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A simpler method of deriving the Clebsch-Gordan coefficients is described. By the use of the 

new operators for angular momentum, introduced in a recent paper, the problem, which properly be­

longs to the domain of Algebra, is tackled here by the more convenient methods of Analysis. The 

natural occurrence of the hypergeometric funetion is an interesting feature of this treatment. 

§ 1. Introduction 

In a previous paper1) (referred to hereafter as (I) ) the one-variable operators. 

(1) 

were shown to give a representation of angular momentum both for integral and half­

integral values of j*, and it was correctly realised that their use might lead to an easier 

method of calculating the Clebsch-Gordan (briefly C-G) coefficients. An important step 

in this direction was taken by setting up a second order differential equation ( eq. ( 4 ) 

below), whose solution. would yield a general expression for these coefficients. As the 

very form of this equation discouraged any attempt at a solution, a recursion formula con­

necting three successive Fourier coefficients (which are identical with the CoG coefficients 

of the second kind as defined in § 2) was set up. But this formula was as intractable 

as the equation itself, and the possibility of getting any simplification seemed to be re­

mote. Recently, however, it has been realised that the difficulties are illusory, and that 

eq. (4) is, in fact, one of the standard equations of Analysis in an apparently unre­

cognisable form. Furthermore, it has been possible to set up a system of 4] + 2 coupled 

equations, in a certain sense, more satisfactory than eq. (4). These new equations, being 

of the first order, can be solved immediately, and the solution involves hypergeometric 

functions, which naturally occur in the theory as formulated in the present paper. The 

entire theory can, therefore, be worked out from the known properties of these functions, 

and a general expression for the coefficients obtained without using the recurrence relations 

of Racah2) or the group-theoretical method of Wigner:\). With the help of the transform­

ation formulae for hypergeometric functions this expression can, in fact, be written a variety 

of forms, of which only one will be given here. The reduction to the hypergeometric 

equation places a powerful tool at our disposal and may be of help in finding out interest­

ing relationships. 

* The results of this paper are valid for half.integral quantum numbers as well. 
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§ 2. Clebsch-Gordan coefficients of the second kind 

If the normalized spherical harmonics Y"; (f), l(J) are replaced by eimrp and the usual 

-angular momentum operators by the operators (1), then the matrices assume the forms 

where, M.e, My, Mz are the components of angular momentum in units of 0. These are con­

nected with the usual matrices M.,c * ± iM.v *, Mz * by a similarity transformation M = A-1M* A, 

where A is a diagonal matrix with diagonal elements Amm.=[(j-m)!(j+m)!Jl/2. If 
tj . 

J ( l(J ) am ei7ltrp is the solution of the reduced problem, then the actual solution in 
m=-j m-+j 

'terms of spherical harmonics is F(f),l(J) ~ A"",mamYj'(f),l(J) (see § 8 of (I». 
m=-,; 

For a dymamical system with two angular momenta Ml and M2 the functions lfl",jm, 
which simultaneously diagonalize Mz = MZl + MZ2 and the total angular momentum 

M2 = (Ml + M2)2 are linear combinations of products of the type y";;,l (f)Hl(Jl) Yj;,2 (f)2,l(J2) . 
. The coefficients {mlm2 jjm} of these linear combinations are called the CoG coefficients. 

It will be convenient for us to call them "coefficients of the first kind." If the normaliz­

ed eigenfunction lJIjm of the operator M2 is multiplied by [(j-m) 1 (j+m) 1J1 /2 and the 

replacements stated at the beginning of this section are made, we get a function 

(/)Jm.=~(mlm2Ijm) exp (im1l(Jl+ im2l(J'l) . (2) 
ml,'I1t2 

The coefficients (mlm'lljm) of this double Fourier series will be called "C-G coefficients 

of the second kind." Evidently the connection between the two kinds of coefficients is 

{ I'} - ( I') h-ml' h mI' h- m2 • Jz mz • 
[ 

( . ) I (. + ) I (' ) I (' ) I J1 /2 m
1
m

2 
Jm - m

1
m

2 
Jm ............................. ~~.---------

(j-m) ! (j+m)! 

'The introduction of the coefficients of the second kind is essential for the discussions to 

:follow and results in considerable simplification of the mathematical treatment. 

