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Abstract

We evaluate the capability of 21 models from the new state-of-the-art Coupled Model Intercomparison Project, Phase 6 

(CMIP6) in the representation of present-day precipitation characteristics and extremes along with their statistics in simulat-

ing daily precipitation during the West African Monsoon (WAM) period (June–September). The study uses a set of standard 

extreme precipitation indices as defined by the Expert Team on Climate Change Detection and Indices constructed using 

CMIP6 models and observational datasets for comparison. Three observations; Global Precipitation Climatology Project 

(GPCP), Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), and Tropical Applications of Meteorol-

ogy using SATellite and ground-based observation (TAMSAT) datasets are used for the validation of the model simulations. 

The results show that observed datasets present nearly the same spatial pattern but discrepancies in the magnitude of rainfall 

characteristics. The models show substantial discrepancies in comparison with the observations and among themselves. A 

number of the models depict the pattern of rainfall intensity as observed but some models overestimate the pattern over the 

coastal parts (FGOALS-f3-L and GFDL-ESM4) and western part (FGOALS-f3-L) of West Africa. All model simulations 

explicitly show the pattern of wet days but with large discrepancies in their frequencies. On extreme rainfall, half of the mod-

els express more intense extremes in the 95th percentiles while the other half simulate less intense extremes. All the models 

overestimate the mean maximum wet spell length except FGOALS-f3-L. The spatial patterns of the mean maximum dry spell 

length show a good general agreement across the different models, and the observations except for four models that show an 

overestimation in the Sahara subregion. INM-CM4-8 and INM-CM5-0 display smaller discrepancies from their long-term 

average rainfall characteristics, in terms of extreme rainfall estimates than the other CMIP6 datasets. For the frequency of 

heavy rainfall, TaiESM1 and IPSL-CMGA-LR perform better when compared with observational datasets. MIROC6 and 

GFDL-ESM4 displayed the largest error in representing the frequency of heavy rainfall and 95th percentile extremes, and 

therefore, cannot be reliable. The study has assessed how rainfall extremes are captured in both observation and the models. 

Though there are some discrepancies, it gives room for improvement of the models in the next version of CMIP.
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1 Introduction

Precipitation is one of the most complex climatic variables 

with extensive impacts on agricultural production, water 

resource, hydroelectric power generation, and the envi-

ronment at the local and global scale. As a result of high 

spatio-temporal changes of precipitation and the influence 

of complex physical processes (e.g., clouds), it is challeng-

ing to predict and mitigate its effects on society. In particu-

lar, the extreme precipitation and temperature events have 

severe socio‐economic impacts in terms of their frequency 

and intensity (Almazroui, 2020a, b). Some studies (e.g., 
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Abiodun et al. 2016; Ajibola et al. 2020; Almazroui et al. 

2020; James et al. 2018; Klutse et al. 2016a) have used either 

global climate models (GCMs) and regional climate mod-

els (RCMs) to investigate changes in the different attributes 

of the precipitation such as the frequency, intensity, spatial 

extent, duration, and timing of these weather and climate 

events. With growing fluctuations in precipitation regimes, 

the increasing demand for water due to population growth 

would be in severe contrast to the low water supply (Smith 

and Katz, 2013; Trenberth et al. 2014). Understanding the 

daily precipitation features is thus key for accurate assess-

ments of climate change projections over West Africa for 

a wide range of decision-makers. For better preparedness 

and mitigation measures against floods and drought events, 

there is the need to provide robust information on the vari-

ability, occurrence, and distribution of precipitation events. 

A detailed precipitation monitoring based on various pre-

cipitation indices will ensure that quantitative information 

on precipitation characteristics can be provided to decision 

and policymakers. However, only a handful of studies (e.g., 

Akinsanola et al. 2015; Klutse et al. 2016b; Sylla et al. 2013; 

Sylla, et al. 2016) have focused on the daily precipitation 

behavior over West Africa.

Given the growing use of GCMs beyond the scientific 

community for decision-making and impact applications, it 

is essential to evaluate their performance (Baumberger et al. 

2017; James et al. 2015). With the introduction of the new 

state-of-the-art Coupled Model Intercomparison Project, 

Phase 6 (CMIP6; Eyring et al. 2016) which is made up of 

models with higher spatial resolution and additional physi-

cal complexity relative to the phase 5 (CMIP5; Taylor et al. 

2012) models, it is a useful exercise to assess the perfor-

mance of CMIP6 models in representing daily summer mon-

soon rainfall characteristics over West Africa. Other studies 

(e.g., Akinsanola and Zhou, 2019a, b; Barlow et al. 2019) 

have opined that these improvements may not necessarily 

improve model representation of the current climate and 

precipitation characteristics on regional-scales. It is entirely 

possible that model performance may vary over regions and 

across CMIP6 models as differences exist in how they rep-

resent physical processes and according to their numerical 

resolution. Almazroui et al. (2020) projected higher median 

warming in the CMIP6 model ensemble than CMIP5 over 

most of Africa but a mixed spatial pattern for precipitation. 

Earlier studies have also shown evidence of biases in pre-

cipitation intensity and frequency in GCMs that have been 

attributed to limitations in convective parameterization and 

its subsequent control over precipitation intensity (e.g., Berg 

et al. 2013; Trenberth, 2011).

Several studies have examined the performance of 

CMIP3/CMIP5 models in simulating global precipitation 

characteristics and extremes (e.g., Crétat et al. 2014; Nguyen 

et al. 2017; Nikiema et al. 2017; Pendergrass & Hartmann, 

2014; Torma et al. 2011; Almazroui and Islam, 2019) and 

some specific regions (e.g., Akinsanola et al. 2020; Gaetani 

et al. 2017). However, few studies (e.g., Diallo et al. 2013; 

Ibrahim et al. 2012; Klutse et al. 2016b, Sylla et al., 2016; 

Sylla et al. 2013) have focused on examining daily precipi-

tation characteristics over West Africa with other models. 

This paper seeks to evaluate the capability of CMIP6 models 

in their representation of the present-day summer monsoon 

precipitation characteristics and extremes over West Africa. 

The study uses a set of standard extreme precipitation indi-

ces as defined by the Expert Team on Climate Change 

Detection and Indices (ETCCDI; Tank et al. 2009; Zhang 

et al. 2011), constructed using CMIP6 models and observa-

tional datasets. The following sections describe the data and 

methods used in our analysis, discussion of the results, and 

the conclusion of the study.

2  Data and Methodology

In this study, we analyze 21 CMIP6 models simulations of 

daily precipitation datasets (see Table 1) obtained from the 

Earth System Grid data portal over the West African region 

bounded by latitudes 4–20° N and longitudes 17° W–17° E 

(Fig. 1).

To assess the ability of the different CMIP6 models in 

simulating the daily characteristics of precipitation, multi-

ple gridded daily precipitation datasets that are frequently 

used as reference datasets in climate research were used 

for the period of 1997–2014. This time period is common 

across the observation dataset and the historical run of the 

CMIP6 experiment. Three gridded observational datasets 

are used: the Global Precipitation Climatology Project One-

Degree Daily product (GPCP 1DD Version 1.2; Huffman 

and Bolvin, 2013), the Climate Hazards Group InfraRed 

Precipitation with Station data (CHIRPS; Funk et al. 2015) 

and is available from 1981 to present at a 0.5° × 0.5° resolu-

tion and the Tropical Applications of Meteorology using 

SATellite and ground-based observation (TAMSAT; Maid-

ment et al. 2017) at a 0.035o × 0.035° resolution. To directly 

compare the extreme precipitation metrics from the multi-

model summary statistics, all datasets were regridded to a 

common 2.8° × 2.8° (lat × lon) grid using bilinear remapping 

algorithm from the Climate Data Operators (https ://code.

zmaw.de/proje cts/cdo). This relatively coarse resolution 

roughly matches the grid of the simulations with the lowest 

resolution.

