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Abstract 

 
Using an international, multi-model suite of historical forecasts from the World Climate 

Research Programme (WCRP) Climate-system Historical Forecast Project (CHFP), we 

compare the seasonal prediction skill in boreal wintertime between models that resolve 

the stratosphere and its dynamics (“high-top”) and models that do not (“low-top”).  We 

evaluate hindcasts that are initialized in November, and examine the model biases in the 

stratosphere and how they relate to boreal wintertime (Dec-Mar) seasonal forecast skill.  

We are unable to detect more skill in the high-top ensemble-mean than the low-top 

ensemble-mean in forecasting the wintertime North Atlantic Oscillation, but model 

performance varies widely.  Increasing the ensemble size clearly increases the skill for a 

given model.  We then examine two major processes involving stratosphere-troposphere 

interactions (the El Niño-Southern Oscillation/ENSO and the Quasi-biennial 

Oscillation/QBO) and how they relate to predictive skill on intra-seasonal to seasonal 

timescales, particularly over the North Atlantic and Eurasia regions.  High-top models 

tend to have a more realistic stratospheric response to El Niño and the QBO compared to 

low-top models.  Enhanced conditional wintertime skill over high-latitudes and the North 

Atlantic region during winters with El Niño conditions suggests a possible role for a 

stratospheric pathway.  

 

Keywords: seasonal prediction, stratosphere-troposphere coupling, stratosphere, El 

Niño-Southern Oscillation, Quasi-biennial Oscillation, North Atlantic Oscillation 
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1.  Introduction  

 The predictive skill of extratropical climate on intraseasonal to interannual time 

scales has historically been very low.   Interactions between the ocean, ice, atmosphere, 

and land on intermediate timescales can be complex, and many models do not capture 

these relationships (National Research Council 2010; Kim et al. 2012; Smith et al. 2012).  

In an effort to assess current seasonal prediction capabilities, the World Climate Research 

Programme (WCRP) proposed the Climate-system Historical Forecast Project (CHFP), in 

which historical forecasts, or hindcasts, from international operational forecast centers 

and other research centers could be compared and evaluated (Kirtman and Pirani 2009).   

 One component of the atmosphere that models historically have had difficulty 

simulating is the stratosphere.  Because stratospheric variability can have significant 

impacts on surface climate on timescales of weeks to months during seasons when the 

stratosphere is dynamically coupled to the troposphere (Gerber et al. 2012; Kidston et al. 

2015), incorporating a well-resolved stratosphere into forecasting models is one of the 

most promising ways to enhance intra-seasonal to seasonal prediction skill (Baldwin et 

al. 2003; National Research Council 2010; Smith et al. 2012).  Models with a well-

resolved stratosphere, i.e. those with a higher model top and vertical resolution in the 

stratosphere, seem to better simulate stratospheric variability and stratosphere-

troposphere coupling (Osprey et al. 2013; Charlton-Perez et al. 2013) and have better 

stratospheric and tropospheric skill compared to models with a lower model top on 

timescales of 3-4 weeks (Roff et al. 2011).  Initializing models within a few days of a 

major stratospheric event can enhance predictive skill at the surface during the weeks 

following the event (Kuroda 2008; Gerber et al. 2009; Marshall and Scaife 2010; 
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Sigmond et al. 2013; Tripathi et al. 2014, 2015), and forcing the stratosphere towards 

observed values improves the simulation of the wintertime tropospheric circulation 

(Douville 2009; Scaife et al. 2005). 

However, it is still not clear if initializing and resolving the stratosphere results in 

higher seasonal forecast skill in the Northern Hemisphere wintertime.  In a seasonal 

forecast, models are initialized at the beginning of the season and predictions are made 

for the subsequent months.  Models cannot predict sub-monthly stratospheric variability 

(e.g., major Sudden Stratospheric Warmings/SSWs) at these lead times because the 

information used to initialize the model generally does not provide useful knowledge 

about the tropospheric wave processes that drive these events beyond ~7-20 days.  Thus, 

any predictive information gained from having a well-resolved stratosphere is likely due 

to the ability of the model to capture (a) those stratospheric processes most related to 

slow-varying atmospheric processes and teleconnections, and (b) the downward transfer 

of those stratospheric signals to tropospheric climate, which tends to occur on intra-

seasonal to seasonal timescales. 

 Two elements that influence the stratosphere and tend to persist throughout a 

season are: tropical sea surface temperature anomalies, in the form of the El Niño-

Southern Oscillation (ENSO), and the Quasi-biennial Oscillation (QBO), a quasi-periodic 

oscillation of tropical stratospheric winds.   Both ENSO and the QBO have seasonal to 

interannual timescales and are associated with changes in extratropical surface climate, 

particularly over the North Atlantic and Eurasian regions. The stratosphere plays an 

important role in communicating these tropically-forced teleconnections to the 

extratropical and polar latitudes.  Incorporating realistic dynamics of the stratosphere may 
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improve the simulation of these processes and their impacts on extratropical climate on 

seasonal timescales (Cagnazzo and Manzini 2009; Hardiman et al. 2012; Boer and 

Hamilton 2008).  

 Here we seek to compare and quantify differences in the seasonal prediction skill 

between models with a resolved stratosphere (so-called “high-top” models) and without a 

resolved stratosphere (“low-top” models).  While other studies have examined the 

stratospheric circulation and its role in seasonal predictive skill in low-top models 

(Maycock et al. 2011), as well as its role in decadal to long-term predictions (Scaife et al. 

2012, 2014a), this study is the first intercomparison of historical seasonal forecasts made 

by a large international suite of both high- and low-top state-of-the-art forecasting models 

(Table I; Section 2).  We focus on model hindcasts that are initialized on November 1st 

and run through the Northern Hemisphere wintertime (December-March) when the 

stratosphere is strongly coupled to the troposphere and has known influences on surface 

climate.  We evaluate the model biases in the climatology and variability of the 

stratosphere, and relate them to biases in the tropospheric circulation and skill (section 3).  

We compare the predictive capability of the models for the North Atlantic Oscillation 

(NAO), the dominant mode of extratropical variability associated with shifts in the 

tropospheric mid-latitude North Atlantic jet (section 4).  Lastly we consider whether 

high-top or low-top models better represent stratospheric teleconnections from the tropics 

to the extratropics, associated with the ENSO (section 5) and the QBO (section 6). 

 

2.  CHFP Dataset and Methodology 
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 Table I provides a list of the coupled atmosphere-ocean models participating in 

the CHFP, along with the number of ensemble members, model resolution and model top, 

years of the model hindcast run, seasonal range of the forecast from November-March, 

data output levels above the surface, the dataset used to initialize the atmosphere, and the 

simulation of the ocean and sea ice. Many modeling centers provide nearly 30 years of 

historical forecast data, and multiple ensemble members, allowing for large sample sizes.  

