p, n) ∈ P× N. Then clearly E∗0 ∼B E0. For
each prime p ∈ P, since the relation ≈(p)

n is smooth, there exists an injective Borel
map gp : R(p)(Qn)→ 2N such that A ≈(p)

n B iff gp(A)E0gp(B). Consider the Borel
map f : R(Qn) → 2P×N, defined by f(A)(p, n) = gp(Ap)(n). By Lemma 4.2, if A,
B ∈ R(Qn), then A ≈n B iff f(A)E∗0f(B). Hence ≈n is a hyperfinite equivalence
relation. �

Thus it only remains to prove Lemma 4.4. For the rest of this section, we
shall fix a prime p ∈ P and, to simplify the notation, we shall write ≈ instead of
≈(p)
n . Throughout this section, we shall regard Qn as an additive subgroup of the

n-dimensional vector space Qnp over the field Qp of p-adic numbers; and we shall
extend the relation ≈ to the collection of all additive subgroups of Qnp by setting
C ≈ D iff C ∩D has finite index in both C and D. Let Zp be the ring of p-adic
integers. Following the approach of Kurosh [23] and Malcev [25], we shall now
further localise each p-local group A ∈ R(p)(Qn) to a corresponding Zp-submodule
Â of Qnp . The motivation for this is that while A might have a very complex
structure, Â will always decompose into a direct sum of copies of Zp and Qp.

Definition 4.5. For each A ∈ R(p)(Qn), we define Â = Zp ⊗A.

We shall regard each Â as a subgroup of Qnp in the usual way; i.e. Â is the
subgroup consisting of all finite sums

γ1a1 + γ2a2 + · · ·+ γtat,

where γi ∈ Zp and ai ∈ A for 1 ≤ i ≤ t. By [12, Lemma 93.3], there exist integers
0 ≤ k, ` ≤ n with k + ` = n and elements vi, wj ∈ Â such that

Â =
k⊕
i=1

Qpvi ⊕
⊕̀
j=1

Zpwj .

Definition 4.6. For each A ∈ R(p)(Qn), we define VA =
⊕k

i=1Qpvi.

The following result clarifies the algebraic content of the quasi-equality relation
on R(p)(Qn).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



246 SIMON THOMAS

Theorem 4.7. If A, B ∈ R(p)(Qn), then A ≈ B iff VA = VB .

Theorem 4.7 is an immediate consequence of the following two lemmas.

Lemma 4.8. If A, B ∈ R(p)(Qn), then A ≈ B iff Â ≈ B̂.

Proof. First suppose that Â ≈ B̂. By [12, Lemma 93.2], we have that Â ∩Qn = A

and B̂ ∩Qn = B. Thus

[A : A ∩B] = [Â ∩Qn : (Â ∩ B̂) ∩Qn] ≤ [Â : Â ∩ B̂] <∞.
Similarly, [B : A ∩B] <∞ and hence A ≈ B.

Conversely suppose that A ≈ B and let C = A∩B. Then Ĉ 6 Â∩ B̂ and so it is
enough to show that Ĉ has finite index in both Â and B̂. To see this, let F = A/C
and consider the short exact sequence

0→ C → A→ F → 0.

Then by [12, Theorem 60.2], the sequence

Zp ⊗ C → Zp ⊗A→ Zp ⊗ F → 0

is also exact. Let F =
⊕s

r=1 Cr be a decomposition of F into a direct sum of finite
cyclic groups Cr of order mr. Then by [12, Section 59],

Zp ⊗ F ∼=
s⊕
r=1

Zp/mrZp.

Thus Zp⊗F is a finite group and so Ĉ has finite index in Â. Similarly Ĉ has finite
index in B̂. �

Lemma 4.9. If A, B ∈ R(p)(Qn), then Â ≈ B̂ iff VA = VB.

Proof. First suppose that Â ≈ B̂. Then for each v ∈ VA, we have that

[Qpv : B̂ ∩Qpv] = [Â ∩Qpv : Â ∩ B̂ ∩Qpv] ≤ [Â : Â ∩ B̂] <∞.

Suppose that v ∈ VArVB. Then B̂ ∩Qpv is a proper Zp-submodule of Qpv and so
there exists a vector 0 6= u ∈ Qpv such that B̂ ∩Qpv = Zpu. But then

Qpv/(B̂ ∩Qpv) ∼= Qp/Zp ∼= C(p∞),

which is a contradiction. Thus VA 6 VB. Similarly VB 6 VA and so VA = VB.
Conversely suppose that VA = VB = V . Then there exists an integer 0 ≤ ` ≤ n

and elements xj ∈ Â, yj ∈ B̂ such that

Â = V ⊕
⊕̀
j=1

Zpxj

and

B̂ = V ⊕
⊕̀
j=1

Zpyj .