Our analysis considers the West African Monsoon sum-

mer season (June–September: JJAS). The mean precipitation 

over West Africa is examined briefly, thereafter, we focused 

on different hydroclimatic indices (as shown in Table 2) (Tank 

et al. 2009; Zhang et al. 2011) as a proxy to assessing the daily 

rainfall characteristics (simple daily intensity index, frequency 

https://code.zmaw.de/projects/cdo
https://code.zmaw.de/projects/cdo
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of wet days and heavy rainfall events, extreme precipitation 

events represented as the 95th percentile, and maximum 

wet spell and dry spell length). These hydroclimatic indices 

selected have been used in many studies (e.g., Klutse et al. 

2016a, b; Akinsanola et al. 2019b) and are useful analysis 

when seeking to understand the daily rainfall variability over 

any given region. In the study, a rainfall event is defined as a 

day with a minimum precipitation amount exceeding 1 mm 

(e.g., Akinsanola et al. 2020). Supplementary analyses on the 

performance of CMIP6 simulations investigated are the root 

mean squared error (RMSE) and the relative standard devia-

tion (RSD). RMSE indicates the error of a model in predict-

ing quantitative data based on how concentrated the model 

data is around the line of best fit. RSD is used to determine if 

the standard deviation of a set of data is small or large when 

compared to the mean. In other words, the RSD shows how 

precise the average of your results is. The higher the RSD, 

the more spread out the results are from the mean of the data. 

These quantitative measures are done by considering only the 

grid points over the land for all the indices defined in Table 2. 

It is worth mentioning that for this examination, only GPCP 

is utilized in the spatial distribution to have an immediate idea 

regarding the spatial patterns; notwithstanding, for the quanti-

tative measures of model performance (Tables 3, 4, 5, and 6), 

all observation dataset (GPCP, CHIRPS, and TAMSAT) are 

employed to account for uncertainties in the observed daily 

precipitation products.    

Table 1  Details of the 21 CMIP6 models used in this study

No. Model Institute Horizontal reso-

lution (lon.  ×  

lat.)

References

1 MPI-ESM-1-2-LR Max Planck Institute for Meteorology, Germany 1.9° × 1.9° Mauritsen et al. (2019)

2 MPI-ESM-1-2-h Max Planck Institute for Meteorology, Germany 0.9° × 0.9° Gutjahr et al. (2019)

3 CanESM5 Canadian Earth System Model, Canada 2.8° × 2.8o Swart et al. (2019)

4 BCC-ESM1 Beijing Climate Centre (BCC) and China Meteorological Administration 

(CMA), China

2.8°  ×  2.8o Zhang et al. (2019)

5 INM-CM5-0 Institute for Numerical Mathematics, Russia 2.0° × 1.5° Volodin et al. (2018)

6 KACE-1-0-G National Institute of Meteorological Sciences, Korea Meteorological 

Administration, Republic of Korea

1.9° × 1.3° Byun et al. (2019)

7 FGOALS-f3-L LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences 

and CESS, Tsinghua University, China

1.3° × 1.0o He et al. (2019)

8 BCC-CSM2-MR Beijing Climate Centre (BCC) and China Meteorological Administration 

(CMA), China

1.1° × 1.1o Wu et al. (2019)

9 IPSL-CM6A-LR Institute Pierre-Simon Laplace (IPSL), France 2.5° × 1.3° Boucher et al. (2020)

10 TaiESM1 Research Centre for Environmental Changes (AS-RCEC), Taiwan 0.9° × 1.3° Lee et al. (2020)

11 MRI-ESM-2-0 Meteorological Research Institute (MRI), Japan 1.1° × 1.1° Yukimoto et al. (2019)

12 NorESM2-MM Norwegian Climate Centre, Norway 1.3° × 0.9° Seland et al. (2020)

13 MIROC6 Japan Agency for Marine-Earth Science and Technology, Atmosphere 

and Ocean Research Institute (The University of Tokyo), and National 

Institute for Environmental Studies, Japan

1.4° X 1.4° Tatebe et al. (2019)

14 ACCESS-CM2 Commonwealth Scientific and Industrial Research Organisation—Aus-

tralia Bureau of Meteorology (BoM), Australia

1.9° × 1.3o Bi et al. (2012)

15 INM-CM4-8 Institute for Numerical Mathematics, Russia 2.0° × 1.5° Volodin et al. (2018)

16 SAM0-UNICON Seoul National University Atmosphere Model Version 0 with a Unified 

Convection Scheme, South Korea

1.2° × 0.9° Park and Shin, (2019)

17 NESM3 Nanjing University of Information Science and Technology, China 1.9° × 1.9° Cao et al. (2018)

18 ACCESS-ESM1-5 Commonwealth Scientific and Industrial Research Organisation, Aus-

tralia

1.9° × 1.2o Law et al. (2017)

19 FGOALS-g3 LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences 

and CESS, Tsinghua University, China

2.0° × 2.3o Pu et al. (2020)

20 MPI-ESM-1-2-HAM Max Planck Institute for Meteorology, Germany 1.9° × 1.9° Tegen et al. (2019)

21 GFDL-ESM4 Geophysical Fluid Dynamics Laboratory (GFDL), USA 1.3° × 1.0° Held et al. (2019)
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3  Results and Discussion

3.1  Rainfall Climatology

To better understand the discrepancies between GCMs 

and observed records of rainfall over West Africa, we 

assess the spatial pattern of the climatology of the sum-

mer monsoon (JJAS) season. The spatial distribution of 

the mean JJAS rainfall climatology (Fig. 2) for observa-

tions (GPCP, CHIRPS, and TAMSAT) and the 21 CMIP6 

datasets shows that all CMIP6 GCMs (except FGOALS-

g3) are able to capture the general rainfall pattern of the 

region and further, show the position of the ITCZ which is 

located approximately 10° N. The observational datasets 

present approximately the same spatial pattern of rainfall 

climatology, but the simulations present some discrepan-

cies relative to the observations and among the models. 

For example, ACCESS-CM2, KACE-1-0-G, INM-CM4-8, 

and FGOALS-g3 underestimate the amount of daily rain-

fall over West Africa with KACE-1-0-G specifically show-

ing lower mean monsoon rainfall values over the Guinea 

Coast. GFDL-ESM4, CanESMS, and MIROC6 overesti-

mate mean monsoon rainfall with CanESMS presenting 

an overestimation in the highlands of Cameroon moun-

tains, Sierra Leone coast, and the Guinea mountains. 

MIROC6 overestimates the mean monsoon rainfall from 

central Nigeria through to the Sierra Leonean coast and the 

GFDL-ESM4 shows an overestimation across the whole 

region even though it is able to represent the expected 

rainfall climatology pattern spatially.

