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Abstract The retinal blood vessels provide the opportunity to

study early structural and functional changes in the microvas-

culature prior to clinically significant microvascular and

macrovascular complications of diabetes. Advances in digital

retinal photography and computerised assessment of the reti-

nal vasculature have provided more objective and precise

measurements of retinal vascular changes. Clinic- and

population-based studies have reported that these quantitative-

ly measured retinal vascular changes (e.g. retinal arteriolar

narrowing and venular widening) are associated with preclin-

ical structural changes in other microvascular systems (e.g.

infarct in the cerebral microcirculation), as well as diabetes

and diabetic complications, suggesting that they are markers

of early microvascular dysfunction. In addition, there are new

retinal imaging techniques to further assess alterations in ret-

inal vascular function (e.g. flicker-induced vasodilatory re-

sponse, blood flow and oxygen saturation) in diabetes and

complications that result from the effects of chronic

hyperglycaemia, inflammation and endothelial dysfunction.

In this review, we summarise the latest findings on the rela-

tionships between quantitatively measured structural and

functional retinal vascular changes with diabetes and diabetic

complications. We also discuss clinical implications and fu-

ture research to evaluate whether detection of retinal vascular

changes has additional value beyond that achieved with

methods currently used to stratify the risk of diabetes and its

complications.
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Abbreviations

AVR Arteriovenous ratio

CRAE Central retinal artery equivalent

CRVE Central retinal vein equivalent

CVD Cardiovascular disease

DCPD1987 Danish Cohort of Pediatric Diabetes 1987

DMO Diabetic macular oedema

VEGF Vascular endothelial growth factor

WESDR Wisconsin Epidemiologic Study of Diabetic

Retinopathy

Introduction

The number of people with diabetes mellitus is projected to

approach 600 million worldwide by 2035 [1]. Microvascular

and macrovascular complications are the major causes of

morbidity and mortality in diabetic populations [2–4]. While

intensive glucose control in patients with diabetes has been

found to reduce the risk of microvascular complications, such

as diabetic retinopathy [5], the beneficial effects of intensive
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glucose control on macrovascular and cardiovascular end-

points in type 2 diabetes are less clear [6, 7]. Thus, there

remains a need to improve early detection of diabetes-related

complications, preferably at the preclinical stage, to stratify

patients at high and low risk of complications, and to better

understand the underlying pathophysiology of these

complications.

The retina is both a site of diabetic damage and a ‘window’

to study early diabetic microvascular complications. Diabetic

retinopathy, for example, is one of the earliest clinically ob-

servable complications of diabetes, and advanced stage dia-

betic retinopathy is a major cause of blindness in working

adult persons [8]. Also, retinal blood vessels, measuring

100–300 μm in size, can easily be assessed for the detection

of early changes in the microvasculature. Advances in retinal

photography and computer software technologies permit a

more objective and precise measurement of retinal vascular

changes, such as arteriolar and venular calibres, retinal fractal

dimensions and vessel tortuosity [9]. There are also tech-

niques to detect and quantify retinal microaneurysms, and

microaneurysm turnover (appearance and disappearance of

these lesions over time), a measure of the dynamic process

and disease activity in early diabetic retinopathy [10, 11].

Moreover, new retinal imaging techniques can now assess

functional alterations in the retinal vasculature, providing a

better understanding of the effects of chronic hyperglycaemia,

inflammation and endothelial dysfunction on the microvascu-

lature in diabetes.

In this review, we summarise recent insights into the rela-

tionships of quantitatively measured structural and functional

retinal vascular changes with diabetes and its complications.

We also discuss future research directions and clinical

implications.