The atmosphere, ocean, and sea ice in the models are initialized on or around November 

1st (the CHFP dataset also includes hindcasts initialized around May 1st but here we focus 

on the boreal winter season). While some of the models create ensemble members by 

initializing runs from late October into early November, here we mainly consider 

predictive skill in December through March, so any additional information from forecasts 

initialized after Nov 1st should not influence the results. The data set is hosted at the 

Centro de Investigaciones del Mar y la Atmosfera (CIMA) and is publicly available for 

download at: http://chfps.cima.fcen.uba.ar/ 

 In this study we use monthly-mean data (about half of the models also provide 

daily data in the stratosphere). Here we do not explicitly examine the role of extreme 

stratospheric variability that occurs on timescales of a week or less (i.e., major SSWs or 

strong polar vortices) and its relationship to slowly varying boundary conditions such as 

ENSO.  Seasonal forecast models cannot generally gain skill from simulating individual 

SSWs (since models can only forecast SSWs at lead times of 10-20 days), but the 

increased probability of SSWs during certain winters is associated with improved 

predictive skill at the surface (e.g., Domeisen et al. 2015; Scaife et al. 2015).  
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 To be considered a “high-top” or stratosphere-resolving model (bolded and 

italicized in Table I), the model must have a vertical domain extending to 1 hPa (~50 

km) or higher, and have at least 15 model levels between the tropopause and 1 hPa.  We 

note that while a higher model top and better stratospheric vertical resolution presumably 

allow a better representation of wave processes and thus better representation of 

stratospheric dynamics (Shaw and Perlwitz 2010; Charlton-Perez et al. 2013), it’s not 

clear that this condition alone is sufficient for better simulation of stratospheric processes 

(Shaw et al. 2014).  For example, even most high-top models are unable to simulate an 

internally-generated QBO.  Still, using model lid height to classify the models into two 

groups does generally separate those models with weak polar stratospheric variability 

from those with stronger, more realistic variability (see Figure 1d).  Note that while 

several models offer data output at a wide range of pressure levels, other models do not 

provide any data above 200 hPa; in these cases we cannot evaluate the model stratosphere 

and its relation to skill beyond knowing the model lid height.  These models are included 

in analysis of surface variables (i.e., Figures 4 and 6) but not in the analysis of 

stratospheric variables.  

 While a few modeling centers provide a high-top and low-top version of the same 

model (e.g., ARPEGE, CMAM, and GloSea4), overall this suite of models is an 

“ensemble of opportunity”.  In other words, the high-top models and the low-top models 

may not only be different in terms of the model lid height, but also in terms of model 

physics, resolution, and other parameterizations.  These differences can make it difficult 

to attribute differences in skill directly to the inclusion of a more realistic stratosphere.  
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We compare high- and low- top versions of the same model, in relation to the ensemble-

mean differences, where possible. 

 To calculate skill and evaluate model relationships against the observations, we 

use the ECMWF ERA-interim reanalysis dataset (Dee et al. 2011).  Comparing to other 

reanalysis datasets produced very similar results (not shown).   We evaluate monthly-

mean and seasonal-mean Northern Hemisphere wintertime (November-March) fields 

from November 1979 to March 2012. 

 Individual model, high-top, and low-top ensemble-mean skill are evaluated 

following Becker et al. (2014).  For model forecasts F(s, j, n, k), where s is the spatial 

(gridpoint) index, j is the time index (years), n is the model ensemble member n=1…N 

for N total ensemble members per model, and k is the model k=1…K for K total models, 

the ensemble mean (EM) for model k is given by: 

       (1) 

Likewise, the high-top (FH) and low-top (FL) ensemble-means are formed by 

averaging those model ensemble-means that qualify for each category, e.g.: 

                 (2) 

where Fens(s,j,k) is the ensemble-mean of the k-th high-top model out of K total high-top 

models. Note that individual model EMs (Fens) are equally weighted within the high-top 

and low-top EMs (i.e., models with more members are not given more weight).  In 

addition, note that each Fens has a different time period (Table I), so to create the high-top 

and low-top EMs, each Fens has been padded with missing data values if necessary to 

ensure every record runs from 1979-2012 prior to averaging into FH or FL.  This means 

that the high-top and low-top EM time series are based on few models at the beginning 
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and ends of the record.   Using a somewhat shorter time period to eliminate periods with 

few models has little effect on our results. 

To create anomalies, the ensemble-mean model climatology (for the individual 

model period) is then removed: 

                                (3a) 

and 

                          (3b) 

where {} is the mean, or climatology, over the forecast period 1979-2012.  The removal 

of the EM climatology allows an a posteriori removal of systematic errors, giving bias-

corrected anomalies (Peng et al. 2002).  Seasonal-means are created by averaging 

anomalies over 3 month periods. 

The anomaly correlation coefficient (ACC) is used as a measure of skill, and is 

defined as: 

    (4)  
where O’(s, j) is the ERA-interim anomaly for every grid space s and year j (for the same 

years as the forecast), ws is a weight that accounts for the area of each gridpoint, and W is 

the sum of ws over all gridpoints and timesteps. The ACC values fall between -1 and +1, 

where +1 is a perfect forecast and 0 is the average score of a random forecast.  

 For calculations of the NAO pattern and time series, the following procedure is 

adapted from Doblas-Reyes et al (2003).  The NAO is calculated as the first empirical 
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orthogonal function (EOF) of 20-90°N and 90°W-60°E sea level pressure anomalies 

(SLP).    As a way to consider the mid-tropospheric circulation we also calculate the 

Northern Annular Mode (NAM) as the first EOF of zonal-mean 20-90°N geopotential 

height anomalies at 500 hPa.  For ERA-interim reanalysis, the EOF patterns are 

calculated based on detrended, deseasonalized DJF monthly anomalies weighted by the 

square root of cosine of latitude.  The index time series is then found by projecting the 

EOF onto the unweighted gridded monthly anomalies, averaging over December-

February (DJF), and standardizing the resulting time series. For models, the EOF pattern 

is calculated based on concatenated DJF monthly timeseries of all ensemble members for 

a given model.  The NAO/NAM index time series is found by projecting the anomalies 

for each individual model ensemble member onto the model’s EOF pattern (each model 

ensemble-mean climatology is used to create anomalies for each model). Projecting the 

anomalies onto the reanalysis-based EOF pattern instead did not significantly impact the 

results.   All individual model NAO/NAM time series are then averaged together to make 

the model ensemble-mean time series, which is then standardized.  These time series are 

correlated to the ERA-interim NAO/NAM index time series to get the skill of the 

ensemble-mean forecast.  For the high-top and low-top ensemble-means, individual 

model-means of the NAO time series are averaged together, so that each model-mean is 

weighted equally. 

 We also approximate a “station-based” NAO index by subtracting mean sea level 

pressure (SLP) anomalies between the Azores Islands (38°N, 26°W) and Reykjavik, 

Iceland (64°N, 22°W).  The SLP time series are normalized before finding the difference.  

The DJF seasonal-mean of the NAO index for each ensemble member is found, and then 
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the ensemble members are averaged together to get a model-mean NAO value.  Low-top 

and high-top ensemble-means are created by averaging each model-mean NAO value, so 

each model is weighted equally. 

 We define ENSO phases using the ERSST.V3B ‘Oceanic Niño index’ (ONI) 

calculated over the Niño-3.4 region (5°S-5°N, 170-120°W) from the National Center for 

Environmental Prediction (NCEP) Climate Prediction Center (CPC).  El Niño and La 

Niña winters are classified following the NCEP/CPC convention: events must exceed the 

+0.5°C or -0.5°C threshold, for El Niño and La Niña respectively, for a minimum of five 

consecutive overlapping seasons (NDJ, DJF, JFM, etc.).  For the period 1979-2012, there 

are 10 El Niño years, 12 La Niña years, and 11 ENSO-neutral years (Table II); note 

though that different forecast systems cover varying lengths of this 33 year period (Table 

I). Because the historical forecast runs are initialized in November with observed sea 

surface temperatures, the forecast for each winter will closely correspond to the observed 

ENSO phase. 