Fig. 1  West African region and topography (in meters) with dark brown areas showing highlands

Table 2  Selected indices used 

in this study and their definition
Indices Definitions

Simple daily intensity index Precipitation intensity exclusively due to wet days

Number of wet days Maximum number of days with precipitation > 1 mm

Frequency of heavy rainfall events Maximum number of days with precipitation > 20 mm

Extreme rainfall at 95th percentile Only 5% of the data are above this value

Mean maximum wet spell length Maximum number of consecutive wet days

Mean maximum dry spell length Maximum number of consecutive dry days
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3.2  Rainfall Intensity

The mean intensity of daily rainfall events is calculated and 

presented in Fig. 3 for the three-observation dataset and 

CMIP6 GCMs. Table 3 encapsulates the root mean squared 

error (RMSE) between the models and observed rainfall 

intensities from GPCP, CHIRPS, and TAMSAT deter-

mined for the West African region. The underestimation of 

some CMIP6 models and the overestimation of others lead 

to variations in RMSE over the region. The RMSEs turn 

to be higher generally when the models are compared with 

TAMSAT since this observation dataset tends to produce 

more intense rainfall.

GPCP shows higher mean daily rainfall intensities in 

Guinea–Sierra Leone region which further spreads to Nige-

ria with decreasing mean daily rainfall intensities. In the 

Sahel regions, mean intensities of daily rainfall are lower 

as compared to the coastal regions. Concerning GPCP, 

CanESM5, BCC-ESM1, NESM3, MIROC6, and MPI-ESM-

1-2-HAM are well able to capture the pattern of rainfall 

intensities over southern West Africa. These patterns are 

captured at different rainfall intensity levels in all aforemen-

tioned models. The CanESM5, MIROC6, and MPI-ESM-

1-2-HAM simulations show a lower rainfall intensity as 

compared to the GPCP in the Sahel region. INM-CM5-0, 

KACE-1-0-G, TaiESM1, MRI-ESM2-0, ACCESS-CM2, 

FGOALS-g3, and INM-CM4-8 show lower intensities over 

the region and thus, underestimate the pattern observed in 

GPCP. This is evident in the high RMSEs recorded by the 

aforementioned models when compared to GPCP (Table 3). 

FGOALS-f3-L and GFDL-ESM4 which also record rela-

tively high RMSEs are marked by their overestimation of the 

observational dataset. Similar behavior in RMSE is observed 

also in CHIRPS, depicting similar errors in CMIP6 datasets 

against both GPCP and CHIRPS. This is different in the 

case of TAMSAT. For instance, according to the distribu-

tion of RMSE, it is realized that MPI-ESM1-2-h gives out 

the best presentation with 0.50 mm/day and 0.45 mm/day 

while FGOALS-f3-L prediction shows the largest error of 

3.79 mm/day and 4.02 mm/day as against both GPCP and 

CHIRPS, respectively. On the other hand, GFDL-ESM4 was 

found as the best model for predicting accurate rainfall inten-

sity, while FGOALS-g3 shows the largest error when com-

pared with TAMSAT. A common feature associated with the 

GCMs is the underestimation of daily rainfall intensities in 

the Sahel regions. Despite the disparities in intensities, it is 

observed that the majority of the GCMs depict the general 

pattern as represented by the observations. The difficulty in 

simulating accurately monsoon rainfall intensities is consist-

ent with previous studies using CMIP Phase 5 models (e.g., 

Table 3  Root Mean Square Error (RMSE) between simulated pre-

cipitation intensity and that of the observations (GPCP, CHIRPS, and 

TAMSAT)

Models GPCP CHIRPS TAMSAT

MPI-ESM1-2-LR 0.51 0.62 1.47

MPI-ESM1-2-HR 0.50 0.45 2.06

CanESM5 1.45 1.24 3.09

BCC-ESM1 1.01 0.87 2.56

INM-CM5-0 2.81 2.61 4.48

KACE-1-0-G 1.85 1.64 3.51

FGOALS-f3-L 3.79 4.02 2.48

BCC-CSM2-MR 0.95 0.78 2.55

IPSL-CMGA-LR 1.28 1.06 2.90

TAiESM1 1.46 1.25 3.07

MRI-ESM2-0 1.84 1.64 3.48

NORESM2-MM 0.77 0.71 2.24

MIROC6 0.86 0.72 2.33

ACCESS-CM2 2.02 1.81 3.69

INM-CM4-8 2.95 2.74 4.61

SAMO-UNICON 1.51 1.67 0.81

NESM3 0.79 0.99 1.07

ACCESS-ESM1-5 1.55 1.32 3.11

FGOALS-g3 2.98 2.78 4.65

MPI-ESM-1-1-HAM 0.60 0.64 1.51

GFDL-ESM4 1.98 2.13 0.77

Table 4  Root Mean Square Error (RMSE) between simulated fre-

quency of heavy rainfall and that of the observations (GPCP, 

CHIRPS, and TAMSAT)

Models GPCP CHIRPS TAMSAT

MPI-ESM1-2-LR 2.44 3.71 3.40

MPI-ESM1-2-HR 1.63 2.95 2.65

CanESM5 1.71 3.15 2.87

BCC-ESM1 2.81 4.24 3.94

INM-CM5-0 2.40 0.89 1.14

KACE-1-0-G 0.95 2.11 1.83

FGOALS-f3-L 3.43 4.89 4.60

BCC-CSM2-MR 0.93 1.13 0.90

IPSL-CMGA-LR 1.65 0.86 0.83

TAiESM1 0.85 1.57 1.30

MRI-ESM2-0 1.00 1.77 1.52

NORESM2-MM 2.38 3.88 3.59

MIROC6 5.13 6.61 6.31

ACCESS-CM2 1.22 2.51 2.24

INM-CM4-8 2.61 1.03 1.32

SAMO-UNICON 4.01 5.45 5.17

NESM3 3.42 4.93 4.62

ACCESS-ESM1-5 1.97 3.14 2.85

FGOALS-g3 1.14 1.12 0.94

MPI-ESM-1-1-HAM 3.18 4.62 4.32

GFDL-ESM4 4.68 6.20 5.89
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Akinsanola and Zhou 2019a) and seems persistent with the 

new state-of-the-art CMIP6 models.

3.3  Frequency of Wet Days

The mean frequency of wet days expressed as a percentage 

of the total annual days is calculated and shown in Fig. 4. 

The observations show approximately similar patterns and 

frequencies with wet spell frequencies typically between 

30 and 70% except for orographic regions (e.g., Cameroon 

mountains and Guinea highlands) which experience about 80 

percent of wet days. This is consistent across all the obser-

vations. Considering the ensemble members, it is observed 

that the majority (e.g., MPI-ESM1-2-LR, MPI-ESM1-2-h, 

CanESM5, INM-CM5-0, IPSL-CM6A-LR, TaiESM1, 

MRI-ESM2-0, MIROC6, INM-CM4-8, SAM0-UNICON, 

NESM3, ACCESS-ESM1-5, MPI-ESM-1-2-HAM, and 

GFDL-ESM4) represent an overestimation of frequencies 

ranging between 80 and 100 percent. On the contrary to 

other models, FGOALS-f3-L shows similar frequency dis-

tribution to GPCP but does not record spells further north as 

seen in GPCP. In general, all ensemble members explicitly 

show the pattern of wet days but with high discrepancies 

in their frequencies. Despite the weak performance in the 

models’ ability to capture some daily precipitation features 

over West Africa, there seems to be a fair agreement among 

CMIP6 simulations and observation in rainfall frequency 

unlike in their intensities.