Effect of hyperglycaemia on the microcirculation

Hyperglycaemia defines diabetes mellitus and is the cause of

microvascular and macrovascular complications [12]. The

earliest pathological responses to hyperglycaemia manifest

in vascular cells, including endothelial cells, that are exposed

to elevated blood glucose levels. In particular, the microvas-

culature, which has a specific role in regulating blood pressure

and offering nutrient delivery, is sensitive to hyperglycaemia-

induced damage. The microvasculature also exhibits

vasomotion (spontaneous oscillation of small vessels ob-

served in many microvascular beds), permeability and myo-

genic responses that can adapt flow to local metabolic needs

[13, 14]. The most frequent structural histopathological fea-

ture is a thickening of the capillary basement membrane in the

glomeruli, retina, skin and other organs. There is a linear re-

lationship between glycosylated haemoglobin levels and the

development of microvascular complications [15] such that

the criteria (e.g. fasting blood sugar levels) used to define

the presence of diabetes are largely derived from the occur-

rence of microvascular complications, especially retinopathy

lesions at or above these levels.

Hyperglycaemia-induced molecular changes are especially

evident in capillary endothelial cells in the retina, mesangial

cells in the renal glomerulus, and neurons and Schwann cells

in peripheral nerves [16]. Other specific cell types may also be

involved in microvascular disease in certain tissue beds. In the

retina, hyperglycaemia and associated responses such as in-

flammation, glycation and oxidative stress have been shown

to induce the death of contractile cells known as pericytes [17,

18]. Similarly, in the kidney, podocyte injury and loss are a

hallmark of diabetic nephropathy [19]. Manymechanisms im-

plicated in microvascular injury are common to endothelial

cells, pericytes and podocytes. Endothelial cells in the retinal

microvasculature that have been exposed to advanced

glycation end-products show abnormal nitric oxide synthase

expression and induction of vascular endothelial growth factor

(VEGF) expression [20]. Another mechanism that has been

implicated in microvascular disease is oxidative stress.

Hyperglycaemia promotes the formation of reactive oxygen

species, which can cause damage by interacting with macro-

molecules such as DNA and proteins [20]. In addition to these

hyperglycaemia-related pathways, other mechanisms such as

dyslipidaemia and inflammation enhance the development of

microvascular disease [12]. Although the precise contribution

of each of these mechanisms to the development of microvas-

cular complications in diabetes remain unclear, it has been

firmly established that improved glycaemic control signifi-

cantly reduces their occurrence.

Assessment of structural changes in the retinal

microvasculature

The retinal vasculature, consisting essentially of arterioles and

venules (rather than arteries or veins), allows direct non-

invasive visualisation of the body’s microvasculature.

Changes in the retinal vasculature can broadly be divided into

three groups: (1) classical retinopathy signs, such as diabetic

retinopathy, (2) changes in retinal vascular calibre and (3)

changes in global geometrical patterns of the retina [9]. These

retinal vascular changes in diabetes reflect underlying structural

and/or functional alterations resulting from the effects of chron-

ic hyperglycaemia, inflammation, endothelial dysfunction and

other pathophysiological mechanisms [21, 22].

Classical retinopathy signs Classical retinal vascular signs are

usually seen in patients with systemic diseases such as diabe-

tes (referred to as diabetic retinopathy) or blood pressure (re-

ferred to as hypertensive retinopathy). Diabetic retinopathy, a

common microvascular complication, is broadly divided into:
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(1) an early stage of non-proliferative retinopathy

characterised by a spectrum of retinal vascular signs such as

microaneurysms, haemorrhages, cotton wool spots and hard

exudates; and (2) a later stage of proliferative disease, which is

characterised by neovascularisation [8]. Retinopathy signs are

relatively late indicators of target organ damage in the eye and

reflect advanced stages of structural microvascular damage,

including breakdown of the blood–retinal barrier. Standard

ophthalmoscopic examinations and fundus photography are

currently used clinically to follow changes in the presence

and severity of these retinal signs.