Let LA =
⊕`

j=1 Zpxj and LB =
⊕`

j=1 Zpyj . Then we can identify LA, LB with
the corresponding Zp-submodules of the `-dimensionalQp-vector space W = Qnp/V .
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Now there exists an integer t ≥ 0 such that ptyj ∈ LA for each 1 ≤ j ≤ `. It follows
that

[LB : LA ∩ LB] ≤ [LB : ptLB] = pt`.

Similarly [LA : LA ∩ LB] <∞ and hence Â ≈ B̂. �
Now that we have dealt with the purely algebraic aspect of the quasi-equality

relation on R(p)(Qn), we shall next consider its descriptive set-theoretic aspect.
Recall that the vector space Qnp is a complete separable metric space with respect
to the metric induced by the usual p-adic norm; and that each Qp-vector subspace
V 6 Qnp is a closed subset of Qnp with respect to this metric. The Effros Borel space
on Qnp is defined to be the set

F (Qnp ) = {Z ⊆ Qnp | Z is a closed subset of Qnp}
equipped with the σ-algebra generated by the sets of the form

{Z ∈ F (Qnp ) | Z ∩ U 6= ∅},
where U varies over the open subsets of Qnp . By [20, Theorem 12.6], F (Qnp ) is a
standard Borel space. Thus to complete the proof of Theorem 3.8, we need only
show that the map A 7→ VA is a Borel map fromR(p)(Qn) into F (Qnp ). Furthermore,
it is clear that the map s : (Qnp )≤n → F (Qnp ), defined by

s(v1, . . . , vk) = the Qp-subspace spanned by {v1, . . . , vk},
is Borel. (For example, this follows easily from [20, Exercise 12.14].) Hence we need
only show that there exists a Borel map b : R(p)(Qn) → (Qnp )≤n such that b(A) is
a basis of VA. (The details of the following construction of a basis b(A) of VA will
be used in the next section, in which we study the structure of a “random” group
A ∈ R(p)(Qn,Zn(p)).)

Definition 4.10. Let A ∈ R(p)(Qn). Then a sequence (a1, . . . , a`) of nonzero
elements of A is said to be p-independent iff whenever n1, . . . , n` ∈ Z are such that

n1a1 + · · ·+ n`a` ∈ pA,
then p divides nj for all 1 ≤ j ≤ `. The sequence (a1, . . . , a`) is said to be a p-basis
iff (a1, . . . , a`) is a maximal p-independent sequence.

Fix some A ∈ R(p)(Qn). Then we can clearly choose a p-basis (a1, . . . , a`) of A
in a Borel fashion. Let P = 〈a1, . . . , a`〉 be the subgroup generated by {a1, . . . , a`}.
Then by [12, Section 32], A/P is p-divisible and so A/P is a divisible group. Thus
A/P = R ⊕ T , where T is the torsion subgroup and R is the direct sum of k =
n − ` copies of Q. Furthermore, by [12, Exercise 93.1], dimVA = k. Next, in
a Borel fashion, we can choose a sequence (z1, . . . , zk) of elements of A such that
(z1P, . . . , zkP ) is a basis ofR ∼= Qk. Finally we shall use (z1, . . . , zk) and (a1, . . . , a`)
to construct a basis (v1, . . . , vk) of VA.

Fix some 1 ≤ i ≤ k. Let t ≥ 1 and suppose inductively that there exist integers
c
(j)
s for 1 ≤ j ≤ ` and 1 ≤ s ≤ t such that the following conditions are satisfied.

(1) 0 ≤ c(j)s < p.
(2) There exists dt ∈ A such that

ptdt = zi + n
(1)
t a1 + · · ·+ n

(`)
t a`,

where n(j)
t = c

(j)
1 + c

(j)
2 p+ · · ·+ c

(j)
t pt−1.
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Since R is divisible, there exists an element dt+1 ∈ A and integers c(1)
t+1, . . . , c

(`)
t+1

such that
pdt+1 = dt + c

(1)
t+1a1 + · · ·+ c

(`)
t+1a`;

and after adjusting our choice of dt+1 if necessary, we can suppose that 0 ≤ c(j)t+1 < p
for each 1 ≤ j ≤ `. Clearly

pt+1dt+1 = zi + n
(1)
t+1a1 + · · ·+ n

(`)
t+1a`.

Thus the induction can be completed. For 1 ≤ j ≤ `, let

γj = c
(j)
1 + c

(j)
2 p+ · · ·+ c

(j)
t pt−1 + · · · ∈ Zp.

