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The clearance of dying cells: table for two

DR Green1, TH Oguin2 and J Martinez*,2

Phagocytic cells of the immune system must constantly survey for, recognize, and efficiently clear the billions of cellular corpses

that arise as a result of development, stress, infection, or normal homeostasis. This process, termed efferocytosis, is critical for the

prevention of autoimmune and inflammatory disorders, and persistence of dead cells in tissue is characteristic of many human

autoimmune diseases, notably systemic lupus erythematosus. The most notable characteristic of the efferocytosis of apoptotic

cells is its ‘immunologically silent’ response. Although the mechanisms by which phagocytes facilitate engulfment of dead cells

has been a well-studied area, the pathways that coordinate to process the ingested corpse and direct the subsequent immune

response is an area of growing interest. The recently described pathway of LC3 (microtubule-associated protein 1A/1B-light chain

3)-associated phagocytosis (LAP) has shed some light on this issue. LAP is triggered when an extracellular particle, such as a

dead cell, engages an extracellular receptor during phagocytosis, induces the translocation of autophagy machinery, and

ultimately LC3 to the cargo-containing phagosome, termed the LAPosome. In this review, we will examine efferocytosis and the

impact of LAP on efferocytosis, allowing us to reimagine the impact of the autophagy machinery on innate host defense

mechanisms.
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Facts

� Efferocytosis is a carefully orchestrated process by which

phagocytes are recruited to sites of cell death, recognize

and engulf dying cells, and clear them in an ‘immunologi-

cally silent’ manner.

� Dying cells have an active role in their own clearance; via

the production of ‘find-me’ signals to attract phagocytes

and exposure of ‘eat-me’ signals that engage phagocytic

receptors to facilitate engulfment.

� Defects in the efferocytosis machinery are associated with

inflammation and autoimmune disorders, such as systemic

lupus erythematosus (SLE).

� Microtubule-associated protein 1A/1B-light chain 3 (LC3)-

associated phagocytosis (LAP) is required for the effective

clearance of dying cells.

Open Questions

� Given the variety of ‘find-me’ and ‘eat-me’signals, aswell as

their cognate receptors, how do these signals coordinate for

effective efferocytosis?

� How does LAP promote the anti-inflammatory response

to dying cells, and what role does macrophage

metabolism have?

� Do defects in LAP contribute to inflammatory or auto-

immune pathogenesis?

� What role does LAP have in oncogenesis? What role does

LAP have in tumor-associated macrophages?

An Introduction: Can I Interest You in Any Appetizers?

Even from our earliest developmental stages, the process of

generating and maintaining a multicellular, functional organ-

ism is characterized by the creation and unceremonious

destruction of billions of cells.1 Programmed cell death, such

as apoptosis, necroptosis, or pyroptosis, are active mechan-

isms designed to sculpt, control, and aid the body in its

development and survival. Much of our knowledge on the role

of apoptosis in development comes from the study of

Caenorhabditis elegans, wherein the first wave of cell death

occurs ~ 4 h after fertilization, and of the 1090 cells that are

generated, 131 of them are destined for death.2 In mammalian

embryos, apoptosis is seen during cavitation and has a

dynamic role in shaping the embryo.3 It is nowwell understood

that proper apoptosis is fundamental for the proper develop-

ment of the organism, as deficiencies in mediators of

apoptosis result in embryonic lethality or animals with

severe malformations.4 Conversely, other forms of cell death,

such as necroptosis and pyroptosis, are not required during
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development, as evidenced by the normal development of

mice deficient for receptor interacting protein kinase3 or

caspase-1/11, respectively.5,6 Once formed, the organism’s

relationship with cell death is far from over. Cellular turnover

is a constant, genetically programmed process in the adult

animal, and removal of these unwanted and unneeded cellular

corpses is vital to prevent unwanted inflammation and immune

activation.7 Although damage can certainly cause unwanted

cellular death, most cellular death is an active process, and

perturbations in the cell death programs can promote cell

accumulation, autoimmunity, oncogenesis, attrition, and/or

degeneration.

Within tissues, professional, non-professional, and specia-

lized phagocytes are tasked with the clearance of dying cells.

The best-characterized population of professional phago-

cytes, macrophages, is composed of tissue-specific, differ-

entiated subsets of resident macrophages that clear dying

cells and debris.8 For example, Kupffer cells in the liver clear

aged red blood cells;9 aveolar macrophages of the lung clear

apoptotic airway epithelial cells,8 and microglia in the central

nervous system clear dying neurons.10Other types of resident

cells, such as epithelial cells and fibroblasts, have been

termed non-professional phagocytes; though this designation

may be a misnomer as these cells have a major role when

professional phagocytes are rare, such as in the mammary

gland or intestinal epithelium. In addition, airway epithelial

cells are critical for the clearance of apoptotic airway epithelial

cells, and epithelial cell-specific deletion of Rac1 results in

increased allergen-induced airway inflammation.11 Still other

types of tissue-specific, multifunctional cells exist as specia-

lized phagocytes. In the testes, Sertoli cells are responsible

for clearing apoptotic germ cells that arise during

spermatogenesis.12 In the eye, retinal pigment epithelial

(RPE) cells are critical for the homeostatic, daily removal of

the photoreceptor outer segments (POSs), and the generation

of 11-cis-retinal for the visual cycle. Defects in RPE cell-

mediated removal of outer segments (or processing of outer

segments via LAP, discuss below) can lead to a predisposition

to conditions, such as age-related macular degeneration or

retinitis pigmentosa.13

Like the death process itself, the innate immune system has

tolerance systems in place to manage these morbid, yet

necessary events. Although the generation and subsequent

destruction of these cells is necessary for normal cellular

homeostasis, wound healing, and immune responses in the

adult organism, the ruin left in its wake would be catastrophic if

not for the efficient work of the phagocytic system.14 Despite

the constant, homeostatic turnover of cells, as well as cell

death induced by stress, damage, or infection, it is rare to

observe apoptotic cells under normal physiological conditions.