Retinal vascular calibre Changes in the calibre of the retinal

vessel, especially widening of the venules, has long been

thought to indicate progression of diabetic retinopathy, with

increased risk of developing functional abnormalities in the

kidney and the eye. Over the last two decades, several com-

puter software systems have been specially designed to mea-

sure retinal vascular calibre (or retinal vessel diameter) to doc-

ument generalised retinal vessel narrowing or widening more

objectively and reliably (Fig. 1). Retinal vascular calibre is

measured in terms of central retinal artery equivalent

(CRAE), central retinal vein equivalent (CRVE) and arterio-

venous ratio (AVR) [23, 24]. CRAE is a summary index

reflecting the average width of retinal arterioles, and CRVE

is a summary index reflecting the average width of retinal

venules. CRAE and CRVE reflect distinct systemic vascular

physiology and disease pathways that tend to target the arterial

and venous systems specifically. AVR is a dimensionless ratio

of arteriole to venous calibre and has been used to control for

magnification differences from camera lenses and refractive

error. However, AVR is non-specific, and changes in AVR

may reflect changes in arterioles or venules, or both. It should

be noted that computer-assisted measurement of retinal vas-

cular calibre from retinal photographs only measures the

width of the reflective erythrocyte column and underestimates

the true internal vessel calibre, as it does not measure the

surrounding clear plasma zone. Figure 2 shows examples of

narrowed retinal arterioles and widened retinal venules.

Global geometrical patterns in retinal vasculature The

human circulatory system is a branching system that conforms

to optimum design principals (i.e. Murray’s principle) [25].

The optimal retinal vascular architecture will deliver the

most efficient blood flow, and deviations or alterations

from optimal retinal vascular architecture are thought to

result in impaired microcirculatory transport, increased

shear stress, reduced efficiency and, hence, a greater risk

of vascular damage. Diabetes is known to be associated

with increased shear stress and microvacular endothelial

dysfunction [26]. In addition to retinopathy signs and ret-

inal vascular calibre, a range of new retinal vascular mea-

sures are being explored to quantify the geometric

branching network (e.g. fractal dimension, tortuosity,

branching, length:diameter ratio, optimality ratio, deviation

of junction exponent) of the retinal vasculature in different

systemic diseases. These newer retinal vascular measures

may reflect the ‘optimal state’ of blood distribution in the

microvasculature. Several systems have been developed to

measure these geometric patterns [27–31]. Figure 3 shows

the Singapore I Vessel Assessment software (SIVA,

National University of Singapore, Singapore) quantitatively

measuring retinal vascular structure from a retinal fundus

photograph [31, 32].

Fig. 1 Measurement of CRAE, CRVE and AVR using the Interactive Vessel Analysis software (IVAN). Arterioles are in red and venules are in blue
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Microaneurysm count and turnover Markers of progression

of diabetic retinopathy include not only the presence of

microaneurysm, the earliest clinically recognisable feature of

diabetic retinopathy, but also rates of microaneurysm forma-

tion and disappearance (turnover) and microaneurysm count

change over time [33, 34]. Microaneurysms appear and dis-

appear in the retina of diabetic patients over time, disappearing

by closing down due to thrombosis, while new ones appear in

different locations of the vascular tree [11]. The RetmarkerDR

software (Critical Health SA, Coimbra, Portugal) was recently

deve loped to ana lyse mic roaneu rysm tu rnove r

(microaneurysm formation and disappearance per time inter-

val) in colour fundus photographs [11]. Recent studies showed

Fig. 2 Examples of (a) narrowed retinal arterioles and (b) widened

retinal venules (indicated by arrows)

Fig. 3 (a) Measurement of retinal vascular structure using the Singapore

I Vessel Assessment software (SIVA). (b) Fractal dimension is a measure

of a fractal structure, which exhibits the property of self-similarity,

characterising the distribution of a branching vascular system in two-

dimensional space. In SIVA, fractal dimension is calculated from a

skeletonised line tracing using the box-counting method, in which each

digital photograph is divided into a series of squares for various side

lengths and then the number of boxes is counted. Higher values, reflecting

increased complexity, are represented by a higher density of the space-

filling pattern of the retinal vascular tree
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that a high turnover, based on the results of computer-assisted

detection, is a predictor for the development of diabetic mac-

ular oedema (DMO) in eyes with non-proliferative diabetic

retinopathy [10, 11, 35] and for anti-VEGF treatment response

in eyes with macular oedema [36]. These studies suggest that

microaneurysm turnover can identify diabetic patients at

higher risk for worsening of retinopathy and may be an indi-

cator of vascular disease activity.