 Likewise, given the approximate 28-month periodicity of the Quasi-biennial 

Oscillation, the tropical winds initialized in the model in November should persist 

through each forecast winter (Marshall and Scaife 2009).  The QBO phases are defined 

based on the November 5°S-5°N zonal-mean zonal wind at the ERA-Interim reanalysis 

level of 44 hPa.  The westerly QBO (WQBO) phase occurs when the zonal-mean zonal 

winds are greater than 5 m s-1, and the easterly QBO (EQBO) phase occurs when the 

zonal-mean zonal winds are less than -5 m s-1.  There are 14 WQBO winters and 12 

EQBO winters (Table II). 
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3.  Model biases in the Stratosphere 

 We first consider the ability of each model to simulate the mean state of the 

stratospheric polar vortex during Northern Hemisphere (NH) winter.  Figure 1a shows 

the 1979-2012 climatological 50-70°N zonal winds at 50 hPa from November to March 

for ERA-interim (black dots, with confidence interval about the mean given by a 2-tailed 

t-test), low-top models (dashed lines), and high-top models (solid lines).  In general there 

is wide spread behavior in the models compared to the reanalysis, which shows the 

vortex strengthening from November to January, peaking around 20 m s-1, and weakening 

from January to March.  Three out of five of the low-top models1 (MIROC5, CanCM3, 

and ARPEGE_z00l) and one of the seven high-top models1 (ARPEGE_z00k) have a 

stratospheric vortex that is too weak for most of the winter.  Both the low-top and high-

top versions of CMAM have a polar vortex that is too strong by February.  A number of 

forecast systems capture the strength and/or the evolution of the vortex accurately for 

most of the winter (MPI-ESM-LR, MPI-ESM-MR, CFS, ECMWF-s4, CanCM4, 

ECMWF-s4, and GloSea5).  Overall, there is not a strong difference in the mean state of 

the stratospheric polar vortex between high- and low-top models, though more low-top 

models are biased, in agreement with Maycock et al (2011). 

 Differences between high-top and low-top models are more apparent in the 

variability of the stratosphere.  Figure 1b shows the standard deviation of the polar 

vortex winds for individual models (calculated for individual members first and then 

averaged) compared to ERA-interim, and Figure 1d shows the same figure but for the 

high-top and low-top EMs.   While the high-top models tend to closely simulate the 

                                                        1 With data available at 50 hPa 
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observed stratospheric variability and its evolution (with peak variance in February), the 

low-top models tend to have much lower stratospheric variability from January to March.  

The lack of stratospheric variability in low-top models has also been noted in coupled 

climate models (Charlton-Perez et al. 2013).  There are some exceptions, however: the 

low-top models CanCM4 and CMAMlo have reasonable representations of polar vortex 

variability, whereas the two high-top models CFS and ARPEGE_z00k lack variability in 

February and March. 

 Due to the chaotic nature of extreme polar stratospheric variability in wintertime, 

models generally cannot predict extreme stratospheric variations more than 10-20 days 

ahead of time (though during certain winters, such as El Niño, there may be an increased 

probability of these events; see Section 5).  The information initialized in the models (in 

this case, around early November of each year) provides some positive predictive skill for 

the first few weeks of the model run, after which predictability decreases through the rest 

of the season (Figure 1c) as the forecast relaxes to the model climatology.  This skill is 

slightly higher for the high-top model EM, but not significantly different from the low-

top EM skill.   Positive, non-zero skill is maintained through January, but only after 

January is the model skill higher than the persistence forecast. 

 How might model biases in the stratospheric jet relate to predictive skill at the 

surface? Biases in the strength of the stratospheric zonal circulation may be associated 

with biases in the tropospheric mid-latitude jet location (Gerber and Polvani 2009), which 

seems to hold true in the CHFP models particularly for the East Pacific tropospheric jet 
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location2 (Figure 2a, correlation significant at p<0.001) and to a weaker extent for the 

Atlantic tropospheric jet location (Figure 2b, correlation significant at p<0.10).  Biases in 

the strength of the stratospheric zonal circulation are also associated with biases in the 

strength of the Atlantic tropospheric jet (35-55°N, 300-360°E) (Figure 2d, correlation 

significant at p<0.001), but not the East Pacific tropospheric jet (Figure 2c).  However, 

little relationship is found between the bias in the polar vortex and the forecasting skill of 

the tropospheric jet during DJF or the skill of the NAO index (not shown). Still, biases in 

the strength and variability of the polar vortex may be related to biases in the persistence 

of tropospheric jet variability (Gerber and Polvani 2009)- with a stronger and more 

variable polar vortex associated with more persistent tropospheric jets- and thus to the 

time scales that stratospheric variability couples to the troposphere (see also Figure 7).  

 We briefly consider the ability of the models to simulate the mean state and 

variability of the tropical stratosphere (Figure 3).   Because few models resolve the 

gravity wave spectrum in the tropics, which also drives the QBO (Sato and Dunkerton 

1997; Ern et al. 2014), the standard deviation of the 10°S-10°N zonal winds at 50 hPa 

tends to be much too low in models compared to ERA-interim after initialization in 

November (Figure 3b). GloSea5, ECMWF-s4, and MPI-ESM-MR internally simulate 

the QBO, but only GloSea5 (Scaife et al. 2014b) and MPI-ESM-MR have tropical wind 

variances that agree well with observations past December.  In general, high-top models 

have slightly higher variance in tropical winds than low-top models.  Despite the lack of 

tropical variability, the skill of the models in capturing the tropical winds is quite high 

                                                        2 Here, the tropospheric jet position is defined as the location of the maximum 850 hPa zonal wind speed between 15-75°N in the Atlantic (300-360°E) basin and E. Pacific (210-240°E) basin. 
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and persistent (Figure 3a).  Most models maintain the state of the initialized tropical 

winds (which is dominated by the state of the QBO) due to slow radiative relaxation rates 

in the tropical lower stratosphere (Haynes 1998). Only ARPEGE_z00l does not maintain 

the mean state of the tropical winds past November. Section 6 will further consider 

whether the QBO-like tropical winds in the models influence extratropical climate on 

seasonal timescales. 

 

4.  Skill in forecasting the NAO 

 The North Atlantic Oscillation (NAO) is the regional manifestation of the 

hemispheric Northern Annular Mode (NAM; also known as the Arctic Oscillation/AO) 

and the dominant pattern of climate variability in the Northern Hemisphere.  The NAO 

represents an oscillation in atmospheric mass between the Azores subtropical high and 

the Icelandic polar low and is associated with latitudinal shifts in the position of the 

North Atlantic storm track.  These fluctuations are coupled to variability in the strength 

of the stratospheric polar vortex in boreal winter and have significant influences on 

climate in Eurasia, eastern North America, and Greenland.  Thus there is considerable 

interest in improving the seasonal forecast skill of the NAO.   

 Given that most of the NAO’s variability is due to internal atmospheric dynamics 

and feedbacks, prediction of the NAO at time scales longer than a couple of weeks is 

difficult.  Nonetheless, some fraction of wintertime NAO variability may be externally 

forced on longer timescales (Keeley et al. 2009); for example, by variability in Arctic sea 

ice (e.g., García-Serrano et al 2015) or Eurasian snow cover extent (e.g., Cohen and Jones 

2011).  Ensemble members that better capture observed external forcings like snow cover 
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extent have been shown to have higher NAO skill (e.g., Riddle et al 2013).  It has been 

hypothesized that the stratosphere provides the pathway for an external forcing to persist 

through the winter season and impact the NAO and Eurasian surface climate (e.g., Ineson 

and Scaife 2009).  Here we use the CHFP suite of models to examine whether a more 

resolved stratosphere improves the predictive skill of the DJF-mean NAO index for 

forecasts initialized in early November. 