Considering the average one million adult human cells that

undergo apoptosis every second, one can appreciate the

magnitude of the job facing phagocytes15 Moreover, as this is

a reoccurring and normal event in the lifespan of an organism,

this process of dead cell clearance must occur in a quiescent

manner, so as to not inappropriately alert the immune

system.16

We now appreciate the critical role that efferocytosis has on

modulating immunity, as well as the impact that different types

of cell death have on the immune response. In this review, we

discuss the process of efferocytosis, chemoattraction of

phagocytes, recognition of dying cells, engulfment of cellular

corpses, and the processing of engulfed cellular cargo,

specifically the role of LAP in clearance of dying cells and

control of inflammation. Finally, we explore the effect of

defective efferocytosis on pathology and disease states.

The Mechanisms of Efferocytosis: Would You Like to

Hear the Specials?

As the focus of this review is the aftermath of cell death, we

have summarized the four most well-defined modes of cell

death (apoptosis, necrosis, necroptosis, and pyroptosis) in

Table 1, as the roles and mechanisms of cell death have been

studied and reviewed extensively.1

Efferocytosis is not merely a passive event, but a carefully

orchestrated process designed to efficiently eliminate cellular

corpses and limit exposure to their potentially damaging

components, with the goal being immunological tolerance.17

Efferocytosis can be generally categorized into 4 steps: 1) the

release of ‘find-me’ signals by dying cells to recruit phago-

cytes, 2) phagocyte recognition and engagement of ‘eat-me’

signals on dying cells, 3) the engulfment of the cellular corpse,

and 4) the processing, degradation, and immune response to

the engulfed corpse. We now recognize that defects in any

of these four steps can contribute to unwanted inflammation

and autoimmune disorders, such as systemic lupus

erythematosus18 (Table 2).

As phagocytes are often not proximal to sites of cell death or

even reside in the tissues they must survey, dying cells must

‘advertise’ their presence to phagocytes.19 Recruitment of

phagocytes to sites of cell death in C. elegans occurs before

the completion of apoptosis, indicating that one of the first acts

of a dying cell is to prepare for its own elimination.20,21 During

this process, apoptotic cells release ‘find-me’ signals, distinct

molecules that establish a chemotactic gradient to attract

phagocytic cells.22Nucleotides, such as ATP, are released in a

caspase-dependent manner via activation of pannexin-1

channels and are perhaps the most well-defined ‘find-me’

signals.23 These nucleotides are detected by phagocytes via

purinergic receptors, like P2Y2, and disruption of the

nucleotide/P2Y2 interaction results in an accumulation

of dying cells in vivo.19 Apoptotic cells also release the

membrane-associated molecule fractalkine (or CX3CL1),

which is sensed by CX3CR1 and mediates the migration of

macrophages to the dying cells. Mice deficient for CX3CR1,

however, do not display a defect in apoptotic cell clearance,

suggesting that multiple factors are required to recruit

effectively phagocytes.24 Molecules of lipid origin can also

act as ‘find-me’ signals. Lysophosphatidylcholine is generated

and released via caspase-3-dependent activation of phos-

pholipase A, and is sensed by the G-protein-coupled receptor

G2A.25 Sphingosine-1-phosphate (S1P), also a lipid ‘find-me’

signal, is released by dying cells and sensed by multiple

G-protein-coupled receptors S1P-R1-5. These lipid signals

have been demonstrated to mediate phagocyte chemotaxis26

(Figure 1a).

There are significant caveats to the ability of ‘find-me’

signals to efficiently act as chemoattractants in physiologically

scenarios. The idea of an apoptotic cell’s purposeful release of
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a ‘find-me’ signal to actively recruit phagocytes is undermined

by the relatively low level of signal released by apoptotic cells

compared with necrotic cells. ‘Find-me’ signals are often

released in an active, caspase-dependent manner, yet these

molecules are also released (and in greater quantities) during

other forms of cell death, such as necrosis or necroptosis.27

Table 1 Summary of the four major modes of cell death: apoptosis, necrosis, necroptosis and pyroptosis

Description Characteristics References

Apoptosis
Active cellular death, largely controlled by a family of cysteine proteases
called caspases
Apoptotic caspases are broadly grouped into initiator caspases (caspase-8
and -9) and executioner caspases (caspases-3, -6, and -7)

Intrinsic or mitochondrial pathway
Activated by stress-inducing stimuli (i.e., DNA damage, accumulation of
unfolded proteins, and hypoxia) and developmental signals
Signals converge on the mitochondria, where pro-apoptotic and anti-
apoptotic members of the BCL2 family mediate the release of cytochrome c,
formation of the apoptosome with caspase-9 and APAF-1, which leads to the
activation of the downstream executioner caspases, such as caspase-3 and
caspase-7