Retinal vascular changes associated with diabetes

A number of epidemiological studies have shown that retinal

vascular changes, particularly changes in retinal vascular cal-

ibre, reflect early microvascular processes in diabetes and in

people at risk of diabetes. Table 1 summarises the associations

between quantitative retinal vascular measures with diabetes

in population-based prospective and cross-sectional studies.

As microvascular alterations may result in a reduced ability

of insulin to mediate glucose uptake in skeletal muscles,

microvascular disease has been hypothesised to contribute to

the development of diabetes [26, 37]. Retinal arteriolar

narrowing has been reported to be associated with increased

risk of diabetes in middle-aged people without diabetes in the

Atherosclerosis Risk in Communities study [37]. This obser-

vation was subsequently replicated in the Beaver Dam Eye

Study, which had a longer follow-up period of more than

10 years [38], and in the Australian Diabetes, Obesity and

Lifestyle study, which used a more precise definition for di-

agnosing diabetes (OGTT) [42]. The prospective data provid-

ed by these studies indicate that narrowed retinal arterioles

precede the development of diabetes and thus suggest that

arteriolar changes may play a role in the early phases of dis-

ease development. In contrast, data from the Rotterdam Study

indicated that retinal venular widening, rather than arteriolar

narrowing, was associatedwith incident diabetes and impaired

fasting glucose [39]. Thus, it is still unclear whether retinal

vascular changes in non-diabetic individuals are markers of

future diabetes risk.

In population-based cross-sectional studies, retinal arteriolar

widening, rather than arteriolar narrowing, was associated with

Table 1 Relationship of retinal vascular changes with diabetes in population-based studies

Study and year Study type and sample size Measure of retinal

vascular changes

Outcomes Summary of findings

The Atherosclerosis Risk in

Communities Study

(2002) [37]

Population-based prospective

study (n=7,993)

AVR Incident type 1

diabetes (n=291)

Lower AVR associated with

incident diabetes

The Beaver Dam Eye

Study (2005) [38]

Population-based prospective

study (n=3,251)

AVR Incident type 2

diabetes (n=249)

Lower AVR associated with

incident diabetes

The Rotterdam study

(2006) [39]

Prospective population-based

study (n=2,309)

CRAE, CRVE IFG (n=305)

Diabetes (n=118)

Wider venular calibre associated

with incident IFG and diabetes

The Blue Mountains Eye

Study (2007) [40]

Population-based cross-sectional

study (n=3,654)

CRAE, CRVE IFG (n=121)

Diabetes (n=255)

Wider arteriolar calibre associated

with diabetes

The Australian Diabetes,

Obesity and Lifestyle

study (2007) [41]

Population-based cross-sectional

study (n=1,998)

CRAE, CRVE IGT/IFG (n=960)

Diabetes (n=657)

Wider arteriolar calibre associated

with IGT/IFG and diabetes

The Australian Diabetes,

Obesity and Lifestyle

Study (2008) [42]

Population-based prospective

study (n=803)

CRAE, CRVE Incident diabetes

(n=108)

Narrower arteriolar calibre

associated with incident

diabetes

The Multi-Ethnic Study

of Atherosclerosis

(2009) [43]

Population-based cross-sectional

study (n=4,585)

CRAE, CRVE IFG (n=499)

Diabetes (n=892)

Wider arteriolar and venular

calibres associated with

diabetes. Wider venular calibre

associated with increasing

levels of fasting glucose and

HbA1c levels

Singapore Malay Eye

Study (2009) [44]

Population-based cross-sectional

study (n=3,004)

CRAE, CRVE Diabetes (n=682) Wider retinal arteriolar calibre

associated with diabetes

The Singapore Indian

Study (2011) [45]

Population-based cross-sectional

study (n=3,043)

CRAE, CRVE Prevalent diabetes

(n=980)

Wider retinal arteriolar calibre

associated with diabetes

Singapore Malay Eye

Study (2012) [46]