Then the corresponding basis element of VA is

vi = zi + γ1a1 + · · ·+ γ`a` ∈ Â.
Since z1, . . . , zk are linearly independent over Qp, it follows that v1, . . . , v` are also
linearly independent over Qp. Thus it is enough to check that vi ∈ ptÂ for each
1 ≤ i ≤ k and t ≥ 1. So fix some 1 ≤ i ≤ k and reconsider the element

vi = zi + γ1a1 + · · ·+ γ`a` ∈ Â.
If t ≥ 1, then

ptdt = zi + n
(1)
t a1 + · · ·+ n

(`)
t a`

and

vi − ptdt = (
∞∑

r=t+1

c(1)
r pr−1)a1 + · · ·+ (

∞∑
r=t+1

c(`)r pr−1)a`.

Hence ptet = vi, where

et = dt + (
∞∑

r=t+1

c(1)
r pr−(t+1))a1 + · · ·+ (

∞∑
r=t+1

c(`)r pr−(t+1))a`.

This completes the proof of Theorem 3.8.

5. p-local torsion-free abelian groups of finite rank

Fix some n ≥ 2 and letR = R(p)(Qn,Zn(p)) be the standard Borel space consisting
of those A ∈ R(Qn) such that Zn(p) 6 A. Then by [14, Lemma 4.11], R ⊆ R(p)(Qn).
Furthermore,R is invariant under the action of the subgroupGLn(Z(p)) of GLn(Q);
and Hjorth [14] has shown that there exists a GLn(Z(p))-invariant probability mea-
sure µ on R. Each A ∈ R has certain obvious automorphisms; namely, for each
s ∈ Z∗(p), we can define a corresponding automorphism of A by a 7→ sa. So if we
identify each s ∈ Z∗(p) with the corresponding diagonal matrix Ds ∈ GLn(Q), we
have that

Z∗(p) 6 Aut(A) 6 GLn(Q).
Our main result in this section says that a “random” group A ∈ R has only these
obvious automorphisms.

Theorem 5.1. µ({A ∈ R | Aut(A) = Z∗(p)}) = 1.

Using Theorem 5.1 and Kechris’s result [21] that PSL2(Z[1/q]) is antitreeable
for every prime q ∈ P, we can now easily prove that ∼=(p)

2 is not treeable. (Recall
that in [14], Hjorth proved that ∼=(p)

n is not treeable for each n ≥ 3.)
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Definition 5.2. A countable group G is said to be antitreeable iff for every Borel
action of G on a standard Borel space X , which is free and admits an invariant Borel
probability measure, the correponding equivalence relation EXG is not treeable.

Corollary 5.3. ∼=(p)
2 is not treeable.

Proof. Let q ∈ P be a prime such that q 6= p and let

G = PSL2(Z[1/q]) 6 PGL2(Z(p)).

By Theorem 5.1, there exists a GL2(Z(p))-invariant Borel subset X ⊆ R(p)(Q2,Z2
(p))

with µ(X) = 1 such that Aut(A) = Z∗(p) for all A ∈ X . Now the µ-preserving action
of PGL2(Z(p)) on R(p)(Q2,Z2

(p)) induces a corresponding free action of PGL2(Z(p))
on X ; and hence there exists a µ-preserving free action of G on X . By [21, Theorem
7], G is antitreeable and so EXG is not treeable. Since EXG ⊆ (∼=(p)

2 � X), [14, Lemma
2.10] implies that ∼=(p)

2 is also not treeable. �

Before we begin the proof of Theorem 5.1, we shall review Hjorth’s construction
[14] of the measure µ on R. Let S be the standard Borel space consisting of all
subgroups of the quotient groupQn/Zn(p) and let π : Qn → Qn/Zn(p) be the canonical
surjection. Then we can define a Borel bijection R → S by A 7→ π(A). Let Γ be the
dual group of Qn/Zn(p); i.e. the space of all homomorphisms ψ : Qn/Zn(p) → R/Z,
equipped with the topology of pointwise convergence and the group operation of
pointwise addition. Since Qn/Zn(p) is discrete, it follows that Γ is a compact group.
Let ν be the Haar measure on Γ. Let k : Γ → S be the Borel map assigning the
subgroup

ker(ψ) = {h ∈ Qn/Zn(p) | ψ(h) = 0}
to each ψ ∈ Γ; and let µ̂ = kν be the probability measure defined on S by

µ̂(B) = ν({ψ ∈ Γ | ker(ψ) ∈ B})
for each Borel subset B ⊆ S. Then µ is the corresponding Borel probability measure
on R induced by the Borel bijection A 7→ π(A).