Extrinsic pathway
Triggered by signals that engage extracellular death receptors (DR)
Tumor necrosis factor (TNF) and TNF receptor-1 (TNFR1)
CD95-ligand (CD95-L or Fas-L) and CD95 (or Fas)
TNF-related apoptosis-inducing ligand (TRAIL) and TRAIL-R1/2
(DR4/5)
Recruitment of pro-caspase-8 to the death-inducing signaling complex
(DISC) at the DR (with the adapter proteins FADD or TRADD), resulting in
dimerization and activation of caspase-8, leading to caspase-3 and caspase-
7 activity
Caspase-8 activity can also feed into the intrinsic pathway by cleaving and
activating BCL2 family proteins

Membrane ‘blebbing,’ often with separation of apoptotic bodies
DNA fragmentation
Chromatin condensation
Considered immunologically silent due to the packaging of
possible danger-associated molecular patterns (DAMPs) into
discreet, tolerogenic pieces
Active phosphatidylserine (PtdSer) exposure (Annexin V positive)
Propidium iodide or 7-AAD negative at early stages

1,99–103

Necrosis
Characterized as an passive type of cell death that occurs independently of
caspase activation
Triggered in response to catastrophic damage or pathology, including
infarction, mechanical trauma, ischemia, frostbite, and animal venom
Apoptotic cells that are not efficiently cleared by phagocytes can undergo
secondary necrosis independently of any apoptotic machinery

Cellular swelling (oncosis)
Organelle swelling
Nuclear distention
Cellular rupture
Releases inflammatory cellular contents (DAMPs) or alarmins
that can activate neighboring immune cells via Toll-like receptor
(TLR) signaling and other mechanisms
Annexin V positive due to membrane rupture
Propidium iodide or 7-AAD positive

1,104–106

Necroptosis
Genetically programed cell death with the morphological features of necrosis
Triggered by diverse forms of neurodegeneration, ischemia, or infection.
Engagement of the extrinsic pathway (i.e., TNF–TNFR pathway) in the
absence of caspase-8 can result in a necrotic cell death that requires the
kinase activity of receptor interacting protein kinase1 (RIPK1) and RIPK3
RIPK3 phosphorylates and activates the pseudokinase,mixed lineage-kinase
like (MLKL)
Induces a conformational change that allows for its oligomerization and
interaction with the plasmamembrane through binding to phosphatidylinositol
lipids to directly disrupt membrane integrity
RIPK1 is required for a variety of innate immune signaling pathways, such as
TLRs, interferons, and the RIG-I-MAVS pathway

Loss of plasma membrane integrity
Swollen cellular organelles
Releases inflammatory cellular contents (DAMPs) or
alarmins that can activate neighboring immune cells via
TLR signaling and other mechanisms
Active PtdSer exposure (Annexin V positive)
Propidium iodide or 7-AAD positive

5,107–112

Pyroptosis
Non-apoptotic, genetically programmed cellular death mediated by excessive
inflammatory caspase activity (human caspase-1, -4, and -5; rodent caspase-
1 and -11)
Required for cell death in a variety of experimental settings, including in the
immune system, the cardiovascular system, and the central nervous system
Caspase-1 is activated by dimerization at complexes termed inflammasomes
that form in the cytosol and detect a diverse repertoire of pathogenic
molecules, including bacterial toxins and viral RNA
Activated caspase-1 in turn cleaves pro-IL-1β and pro-IL-18, which facilitates
the secretion of these pro-inflammatory cytokines
Characterized by caspase-1-dependent formation of plasma membrane
pores, which leads to pathological ion fluxes that ultimately result in cellular
lysis and release of inflammatory intracellular contents
Caspase-1 can also activate caspase-7

Cellular rupture
DNA fragmentation
Releases inflammatory cellular contents (DAMPs) or
alarmins that can activate neighboring immune cells via
TLR signaling and other mechanisms
Often Annexin V positive due to membrane rupture
Propidium iodide or 7-AAD positive

1,4,6,51,113,114
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Indeed, o2% of intracellular ATP is released during

apoptosis.15 In addition, these released nucleotides must also

survive degradation by extracellular nucleotidases, indicating

that they most likely act in a short-range capacity.19 Similarly,

‘find-me’ signals of lipid origin are present ubiquitously in the

circulation at a concentration higher than that released by

apoptotic cells.7 The mechanisms by which ‘find-me’ signals,

which can be recognized by a wide variety of cells, specifically

recruit phagocytes, the majority of which are macrophages,

are unknown. The counteractive effect of ‘keep out’