Population-based cross-sectional

study (n=2,141)

Tortuosity, branching

angle, fractal

dimension, CRAE,

CRVE

Prevalent diabetes

(n=594)

Lower arteriolar tortuosity, wider

arteriolar and wider venular

calibre associated with diabetes

IFG, impaired fasting glucose; IGT, impaired glucose tolerance
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prevalent diabetes, impaired glucose tolerance and impaired

fasting glucose [40, 41, 43–45]. It is postulated that in the

diabetic retina, hyperglycaemia and hypoxia result in retinal

vasodilation, leading to hyperperfusion (early vascular

change). Nevertheless, there may be racial/ethnic variations

in the association between retinal vascular calibre and diabetes.

For example, in the Multi-Ethnic Study of Atherosclerosis, the

cross-sectional association between retinal arteriolar widening

and diabetes was seen mainly in white individuals, whereas the

cross-sectional association between retinal venular widening

and diabetes was only observed in non-white individuals

(Hispanic and Chinese) [43].

The Singapore Malay Eye Study (SiMES) further explored

the associations between a series of other retinal vascular net-

work measures (tortuosity, branching angle and fractal dimen-

sion) with prevalent diabetes [46]. People with diabetes had

straighter (less tortuous) arterioles than people without diabe-

tes, whereas venular tortuosity, arteriolar and venular

branching angle and fractal dimension were not significantly

different between two groups. This finding of straighter arte-

rioles amongst diabetic individuals, however, is in contrast

with the findings of a clinic-based study, which found that

people with diabetes had more tortuous retinal arterioles and

venules than people without diabetes [47]. Clearly, prospec-

tive data are needed.

Key diabetes-related factors, such as longer duration of

diabetes and higher HbA1c levels have been cross-

sectionally associated with retinal vascular network changes

(e.g. larger arteriolar branching angle and increased arteriolar

tortuosity) in young type 1 diabetic individuals, even in those

without evidence of retinopathy, suggesting that changes in

the retinal vascular networks may be early markers of

diabetes-related microvascular injury [48].

Hypertension and ageing have profound effects on the ret-

inal vasculature, particularly on retinal arteriolar narrowing,

increased wall:lumen ratio and rarefaction of retinal vascula-

ture, in non-diabetic individuals [9, 49]. These factors should

be taken into account when studying the independent associ-

ations between retinal vascular changes and diabetes.

Retinal vascular changes associated with diabetic

microvascular complications

Diabetic retinopathy In terms of diabetic microvascular com-

plications, studies have primarily focused on the association

between retinal vascular calibre and the risk of diabetic reti-

nopathy. For type 1 diabetes, studies have in general sug-

gested that retinal vascular calibre may be associated with

the risk of diabetic retinopathy-related outcomes, though the

data are not entirely consistent. In the Wisconsin

Epidemiologic Study of Diabetic Retinopathy (WESDR),

both wider retinal arteriolar and venular calibres measured at

baseline were associated with an increased risk of progression

of diabetic retinopathy, but were not associated with the 4 year

incidence of diabetic retinopathy [22]. In another study,

among 468 African-Americans, neither arteriolar nor venular

calibres were related to incident diabetic retinopathy [50]. In

contrast, wider arteriolar calibre, but not venular calibre, at

baseline was associated with an increased risk of diabetic ret-

inopathy in a study that included 645 Australian children and

adolescents with type 1 diabetes [51]. Recently, wider venular

calibre, narrower arteriolar calibre and lower fractal dimension

measured at baseline were shown to be associated with the

16 year incidence of proliferative diabetic retinopathy in a

population-based young Danish cohort with type 1 diabetes

[52, 53]. For type 2 diabetes, neither arteriolar nor venular

calibres has been found to be associated with the incidence

or progression of diabetic retinopathy [54, 55]. This discrep-

ancy between the findings in patients with type 1 and 2 dia-

betes may be due to differences across these studies in the

distribution of age, confounding effect of other cardiovascular

risk factors such as presence of hypertension (∼20% among

patients with type 1 diabetes vs ∼70% in type 2 diabetes),

sample sizes and follow-up periods [56].