§ 3. The differential equations satisfied by (/)jm 

We now proceed to set up certain differential equations satisfied by the function (/)jm, , 

'which is an unnormalized eigenfunction of the operator 

M2= (Ml)2+ (M2) 2+ (M4 +iMlIJ (M."2-iMY2) 

+ (M.,cl- iMYl) (M.,c2+ iMY2) 2MzIMz2 

+F2+ei (?1-'P2)(jl iDj ) (j2- iD2) 

+ e-i (rpl-?2) (j1- iD1) 02 + iD2) - 2DID2 

'belonging to the eigenvalue F, where, 
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M.., ± iMy = e±il;[jl ± iD~ ± iD'f] + eTi "1 (j2 =F iD'tl)]' Mz = - iD~ , 

M2=F1 + F2+eiYj (ji +iD; +iD'f]) (j2+ iD1J) +e-iYj (jl- iD'f;.-iDYj) (j2- iD1J) 

2(D'f;. D'f])DYj' 

The differential equations are conveniently set up with the help of the commutation 

relations, [Mz, M2] = [ M.., ± iMy, M2] = O. In combination with the equation 

(3) 

they determine the functions tfJ,Jm euept for an arbitrary factor, which may depend on 

jJ) j2' j and sometimes on .. m. The relation [Mz, M2]=:: - i[Db M2] 0 implies that m = m1 + m2 
is constant for a particular function tfJ ,?m,' The double summation over m1 and m2 in the 
defining equation (2), therefore, reduces to a simple sum, and we have 

tfJ. = eim1;~ (m m 11'm) e-im21\= eim'2'f;x .Jm L..J 1 2 ,jm, . 
m2 

As a consequence, the variable ~ drops out altogether from eq. (3), which reduces to' 

[ei 'f](jl- m iD1\) (j2+ iD,'l) e- f1\(jl+ m- iD1\) (j2- iD'f]) 

+2 (im + D'f]) D1\+F1 +F2-F]X.im=0. (4) 

This important equation already occurs in (I). It determines the functions X,1 m" and 

therefore C-G coefficients, up to an arbitrary factor involving ju j2' j, m. 
Let us now examine the consequences of the pair of relations [M", ± iMy, M2] 0, 

which imply that (M,c ± iMy) tfJ"m is a linear combination of the 2j + 1 eigenfunctions tfJ.Jm: 

for different values of m. The occurrence of the factor e±il; in M,c ± My further ensures 

that this linear combination consists of a single term tfJ.i'l'n±l' On suitably adjusting the 

arbitrary constant in tfJ,im and dropping the variable ;, we have 

[A-m+ iD'f]+e- i
"1 (j2- iD1\) JXJm, = (j-m) Xjm+l 

[h +m+ 1-iD1\+eiYj (j2+ iD'f]) JXjm,+l (j+m 1) Xjm' 

(5a) 

(5b) 

It is easily seen that they lead to eq. (4) and determine the functions X,im up to an:. 

arbitrary factor independent of m. This factor can be determined by normalizing the 

simplest of the functions P",Jm, namely, Ijf'jj or tp'j _,j • 

As it will not be necessary to consider more than one value of j at a tim,e, it is 

better, at this stage, to drop the subscript j, and write Xm for X:im, tfJm, for tfJjm, etc. 

We notice that eq. (4) remains unchanged on changing the sign of m and passing on 

to the complex conjugate. An immediate consequence of this symmetry property is that 

X~m=CmXm' Making the same changes in eq. (5a) and comparing with eq. (5b), we 

see that Cm C is independent of m. From Xo* CXo it then follows thatlCI= lr 

The exact value of C can be obtained by comparing -Xi and X-j given in eq. (9) below,. 
and turns out out to be C (_1).i1+,i2-,). Therefore, 
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To bring eqs. (4), (5a) , (5 b) into more convenient forms and to show their con-­

nection with the hypergeometric equation we put x=e-i'lJ. Thisgives 

D=d/dx, 

LIm (Xm) -[x{l-x)D+ jl- m+ j2X]Xm, = (j-m) Xm+1 , 

L/",+1(Xm.+1) (1 X)D+j1 m 1+j2/X]Xm+l=(j+m 1)Xm' 

(7) 

(8a)' 

(8b) 

The eqs. (8a), (8b), being of the first order, can be solved easily. Putting m=j in" 

(8a) and m= - j-1 in (8b) ,we have 

Next, . put 

This gives the following two alternative forms of the set of equations (8a), (8b) : 

[(1 x)D+j-m]um, (j-m)vm+l' 

[x(1-x)D-jl+j2+ m (j1 +j)xJvm (j+m)um_1 , 

[x(1-x)D+jl-j2- m+ (-jt+j2+j)X]Vm= (j-m)Vm+I' 

[(l.-x)D+j+m]Vm (j+m)vm _ 1 • 

} 

} 

(11) 

(12) 

A comparison with the relations between contiguous hypergeometric functions,namely,. 