In Fig. 5, frequencies of mean heavy rainfall events are 

expressed as days within the monsoon seasonal days. From 

observation, all 3 observational datasets (GPCP, CHIRPS, 

and TAMSAT) record approximately the same frequencies 

of heavy rainfall events along the Guinea highlands with 

some disparities along the Cameroon mountains. CanESMS, 

MRI-ESM2-0, NESM3, and ACCESS-ESM1-5 shows some 

similarity to the pattern of the frequencies identified in the 

observational dataset but mostly with a different frequency 

of events. MPI-ESM1-2-h, INM-CM5-0, KACE-1-0-G, 

BCC-CSM2-MR, IPSL-CM6A-LR, INM-CM4-8, ACCESS-

CM2, and MPI-ESM-1-2-HAM present lower frequencies of 

mean heavy rainfall events. BCC-CSM2-MR, INM-CM4-8, 

and MPI-ESM1-2-h spatially show spatial intensities rang-

ing between 3 and 13 days along the Guinea Coast–Savanna 

regions. These are underestimations when compared to 

observational datasets. In MIROC6, NESM3, BCC-ESM1, 

FGOALS-g3, and GFDL-ESM4 the frequencies over 

Table 5  Root Mean Square Error (RMSE) between simulated 

extreme precipitation at 95th percentile and that of the observations 

(GPCP, CHIRPS, and TAMSAT)

Models GPCP CHIRPS TAMSAT

MPI-ESM1-2-LR 3.79 4.15 2.88

MPI-ESM1-2-HR 3.59 3.94 2.67

CanESM5 8.59 8.99 7.66

BCC-ESM1 9.83 10.23 8.89

INM-CM5-0 1.20 1.11 1.41

KACE-1-0-G 3.26 3.63 2.41

FGOALS-f3-L 10.57 10.96 9.61

BCC-CSM2-MR 4.56 4.94 3.68

IPSL-CMGA-LR 4.89 5.25 4.03

TAiESM1 2.64 2.99 1.83

MRI-ESM2-0 2.47 2.65 1.62

NORESM2-MM 5.62 6.08 4.79

MIROC6 12.55 12.98 11.64

ACCESS-CM2 2.11 2.46 1.26

INM-CM4-8 1.19 0.89 1.83

SAMO-UNICON 8.99 9.36 8.02

NESM3 5.69 6.13 4.76

ACCESS-ESM1-5 3.89 4.17 2.93

FGOALS-g3 2.17 2.41 1.70

MPI-ESM-1-1-HAM 6.25 6.64 5.31

GFDL-ESM4 16.18 16.58 15.23

Table 6  Relative standard deviation (RSD) of observational datasets 

and CMIP6 datasets  for SDII, frequency of heavy rainfall (freq of 

HR) and extreme precipitation at 95%

Models SDII (%) FREQ OF 

HR (%)

Extremes at 

95% (%)

GPCP 28.6 38.3 60.8

CHIRPS 21.4 41.7 63.8

TAMSAT 19.9 34.8 62.9

MPI-ESM1-2-LR 25.2 97.8 69.7

MPI-ESM1-2-HR 23.2 82.7 44.8

CanESM5 227 32.5 37.3

BCC-ESM1 38.4 34.9 42.9

INM-CM5-0 17.2 24.3 22.0

KACE-1-0-G 27.6 34.6 29.8

FGOALS-f3-L 55.6 72.8 72.9

BCC-CSM2-MR 51.5 33.7 45.7

IPSL-CMGA-LR 27.1 49.2 60.0

TAiESM1 32.9 41.5 28.6

MRI-ESM2-0 33.7 39.5 39.5

NORESM2-MM 36.2 37.6 40.6

MIROC6 30.2 29.4 34.8

ACCESS-CM2 31.2 56.2 45.6

INM-CM4-8 16.9 27.8 21.4

SAMO-UNICON 36.51 34.7 27.8

NESM3 26.6 69.3 44.1

ACCESS-ESM1-5 35.7 45.3 40.6

FGOALS-g3 24.9 38.0 41.6

MPI-ESM-1-1-HAM 24.7 59.6 31.6

GFDL-ESM4 45.8 43.3 46.0
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Sierra Leone and Guinea are overestimated as compared 

to observations at frequencies from 10 to 25 days. Major-

ity of CMIP6 ensemble members capture the pattern with 

the highest frequencies along the Guinea–Sierra Leone 

stretch and the Cameroon highlands. The performance of 

the models to represent the frequency of heavy rainfall can 

be ranked based on the values of the RMSE. IPSL-CMGA-

LR has the best representation of the frequency of heavy 

rainfall with 0.86 mm/day and 0.83 mm/day when compared 

with CHIRPS and TAMSAT, respectively. TaiESM1 also 

gives the best performance with 0.85 mm/day when com-

pared with GPCP. It is interesting to note that MIROC6 and 

GFDL-ESM4 recorded the largest errors against all three 

observational datasets.

3.4  Daily Extreme Precipitation Events (95th 
Percentile)

The extreme precipitation events greater than the 95th per-

centile are presented in Fig. 6. The model simulations show 

wide variabilities among themselves as well as with GPCP. 

Relative to GPCP, CanESM5, BCC-ESM1, FGOALS-f3-L, 

MIROC6, GFDL-ESM4 simulate extreme precipitation 

events with higher estimates with spatial variations while 

MPI-ESM1-2-LR, MPI-ESM1-2-h, KACE-1-0-G, INM-

CM5-0, NESM3, ACCESS-CM2, TaoESM1, MRI-ESM2-0, 

NorESM2-MM, ACCESS-ESM1-5, FGOALS-g3, and MPI-

ESM-1-2-HAM depict similar patterns. It is important to 

note that MIROC6, BCC-ESM1, CanESM5, and GFDL-

ESM4 show greater than expected estimates than all obser-

vation datasets over the coast. There is a spatial disparity 

to some overestimation which cannot be generalized. For 

instance, TaiESM1, MRI-ESM2-0, FGOALS-g3, and IPSL-

CM6A-LR mostly overestimate rainfall extreme events over 

the Guinea highlands and along the Cameroon mountains. 

The southern parts of the region (Guinea Coast-Savanna) 

show high extreme events whereas areas north of the region 

(Sahel–Sahara) show lower values of rainfall extremes. This 

means the southern regions experience more extreme rainfall 

events as compared to the northern regions. INM-CM4-8 on 

the other hand tends to produce a lower 95th percentile over 

the entire domain due to lower intensities and a lower num-

ber of heavy precipitation events as mentioned earlier. The 

performance of models using RMSE is presented in Table 5. 

MIROC6 and GFDL-ESM4 show the largest errors in rep-

resenting rainfall extremes as observed in the frequency of 

heavy rainfall events when compared with all observation 

datasets. On the other hand, INM-CM4-8 and INM-CM5-0 

seem to perform well in representing extreme events as 

seen in observational datasets. In the case of TAMSAT, 

ACCESS-CM2 does well in representing extreme events 

with a minimum error of 1.26 mm/day.

The intercomparison of the relative standard deviation 

(RSD) of observational datasets and CMIP6 datasets during 

the monsoon season is displayed in Table 6. INM-CM4-8 

and INM-CM5-0 display less deviation from their long-term 

average rainfall characteristics, with FGOALS-f3-L record-

ing the highest deviation in rainfall intensity and extreme 

precipitation at the  95th percentile, while MPI-ESM1-

2-LR shows the highest deviation in the frequency of heavy 

rainfall.