Two studies have examined whether longitudinal changes

in calibres are related to the risk of diabetic retinopathy. In

both type 1 and 2 diabetes, widening of the venules was inde-

pendently associated with a subsequent increased incidence of

diabetic retinopathy and increased risk of diabetic retinopathy

progression [55, 57]. Thus, retinal venular dilation appears to

be involved in pathological processes associated with diabetic

retinopathy, possibly through mechanisms such as impaired

vascular autoregulation and hyperperfusion, tissue hypoxia

and ischaemia, and aggravating risk factors such as

hypertension.

In addition to vascular abnormalities, the neurosensory ret-

ina may be primarily affected in diabetes. Whether diabetic

retinopathy is primarily a neurogenic or vascular disease is

subject to debate. It has been suggested that the retinal dys-

function associated with diabetes may be viewed as a change

in the retinal neurovascular unit, providing new insights into

the pathophysiology related to both vascular dysfunction and

neural degeneration, and this may be essential for identifying

new therapeutic targets [58, 59].

Diabetic nephropathy Several studies have examined the as-

sociations between retinal vascular calibres and diabetic ne-

phropathy. In a clinical trial of type 1 diabetic individuals both

baseline and subsequent changes over time in retinal vascular

calibres were independently related to changes in renal struc-

tural variables, such as glomerular basement membrane width,

mesangial matrix fractional volume and glomerulopathy in-

dex, as measured on sequential biopsies [60]. In participants

with type 2 diabetes in the WESDR study, retinal venular

calibre, but not arteriolar calibre, was independently
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associated with the 10 year incidence of a combined outcome,

defined as development of gross proteinuria, initiation of renal

dialysis or renal transplantation during follow-up [54]. In the

same study, these associations were also confirmed among

patients with type 1 diabetes [61]. In the Danish Cohort of

Pediatric Diabetes 1987 (DCPD1987) with type 1 diabetes,

wider venular calibre, narrower arteriolar calibre and lower

fractal dimension measured at baseline were associated with

the development of nephropathy at the 16 year follow-up [52,

53].

Diabetic neuropathy Fewer studies have evaluated the re-

lationship between retinal vascular changes and diabetic

neuropathy. In a cross-sectional study of multi-ethnic

Asians with diabetes, wider arteriolar calibre was inde-

pendently associated with peripheral neuropathy as diag-

nosed by neurothesiometer or monofilament sensory

testing [62]. Another population-based cross-sectional

study reported that suboptimal arteriolar calibre and

larger arteriolar branching coefficient, as well as diabet-

ic retinopathy and focal arteriolar narrowing, were asso-

ciated with peripheral neuropathy [63]. In contrast, a

population-based study among type 1 diabetics did not

find retinal arteriolar calibre to be associated with neu-

ropathy [64].

At present, the DCPD1987 study is the only study to pro-

vide longitudinal data on the relationship between retinal vas-

cular calibre and peripheral neuropathy in type 1 diabetes. The

findings of this study indicated that the 16 year incidence of

diabetic peripheral neuropathy was associated with narrower

arteriolar calibre, wider venular calibre and lower fractal di-

mension at baseline [52, 53].

Retinal vascular changes associated with diabetic

macrovascular complications

Micro- and macrovascular complications of diabetes share

certain pathophysiological mechanisms. First, signs of diabet-

ic retinopathy are independent risk markers for cardiovascular

disease (CVD) in diabetes [65–67]. Quantitative retinal vas-

cular measures such as retinal vascular calibre have also been

associated with CVD in the general population in several large

epidemiological studies [9, 49]. However, these associations

have not been extensively studied in people with diabetes.

Table 2 summarises the associations between quantitative ret-

inal vascular measures and macrovascular complications in

diabetic cohorts.