signals has been proposed to aid in the coordinated

recruitment of phagocytes. For example, lactoferrin, a glyco-

protein released by apoptotic cells, has been shown to actively

exclude neutrophils and eosinophils from sites of cell

death.28,29 Further complicating the matter is the dual role

that ‘find-me’ signals can have, as danger-associated mole-

cular patterns (DAMPs)30 or as activating factors to prime

phagocytes.31

Cell death does not occur in a vacuum; sites of cell death are

a conglomeration of dying cells, healthy cells, and immune

cells. The phagocyte must distinguish living cells from dying

cells in order to maintain homeostasis, promote proper

development, and prevent unwanted inflammation. Just as

dying cells must recruit phagocytes, they must also transform

themselves into targets for engulfment, displaying distinct

signals that differentiate them from viable cells.32,33 The

extracellularly exposed lipid, phosphatidylserine (PtdSer), is

the most well-characterized ‘eat-me’ signal and an essential

factor in effective efferocytosis.34 Normally confined to the

inner leaflet of the plasmamembrane lipid bilayer of living cells

(and in a relatively minor amount), PtdSer is actively and

rapidly externalized in a caspase-dependent manner during

apoptosis.34Caspase 3-mediated cleavage of the scramblase

Xkr8 facilitates exposure of PtdSer during apoptosis,35 an

event normally reversed by the activity of the flippase ATP11C,

which is inactivated by caspase-3 cleavage.36 Extracellularly

exposed PtdSer is recognized by multiple, bona fide

membrane receptors, such as T-cell immunoglobulin mucin

receptor 4 (TIM4), brain-specific angiogenesis inhibitor

1 (BAI1), and stabilin-2,37–39 and bridging molecules, such

as milk fat globule-EGF factor 8 (MFG-E8) and Gas6, that

recognize PtdSer and then engage phagocytic cell surface

receptors such as integrin αvβ3, αvβ5, or Tryo3-Axl-Mer (TAM)

receptors40–42 for engulfment.

Table 2 Components of the efferocytosis machinery and their association with inflammatory and autoimmune diseases

Molecule Role in efferocytosis Disease(s) References

Molecules associated with increased incidence or risk of disease
Nucleotides (ATP/UTP) ‘Find-me’ MS/EAE 115

Pannexin-1 ‘Find-me’ MS/EAE, seizure disorders 116,117

S1P ‘Find-me’ MS/EAE 118

LPC ‘Find-me’ Atherosclerosis, SLE/systemic autoimmunity 119

S1PR1-5 ‘Find-me’ MS/EAE 118

G2A ‘Find-me’ SLE/systemic autoimmunity, atherosclerosis 120,121

CX3CR ‘Find-me’ Autoimmune uveitis, MS/EAE 122,123

ICAM3 ‘Eat-me’ RA, SLE/systemic autoimmunity, GBS, MS/EAE 124

CRT ‘Eat-me’ RA, Sjogren’s syndrome, Celiac disease, SLE/systemic autoimmunity 125

C1q ‘Eat-me’ SLE/systemic autoimmunity, RA, atherosclerosis 126

TIM1 ‘Eat-me’ SLE/systemic autoimmunity, airway inflammation 127,128

TIM3 ‘Eat-me’ Airway inflammation, MS/EAE 128

TIM4 ‘Eat-me’ SLE/systemic autoimmunity 37

BAI1 ‘Eat-me’ Glioblastoma, neurological disorders 129

Integrins (avβ3) ‘Eat-me’ Scleroderma, ulcerative colitis 52,130

MerTK ‘Eat-me’ SLE/systemic autoimmunity, retinisis pigmentosa, atherosclerosis 53,131,132

MFG-E8 ‘Eat-me’ SLE/systemic autoimmunity, atherosclerosis 31,133

ProteinS ‘Eat-me’ Thrombosis, SLE/systemic autoimmunity 134,135

CD300f ‘Eat-me’ SLE/glomerulonephritis 136

ELMO1 Engulfment Testicular pathology, impaired neurogenesis 12,137

DOCK180 Engulfment Cardiovascular abnormalities, myogenesis abnormalities 138,139

GRK6 Engulfment SLE/systemic autoimmunity 140

RAC1 Engulfment RA, airway inflammation 11,141

DNAse II Processing Polyarthritis 72

LXRα/β Processing MS/EAE, SLE/systemic autoimmunity, autoimmune uveitis, type I diabetes,
atherosclerosis

142–148

PPARδ/γ Processing MS/EAE, SLE/glomerulonephritis, atherosclerosis, osteoarthritis 95,96,149–151

ABCA1 Processing SLE/glomerulonephritis 152

Molecules associated with decreased incidence or risk of disease
Fractalkine (CX3CL1) ‘Find-me’ Sjogren’s syndrome, airway inflammation, RA 153–155

Purigenic receptors
(P2Y2)

‘Find-me’ Sjogren’s syndrome, autoimmune uveitis 156,157

Integrins (avβ3) ‘Eat-me’ MS/EAE 158

CD91 (LRP) ‘Eat-me’ RA, SLE/systemic autoimmunity 159

RAGE ‘Eat-me’ MS/EAE, DTH 160,161

GAS6 ‘Eat-me’ Thrombosis, nephrotoxic nephritis, SLE/systemic autoimmunity 162–164

Abbreviations: BA1, brain-specific angiogenesis inhibitor 1; DTH, delayed-type hypersensitivity; EAE, experimental autoimmune encephalitis; C1q, complement 1q;
CRT, calreticulin; GBS, Guillain-Barré syndrome; LPC, lysophosphatidylcholine; LXR, liver X receptor; MFG-E8, milk fat globule-EGF factor 8; MS, multiple
sclerosis; PPARδ/γ; peroxisome proliferator-activated receptor γ/δ; RA, rheumatoid arthritis; SLE, systemic lupus erythematosus; S1P, sphingosine-1-phosphate;
TIM, T-cell immunoglobulin mucin receptor
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Other ‘eat-me’ signals have also been identified, which are

likely to have a ‘tethering’ function, facilitating the above

events. ICAM3 can bind to membrane-associated CD14,43

and externalized calreticulin bound to complement C1q can

engage CD91 (or LRP1).44 Oxidized LDL-like moieties and

glycosylated surface proteins can serve as ‘eat-me’ signals,

binding to scavenger receptors45 and lectins,46 respectively

(Figure 1b).