3.5  Mean Maximum Wet Spell Length

Comparisons between CMIP6 simulations and observations 

are shown in Fig. 7 for mean maximum wet spell length. 

The main features of the mean wet spell length patterns are 

captured by the models but with errors in their amplitude 

and exact location. FGOALS-f3-L and BCC-ESM1 models 

out of the 21 models used in the study show results con-

sistent with observations. The remaining models present 

a wetter climate than the observed with KACE-1-0-G and 

BCC-CSM2-MR showing a wetter climate only over Libe-

ria, Sierra Leone, north of Nigeria, and Cameroon than the 

observed. Wetness to dominate in south-western Africa in all 

the other models. Some regions in the midlatitudes experi-

ence slight wetness but these features are robustly simulated 

by the models. Overall, the majority of models considered 

were inconsistent with observations.

3.6  Mean Maximum Dry Spell Length

The mean maximum dry spell length is calculated and 

presented spatially in Fig. 8. The models capture different 

magnitudes of the dry spell and high spatial variability. For 

instance, MPI-ESM1-2-LR, MPI-ESM1-2-h, FGOALS-

f3-L, ACCESS-CM2, MRI-ESM2-0, NESM3, ACCESS-

ESM1-5, FGOALS-g3, MPI-ESM-1-2-HAM, and GFDAL-

ESM4 show a higher number of spell length ranging between 

70 and 100 days, which opposes what the observations pre-

sented. In addition, the aforementioned models show a wider 

area of dry spell lengths relative to the observations. From 

observational datasets, the high spell lengths are seen around 

northern Niger but are not represented by the models. Most 

of the models show a higher number of spells around 15° 

N. In addition, the dry spell length that is observed around 

the Cameroonian highlands is not captured in any of the 

CMIP6 simulations.

4  Summary and Conclusions

The ability of GCMs to simulate robust precipitation change 

at the daily timescale is of importance to society and like-

wise for decision and policymakers in managing water 
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Fig. 2  Mean JJAS rainfall climatology (mm/day) from GPCP, CHIRPS and TAMSAT observational dataset and each of the CMIP6 over West 

Africa for the period 1997–2014
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Fig. 3  Mean intensity of daily rainfall events (mm/day) from GPCP, CHIRPS and TAMSAT observational dataset and each of the CMIP6 mod-

els over West Africa for JJAS 1997–2014
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Fig. 4  Same as Fig. 3 but for mean frequency of wet days (expressed in percent of total seasonal days)
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Fig. 5  Same as Fig. 3 but for mean frequency of heavy rainfall events (expressed in days within the season)
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Fig. 6  Same as Fig. 3 but for mean 95th percentile of daily rainfall events (mm/day)
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Fig. 7  Same as Fig. 3 but for mean maximum wet spell length (expressed in percent of total seasonal days)
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Fig. 8  Same as in Fig. 3 but for mean maximum dry spell length (expressed in percent of total seasonal days)
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resources, drought, and flood monitoring and agriculture. 

However, identifying and quantifying daily precipitation 

events as a proxy to understand and assess climate change 

over Africa is a difficult task. Thus, it is important to assess 

the performance of the new state-of-the-art CMIP6 models 

in representing daily precipitation characteristics over West 

Africa.

In this study, we present an evaluation and intercompari-

son of the daily precipitation characteristics and extremes of 

21 GCMs from the CMIP6 model stack. Three observational 

datasets (GPCP, CHIRPS, and TAMSAT) were used for the 

validation of the model simulations. The results show that 

observed datasets present nearly the same spatial pattern 

and magnitude of rainfall characteristics, but models show 

substantial discrepancies in comparison. The focus is on the 

daily rainfall characteristics such as mean rainfall climatol-

ogy, and extreme indices such as the intensity of rainy days, 

frequency of heavy rainfall, and extreme events as well as 

mean maximum length of dry and wet spells within the mon-

soon season JJAS over West Africa from 1997 through 2014. 

The models were further subjected to statistical assessments 

to quantify their performance relative to the observations. 

We used the root mean squared error (RMSE) and relative 

standard deviation (RSD) to quantify the performance of 

the models. The RMSE gives the errors and RSD gives the 

standard deviation of a set of data as small or large when 

compared to the mean.

The observation datasets regardless of their differences 

agree in most of the statistics and spatial representations. For 

precipitation intensity, the observations present a similar pat-

tern and magnitude. Similarly, the simulations demonstrate a 

general pattern of the monsoon season in comparison with 

the observations. However, considerable discrepancies exist 

among the simulations and relative to the observations. For 

example, substantial differences exist in terms of mean pre-

cipitation climatology, the intensity of rainy days, frequency, 

extremes, and duration of rainfall events during the WAM 

period. FGOALS-f3-L and GFDL-ESM4 present a more 

intensified daily rainfall event. The models clearly depict 

the frequency of wet days similar to observations but present 

much more intensity in the Guinea Highlands and Cameroon 

mountains, resulting from the simulation of a larger num-

ber of heavy precipitation events indicating more intense 

extremes. Specifically, more intense extremes are expressed 

in the 95th percentiles in CanESM5, BCC-ESM1, FGOAL-

f3-L, BCC-CSM2-MR, MIROC6, and GFDL-ESM4. All the 

models overestimate the mean maximum wet spell length 

except FGOALS-f3-L which presents a similar magnitude 

as that of the observations. The spatial patterns of the mean 

maximum dry spell length expressed as a percent of total 

seasonal days from the observational dataset and the models 

show a good general agreement across the different models, 

and the observations except for NESM3, FGOALS-f3-L, 

MPI-ESM1-2-h, and MPI-ESM1-2-LR that overestimate 

the dry spell length in the Sahara subregion. The computed 

RMSE values show the weakness in MIROC6 and GFDL-

ESM4 in representing the correct extreme indices such as 

frequency of heavy rainfall and 95th percentile extremes. For 

the frequency of heavy rainfall, TaiESM1 performs better 

when compared with GPCP and IPSL-CMGA-LR performs 

better when compared with CHIRPS and TAMSAT. This 

observation is different in the case of the 95th percentile 

extreme where INM-CM5-0 and INM-CM4-8 models per-

form more closely to all observational datasets compared to 

the rest of the models.

The investigation of the  model performance of the 

individual models from CMIP6 suggested that the skill 

of the models generally varies from model to model at 

spatial scales. The difficulty in attributing discrepancies 

in individual model datasets may be due to the systematic 

differences in the representation of hydrological processes 

since the process is vital in precipitation formation. It can 

be inferred from the present study that no single model 

exhibits all features of the observational datasets. The dis-

crepancies in the simulations give room for improvement 

of the models in the next version of CMIP. The results 

offer useful information about the precipitation in CMIP6 

over West Africa and can serve as a reference for the new 

generation of climate models over the continent.

Acknowledgements The authors thank the World Climate Research 

Program for making the CMIP6 dataset available through the Earth 

System Grid Federation (ESGF) archiving and free access for this 

research. The second author is grateful to the University of Cape Town 

for research assistance. This research is under the MS4CR Project (Cli-

mate Change Science Project) supported by the African Institute for 

Mathematical Sciences, www.nexte inste in.org, with financial support 

from the Government of Canada, provided through Global Affairs 

Canada, www.inter natio nal.gc.ca, and the International Development 

Research Centre, www.idrc.ca.