During the proof of Theorem 5.1, we shall make use of the fact that Γ is naturally
isomorphic to Znp . To see this, first notice that since Qn/Zn(p) ∼= C(p∞)n, it follows
that each ψ ∈ Γ must take values in Z[1/p]/Z ∼= C(p∞). For each v ∈ Qn and
a ∈ Z[1/p], we shall denote the corresponding elements of Qn/Zn(p) and Z[1/p]/Z
by [v], [a], respectively. Let e1, . . . , en be the standard basis of Qn. Then we can
define an isomorphism ψ 7→ ψ̃ of Γ onto Znp by

ψ̃ = (β1, . . . , βn),

where βi = b
(i)
1 + b

(i)
2 p+ · · ·+ b

(i)
t pt−1 + · · · is the p-adic integer such that

ψ([ei/pt]) =

[
b
(i)
1 + b

(i)
2 p+ · · ·+ b

(i)
t pt−1

pt

]
for each t ≥ 1. We shall also denote the Haar measure on Znp by ν.

For each A ∈ R, let VA 6 Â = Zp ⊗ A be the Qp-vector space defined in
Definition 4.6. Then 0 ≤ dimVA ≤ n. We shall begin our analysis by determining
the value of dimVA for a “random” subgroup A ∈ R.
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Definition 5.4. Let R1 ⊂ R be the Borel subset consisting of those A ∈ R which
satisfy the following conditions:

(i) For all 0 6= a ∈ A, there exists t ≥ 1 such that a /∈ ptA.
(ii) dim VA = n− 1.

Lemma 5.5. µ(R1) = 1.

Proof. Let Γ1 ⊆ Γ be the Borel subset consisting of those ψ such that for each
z ∈ Zn(p), there exists t ≥ 1 such that ψ([z/pt]) 6= 0. Then it is easily checked that
ν(Γ1) = 1. We shall show that

{A ∈ R | π(A) = kerψ for some ψ ∈ Γ1} ⊆ R1.

So let ψ ∈ Γ1 and let π(A) = kerψ. Then it is clear that A satisfies condition 5.4(i).
Let r ≥ 0 be the greatest integer such that a = en/p

r ∈ A. By Exercise 93.1 [12],
in order to prove that dim VA = n − 1, it is enough to show that a is a p-basis of
A. Suppose not. Then there exists an element b = z/ps ∈ A, where z ∈ Zn(p) and
s ≥ 0, such that (a, b) is a p-independent sequence. Since π(A) = kerψ, we must
have that:

(1) ψ([en/pr]) = ψ([z/ps]) = 0;
(2) there exist integers 0 < m1,m2 < p such that

ψ([en/pr+1]) = [m1/p] and ψ([z/ps+1]) = [m2/p].

Let 0 < ` < p satisfy `m1 +m2 ≡ 0 (mod p). Then

ψ(`[en/pr+1] + [z/ps+1]) = 0

and so (`a+b)/p ∈ A, which contradicts the hypothesis that (a, b) is a p-independent
sequence. �

Let ψ ∈ Γ1 and let A ∈ R1 satisfy π(A) = kerψ. We shall next discuss the
relationship between ψ̃ = (β1, . . . , βn) ∈ Znp and the Qp-space VA. For each integer
1 ≤ i ≤ n, let

βi = b
(i)
1 + b

(i)
2 p+ · · ·+ b

(i)
t pt−1 + · · ·

and let ri ≥ 0 be the greatest integer such that xi = ei/p
ri ∈ A. Then xn is a

p-basis of A; and for each 1 ≤ i ≤ n, we have that

αi = βi/p
ri = a

(i)
1 + a

(i)
2 p+ · · ·+ a

(i)
t pt−1 + · · · ∈ Z∗p

is a p-adic unit and

ψ([xi/pt]) =

[
a

(i)
1 + a

(i)
2 p+ · · ·+ a

(i)
t pt−1

pt

]
.

For each 1 ≤ i ≤ n− 1, let

γi = −αi/αn = c
(i)
1 + c

(i)
2 p+ · · ·+ c

(i)
t pt−1 + · · · ∈ Z∗p.

Then
t∑

r=1

a(i)
r pr−1 + (

t∑
r=1

c(i)r pr−1)(
t∑

r=1

a(n)
r pr−1) ≡ 0 (mod pt)

for each 1 ≤ i ≤ n− 1; and so

ψ([xi/pt] + (
t∑

r=1

c(i)r pr−1)[xn/pt]) = 0.
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Thus xi + (
∑t

r=1 c
(i)
r pr−1)xn ∈ ptA for each t ≥ 1. Hence, arguing as in Section 4,

we see that
(x1 + γ1xn, . . . , xn−1 + γn−1xn)

is a basis of VA.
Now we shall begin our study of the structure of Aut(A) for A ∈ R1. First note

that the natural action of GLn(Q) on Qn extends canonically to an action on Qnp .
Furthermore, if π ∈ Aut(A) 6 GLn(Q), then π(Â) = Â and so π(VA) = VA. It
will also be useful to consider the corresponding contragredient representation of
GLn(Q) on the dual space D = Hom(Qnp ,Qp), defined by