 Table III shows the skill of the ensemble-mean forecast for the DJF-mean NAO 

index (calculated using both the EOF and station-based methods described in Section 2) 

and the 500 hPa NAM skill.  The observed NAO pattern using the EOF method is well 

simulated by the CHFP models, with spatial correlations exceeding 0.91 for all models 

(Figure S1).  Nonetheless the forecast skill for both the NAO and the NAM is generally 

low and not significant at the 95% level, for most high-top and low-top models (see also 

probabilistic skill scores in Table S1, and error bars in Figure S2).   For the NAO EOF-

based index, the high-top model ensemble-mean has significant skill (r=0.45, p<0.01), 

while the low-top ensemble mean does not (r=0.32, p<0.07), but both ensemble-means 

have significant skill when considering the Azores-Iceland station-based NAO index 

(neither have significant skill for the 500 hPa NAM).  Between models where model lid 

height and vertical resolution are the only difference (i.e., CMAM, ARPEGE, and 

GloSea4), the NAO/NAM skill is not better in the high-top versions, suggesting that a 

higher model top does little to improve NAO/NAM skill for the 1979-2012 period. 

 GloSea5 has significant skill for all three NAO/NAM indices, with correlation 

values more than double most other models, and performs skillfully particularly for upper 

tercile NAO events (Table S1).  However, GloSea5 also has one of the shortest hindcast 
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periods of 14 years (1996-2010), and the length of the hindcast period is associated with 

large sampling uncertainty (Kumar 2009; Shi et al. 2015).  To test how often a correlation 

value of r=0.61 (the skill of the GloSea5 NAO station-based index) occurs by chance, we 

calculate correlation values between the NAO station-based index for individual model-

means and the reanalysis using random consecutive 14-year periods from all the models. 

From this distribution of 234 14-year runs, we find that a correlation above 0.6 occurs 

only 5 times (~2%), which implies that the GloSea5 skill is unlikely to occur randomly 

(we note that the other 4 times occur using 14-year periods from the MPI-ESM-MR 

model). The GloSea5 model has demonstrated similarly high NAO skill in longer 20 year 

hindcasts, perhaps due to in part to enhanced ocean resolution, initialization of Arctic sea 

ice, and increased ensemble members (Scaife et al. 2014a). It is interesting to note that 

Scaife et al. (2015) demonstrate that the wintertime NAO forecast skill in GloSea5 

vanishes when considering only ensemble members with an inactive stratosphere (i.e., no 

sudden warmings in a given winter).  Their results suggest a key role for stratosphere-

troposphere coupling in the high NAO skill for this model.  

 We also test the dependence of the NAO skill on the particular hindcast period. 

Riddle et al (2013) noted higher forecast skill for the wintertime NAO in the Climate 

Forecast System version 2 for the 1997-2010 period compared to the 1983-1996 period, 

and other studies have found a similar dependence on the hindcast period (Kang et al. 

2014; Müller et al. 2005).  We consider the skill of the station-based NAO index over the 

same time period as GloSea5 (1996/97-2009/10) in the other models (Table III; note 

some models do not extend to 2009/10, in which case the correlation was found from 

1996 to the end of the record).  Some models show weaker or even negative correlations 
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during this short time period compared to the full period, but other models more than 

double their skill. In particular, MPI-ESM-MR has skill of r=0.71 (p<0.004) for the DJF 

NAO during the 1996-2010 time period. 

 The number of ensemble members in the ensemble-mean plays a significant role 

in the skill of DJF NAO forecasts (Figure 4).  For the majority of models, as the number 

of ensemble members increase, the DJF NAO skill score also increases (by enhancing the 

signal to noise ratio) as noted in previous studies (Kumar and Hoerling 2000; Kharin et 

al. 2001; Riddle et al. 2013; Chen et al. 2013; Scaife et al. 2014a; DelSole et al. 2014; 

Eade et al. 2014).  GloSea5 has a large number of ensemble members (24), which 

contributes to its high skill score.  Improved skill for the DJF NAO index has been found 

for both ECMWF-s4 (Stockdale et al. 2015) and version 2 of the NOAA CFS (Riddle et 

al 2013) when ensemble members are substantially increased.  Nonetheless Figure 4 

indicates that for a given number of ensemble members, certain models perform better 

than others.  For example, for 7 ensemble members, the DJF NAO skill ranges from 

~0.04-0.37, with MPI-ESM-MR performing superior (note though that correlations here 

are for the length of each model record, which varies from 14 to 33 years (Table III), and 

the time period of the forecast may also be relevant as previously discussed). 

 Our results suggest that the DJF-mean NAO skill is not significantly different 

between the high-top and low-top models when initialized in early November.  This is 

true even when comparing high-top/low-top pairs, like CMAM, ARPEGE, and GloSea4 

(in many cases the low-top model actually performs substantially better than the high-top 

model, though it depends on which index is used).  However, it is possible that during 

years when there is strong anomalous forcing of the stratosphere, such as during El 
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Niño/QBO winters or winters when SSWs occur, the seasonal forecast skill may be 

improved in models that resolve stratospheric processes and associated coupling between 

the stratosphere and troposphere (e.g., Orsolini et al 2009).   We explore this possibility 

in the next sections. 

 

5.  Impact of El Niño’s stratospheric response on seasonal forecasting skill 

 The planetary wave trains that emanate from the tropical Pacific Ocean region due 

to anomalous sea surface temperatures (SSTs) associated with ENSO can drive the 

amplification of vertical wave propagation into the stratosphere.  During El Niño winters, 

for example, a strengthening and eastward shift of the Aleutian low can be in observed in 

the North Pacific.  This signal is hypothesized to enhance the wave flux into the 

stratosphere through linear interference (Smith et al. 2010; Fletcher and Kushner 2011).  

The breaking of these waves in the stratosphere warms and weakens the stratospheric 

polar vortex in both observations and models (Garfinkel and Hartmann 2008; García-

Herrera et al. 2006; Hurwitz et al. 2014; Manzini et al. 2006), though the wintertime 

evolution of the response can depend on the location or strength of the maximum 

warming of tropical Pacific SSTs (Toniazzo and Scaife 2006; Calvo et al. 2015, in 

review).   

 During La Niña winters, in general the opposite sign anomalies occur (i.e., the 

vortex cools and strengthens) in the seasonal-mean over the long-term record.  However, 

in the last two decades a large number of SSWs, which weaken and warm the vortex, 

have occurred during both La Niña and El Niño winters (Butler and Polvani 2011), so 

that the observed stratospheric response to La Niña is less clear.  In addition, the model-
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mean stratospheric response to La Niña during the 1979-2012 time period is opposite to 

that observed, a finding that is left for further investigation.  To simplify the 

interpretation, we focus on the model response to El Niño only. We focus on the North 

Atlantic- European region, where stratospheric variability has been shown to make a 

significant difference on the surface climate response over Greenland, Europe, and Asia 

during El Niño winters (Ineson and Scaife 2009; Butler et al. 2014; Domeisen et al. 

2015).   

 Figure 5 shows the composite wind anomalies (50-80°N) for El Niño winters for 

the high-top (left) and low-top models (center), as well as ERA-interim reanalysis (right).  

Here, individual model members are composited for El Niño winters and then averaged 

together for each model to get the model-mean response.  The model composite includes 

those models where data above 200 hPa is available (Table I; 7 high-top models and 5 

low-top models); note also that each model time period covers different El Niño events.  