Compliance with Ethical Standards 

Conflict of Interest The authors declare no potential conflict of inter-

ests.

Open Access This article is licensed under a Creative Commons Attri-

bution 4.0 International License, which permits use, sharing, adapta-

tion, distribution and reproduction in any medium or format, as long 

as you give appropriate credit to the original author(s) and the source, 

provide a link to the Creative Commons licence, and indicate if changes 

were made. The images or other third party material in this article are 

included in the article’s Creative Commons licence, unless indicated 

otherwise in a credit line to the material. If material is not included in 

the article’s Creative Commons licence and your intended use is not 

permitted by statutory regulation or exceeds the permitted use, you will 

need to obtain permission directly from the copyright holder. To view a 

copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

http://www.nexteinstein.org
http://www.international.gc.ca
http://www.idrc.ca
http://creativecommons.org/licenses/by/4.0/


40 N. A. B. Klutse et al.

1 3 Published in partnership with CECCR at King Abdulaziz University

References

Abiodun BJ, Abba Omar S, Lennard C, Jack C (2016) Using regional 

climate models to simulate extreme rainfall events in the West-

ern Cape, South Africa. Int J Climatol. https ://doi.org/10.1002/

joc.4376

Ajibola FO, Zhou B, Gnitou GT, Onyejuruwa A (2020) Evaluation of 

the performance of CMIP6 HighResMIP on West African pre-

cipitation. Atmosphere. https ://doi.org/10.3390/atmos 11101 053

Akinsanola AA, Zhou W (2019a) Projection of West African summer 

monsoon rainfall in dynamically downscaled CMIP5 models. 

Clim Dyn. https ://doi.org/10.1007/s0038 2-018-4568-6

Akinsanola AA, Zhou W (2019b) Projections of West African sum-

mer monsoon rainfall extremes from two CORDEX models. 

Clim Dyn. https ://doi.org/10.1007/s0038 2-018-4238-8

Akinsanola AA, Ogunjobi KO, Gbode IE, Ajayi VO (2015) Assess-

ing the capabilities of three regional climate models over COR-

DEX Africa in simulating west African summer monsoon pre-

cipitation. Adv Meteorol. https ://doi.org/10.1155/2015/93543 1

Akinsanola AA, Kooperman GJ, Reed KA, Pendergrass AG, Han-

nah WM (2020) Projected changes in seasonal precipitation 

extremes over the US in CMIP6 simulations. Environ Res Lett. 

https ://doi.org/10.1088/1748-9326/abb39 7

Almazroui M (2020) Changes in temperature trends and extremes 

over Saudi Arabia for the period 1978–2019. Adv Meteorol. 

https ://doi.org/10.1155/2020/88284 21

Almazroui M (2020a) Rainfall trends and extremes in Saudi Arabia 

in recent decades. Atmosphere 11:964. https ://doi.org/10.3390/

atmos 11090 964

Almazroui M, Islam MN (2019) Coupled model inter-comparison 

project database to calculate drought indices for Saudi Arabia: 

a preliminary assessment. Earth Syst Environ 3:419–428. https 

://doi.org/10.1007/s4174 8-019-00126 -9

Almazroui M, Saeed F, Saeed S, Nazrul Islam M, Ismail M, Klutse 

NAB, Siddiqui MH (2020) Projected change in temperature 

and precipitation over Africa from CMIP6. Earth Syst Environ 

4:455–475. https ://doi.org/10.1007/s4174 8-020-00161 -x

Barlow M, Gutowski WJ, Gyakum JR, Katz RW, Lim YK, Schu-

macher RS, Wehner MF, Agel L, Bosilovich M, Collow A, 

Gershunov A, Grotjahn R, Leung R, Milrad S, Min SK (2019) 

North American extreme precipitation events and related large-

scale meteorological patterns: a review of statistical meth-

ods, dynamics, modeling, and trends. Clim Dyn. https ://doi.

org/10.1007/s0038 2-019-04958 -z

Baumberger C, Knutti R, Hirsch Hadorn G (2017) Building confi-

dence in climate model projections: an analysis of inferences 

from fit. Wiley interdisciplinary reviews. Clim Change. https ://

doi.org/10.1002/wcc.454

Berg P, Moseley C, Haerter JO (2013) Strong increase in convective 

precipitation in response to higher temperatures. Nat Geosci. 

https ://doi.org/10.1038/ngeo1 731

Bi D, Dix M, Marsland S, Hirst T, O’Farrell1 S, Uotila P, Sullivan 

A, Yan H, Kowalczyk E, Rashid H, Franklin C, Watterson I, Sun 

Z, Zhou X, Puri K (2012) ACCESS: the Australian coupled cli-

mate model for IPCC AR5 and CMIP5. In: AMOS 18th Annual 

Conference : Connections in the Climate System: General Infor-

mation, Programme and Abstracts Handbook : University of 

New South Wales, 31 Jan to 3 Feb 2012.

Boucher O, Servonnat J, Albright AL, Aumont O, Balkanski Y, Bas-

trikov V, Bekki S, Bonnet R, Bony S, Bopp L, Braconnot P, 

Brockmann P, Cadule P, Caubel A, Cheruy F, Codron F, Cozic 

A, Cugnet D, D’Andrea F, Vuichard N (2020) Presentation and 

evaluation of the IPSL-CM6A-LR climate model. J Adv Model 

Earth Syst. https ://doi.org/10.1029/2019M S0020 10

Byun Y-H, Lim Y-J, Sung HM, Kim J, Sun M, Kim B-H (2019) 

NIMS-KMA KACE1.0-G model output prepared for CMIP6 

CMIP amip. https ://doi.org/10.22033 /ESGF/CMIP6 .8350

Cao J, Wang B, Yang YM, Ma L, Li J, Sun B, Bao Y, He J, Zhou X, 

Wu L (2018) The NUIST earth system model (NESM) version 

3: description and preliminary evaluation. Geosci Model Dev. 

https ://doi.org/10.5194/gmd-11-2975-2018

Crétat J, Vizy EK, Cook KH (2014) How well are daily intense 

rainfall events captured by current climate models over Africa? 

Clim Dyn. https ://doi.org/10.1007/s0038 2-013-1796-7

Diallo I, Sylla MB, Camara M, Gaye AT (2013) Interannual variability 

of rainfall over the Sahel based on multiple regional climate mod-

els simulations. Theoret Appl Climatol. https ://doi.org/10.1007/

s0070 4-012-0791-y

Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ, Tay-

lor KE (2016) Overview of the coupled model intercomparison 

project phase 6 (CMIP6) experimental design and organization. 