(π.f)(v) = f(π−1v)

for π ∈ GLn(Q), f ∈ D and v ∈ Qnp . Recall that the linear transformation f 7→ π.f

is represented by the matrix (π−1)t relative to the dual basis ê1, . . . , ên. (For
example, see [8, Section 43].) For subspaces U 6 Qnp and W 6 D, let

U⊥ = {f ∈ D | f(u) = 0 for all u ∈ U}
and

W⊥ = {u ∈ Qnp | f(u) = 0 for all f ∈W}.
Notice that if π ∈ GLn(Q) satisfies π(U) = U , then π(U⊥) = U⊥.

Let ψ ∈ Γ1 and let A ∈ R1 satisfy π(A) = kerψ. Suppose that π ∈ Aut(A) 6
GLn(Q). Then π(VA) = VA and so π(V ⊥A ) = V ⊥A . Since dimVA = n − 1, we
have that dimV ⊥A = 1. Let 0 6= f ∈ V ⊥A . Then π.f = λf for some eigenvalue
0 6= λ ∈ Q ∩Qp of the matrix (π−1)t. Let E 6 D be the eigenspace corresponding
to λ. We shall show that if A ∈ R1 is “sufficiently random”, then E = D and
so (π−1)t = λI. Hence π = λI; and since A is not p-divisible, we must have that
λ ∈ Z∗(p).

So suppose that dimE = e < n. Since λ ∈ Q ∩Qp, it follows that E has a basis
consisting of functions f1, . . . , fe such that for each 1 ≤ k ≤ e,

fk = r
(k)
1 ê1 + · · ·+ r(k)

n ên

for some r(k)
i ∈ Q∩Qp. This implies that E⊥∩ (Q∩Qp)n is an (n− e)-dimensional

vector space over Q ∩ Qp. In particular, since E⊥ 6 (V ⊥A )⊥ = VA, it follows that
there exists a nonzero vector 0 6= v ∈ VA ∩ Q

n
. Once again, for each 1 ≤ i ≤ n,

let xi = ei/p
ri, where ri ≥ 0 is the greatest integer such that ei ∈ priA. Then

v = q1x1 + · · ·+ qnxn for some qi ∈ Q ∩Qp. Since (x1 + γ1xn, . . . , xn−1 + γn−1xn)
is a basis of VA, there exist θj ∈ Qp for 1 ≤ j ≤ n− 1 such that

q1x1 + · · ·+ qnxn = θ1(x1 + γ1xn) + · · ·+ θn−1(xn−1 + γn−1xn).

It follows that θj = qj for 1 ≤ j ≤ n− 1 and hence

qn = q1γ1 + · · ·+ qn−1γn−1.

Since γj = −αj/αn for 1 ≤ j ≤ n− 1, we obtain that

q1α1 + · · ·+ qnαn = 0.

Finally since αi = βi/p
ri for 1 ≤ i ≤ n, we see that β1, . . . , βn are linearly indepen-

dent over Q ∩ Qp. Hence in order to complete the proof of Theorem 5.1, we need
only show that if

Y = {(β1, . . . , βn) ∈ Znp | β1, . . . , βn are linearly dependent over Q ∩Qp},
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then ν(Y ) = 0. To see this, note that for each q = (q1, . . . , qn) ∈ (Q ∩ Zp)n, the
closed subgroup

Hq = {(β1, . . . , βn) ∈ Znp | q1β1 + · · ·+ qnβn = 0}

has infinite index in Znp and so ν(Hq) = 0. Hence

ν(Y ) = ν(
⋃
{Hq | q ∈ (Q ∩ Zp)n}) = 0.

In the remainder of this section, we shall restrict our attention to the class of
p-local groups of rank 2; and we shall point out some connections between this mate-
rial and the main open problems on treeable countable Borel equivalence relations.
We shall begin by presenting an alternative realisation (up to Borel bireducibility)
of the isomorphism relation ∼=(p)

2 on S(p)(Q2).

Definition 5.6. For each p ∈ P, let E(p) be the orbit equivalence relation in-
duced by the Borel action of GL2(Q) on Qp ∪ {∞} as a group of fractional linear
transformations; i.e. (

a b
c d

)
.γ =

aγ + b

cγ + d

for each γ ∈ Qp ∪ {∞}.

Theorem 5.7. (∼=(p)
2 ) ∼B E(p) for each p ∈ P.