The reanalysis (Fig 5c) indicates that the polar vortex initially strengthens in early winter 

in response to El Niño, but then weakens from January through March. The observed 

response here is weaker than in studies using a longer observational record, perhaps 

because of an increase of central Pacific-type El Niños during this time period (e.g., Lee 

and McPhaden 2010), which have a more ambiguous impact on the stratosphere 

(Garfinkel et al. 2013; Iza and Calvo 2015); or because of the confounding influence of 

the QBO, discussed more below.   

 Both the high-top and low-top models show a similar evolution of zonal wind 

anomalies, but the weakening of the vortex in late winter is stronger and more significant 

at 50 hPa in the high-top models than the low-top models.  While the anomalously strong 
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vortex in early winter would be initialized in all models, the model must be able to 

simulate the propagation of waves associated with ENSO into the stratosphere to drive 

the weakening vortex in late winter.  As shown in Figure 1b, the polar stratospheric 

variability in the low-top models is generally too low, which is also associated with less 

weakening of the vortex in El Niño winters (Jan-Mar) in the low-top models.  

Nevertheless, the negative tropospheric zonal-mean zonal wind anomalies in March are 

significant in both sets of models.  

 The ENSO-associated anomalies in the polar vortex can descend into the 

troposphere and affect mid-latitude weather via shifts in the mid-latitude jets, particularly 

in the North Atlantic region.  Figure 6 shows the skill of the high-top and low-top EMs 

for JFM mean sea level pressure anomalies over the North Atlantic region, for all winters, 

El Niño winters, and ENSO-neutral winters.  The spatially-averaged anomaly correlation 

coefficient/ACC (equation (4)) for the region shown (25-85°N, 90°W-90°E) is given in 

the upper right corner of each panel.  The highest skill over the North American-North 

Atlantic-European region occurs with the high-top EM during El Niño winters, with low 

skill in both model EMs during ENSO-neutral winters.  Interestingly, the high-top EM 

has nearly double the ACC of the low-top EM during all winters and El Niño winters 

(note that while the ACC values are modest, they are likely still significant given the 

large effective sample size created by aggregating over a large spatial domain and 

multiple winters, e.g. Becker et al. 2014).  Since skill is high near subtropical North 

America in all cases, the main differences arise from skill over the polar cap, Eurasia, and 

central Europe.  For example, the skill over Greenland and the Arctic in the low-top EM 

is close to zero or negative, while the skill in the high-top EM is positive over much of 
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the polar cap. Unfortunately, skill over Europe is negative in both model sets, possibly 

related to poor simulation of Gulf Stream processes (Danabasoglu et al. 2010) and 

associated Atlantic blocking (Scaife et al. 2011). 

 Higher skill for high-top models during El Niño winters is not as evident for 

individual high-top/low-top model pairs (Figure S3).  Both ARPEGE and CMAM show 

higher skill in JF mean sea level pressure anomalies over the North Atlantic region in the 

low-top model compared to the high-top model (this is true for DJF anomalies as well).  

GloSea4 shows better skill in the high-top model for JFM anomalies, but there are only 4 

El Niño winters during the 14-year hindcast period for the low-top version so sampling is 

likely an issue.  These results are difficult to interpret given the few ensemble members 

and short hindcast periods of individual models. 

 The high-top EM therefore shows improvement in conditional skill for mean sea 

level pressure anomalies over the low-top model EM, which may in part be due to better 

simulation of stratospheric dynamics during El Niño winters.  This argument is 

reasonable given that little difference in skill is observed in ENSO-neutral winters, and 

the improvement in skill in the high-top EM occurs predominantly over the polar cap, 

Greenland, and Eurasia, where stratosphere-troposphere coupling exerts its greatest 

impacts.  The results in Figure 5 suggest that the stratosphere responds to El Niño 

forcing more strongly in high-top models compared to low-top models, and this may 

contribute to better surface climate prediction in high-top models during El Niño (Figure 

6).  However, we can’t rule out the potential role of other factors, such as improved 

simulation of tropospheric/oceanic/sea-ice dynamics related to ENSO in the high-top 

models. 
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 Improved simulation of the stratospheric circulation may also not be fully 

reflected in tropospheric skill due to lack of stratosphere-troposphere coupling in the 

models, particularly in the low-top models.   Figure 7 compares the December and 

January stratosphere-troposphere coupling in ERA-interim, the high-top EM, and the 

low-top EM.   In December (left column) the zonal wind anomalies at 50 hPa (50-80°N) 

are highly correlated to stratospheric anomalies in November and to lower tropospheric 

anomalies from December to January (correlation values of r~0.4-0.6).   Neither the high-

top nor low-top models capture the persistence of the observed stratospheric anomalies 

from November to December. However, the observed correlation of December zonal 

wind anomalies at 50 hPa to January zonal wind anomalies at 850 hPa is near the median 

value of correlation for high-top members (less than a quartile of low-top members have 

a similar correlation, and the median correlation is much lower).  In January the observed 

zonal wind anomalies in the stratosphere are also strongly coupled to the surface (r~0.7), 

but the high-top and low-top models show weaker coupling (less than a quartile of both 

low-top and high-top ensemble members have as high of correlation, though the median 

correlation value is higher in the high-top ensemble than the low-top member ensemble).  

The observed persistence of the coupling of January stratospheric anomalies into 

February near the surface is fairly well-simulated by both the high-top and low-top model 

ensembles. In summary, the coupling of the stratosphere to the troposphere in these 

models tends to be weaker than the one observed “realization”; though we note that the 

observed correlation does fall within the range of simulated correlations.  However, the 

high-top models do tend to have higher correlation values (closer to the observed value) 

than the low-top models, suggesting that reducing the stratospheric biases, and 
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consequently improving the stratosphere-troposphere coupling (Gerber and Polvani 

2009), may increase the amount of skill at the surface gained from stratospheric 

variability. 

The QBO may also play a role in the skill in Figure 6.  For example, during this 

particular period from 1980-2012, 6 of the 10 El Niño winters occurred during the 

westerly QBO phase, while only 2 of the 10 El Niño winters occurred during the easterly 

QBO phase (Table II).  Garfinkel and Hartmann (2010) find that the El Niño 

teleconnection is actually stronger during WQBO, which could be enhancing the skill.  

However, it is difficult to separate these external forcings given the small number of 

ENSO/QBO events during the hindcast period.  In the next section, we consider the role 

of the QBO on seasonal forecasting skill, while keeping in mind the concurrence of these 

phenomena. 

 

6.  Impact of QBO on seasonal forecasting skill 

 The QBO is an oscillation of tropical stratospheric zonal winds from easterly to 

westerly with a periodicity of roughly 28 months.  Like ENSO, it is a tropical 

phenomenon but can influence extratropical climate and the polar stratosphere by 

modulating wave propagation and breaking (Holton and Tan 1980; Baldwin et al. 2001). 

Because the QBO is both predictable and persistent, it is potentially useful for seasonal 

forecasting (Boer and Hamilton 2008; Scaife et al. 2014b; Marshall and Scaife 2009).   

 Figure 8 (right column) shows the observed difference in the zonal wind response 

between the westerly QBO (WQBO) phase and the easterly QBO (EQBO) phase for 

December through February.  As expected, during the WQBO (EQBO), the Northern 
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Hemisphere stratospheric polar vortex tends to be stronger (weaker) than normal (e.g., 

Dunkerton and Baldwin 1991; Garfinkel and Hartmann 2007).  These differences have 

the strongest amplitude and extension to the surface in January but persist the entire 

winter season.    