Similar to the ‘find-me’/’keep out’ signal paradigm, there is

evidence of a negative signal to discourage phagocytosis.

Although PtdSer is considered a hallmark of cell death, forced

PtdSer exposure47 or physiologically normal exposure on

activated, living cells does not mediate recognition or

engulfment.48 Thus, the simultaneous presence of ‘don’t eat-

me’ signals, such as CD31, CD47, and CD61, on viable cells,

may negatively regulate phagocytosis, indicating to the

phagocyte that despite the extracellular PtdSer, this cell is

not intended for clearance.18,49,50 Therefore, a coordinated

effort between the dying cell and the phagocyte must exist to

facilitate efferocytosis.

Although the majority of work on ‘find-me’ and ‘eat-me’

signals stems from apoptotic cells, these signals also function

during other types of cell death, such as necroptosis and

pyroptosis.7 As previously mentioned, ‘find-me’ signals, such

as ATP, are released (and in greater quantities) during

necrosis, necroptosis, and pyropotosis.6,14,51 Similarly, necro-

tic and pyroptotic cells also stain positive for Annexin V,

although in these cases, externalized PtdSer can be attributed

to rupture of the plasma membrane rather than an active

exposure process.52–54 These dead cells can still be

recognized and engaged by PtdSer receptors;55 however,

owing to the lytic nature of their demise, DAMPs have already

been released into the milieu and can activate inflammatory

programs. Therefore, although apoptotic cells actively coordi-

nate their own clearance, necrotic and pyroptotic cells

passively utilize these systems as well.

The tissue specificity of PtdSer receptors may help to

explain why multiple receptors are required for efficient

efferocytosis.17,18,56 Stabilin-2 is highly expressed in endothe-

lial cells within atherosclerotic plaques,57 although defects

in BAI1, highly expressed in glial and neuronal cells,

are associated with neurodegenerative disorders.58 Despite

a common ligand and a common goal of engulfment, the

mechanisms by which PtdSer receptors mediate phagocyto-

sis are often varied. Once engaged byPtdSer-bound integrins,

bridging molecules, such as αvβ3 or TAM, associates with the

adapter proteins ELMO1 and DOCK180 (via CrkII) at the site

of phagoytosis.59,60 The PtdSer receptor BAI1 also requires

the activity of the DOCK180/ELMO1 complex for engulfment,

but BAI1 is able to recruit the complex independently.38

Stabilin-2 and CD91/LRP, however, require the activity of the

adapter protein, GULP, to facilitate phagocytosis.61–63 One of

the most well-known PtdSer receptors, TIM4, contains a very

short cytoplasmic region and currently its signaling compo-

nents are unknown.64

Dying cell engulfment involves active membrane ruffling by

a process similar to macropinocytosis.65,66 Engagement of

PtdSer receptors results in cytoskeletal reorganization to

facilitate phagocytosis, which is mediated by the Rho family of

small GTPases, includingmembers RhoA, ROCK, Rac, Rab5,

and Cdc42.67 These GTPases cycle between the resting,

inactive GDP-bound state and the active GTP-bound state,

mediated by specific guanine-nucleotide-exchange factors

(GEFs), such as the bipartite GEF formed by DOCK180 and

ELMO1.68Ultimately, signaling during efferocytosis converges

on the activation of evolutionarily conserved Rac1, acting

at the phagocytic cup to promote actin polymerization

and cytoskeletal rearrangement via the Scar/WAVE

complex.67,69,70 Similarly, CDC42 has been linked to the

engulfment of apoptotic cells, although its precise role is

unclear.71 Once encased within the phagocyte, however, the

dying cell is now capable of exerting its effect on critical

downstream immunological and metabolic pathways.

Degradation After Phagocytosis: Did You Save Room for

Dessert?

The mechanisms by which phagocytes handle the burden of

processing an engulfed cellular corpse are currently of great

interest. Not onlymust a phagocyte interpret its ingested cargo

Figure 1 The recruitment of phagocytes and recognition of dying cells by phagocytes. (a) Dying cells release ‘find-me’ signals, such as ATP, UTP, S1P,
lysophosphatidylcholine (LPC), or fractalkine, that recruit phagocytes to sites of cell death. Phagocytes sense these ‘find-me’ signals via cognate receptors (P2Y2, S1PRs, G2A,
and CXCR3, respectively). (b) Phagocytes express a variety of receptors and bridging molecules that recognize and engage dying cells via ‘eat-me’ signals exposed on apoptotic
cell surfaces. The most common ‘eat-me’ signal, phosphatidylserine (PtdSer or PS), engages the PtdSer-specific receptors, TIM1, TIM3, TIM4, BAI1, stabilin-2, and RAGE, as
well as the PS-specific bridging molecules MFG-E8, Gas6, and protein S. These bridging molecules engage other surface engulfment receptors (αvβ3 or TAM) to facilitate
uptake. Other ‘eat-me’ signals, such as calreticulin (CRT) and ICAM3, exist and mediate recognition and engulfment via the receptors LRP (via C1q) and CD14, respectively
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in an immunologically tolerant manner, it must also contend

with the excess lipid, cholesterol, and protein that an entire

engulfed cell brings. Acidic proteases and nucleases inmature

phagolysosomal compartments degrade dying cells into their

basic cellular components, including fats, sterols, peptides,

and nucleotides. For example, DNAse II, a lysosomal enzyme,

is required for the degradation of DNA, and DNAse II

deficiency results in an accumulation of undigested DNA

fragments within phagocytic cells, capable of activating

intracellular nucleic acid sensors.72

The recent discovery of LAP has shed some light on this

issue. The two ancient systems of phagocytosis and

autophagy represent two modes of nutrient acquisition, during

abundance and scarcity, respectively. These two evolutionarily

conserved pathways converge, however, during the engulf-

ment of pathogens or dead cells.73 LAP is a process that

marries the processes of phagocytosis and autophagy into a

fundamentally new concept, allowing us to reinterpret the

impact of the autophagy machinery on innate host defense

mechanisms (Table 3).