Geosci Model Dev. https ://doi.org/10.5194/gmd-9-1937-2016

Funk C, Verdin A, Michaelsen J, Peterson P, Pedreros D, Husak G 

(2015) A global satellite-assisted precipitation climatology. Earth 

Syst Sci Data. https ://doi.org/10.5194/essd-7-275-2015

Gaetani M, Flamant C, Bastin S, Janicot S, Lavaysse C, Hourdin F, 

Braconnot P, Bony S (2017) West African monsoon dynamics and 

precipitation: the competition between global SST warming and 

 CO2 increase in CMIP5 idealized simulations. Clim Dyn. https ://

doi.org/10.1007/s0038 2-016-3146-z

Gutjahr O, Putrasahan D, Lohmann K, Jungclaus JH, Von Storch JS, 

Brüggemann N, Haak H, Stössel A (2019) Max planck institute 

earth system model (MPI-ESM1.2) for the high-resolution model 

intercomparison project (HighResMIP). Geosci Model Dev. https 

://doi.org/10.5194/gmd-12-3241-2019

He B, Bao Q, Wang X, Zhou L, Wu X, Liu Y, Wu G, Chen K, He S, Hu 

W, Li J, Li J, Nian G, Wang L, Yang J, Zhang M, Zhang X (2019) 

CAS FGOALS-f3-L model datasets for CMIP6 historical atmos-

pheric model intercomparison project simulation. Adv Atmos Sci. 

https ://doi.org/10.1007/s0037 6-019-9027-8

Held IM, Guo H, Adcroft A, Dunne JP, Horowitz LW, Krasting J, 

Shevliakova E, Winton M, Zhao M, Bushuk M, Wittenberg AT, 

Wyman B, Xiang B, Zhang R, Anderson W, Balaji V, Donner L, 

Dunne K, Durachta J, Zadeh N (2019) Structure and Performance 

of GFDL’s CM4.0 Climate Model. J Adv Modeli Earth Syst. https 

://doi.org/10.1029/2019M S0018 29

Huffman G, Bolvin D (2013) GPCP version 2.2 SG combined precipi-

tation data set documentation. NASA GSFC Doc.

Ibrahim B, Polcher J, Karambiri H, Rockel B (2012) Characteriza-

tion of the rainy season in Burkina Faso and it’s representation 

by regional climate models. Clim Dyn. https ://doi.org/10.1007/

s0038 2-011-1276-x

James R, Washington R, Jones R (2015) Process-based assessment of 

an ensemble of climate projections for West Africa. J Geophys 

Res. https ://doi.org/10.1002/2014J D0225 13

James R, Washington R, Abiodun B, Kay G, Mutemi J, Pokam W, 

Hart N, Artan G, Senior C (2018) Evaluating climate models with 

an African lens. Bull Am Meteor Soc. https ://doi.org/10.1175/

BAMS-D-16-0090.1

Klutse NAB, Sylla MB, Diallo I, Sarr A, Dosio A, Diedhiou A, 

Kamga A, Lamptey B, Ali A, Gbobaniyi EO, Owusu K, Len-

nard C, Hewitson B, Nikulin G, Panitz HJ, Büchner M (2016) 

Daily characteristics of West African summer monsoon precipita-

tion in CORDEX simulations. Theor Appl Climatol. https ://doi.

org/10.1007/s0070 4-014-1352-3

Klutse NAB, Abiodun BJ, Hewitson BC, Gutowski WJ, Tadross MA 

(2016) Evaluation of two GCMs in simulating rainfall inter-annual 

variability over Southern Africa. Theor Appl Climatol. https ://doi.

org/10.1007/s0070 4-014-1356-z

https://doi.org/10.1002/joc.4376
https://doi.org/10.1002/joc.4376
https://doi.org/10.3390/atmos11101053
https://doi.org/10.1007/s00382-018-4568-6
https://doi.org/10.1007/s00382-018-4238-8
https://doi.org/10.1155/2015/935431
https://doi.org/10.1088/1748-9326/abb397
https://doi.org/10.1155/2020/8828421
https://doi.org/10.3390/atmos11090964
https://doi.org/10.3390/atmos11090964
https://doi.org/10.1007/s41748-019-00126-9
https://doi.org/10.1007/s41748-019-00126-9
https://doi.org/10.1007/s41748-020-00161-x
https://doi.org/10.1007/s00382-019-04958-z
https://doi.org/10.1007/s00382-019-04958-z
https://doi.org/10.1002/wcc.454
https://doi.org/10.1002/wcc.454
https://doi.org/10.1038/ngeo1731
https://doi.org/10.1029/2019MS002010
https://doi.org/10.22033/ESGF/CMIP6.8350
https://doi.org/10.5194/gmd-11-2975-2018
https://doi.org/10.1007/s00382-013-1796-7
https://doi.org/10.1007/s00704-012-0791-y
https://doi.org/10.1007/s00704-012-0791-y
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.5194/essd-7-275-2015
https://doi.org/10.1007/s00382-016-3146-z
https://doi.org/10.1007/s00382-016-3146-z
https://doi.org/10.5194/gmd-12-3241-2019
https://doi.org/10.5194/gmd-12-3241-2019
https://doi.org/10.1007/s00376-019-9027-8
https://doi.org/10.1029/2019MS001829
https://doi.org/10.1029/2019MS001829
https://doi.org/10.1007/s00382-011-1276-x
https://doi.org/10.1007/s00382-011-1276-x
https://doi.org/10.1002/2014JD022513
https://doi.org/10.1175/BAMS-D-16-0090.1
https://doi.org/10.1175/BAMS-D-16-0090.1
https://doi.org/10.1007/s00704-014-1352-3
https://doi.org/10.1007/s00704-014-1352-3
https://doi.org/10.1007/s00704-014-1356-z
https://doi.org/10.1007/s00704-014-1356-z


41The Climatic Analysis of Summer Monsoon Extreme Precipitation Events over West Africa in CMIP6…

1 3Published in partnership with CECCR at King Abdulaziz University

Law RM, Ziehn T, Matear RJ, Lenton A, Chamberlain MA, Stevens 

LE, Wang YP, Srbinovsky J, Bi D, Yan H, Vohralik PF (2017) 

The carbon cycle in the Australian community climate and earth 

system simulator (ACCESS-ESM1)—Part 1: model description 

and pre-industrial simulation. Geosci Model Dev. https ://doi.

org/10.5194/gmd-10-2567-2017

Maidment R, Black E, Young M (2017) TAMSAT Daily Rainfall Esti-

mates (Version 3.0).

Mauritsen T, Bader J, Becker T, Behrens J, Bittner M, Brokopf R, 

Brovkin V, Claussen M, Crueger T, Esch M, Fast I, Fiedler S, 

Fläschner D, Gayler V, Giorgetta M, Goll DS, Haak H, Hage-

mann S, Hedemann C, Roeckner E (2019) Developments in the 

MPI-M earth system model version 1.2 (MPI-ESM1.2) and its 

response to increasing  CO2. J Adv Model Earth Syst. https ://doi.

org/10.1029/2018M S0014 00

Nguyen P, Thorstensen A, Sorooshian S, Zhu Q, Tran H, Ashouri H, 

Miao C, Hsu K, Gao X (2017) Evaluation of CMIP5 model pre-

cipitation using PERSIANN-CDR. J Hydrometeorol. https ://doi.

org/10.1175/JHM-D-16-0201.1

Nikiema PM, Sylla MB, Ogunjobi K, Kebe I, Gibba P, Giorgi F (2017) 

Multi-model CMIP5 and CORDEX simulations of historical sum-

mer temperature and precipitation variabilities over West Africa. 

Int J Climatol. https ://doi.org/10.1002/joc.4856

Park S, Shin J (2019) Snu sam0-unicon model output prepared for 

cmip6 cmip historical.