As discussed in Section 3 and shown in Figure 3, few models participating in 

CHFP are able to simulate a QBO-like oscillation, but most models are able to persist the 

initialized tropical stratospheric winds for at least the first 2-3 months before the winds 

relax towards model climatology.  Figure 8 (left and middle columns) shows the 

composite QBO response (WQBO minus EQBO) for the high-top models and the low-

top models.  The high-top model response in December (one month after initialization) is 

quite similar to the observed response in the Northern Hemisphere, though with stronger 

extension to the extratropical surface than observed.  The low-top models also have the 

same sign response as observed, but stronger than observed anomalous westerlies near 

30°N and weaker than observed westerly anomalies in the lower stratosphere and 

troposphere near 60°N.  By January (Figure 8, middle row), the NH polar stratospheric 

response in high-top models has weakened considerably, and in the low-top models has 

weakened and turned easterly at 50 hPa polewards of 60°N.   By February (Figure 8, 

bottom row), the NH polar stratospheric response is also the opposite sign to the observed 

response in both the high-top and low-top models (though note the tropical zonal wind 

response persists through the entire winter in both model sets, as expected from Figure 

3).   

While high-top models seem to better represent the QBO effect in the NH 

wintertime polar stratosphere, particularly with lead times of a month or less, the 
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extratropical sea level pressure response to QBO (WQBO minus EQBO) is weak and 

insignificant for both the high-top and low-top ensemble-means (not shown).  This result 

can be inferred from the weak extension of the response to the extratropical surface in 

Figure 8, and is robust to the level used to define the QBO.  Scaife et al (2014b) note that 

despite reasonable prediction of the QBO itself, many models still fail to capture the 

QBO teleconnection to the surface.   The response may also be small because of 

concurrent mixed signals from ENSO (Table II).  Clearly, better simulation of the QBO 

extratropical teleconnection to the surface is a potential avenue for future improvement in 

seasonal to interannual prediction. 

 

7.  Discussion and Conclusions 

 We have provided an overview of the CHFP models in the context of a high-top 

and low-top model comparison, and evaluated the biases and performance of these 

models in the NH wintertime stratosphere.  The CHFP offers a unique opportunity to 

survey a large number of forecast models in regards to whether improved stratospheric 

representation improves seasonal prediction at the surface.  We have shown that high-top 

models better simulate the observed wintertime polar stratospheric variance (Figure 1d). 

However, model biases in the stratosphere, which we find correlated to position 

(strength) of the East Pacific (Atlantic) tropospheric jet, vary widely by individual model 

and appear independent of model lid height (Figure 2).  We also find that the DJF NAO 

skill depends more strongly on ensemble-member size (Figure 4) than on the model top 

(Table III). 
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 So do stratosphere-resolving models make better seasonal predictions in boreal 

winter?  For the CHFP suite of models, increases in skill for mean sea level pressure 

anomalies over the polar cap and Eurasian regions are seen for the high-top EM 

compared to the low-top EM for the period 1979-2012 (Figure 6).  Most of this enhanced 

skill appears to come from winters with ENSO forcing. Without a forced change in the 

wave driving or propagation into the stratosphere, a model initialized in November will 

quickly move away from the observations towards model climatology, no matter how 

improved the stratosphere.  High-top models are able to better simulate the stratospheric 

response to both ENSO and QBO (Figures 5, 8), which may improve surface skill even 

2-3 months after initialization during El Niño years (Figure 6).   

 We caution though that these results are based on an ensemble of opportunity, 

with each model having different tropospheric and stratospheric representations 

regardless of model top.  Comparing the three model pairs with only differences in model 

lid height and vertical resolution (CMAM, ARPEGE, and GloSea4) gives more 

ambiguous results (Figure S3; though the skill is based on much fewer ensemble 

members and fewer El Niño events in each case than the high-top EM). In addition, 

though the high-top models show stronger responses to ENSO and QBO in the 

stratosphere than the low-top models (Figures 5, 8), there is generally little difference in 

the response near the surface.  The improved stratospheric representation in the high-top 

models corresponds to stronger coupling between the stratosphere and troposphere, but 

generally not as strong as observed (Figure 7). 

 The CHFP provides model hindcasts initialized on or around November 1st, which 

is early in the winter season and means that ENSO and its teleconnections must be well-
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simulated in the model to drive the appropriate tropospheric wave fluxes throughout the 

subsequent season.  More skill might be gained by initializing the model in December or 

January during the peak of NH tropospheric wave driving, and considering the late winter 

response.  In addition, Domeisen et al (2015) find the most improved skill over the North 

Atlantic-Eurasian region for El Niño winters with a SSW event (when only those model 

members that also forecast a SSW event are included), as SSWs appear to dominate the 

wintertime surface climate response in the North Atlantic-European region (Butler et al. 

2014).  The CHFP has daily zonal wind data at 10 hPa for 7 models, so connections 

between extreme stratospheric variations and higher skill during ENSO and non-ENSO 

winters could be examined in future work.  

 Most new forecasting models will increase or already have increased model lid 

height and vertical resolution.   While this change will certainly improve stratospheric 

variance and representation of the ENSO and QBO stratospheric response, further skill in 

surface climate may be gained by increasing model members and improving stratospheric 

coupling to surface climate.   

 

Acknowledgments 

We acknowledge the WCRP/CLIVAR Working Group on Seasonal to Interannual 

Prediction (WGSIP) for establishing the Climate-system Historical Forecast Project 

(CHFP, see Kirtman and Pirani 2009) and the Centro de Investigaciones del Mar y la 

Atmosfera (CIMA) for providing the model output. We also thank the data providers for 

making the model output available through CHFP.  We have no potential sources of 

conflict of interest.  The contribution of AYK is funded by the Academy of Finland, 

project #286298. 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d
 A

rt
ic

le
Supporting Information 

Table S1.  The area under the relative operative characteristics (ROC) curve (e.g., 
Doblas-Reyes et al 2003).  The columns show model skill for two events: DJF NAO 
below the lower tercile and above the upper tercile threshold.  Statistical significance of 
the estimated values is tested by the Wilcoxon-Mann-Whitney test. Similarly to Doblas-
Reyes et al. (2003), in most cases ROC area is above 0.5 indicating that models possess 
some skill, although typically it is not statistically significant at p=0.05 (bold values). 
Also similarly to Doblas-Reyes et al. (2003) we find that the multi-model mean does not 
perform better than the best individual models. 
 

Figure S1.   EOF1 patterns (calculated for 90°W-60°E, 20-90°N SLP anomalies, 
representing the North Atlantic Oscillation) for NCEP-NCAR reanalysis and individual 
models.  Number in the left corner of each plot is the variance explained by the NAO 
pattern; number in the right corner of each plot is the spatial correlation to the observed 
pattern. 
 
Figure S2.  Same as Figure 4, but with error bars showing the 95% confidence levels for 
the correlation with the most ensemble members for each model. 
 
Figure S3.  Skill (correlation) of JFM mean sea level pressure anomalies for El Niño 
winters (as in Figure 6), for high-top and low-top pairs.  Note that ARPEGE and CMAM 
do not have March data so the skill is for Jan-Feb averaged anomalies.  The values in the 
upper right of each plot show the number of El Niño winters included in each calculation, 
and the associated anomaly correlation coefficient (area-weighted correlation over the 
region shown). Hatching indicates correlations that exceed 95% significance using a 2-
tailed t-test. 
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Table I.  List of models participating in CHFP.   The high-top models are in bolded italics. 