Proof. Let B(p)(Q2) be the Borel set consisting of those A ∈ S(p)(Q2) which satisfy
the following conditions:

(i) A ∈ R(p)(Q2).
(ii) dim VA = 1.

Claim 5.8. S(p)(Q2)rB(p)(Q2) is countable.

Proof of Claim 5.8. It is easily checked that S(p)(Q2)rR(p)(Q2) is countable; and
Theorem 4.7 implies that there are only countably many A ∈ R(p)(Q2) such that
dimVA 6= 1. �

It follows easily that (∼=(p)
2 ) ∼B (∼=(p)

2 � B(p)(Q2)). Next we shall show that
(∼=(p)

2 � B(p)(Q2)) ≤B E(p). To see this, let e1, e2 be the standard basis of the vector
spaceQ2

p. Then for each A ∈ B(p)(Q2), there exists a unique element γA ∈ Qp∪{∞}
such that

VA = 〈 γAe1 + e2 〉;
and an easy calculation shows that if π ∈ GL2(Q), then

Vπ(A) = π(VA) = 〈 (π.γA)e1 + e2 〉.

(Of course, 〈 ∞e1 + e2 〉 should be interpreted as 〈 e1 〉.) Let f : B(p)(Q2) →
Qp ∪ {∞} be the Borel map defined by f(A) = γA. Then we have just seen that
if A ∼=(p)

2 B, then f(A)E(p)f(B). Conversely, suppose that f(A)E(p)f(B); say,
π.γA = γB. Then Vπ(A) = VB and so by Theorem 4.7, π(A) ≈ B. By [12, Exercise
32.5], each p-basis of A can be lifted to a p-basis of A/pA. It follows that |A/pA| = p

and so [12, Proposition 92.1] implies that A ∼=(p)
2 B.
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Finally we shall show that E(p) ≤B (∼=(p)
2 � B(p)(Q2)). For each γ ∈ Qp ∪ {∞},

let vγ = γe1 + e2 and let wγ = pre2, where prγ ∈ Z∗p. (For γ ∈ {0,∞}, we set
w0 = e1 and w∞ = e2.) Let g : Qp ∪{∞} → B(p)(Q2) be the Borel map defined by

g(γ) = [Qpvγ ⊕ Zpwγ ] ∩Q2.

Then it is easily checked that Vg(γ) = Qpvγ . It follows that if γ1, γ2 ∈ Qp ∪ {∞},
then γ1E

(p)γ2 iff g(γ1) ∼=(p)
2 g(γ2). �

Now let F2 be the free group on two generators. In [19], Kechris asked whether
for every countable Borel equivalence relation E, the following statements are equiv-
alent:

(a) E is non-hyperfinite.
(b) There is a free action of F2 on a standard Borel space X , which admits an

invariant probability measure, such that EXF2
≤B E.

Note that the relation EXF2
in clause (b) is necessarily treeable and non-hyperfinite.

Thus a negative answer to the following question would also give a counterexample
to the preceeding question.

Question 5.9. Does there exist a non-hyperfinite treeable countable Borel equiv-
alence relation E such that E ≤B (∼=(p)

2 )?

Another important open question asks whether there exists a (necessarily tree-
able) countable Borel equivalence relation E such that E0 <B E <B ET∞. Of
course, this question would receive a positive answer if we could find two tree-
able countable Borel equivalences which were incomparable with respect to Borel
reducibility. We shall conclude this section by presenting some possible candidates.

Definition 5.10. For each p ∈ P, let E(p)
T be the orbit equivalence relation in-

duced by the Borel action of GL2(Z) on Qp ∪ {∞} as a group of fractional linear
transformations.

Theorem 5.11. For each p ∈ P, the countable Borel equivalence relation E
(p)
T is

treeable and non-hyperfinite.

Proof. Since the subgroup {±I} of GL2(Z) fixes each element of Qp ∪{∞}, we can
also regard E(p)

T as the orbit equivalence relation of the induced action of PGL2(Z)
on Qp ∪ {∞}. Suppose that γ ∈ Qp ∪ {∞} is fixed by some nonidentity element
ϕ ∈ PGL2(Z). Then an easy calculation shows that γ ∈ Q ∪ {∞}. In particular,
PGL2(Z) acts freely on the complement of a countable subset of Qp ∪ {∞}. By
Jackson-Kechris-Louveau [16, Proposition 3.4], E(p)

T is treeable.
By Jackson-Kechris-Louveau [16, Proposition 1.7], in order to show that E(p)

T is
non-hyperfinite, it is enough to show that there exists a PGL2(Z)-invariant proba-
bility measure on Qp∪{∞}. As in the proof of Theorem 5.1, let R = R(p)(Q2,Z2