Pendergrass AG, Hartmann DL (2014) Changes in the distribution 

of rain frequency and intensity in response to global warming. J 

Clim. https ://doi.org/10.1175/JCLI-D-14-00183 .1

Smith AB, Katz RW (2013) US billion-dollar weather and climate 

disasters: Data sources, trends, accuracy and biases. Nat Hazards. 

https ://doi.org/10.1007/s1106 9-013-0566-5

Swart NC, Cole JNS, Kharin VV, Lazare M, Scinocca JF, Gillett 

NP, Anstey J, Arora V, Christian JR, Hanna S, Jiao Y, Lee WG, 

Majaess F, Saenko OA, Seiler C, Seinen C, Shao A, Sigmond 

M, Solheim L, Winter B (2019) The Canadian earth system 

model version 5 (CanESM5.0.3). Geosci Model Dev. https ://doi.

org/10.5194/gmd-12-4823-2019

Sylla MB, Giorgi F, Coppola E, Mariotti L (2013) Uncertainties in 

daily rainfall over Africa: Assessment of gridded observation 

products and evaluation of a regional climate model simulation. 

Int J Climatol 33:1805–1817. https ://doi.org/10.1002/joc.3551

Tank, A. K., Zwiers, F. W., & Zhang, X. (2009). Guidelines on Anal-

ysis of extremes in a changing climate in support of informed 

decisions for adaptation, WCDMP-No. 72. In Climate Data and 

Monitoring.

Tatebe H, Ogura T, Nitta T, Komuro Y, Ogochi K, Takemura T, Sudo 

K, Sekiguchi M, Abe M, Saito F, Chikira M, Watanabe S, Mori 

M, Hirota N, Kawatani Y, Mochizuki T, Yoshimura K, Takata K, 

O’Ishi R, Kimoto M (2019) Description and basic evaluation of 

simulated mean state, internal variability, and climate sensitiv-

ity in MIROC6. Geoscientific Model Development. https ://doi.

org/10.5194/gmd-12-2727-2019

Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 

and the experiment design. Bull Am Meteor Soc. https ://doi.

org/10.1175/BAMS-D-11-00094 .1

Tegen I, Neubauer D, Ferrachat S, Drian SL, Bey I, Schutgens N, Stier 

P, Watson-Parris D, Stanelle T, Schmidt H, Rast S, Kokkola H, 

Schultz M, Schroeder S, Daskalakis N, Barthel S, Heinold B, 

Lohmann U (2019) The global aerosol-climate model ECHAM6. 

3-HAM2. 3-Part 1: aerosol evaluation. Geosci Model Dev. https 

://doi.org/10.3929/ethz-b-00034 1297

Torma C, Coppola E, Giorgi F, Bartholy J, Pongrácz R (2011) Valida-

tion of a high-resolution version of the regional climate model 

RegCM3 over the Carpathian basin. J Hydrometeorol. https ://doi.

org/10.1175/2010J HM123 4.1

Trenberth KE (2011) Changes in precipitation with climate change. 

Clim Res. https ://doi.org/10.3354/cr009 53

Trenberth KE, Dai A, Van Der Schrier G, Jones PD, Barichivich J, 

Briffa KR, Sheffield J (2014) Global warming and changes in 

drought. Nat Clim Change. https ://doi.org/10.1038/nclim ate20 67

Volodin EM, Mortikov EV, Kostrykin SV, Galin VY, Lykossov VN, 

Gritsun AS, Diansky NA, Gusev AV, Iakovlev NG, Shestakova 

AA, Emelina SV (2018) Simulation of the modern climate using 

the INM-CM48 climate model. Russ J Numer Anal Math Model. 

https ://doi.org/10.1515/rnam-2018-0032

Wu T, Lu Y, Fang Y, Xin X, Li L, Li W, Jie W, Zhang J, Liu Y, Zhang 

L, Zhang F, Zhang Y, Wu F, Li J, Chu M, Wang Z, Shi X, Liu X, 

Wei M, Liu X (2019) The Beijing climate center climate system 

model (BCC-CSM): the main progress from CMIP5 to CMIP6. 

Geosci Model Dev. https ://doi.org/10.5194/gmd-12-1573-2019

Yukimoto S, Kawai H, Koshiro T, Oshima N, Yoshida K, Urakawa S, 

Tsujino H, Deushi M, Tanaka T, Hosaka M, Yabu S, Yoshimura 

H, Shindo E, Mizuta R, Obata A, Adachi Y, Ishii M (2019) 

The meteorological research institute Earth system model ver-

sion 2.0, MRI-ESM2.0: description and basic evaluation of the 

physical component. J Meteorol Soc Jpn. https ://doi.org/10.2151/

jmsj.2019-051

Zhang X, Alexander L, Hegerl GC, Jones P, Tank AK, Peterson TC, 

Trewin B, Zwiers FW (2011) Indices for monitoring changes in 

extremes based on daily temperature and precipitation data. Wiley 

Interdisciplinary Reviews. Clim Change. https ://doi.org/10.1002/

wcc.147

Zhang J, Wu T, Shi X, Zhang F, Li J, Chu M, Liu Q, Yan J, Ma Q, Wei 

M (2019) BCC BCC-ESM1 model output prepared for CMIP6 

AerChemMIP. Earth Syst Grid Fed. https ://doi.org/10.22033 /

ESGF/CMIP6 .1733

https://doi.org/10.5194/gmd-10-2567-2017
https://doi.org/10.5194/gmd-10-2567-2017
https://doi.org/10.1029/2018MS001400
https://doi.org/10.1029/2018MS001400
https://doi.org/10.1175/JHM-D-16-0201.1
https://doi.org/10.1175/JHM-D-16-0201.1
https://doi.org/10.1002/joc.4856
https://doi.org/10.1175/JCLI-D-14-00183.1
https://doi.org/10.1007/s11069-013-0566-5
https://doi.org/10.5194/gmd-12-4823-2019
https://doi.org/10.5194/gmd-12-4823-2019
https://doi.org/10.1002/joc.3551
https://doi.org/10.5194/gmd-12-2727-2019
https://doi.org/10.5194/gmd-12-2727-2019
https://doi.org/10.1175/BAMS-D-11-00094.1
https://doi.org/10.1175/BAMS-D-11-00094.1
https://doi.org/10.3929/ethz-b-000341297
https://doi.org/10.3929/ethz-b-000341297
https://doi.org/10.1175/2010JHM1234.1
https://doi.org/10.1175/2010JHM1234.1
https://doi.org/10.3354/cr00953
https://doi.org/10.1038/nclimate2067
https://doi.org/10.1515/rnam-2018-0032
https://doi.org/10.5194/gmd-12-1573-2019
https://doi.org/10.2151/jmsj.2019-051
https://doi.org/10.2151/jmsj.2019-051
https://doi.org/10.1002/wcc.147
https://doi.org/10.1002/wcc.147
https://doi.org/10.22033/ESGF/CMIP6.1733
https://doi.org/10.22033/ESGF/CMIP6.1733

	The Climatic Analysis of Summer Monsoon Extreme Precipitation Events over West Africa in CMIP6 Simulations
	Abstract
	1 Introduction
	2 Data and Methodology
	3 Results and Discussion
	3.1 Rainfall Climatology
	3.2 Rainfall Intensity
	3.3 Frequency of Wet Days
	3.4 Daily Extreme Precipitation Events (95th Percentile)
	3.5 Mean Maximum Wet Spell Length
	3.6 Mean Maximum Dry Spell Length

	4 Summary and Conclusions
	Acknowledgements 
	References