Model 
# of 
ens 

mem 

Horiz 
Res 

Ver
t 

Res 

Approx 
Model 

lid 
height 
(hPa) 

Time 
period 
(Nov-
Mar) 

Months 
forecast 
(Nov-
Mar) 

Output levels 
above sfc (hPa) 

Reference 
Initial Atmosphere 

Ocean Configuration 
Sea Ice Configuration 

ARPEGE_z00k 11 T63 L91 0.01 79-08 NDJF 1000, 925, 850, 
700, 500, 400, 

300, 200, 50, 30, 
10 

Voldoire et 
al 2013 

ERA40/ERA-Interim 
Interactive Ocean 

Climatological Sea Ice

ARPEGE_z00l 11 T63 L31 10 79-08 NDJF 1000, 925, 850, 
700, 500, 400, 

300, 200, 50, 30, 
10 

Voldoire et 
al 2013 

ERA40/ERA-Interim 
Interactive Ocean 

Climatological Sea Ice

CCCma-
CanCM3 

10 T63 L31 1 79-11 NDJFM 850, 500, 200, 
100, 50 

Scinocca et 
al 2008; 

Merryfield 
et al 2013 

ERA-40/Era-Interim 
Interactive Ocean 
Interactive Sea Ice 

CCCma-
CanCM4 

10 T63 L35 1 79-11 NDJFM 850, 500, 200, 
100, 50 

Merryfield 
et al 2013; 
von Salzen 
et al 2013 

ERA-40/ERA-Interim 
Interactive Ocean 
Interactive Sea Ice 

CFSv1 7 T62 L64 0.2 81-07 NDJFM 1000, 925, 850, 
700, 600, 500, 
400, 300, 250, 

200, 150, 100, 70, 
50, 30, 20, 10 

Saha et al 
2006 

NCEP DOE 
Interactive Ocean 

Climatological Sea ice 

CMAM 10 T63 L71 0.0005 79-09 NDJF 1000, 925, 850, 
700, 600, 500, 
400, 300, 250, 

200, 150, 100, 70, 
50, 30, 20, 10, 7, 
5, 3, 2, 1, .5, .4 

Scinocca et 
al 2008 

ERA-40/ERA-Interim 
Persisted SSTA 

Climatological Sea ice 
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CMAMlo 10 T63 L41 10 79-09 NDJF 1000, 925, 850, 

700, 600, 500, 
400, 300, 250, 

200, 150, 100, 70, 
50, 30, 20, 10 

Sigmond et 
al 2008 

ERA-40/ERA-Interim 
Persisted SSTA  

Climatological Sea ice 

ECMWF-S4 15 T255 L91 0.01 81-11 NDJFM 850, 500, 200, 
100, 50, 10 

Molteni et 
al 2011 

ERA-Interim 
Interactive Ocean 

Sea Ice sampled from 
previous 5 years 

GloSea5 24 N216 L85 0.005 96-10 DJF 850, 200, 50, 10 
(ua); 850, 500, 200 

(z) 

MacLachlan 
et al 2015 

ERA-Interim 
Interactive Ocean 
Interactive Sea Ice 

JMA/MRI-
CGCM1 

10 T95 L40 0.4 79-10 NDJFM 850, 500, 200 Takaya et al 
2010 

JRA-25/JCDAS 
Interactive Ocean 

Climatological Sea Ice
L85GloSea4 9 N96 L85 0.005 89-10 DJFM 850, 200 Fereday et 

al 2012 
ERA-Interim 

Interactive Ocean 
Interactive Sea Ice 

L38GloSea4 9 N96 L38 3 89-03 DJFM 850, 200 Arribas et al 
2011 

ERA-Interim 
Interactive Ocean 
Interactive Sea Ice 

MIROC5 8 T85 L40 3 79-12 DJFM 850, 500, 200, 
100, 50, 10 

Watanabe et 
al 2010; 

Imada et al 
2015 

NCEP/NCAR 1 
Interactive Ocean 
Interactive Sea Ice 

MPI-ESM-LR 9 T63 L47 0.01 82-12 NDJFM 850, 500, 200, 
100, 50, 10 

Baehr et al 
2015 

ERA-Interim 
Interactive ocean 

Interactive Sea Ice 
MPI-ESM-MR 10 T63 L95 0.01 81-12 NDJFM 850, 500, 200, 

100, 50, 10 
Stevens et 
al. 2013; 

Jungclaus et 
al. 2013 

ERA-Interim 
Interactive ocean 

Interactive Sea Ice 

POAMA 2.4        10 T47 L17 10 80-10 DJFM 850, 500, 200 Cottrill et al ERA-Interim through 
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(p24a, b, c) each; 

30 
total 

 2013 2002, POAMA NWP 
global analyses after 

Interactive ocean 
Climatological Sea Ice
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Table II. El Niño, La Niña, ENSO-neutral, easterly QBO, and westerly QBO years, as 
defined in Section 2.  The number of each phase is given in parentheses. 
 

Winter El Niño 

(10) 

La Niña 

(12) 

EQBO 

(12) 

WQBO 

(14) 

1979-80   X  
1980-81    X 
1981-82   X  
1982-83 X   X 
1983-84  X   
1984-85  X X  
1985-86    X 
1986-87 X    
1987-88 X   X 
1988-89  X  X 
1989-90   X  
1990-91    X 
1991-92 X  X  
1992-93     
1993-94     
1994-95 X  X  
1995-96  X   
1996-97   X  
1997-98 X   X 
1998-99  X X  
1999-00  X  X 
2000-01  X   
2001-02   X  
2002-03 X   X 
2003-04   X  
2004-05 X   X 
2005-06  X X  
2006-07 X   X 
2007-08  X X  
2008-09  X  X 
2009-10 X    
2010-11  X  X 
2011-12  X  X 
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Table III. Correlation of model-mean DJF-mean NAO and NAM indexes with ERA-
Interim. The NAO is defined as the 1st EOF of monthly mean sea level pressure (SLP) 
anomalies over the region 90°W-60°E and 20°N-90°N; or as the difference between the 
normalized SLP times series between the Azores Islands (38°N, 26°W) and Iceland (64°N, 
22°W).  The NAM is defined as the 1st EOF of zonal mean monthly mean 500-hPa 
geopotential height anomalies 20°N-90°N. Patterns were calculated based on detrended, 
deseasonalized DJF monthly anomalies using all ensemble members of each model. 
Indexes were calculated by projecting anomalies onto model’s own pattern.  Numbers in 
parentheses indicate significance level (the smaller the better). Numbers in bold indicate 
coefficients significant at p<0.05.  
 