(p))
be the standard Polish GLn(Z(p))-space consisting of those A ∈ R(Q2) such that
Zn(p) 6 A; and let R1 ⊂ R be the Borel subset consisting of those A ∈ R which
satisfy the following conditions:

(i) For all a ∈ A, there exists t ≥ 1 such that a /∈ ptA.
(ii) dim VA = 1.
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By Lemma 5.5, there exists a GLn(Z(p))-invariant probability measure µ on R1.
As in the proof of Theorem 5.7, let f : R1 → Qp ∪ {∞} be the Borel map defined
by f(A) = γA, where γA ∈ Qp ∪ {∞} is the unique element such that

VA = 〈 γAe1 + e2 〉.

Let µ̃ = fµ be the probability measure defined on Qp ∪ {∞} by

µ̃(B) = µ(f−1(B))

for each Borel subset B ⊆ Qp ∪ {∞}. Since f(π(A)) = π.f(A) for all A ∈ R1 and
π ∈ GL2(Z), it follows that µ̃ is PGL2(Z)-invariant. �

Conjecture 5.12. If p 6= q are distinct primes, then E
(p)
T �B E

(q)
T .

Of course, it is also possible to define a Borel action of GL2(Z) on R ∪ {∞}
as a group of fractional linear transformations. However, Jackson-Kechris-Louveau
[16] have pointed out that, in this case, the induced orbit equivalence relation is
hyperfinite.

6. A cocycle reduction result

In this section, we shall prove Theorem 2.3. As we mentioned earlier, this result
is a straightforward consequence of Zimmer’s superrigidity theorem [34, Theorem
5.2.5] and the ideas of Adams-Kechris [3]. First we need to recall some notions
from valuation theory. (A clear account of this material can be found in Margulis
[26, Chapter I].) Let F be an algebraic number field; i.e. a finite extension of the
field Q of rational numbers. Let R be the set of all non-equivalent valuations of
F and let R∞ ⊂ R be the set of archimedean valuations. For each ν ∈ R, let Fν
be the completion of F relative to ν. If ν ∈ R∞, then Fν = R or Fν = C; and if
ν ∈ RrR∞, then Fν is a totally disconnected local field; i.e. a finite extension of
the field Qp of p-adic numbers for some prime p. In particular, each Fν is a local
field.

Let S ⊆ R be a set of valuations of F . Then an element x ∈ F is said to be
S-integral iff |x|ν ≤ 1 for each non-archimedean valuation ν /∈ S. The set of all
S-integral elements is a subring of F , which will be denoted by F (S). Furthermore,
F is the union of the subrings F (S), where S ranges over the finite sets of valuations
of the field F .

The proof of Theorem 2.3 will be based upon the following cocycle reduction
theorem.

Theorem 6.1. Let m ≥ 3 and let Y be a standard Borel SLm(R)-space with an
invariant ergodic probability measure. Let K be a local field and let T be a simple
algebraic K-group such that dimT < m2 − 1. Then for every Borel cocycle α :
SLm(R)×Y → T (K), there exists an equivalent cocycle γ such that γ(SLm(R)×Y )
is contained in a compact subgroup of T (K).

Proof. If we add the hypothesis that α is not equivalent to a cocycle β taking values
in a subgroup of the form L(K) for some proper algebraic K-subgroup L of T , then
Theorem 6.1 is an immediate consequence of Zimmer [34, Theorem 5.2.5]. But
arguing as in the proof of Adams-Kechris [3, Theorem 3.5], we can easily reduce
our analysis to the case when this extra hypothesis holds. �
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In the proof of Theorem 2.3, we shall also make use of the notions of an induced
action and an induced cocycle, which are defined as follows. (A fuller account of
these notions can be found in Adams-Kechris [3, Section 2].) Suppose that G is a
lcsc group and that Γ is a closed subgroup of G. Let G/Γ be the set of left cosets
of Γ in G. By the Effros-Mackey cross section theorem [28, Theorem 5.4.2], there
exists a Borel transversal T for G/Γ; i.e. a Borel subset T ⊆ G which meets every
coset in a unique element. Fix such a Borel transversal with 1 ∈ T . Then we can
identify T with G/Γ by identifying t with tΓ; and then the action of G on G/Γ
induces a corresponding Borel action of G on T , defined by

g.t = the unique element in T ∩ gtΓ.

The associated strict cocycle ρ : G× T → Γ is defined by

ρ(g, t) = the unique ϕ ∈ Γ such that (g.t)ϕ = gt

= (g.t)−1gt.