LAP is triggered when an extracellular particle, such as a

pathogen, immune complex, or dead cell, is sensed by an

extracellular receptor, including Toll-like receptor1/2 (TLR1/2),

TLR2/6, TLR4, FcR, and TIM4, and phagocytosed.55,74–76

This engulfment recruits some, but not all, members of the

autophagy machinery to the cargo-containing vesicle.55,77 It is

the activity of these autophagic players that facilitates the rapid

processing of the cargo via fusion with the lysosomal pathway,

which can have a critical role in the degradation of engulfed

cargo,77,78 as well as modulate the resulting immune

response.55,75,78

Despite sharing common molecular machinery, there

currently exist several distinctions that differentiate LAP from

canonical autophagy (Figure 2). Originally, LAP and autop-

hagy were distinguished by the structure of the LC3-decorated

phagosome (or LAPosome) and the rapidity with which LAP

occurs. EM analysis revealed that LAP results in single-

membrane structures,77 as opposed to the double-membrane

autophagosomes surrounding autophagic cargo.79 Whereas

LC3-decorated autophagosomes can take hours to form,

LC3-II can be detected on LAPosomes in as few as 10 min

after phagocytosis, and phosphatidylinositol 3-phosphate

(PI(3)P) activity can be seen at the LAPosome within minutes

after phagocytosis.55,75,77

Recent studies have elucidated the molecular mechanisms

governing LAP.78 Although a majority of the core autophagy

components are required for LAP, there exist some critical

differences that can distinguish the two processes. Under

basal conditions, mTOR inhibits the pre-initiation complex,

comprised of FIP200, autophagy-related gene13 (ATG13),

and ULK1/2, and hence autophagy. However, the pre-initiation

complex is dispensable for LAP.55,75,78 Furthermore, canoni-

cal autophagy requires the ULK1-dependent release of a

Beclin1-activating cofactor, Ambra1, from the dynein motor

complex,80 and the function of WIPI2,81 whereas LAP does

not.78

Both LAP and canonical autophagy require the class III

PI3K complex, which contains the core components Beclin1,

Table 3 Components of the autophagic machinery and their association with inflammatory and autoimmune diseases

Molecule Confirmed pathway(s) Associated Disease(s) References

NOX2 LAP CGD, Alzheimer’s disease, Creuzfeldt–Jakob disease 165–167

Rubicon LAP Ataxia 168

Beclin1 Autophagy
LAP

Ovarian cancer, breast cancer, lung cancer, cystic fibrosis, Alzheimer’s disease, RA 169–174

VPS34 Autophagy
LAP

Schizophrenia 175

UVRAG Autophagy
LAP

Stomach cancer, non-segmental vitiligo, colorectal cancer, cardiomyopthay 85,176–178

ATG5 Autophagy
LAP

Airway inflammation, SLE/systemic autoimmunity, MS/EAE, RA, Alzheimer’s disease,
atherosclerosis

179–184

ATG16L Autophagy
LAP

Crohn’s disease, atheroclerosis 185,186

ATG7 Autophagy
LAP

SLE/systemic autoimmunity, MS/EAE, type I diabetes, RA, Alzheimer’s disease,
cardiomyopathy

187–190

ATG4 Autophagy
LAP

Otoconia 191

LC3 Autophagy
LAP

Nasu-Hakola disease 192

LAMP2 Autophagy
LAP

Danon disease, type II diabetes 193

ULK1 Autophagy Crohn’s disease 194

FIP200 Autophagy Inflammatory skin disorders 195

p62 Autophagy Huntingtin’s disease 196

EPG5 Autophagy Vici syndrome 197

IRGM Autophagy Crohn’s disease, MS/EAE 198

SMURF1 Autophagy Ulcerative colitis 199

WDR45 Autophagy Encephalopathy 200

Parkin Mitophagy Parkinson’s disease 201

PINK1 Mitophagy Parkinson’s disease 202

Abbreviations: ATG, autophagy-related gene; CGD, chronic granulomatous disease; EAE, experimental autoimmune encephalitis; LAP, LC3-associated
phagocytosis; MS, Multiple sclerosis; RA, rheumatoid arthritis; SLE, systemic lupus erythematosus
Confirmed activity in autophagy, LAP, and/or mitophagy is indicated
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VPS34, and VPS15.82 It can, however, differ in its additional

composition. ATG14 and UVRAG are mutually exclusive in

their association with the class III PI3K complex during

autophagy,83 and silencing of either ATG1483,84 or UVRAG85

inhibits canonical autophagy. LAP, on the other hand, only

requires the activity of the UVRAG-containing class III PI3K

complex, whereas ATG14 is dispensible.78

Rubicon (RUN domain protein as Beclin 1 interacting and

cysteine-rich containing) is a protein that associates constitu-

tively with the UVRAG-containing class III PI3K complex.86

Rubicon is a negative regulator of autophagy (via its inhibition

of VPS3484,86 or by blocking GTPase Rab7 activation87), and

silencing of Rubicon results in an increase in the number

of autophagosomes.78 During LAP, Rubicon is uniquely

associated with LAPosomes (but not conventional phago-

somes), and Rubicon-deficient cells are completely defective

in LAP.78 Thus, Rubicon is a molecule that is uniquely required

for LAP, but dispensable for canonical autophagy.