Model name Period  
(Nov Yr 1 - 
Mar Yr end) 

N 
yrs

Ens 
size 

NAOi skill NAM- 
500 hPa 

skill 
EOF Azores-

Iceland 
1996 to  
≤ 2009 

ARPEGE_z00k 1979-2008 29 11 0.28 
(0.14) 

0.21 
(0.27) 

-0.05 
(0.88) 

0.28 
(0.15) 

CFS 1981-2007 26 7 0.14 
(0.48) 

0.12 
(0.56) 

-0.11 
(0.75) 

0.03 
(0.90) 

CMAM 1979-2009 30 10 0.29 
(0.12) 

0.10 
(0.60) 

0.13 
(0.67) 

0.12 
(0.53) 

ECMWF-S4 1981-2011 30 15 0.26 
(0.16) 

0.05 
(0.79) 

-0.25 
(0.39) 

0.32 
(0.08) 

GloSea5 1996-2010 14 24 0.63 

(0.02) 

0.61 

(0.02) 

0.61 

(0.02) 

0.67 

(0.01) 

L85GloSea4 1989-2010 21 9 0.07 
(0.77) 

0.09 
(0.70) 

0.04 
(0.89) 

0.26 
(0.26) 

MPI-ESM-LR 1982-2012 30 9 0.13 
(0.50) 

0.18 
(0.34) 

0.27 
(0.35) 

0.27 
(0.15) 

MPI-ESM-MR 1981-2012 31 10 0.38 

(0.03) 

0.43 

(0.02)

0.71 

(0.004) 

0.32 
(0.08) 

High-top EM  1979-2012 33 95 0.45 

(0.01) 

0.42 

(0.02) 

0.37 
(0.19) 

0.32 
(0.07) 

ARPEGE_z00l 1979-2008 29 11 0.43 

(0.02) 

0.20 
(0.29) 

0.06 
(0.85) 

0.20 
(0.29) 

CCCma-
CanCM3 

1979-2011 32 10 0.16 
(0.38) 

0.24 
(0.19)  

0.15 
(0.61)  

0.14 
(0.44) 

CCCma-
CanCM4 

1979-2011 32 10 0.31 
(0.08) 

0.25 
(0.17) 

0.37 
(0.19) 

0.40 

(0.02) 

CMAMlo 1979-2009 30 10 0.17 
(0.38) 

0.25 
(0.18) 

0.45 
(0.12) 

0.07 
(0.73) 

JMA/MRI-
CGCM1 

1979-2011 32 10 -0.01 
(0.94) 

0.23 
(0.21) 

0.39 
(0.17) 

-0.02 
(0.90) 

L38GloSea4 1989-2003 14 9 0.24 
(0.41) 

0.22 
(0.45) 

0.68 
(0.09) 

0.34 
(0.23) 

MIROC5 1979-2012 33 8 0.07 
(0.70) 

0.30 
(0.09) 

0.12 
(0.68) 

0.30 
(0.09) 
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poama 1980-2010 30 30 -0.01 

(0.95) 
0.03 

(0.87) 
0.21 

(0.47) 
- 

Low-top EM  1979-2012 33 98/
68* 

0.32 
(0.07) 

0.44 

(0.01) 

0.44 
(0.12) 

0.31 
(0.08) 

(*) Low top ensemble has 98 members for NAO and 68 members for NAM. 
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Figure 1. Individual model performance of (a) NH wintertime stratospheric jet (zonal 
winds area-weighted from 50-70°N at 50 hPa) and (b) its standard deviation from 
November-March.  High-top models are denoted with a solid line; low-top models are 
denoted with a dashed line.  Black dots show results from ERA-interim reanalysis for 
winters from Nov 1979- Mar 2012.  (c) Skill of multi-model mean for the NH wintertime 
stratospheric jet, and (d) average standard deviation. High-top ensemble mean is the solid 
line, low-top ensemble mean is the dashed line, and in (c), the “persistence” forecast is the 
thin dashed-dot line. The black error bars in (a) indicate the 95% confidence interval for 
the observed mean using a 2-tailed t-test.  For the standard deviations in (b) and (d), the 
95% confidence interval using the chi-squared distribution is shown.  In (c), the error bars 
indicate a 95% confidence interval for the ensemble-mean correlation coefficient using a 2-
tailed t-test. 
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Figure 2. Scatterplots of the bias in the strength of the DJF-mean, 50-70°N, 50 hPa zonal 
winds (i.e., the NH stratospheric polar jet) versus the bias in the position of the DJF-mean 
tropospheric jet at 850 hPa in the (a) East Pacific and (b) Atlantic; and versus the DJF-
mean tropospheric jet strength at 850 hPa and 35-55°N in the (c) East Pacific and (d) 
Atlantic.  In all cases, biases are calculated relative to the ERA-interim climatology for the 
period Nov 1979- Mar 2012.  High-top models are shown with a solid dot and low-top 
models with an empty circle.  The correlation between the biases or the skill for all models 
is shown in the top left corner of each plot.  The correlations in panel (a) and (d) are 
significant at p<0.01 using the 2-tailed t-test. 
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Figure 3.  Individual model diagnostics for stratospheric tropical winds (10°S-10°N, 50 
hPa) and ERA-interim (black dots) from November-March.  (left) Correlation skill for 
each model.  High-top models are denoted with a solid line; low-top models are denoted 
with a dashed line.  (right) Standard deviation [m s-1] of tropical winds in each model.  
Error bars for ERA-interim (black dots) are given by the 95% confidence interval using the 
chi-squared distribution. 
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Figure 4.   Skill of model forecasts of the DJF NAO index (here calculated as the SLP 
difference between the Icelandic low and Azores high pressure centers) versus the number 
of ensemble members.  Here the correlations are calculated by randomly selecting 
ensemble members 100 times, averaging them together if the number of ensemble 
members is greater than 1, and then correlating the ensemble-mean with the observed DJF 
NAO index using ERA-interim reanalysis. 
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Figure 5.  The El Niño zonal wind anomaly [m s-1] response averaged 50-80°N from 
November to March, for the high-top models (left), the low-top models (center), and ERA-
interim (right).  For each model, the ensemble-mean climatology for each month is 
removed to create anomalies.  El Niño/La Niña winters are composited and then averaged 
over ensemble members to get the ensemble-mean response for that model.  The t-test for 
differences between two means is used to determine significance at the 95% level for each 
model-mean. The response is shown only at selected common pressure levels (1000, 850, 
500, 200, 100, 50, 10 hPa).  If the model has no data at those levels, missing data is used.  
Here, the significance for the high-top and low-top plots (indicated by hatching) is 
determined by where at least half of the models (as a function of the total models that have 
valid data at a given gridpoint) show significant differences between El Niño and La Niña 
at the 95% level.  
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Figure 6.  The skill (correlation) of JFM mean sea level pressure anomalies at each grid 
cell from 1980-2012 for the high-top ensemble (left panels) and low-top ensemble (right 
panels) for all winters (top row), El Niño winters only (middle row), and ENSO-neutral 
winters (bottom row).  The anomaly correlation coefficient (ACC) for the region shown, 
per equation 4, is given in the upper right corner of each plot.  Hatching indicates 
correlations that exceed 95% significance using a 2-tailed t-test. 
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Figure 7.  Correlation of 50 hPa, 50-80°N zonal wind anomalies in December (left 
column) and January (right column) with zonal wind anomalies at every other pressure 
level and month, for ERA-interim (top), high-top models (second row), and low-top 
models (third row).  For model data, correlations are found for individual model ensemble 
members and then averaged together for each model, then averaged into high-top or low-
top ensembles (so each model is weighted equally).  Bottom row shows a box and whisker 
plot of the correlations (at the location marked at the cross in the panels above) for the 
ensemble members of the low-top and high-top models, with the dashed line showing the 
observed correlation. 
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Figure 8. Westerly minus easterly QBO composites of zonal wind anomalies as a function 
of latitude vs. pressure, for (top row) December, (middle row) January, and (bottom row) 
February.  (Left) Composite for high-top models, (middle) composite for low-top models. 
Composites are created in the same manner as Figure 5. Significance for the high-top and 
low-top figures (indicated by shading) is determined by where at least half of the models 
are significant at the 95% level.  (Right) ERA-Interim, shadowed regions are significant at 
the 95% level according to a Monte Carlo test. 
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