Now suppose that X is a standard Borel Γ-space with an invariant ergodic proba-
bility measure µ. Suppose also that Γ is a lattice in G; i.e. Γ is a discrete subgroup
of G and the action of G on G/Γ admits an invariant probability measure. Let ν
be the corresponding invariant probability measure on T . Then the induced action
of G on the standard Borel space Y = X × T is defined by

g.(x, t) = (ρ(g, t).x, g.t);

and it is easily checked that µ×ν is an invariant ergodic probability measure on Y .
(See Adams-Kechris [3, Section 2].) Finally given any strict cocycle β : Γ×X → H ,
the corresponding induced cocycle β̂ : G× Y → H is defined by

β̂(g, (x, t)) = β(ρ(g, t), x).

In the proof of Theorem 2.3, these notions will be used in the case when Γ = SLm(Z)
and G = SLm(R). We shall suppress explicit mention of the Borel transversal T
and instead write

Y = X × (SLm(R)/SLm(Z)).

We are now ready to begin the proof of Theorem 2.3. So let m ≥ 3 and let X
be a standard Borel SLm(Z)-space with an invariant ergodic probability measure
µ. Suppose that G is an algebraic Q-group such that dimG < m2 − 1 and that
H 6 G(Q). Let α : SLm(Z) × X → H be a Borel cocycle. Then we can view α
as a cocycle taking values in G(Q). Furthermore, after passing to a finite ergodic
extension of X if necessary, we can suppose that G is connected. (For example,
see [3, Propositions 2.5 and 2.6].) Let R be the soluble radical of G. Then G/R
is a connected semisimple algebraic Q-group; and, in particular, G/R has a finite
centre A/R. Let G = G/A. Then there exist simple algebraic Q-groups T1, . . . , Tk
such that G = T1 × · · · × Tk. Now consider the Borel cocycle

α : SLm(Z)×X → G(Q) = T1(Q)× · · · × Tk(Q)

defined by α = π ◦ α, where π : G(Q) → G(Q) be the canonical surjection. Since
SLm(Z) is a Kazhdan group, [35, Lemma 2.2] implies that α is equivalent to a
cocycle β taking values in a finitely generated subgroup Λ of G(Q). So there exists
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an algebraic number field F and a finite set S of valuations of F such that:

(i) each Ti is an algebraic F -group; and
(ii) Λ 6 G(F (S)) = T1(F (S))× · · · × Tk(F (S)).

Clearly we can suppose that S contains the set R∞ of archimedean valuations of F .
It follows that if G(F (S)) is identified with its image under the diagonal embedding
into

GS =
∏
ν∈S

G(Fν) =
k∏
i=1

∏
ν∈S

Ti(Fν),

then G(F (S)) is a discrete subgroup of GS . (For example, see [26, Section I.3.2].)
By Zimmer [34, Theorem B.9], we can suppose that β : SLm(Z) × X → Λ is
a strict cocycle. Consider the induced Borel action of SLm(R) on Y = X ×
(SLm(R)/SLm(Z)) and let β̂ : SLm(R) × Y → Λ be the corresponding induced
cocycle. For each ν ∈ S and 1 ≤ i ≤ k, let pνi : GS → Ti(Fν) be the canonical
projection; and, viewing β̂ as a cocycle into GS , let β̂νi : SLm(R) × Y → Ti(Fν)
be the Borel cocycle defined by β̂νi = pνi ◦ β̂. By Theorem 6.1, β̂νi is equivalent to
a cocycle taking values in a compact subgroup Cνi of Ti(Fν). It follows that β̂ is
equivalent to a cocycle taking values in the compact subgroup C =

∏k
i=1

∏
ν∈S Cνi

of GS . By Adams-Kechris [3, Proposition 2.4], there exists g ∈ GS and a cocycle
γ̂ : SLm(R) × Y → Λ such that γ̂ ∼ β̂ and γ̂ takes values in the finite subgroup
B = Λ∩gCg−1 of Λ; and hence by Adams-Kechris [3, Proposition 2.3], there exists
a cocycle γ : SLm(Z) ×X → Λ such that γ ∼ β and γ also takes values in B. Let
B = π−1(B). Then B is a soluble-by-finite subgroup of G(Q); and since α ∼ γ,
it follows that α is equivalent to a cocycle γ̃ : SLm(Z) ×X → G(Q) taking values
in B. Since SLm(Z) is a Kazhdan group and B is a countable amenable group,
Zimmer [34, Theorem 9.1.1] implies that γ̃ is equivalent to a cocycle taking values
in a finite subgroup of B. Applying Adams-Kechris [3, Proposition 2.4] once more,
it follows that α is equivalent to a cocycle γ : SLm(Z)×X → H taking values in a
finite subgroup of H . This completes the proof of Theorem 2.3.
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