Studies suggest that the role for Rubicon in LAP is twofold.

First, Rubicon promotes the association of the active class III

PI3K complex with the LAPosome, thereby aiding in the

localization of VPS34-mediated PI(3)P at the LAPosome.

Figure 2 The processing of engulfed dying cells requires LC3-associated phagocytosis (LAP) and promotes an anti-inflammatory response. Upon engulfment of dying cells,
components of the LAP pathway are recruited to dead cell-containing phagosome (or LAPosome). The class III PI3 K complex, comprised of Beclin 1, VPS34, UVRAG, and
Rubicon, is critical to the sustained and localized production of PI(3)P at the LAPosome. PI(3)P serves two roles – the recruitment of the downstream LAP machinery (such as
ATG5, ATG12, ATG16L, and ATG7) and stabilization of the NOX2 complex for the production of ROS. Rubicon is also required for the stabilization of the NOX2 complex. Both ROS
and PI(3)P are required for successful LC3-II decoration of the LAPosome, and LC3-II is required for fusion to the lysosome and maturation of LAPosome. The anti-inflammatory
effects of efferocytosis are mediated by the activity of lipid and cholesterol sensors, such as ABCA1, LXR, PPARγ/δ, and PGC-1β, leading to the production of IL-10 and TGFβ,
whereas pro-inflammatory mediators, such as IL-12, are actively repressed
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In both canonical autophagy and LAP, PI(3)P is required for

the recruitment of the downstream ubiquitin-like conjugation

systems, the ATG5-12 and LC3-PE conjugation systems.78 In

LAP, Rubicon and PI(3)P have an additional role. Rubicon

stabilizes NOX2, the predominant NADPH oxidase in phago-

cytes, by interacting with its p22phox subunit via its serine-rich

domain (aa 567–625), a domain separate from the CCD

domain (aa 515–550) responsible for its interaction with

Beclin188 and the RUN domain (aa 49–180) responsible for

its interaction with VPS34.89 Moreover, PI(3)P binds and

stabilizes the p40phox subunit of NOX2.90Collectively, Rubicon

promotes the association of the active class III PI3K complex

with the LAPosome and the production of PI(3)P. Rubicon and

PI(3)P stabilize the active NOX2 complex to promote optimal

reactive oxygen species (ROS) production, which is also

required for successful LAP.78 Indeed, NOX2-deficeint cells fail

to undergo LAP78,91 and scavenging of ROS by antioxidants,

such as resveratrol, Tiron, or alpha-tocopherol is also an

effective way to inhibit LAP.78,88,91 Thus, LAP and canonical

autophagy are molecularly distinct processes.13,55,75,76

In addition, LAP and canonical autophagy are functionally

distinct as well. There is mounting evidence that LAP is a

critical regulator of inflammation in vivo and under physiolo-

gically relevant conditions. Not only is LAP critical for the

degradation of engulfed organisms, such as intraphagosomal

yeast77 or Aspergillus fumigatus,74 but LAP can have a

profound effect on the immune response to the engulfed

material. Upon intranasal challenge with A. fumigatus, a TLR2

ligand, LAP-deficient animals fail to efficiently clear the

pathogen and display increased levels of pro-inflammatory

cytokines both locally (lung) and systemically (serum).74 Thus,

many of the autophagic defects associated with control of

pathogens could actually be defects in LAP.

LAP can also be triggered in specialized phagocytes, such

as the RPE. On a daily basis and regulated by circadian

rhythm, RPE cells phagocytose and digest shed POSs, a

process crucial for supplying nutrients and O2 to the retina and

the metabolism of vitamin A for the visual cycle. However, the

receptor(s) that recognize shed POS and trigger LAP remains

unknown. What is known is the requirement for LAP in the

proper processing of POS and promotion of the visual cycle, a

series of biochemical reactions within the RPE and retina that

ultimately results in the production of the chromophore 11-cis-

retinal (RAL) necessary for the phototransduction signaling

cascade. RPE cells deficient for LAP (ATG5, Beclin1), but not

canonical autophagy (ULK1, FIP200, ATG13) displayed

defective POS degradation, diminished production of 11-cis-

retinal, and decreased visual function with age. Thus, LAP

functions to support chromophore regeneration through the

efficient processing of POS by the RPE.13

LAP is also required for establishing specific signaling

compartment and is a critical regulator of the type I interferon

response in some cases. In plasmacytoid dendritic cells, LAP

is induced by engagement of the FcγR by immune complexes

(IC), complexes of self-antigen (such as DNA) and auto-

antibodies commonly found in patients with SLE. In cells

deficient for LAP, failure to lipidate LC3 on the DNA-IC-

containing LAPosome results in a failure to acquire a

late-endolysosomal phenotype. Subsequently, these

LAP-deficient cells fail to form the specialized interferon

regulatory factor 7 (IRF7)-signaling compartment required

for TLR9-mediated activation of IRF7, and therefore fail to

produce IFN-α. This suggests that LAP could affect the

functional immune response elicited by autoantigens and

have an important role in autoimmunity.75

Unwanted inflammation and autoimmunity is held in check

by the efficient clearance of dying cells every day.55,92 It is the

responsibility of the phagocytes to first clear the dying cell from

circulation and then instigate an anti-inflammatory response.