(xD+a) F(a, b; c; x) =aF(a 1, b; c; x) , 

[x(1-x)D+c-a-bx ]F(a, b; c; x) = (c-a) F(a-1, b; c; x) 

now shows that the solution of the set (11) is 

um=F(-j+m, -jl+j2-j; -2j; 1 x) 

and the solution of the other set (12) is 

Vm F( 

We can get two other forms of the solution by making use of the relation (6). These' 

are 

m, 2j; (x-1)/x). 

The four different froms can be obtained very simply from Kummer's connection formulae. 

Other forms may be obtained, for instance, from the relation 

F(a, b; C; x) r(c)r(c-a-b)/{r(c-a)r(c-b)}. F(a, b; a+b-c+1; I-X) 

which is valid when at least one of the parameters a, b is a non-positive integer, and the 
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denominator In the succeSSlve terms of· the series on either side of the identity does not 

vanish earlier than the numerator. The factor involving Gamma functions can often be 

evaluated by a limiting process even if it is meaningless. Each new form of the solution 

leads to a different expression for the CoG coefficients. But it is usually difficult to estab­

lish the equivalence of the various expressions by direct algebraic reduction. 

The foregoing discussions make it clear that eq. (4) or (7) is a hepergeometric 

equation in disguise, and can be reduced to it by either of the substitutions (10). Eli­

mination of Xm or Xm+l from eqs. (8a), (Bb) leads to the equations 

and these must be identical with eq. (7). The entire set of coupled first order equations 

can, therefore, be replaced by the single second order equation, which may be taken to 

be the basic equation of the problem. 

§ 4. Determination of the constant A3 

As rpm has a definite connection with the normalized function lJfm, the multiplying 

"constant in Xm cannot be arbitrary, but must have a definite dependence on jH j2' j. To 

use Racah's notation we write 

m, -11 2j; 1 x). 

Th.e constant AJ. is most easily determined by normalizing the functions lJf.. or lJf . that J -,,' 

is, from either of the relations 

~ {m1m2 jjj} 
m2 

The coefficient of the first kind is, therefore, 

The relation (13) now gives*, on writing t for h - m1, 

+j 1 ; 2jl ; 1). 

Gauss's formula, F(a, b; C; l)=r(c)r(c-a-b)/{r(c-a)r(c-b)}, then gives 

~1=[ (2j+ 1) 01 + j2- j) !]1/2/[ (j1 + j)! ( + j2+ j)! (j1 + j2+ j+ 1) !J/2. 

This method of evaluation of A.1 is perhaps simpler. 

(13) 

(14) 

* Here, as in all formulae of this paper, the summation index takes all integral values consistent with 
lthe factorial notation, the factorial of a negative number being meaningless. 
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§ 5. General formulae for the coefficients 

From the various expressions for Xm it is easy to obtain general formulae for the 

CoG coefficients. In the second form they are identical with the coefficient of xm2 in 

the expansion of Xm. To get a formula for the coefficients we select, at random, any 

particular from of the solution, say, 

Xm= Aj (2j)!/ (jl + j2- j)!' x- j2 (1 x) jL+j2-j F( 

Aj (-jl+j2+j)!(j+m)! X 
(jl+j2-j)! 

X~x-j2+S( 
8,t 

whence, 

( 
" J

;) - A.1 ( - jl + j2 + j) ! (j + m) ! 
mjm2 jm - --("" . + . .) I (. -)~I­

h }2-j' 12 m2 • 

. I I 

2j; 1 x) 

1) .?2+m2+t • • 

t! (j+m- t)! (- jl + j2+ j-t)! (jl- j-m2+t)!. 
(IS) 

The correctness of this formula can be tested by seeing if it satisfie~ the two recurrence 

relations, 

(j-m) (m1m2+ IJj m 1) = (ml 1 mz 1 Jjm) (jl-ml 1) + (mlm2Jjm) (j2-m2) 

(j+m) (m1m2-1Jj m-l) (m! + 1 m2-1Ijm) (jl +m1 + 1) (mlm2Ijm) (j2+m2), 

which follow from eqs. (Sa), (Sb), and are substantially the same as Racah's relations2) 

(3) and (S ) . A simple calculation shows that it satisfies the second of the two relaM 

tions. Instead of trying to verify that it satisfies the other relation also it is much 

easier to show that it gives the correct initial conditions, that is, the expression (14) for 

(m 1m2 Jjj). That it does so is immediately seen by writing the expression, obtained from 

(IS), in the from 
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