Phagocytes that have engulfed apoptotic cells have been

shown to secrete anti-inflammatory cytokines, such as TGFβ

and interleukin-10 (IL-10),54 whereas actively suppressing

pro-inflammatory cytokines, such as tumor necrosis factor,

IL-1, and IL-12.93 How the phagocyte achieves this feat is of

great interest. LAP is triggered during efferocytosis, and

apoptotic, necrotic, and necroptotic cells can engage the PS

receptor, TIM4, resulting in a recruitment of the LAP

machinery to the dead-cell-containing, single-membrane

LAPosome. LAP-deficient macrophages fail to recruit LC3 to

the LAPosome, leading to a failure in phagosomal acidification

and subsequent corpse degradation. Whereas the paradigm

of efferocytosis is ‘immunologically silent’, LAP-deficient

macrophages produce markedly increased levels of IL-1β

and IL-6 when fed dying cells, yet produce significantly less

anti-inflammatory cytokines, such as IL-10, upon such

engulfment.55 LAP is engaged by a variety of receptors and

is critical for directing a variety of different immune response,

including preventing an unwanted inflammatory response

and promoting the formation of the interferon signaling

compartment.55,75 Although these functions may appear

contradictory, it suggests that the fundamental role of LAP is

to shape the appropriate response, and absence of this

pathway seems to result in aberrant inflammation and

pathogen control.

How the LAP pathway modulates the immune response to

apoptotic cells remains to be elucidated, though clues may lie

in the mechanisms by which the phagocyte handles the

metabolic stress of doubling its content of cellular

components. The sensing of one such component, choles-

terol, can have a significant effect on the phagocyte’s

response to engulfed dead cells and their increase in basal

cholesterol efflux activity.94 Members of the peroxisome

proliferator-activated receptor γ/δ (PPARγ/δ) and liver X

receptor (LXR) families, both important regulators of cellular

lipid homeostasis, are activated during efferocytosis, and

results in a positive feedback signal wherein the phagocytic

receptors, such as members of the TAM family, are

upregulated.95,96 Furthermore, cholesterol efflux machinery,

such as 12-transmembrane protein ABCA1 (ATP-binding

cassette sub-family A, member 1), is upregulated to accom-

modate the increase in cholesterol load.92

The non-immunogenic nature of efferocytosis of apoptotic

cells is one of its key characteristics, and cholesterol home-

ostasis has a critical role in establishing this tolerance.18,22

PPARγ/δ are central players in the polarization of anti-

inflammatory (‘M2’) macrophages, and agonizts for both

PPARγ and LXR have been shown to inhibit inflammatory

responses.18,96Conversely, PPARγ−/− and PPARδ− /−macro-

phages are defective in efferocytosis. The dual functions of

PPARs and LXRs in both lipid apoptotic cell clearance and
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lipid homeostasis suggest the interconnectedness between

efferocytosis and metabolism.

Despite all types of dying cells providing excess cholesterol

for the engulfing cells, uptake of necrotic cells does not induce

enhanced cholesterol efflux in the phagocytes, suggesting

that engagement of ligands on apoptotic cells, not extra

cholesterol, induces a 'prophylactic' cholesterol efflux from

phagocytes.97 Studies have shown that mere co-culture of

macrophages with PtdSer liposomes can induce the choles-

terol efflux, anti-inflammatory cytokine production, and sup-

pression of pro-inflammatory genes.93,98 These data suggest

that metabolic sensors, in conjunction with engagement of

‘eat-me’ signals, such as PtdSer, contribute to the immunolo-

gical tolerance associated with efferocytosis.

Conclusions: Check Please!

Defects at multiple points in the efferocytosis pathway have

been reported to result in unchecked inflammation or

autoimmunity, and understanding the mechanisms by which

dying cells are effectively cleared can pave the way for

therapies that target these processes. Although many studies

have examined inflammatory disorders in the context of

defective attraction, recognition, and physical engulfment of

dead cells, we now recognize that aberrant processing of dead

cells, potentially via deviations in LAP, can also result in

inflammation. Although systemic disorders, such as SLE,

have been long linked to defects in dying cell clearance and

the autophagy machinery, more definitive roles for these

pathways in ‘localized’ inflammatory diseases, such as

ulcerative colitis, atherosclerosis, neurodegeneration, and

rheumatoid arthritis should be described. Moreover, the

intricate link between inflammation and cancer raises the

question of what the role of efferocytosis is during tumor

development, metastasis, and chemotherapy-mediated tumor

clearance. Although clearance of dying cells is a common

occurrence in healthy and diseased cells, recent studies

describe the process of entosis, wherein living cells are

engulfed by phagocytes. Although some entotic cells can

escape from their engulfment unscathed, most are targeted for

destruction by LAP.76 Entosis events are common in human

cancers, but their role remains unclear.76 The mechanisms by

which entosis occurs, and its similarity to efferocytosis, implies

that the burden that lays before the phagocytic system is a

daunting one.
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