In the WESDR study, lower AVR, reflecting retinal arteri-

olar narrowing, was associated with increased risk of heart

disease mortality amongst type 1 diabetic individuals over a

20 year interval [68]. Two other prospective cohort studies of

type 1 diabetics have reported similar findings. In the New

Jersey 725 study, retinal arteriolar narrowing was associated

with the incidence of any CVD and lower extremity arterial

disease [50]. In the Pittsburgh Epidemiology of Diabetes

Complications Study, retinal arteriolar narrowing was associ-

ated with the incidence of coronary artery disease in women,

but not in men [69] In another WESDR study report, retinal

Table 2 Relationship of retinal vascular changes with macrovascular complications in diabetic cohorts

Study and year Study type and sample size Measure of retinal

vascular changes

Outcomes Summary of findings

Wisconsin Epidemiologic

Study of Diabetic

Retinopathy (2004) [68]

Population-based prospective

study of type 1 diabetes

(n=996)

CRAE, CRVE, AVR Incidences of CVD (angina,

myocardial infarction,

stroke) and mortality

Lower AVR associated with

incident heart disease

mortality

Wisconsin Epidemiologic

Study of Diabetic

Retinopathy (2007) [54]

Population-based prospective

study of type 2 diabetes

(n=1,370)

CRAE, CRVE, AVR Incidence of ischaemic heart

disease and stroke mortality

Wider venular calibre

associated with stroke

mortality

Pittsburgh Epidemiology

of Diabetes Complications

Study (2009) [69]

Prospective cohort study

of type 1 diabetes

(n=448)

CRAE, CRVE, AVR Incidence of coronary artery

disease

Narrower arteriolar calibre

associated with incidence

of coronary artery disease

in women, but not men

Danish cohort with type 1

diabetes (2009) [70]

Cross-sectional study of

type 1 diabetes (n=208)

Retinal vascular

fractal dimension

Presence of macrovasular

disease (stroke, coronary

heart disease and peripheral

artery disease)

Fractal dimension not associated

with macrovascular disease

New Jersey 725

Study (2012) [50]

Prospective cohort study

of type 1 diabetes

(n=468)

CRAE, CRVE Incidence of hypertension, any

CVD (heart disease, stroke,

or LEAD), and mortality

Narrower arteriolar calibre

associated with incidence

of any CVD and lower

extremity arterial disease

LEAD, lower extremity arterial disease
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venular widening was associated with increased risk of stroke

mortality in type 2 diabetes [54]. These data consistently sup-

port the hypothesis that retinal microvascular abnormalities

precede macrovascular events. Nevertheless, the pathways

linking the microvascular to macrovascular characteristics re-

quire further research.

Although retinal vascular fractal dimension is related to

microvascular complications in diabetes (discussed above),

Grauslund et al found no significant association between ret-

inal vascular fractal dimension and prevalent CVD in a Danish

cohort of type 1 diabetes [70]. These data suggest that retinal

fractals may have a closer relationship with microvascular

complications than with macrovascular complications.

Assessing functional changes of the retinal

microvasculature

Microvascular changes such as impaired reactivity and dis-

turbed blood flow in microvessels have also been

hypothesised to contribute to the pathogenesis of diabetes

[26]. In contrast to measurement of retinal vascular changes

from a single retinal photograph, new retinal imaging technol-

ogies can now evaluate retinal microvascular functions in real

time. These include flicker-induced vasodilatory response, ret-

inal blood flow and retinal oxygen saturation.

Flicker-induced vasodilatory response Flickering light stim-

ulates neural retina activity and leads to retinal vessel dilation

as a result of the release of vasodilating factors, especially

nitric oxide, from endothelial and neural cells. It is

hypothesised that the response of retinal vessels to flickering

light is a measure of endothelial function of the retinal micro-

circulation [71]. The flicker-induced response can now be

measured non-invasively using the Dynamic Vessel

Analyzer (IMEDOS, Jena, Germany) in human eyes (Fig. 4).

Several studies reported that the flicker light-induced vaso-

dilation is reduced in individuals with diabetes [72–76] and

those with impaired glucose tolerance [77], and is further im-

paired with increasing severity of diabetic retinopathy [72,

73]. It has been suggested that endothelial dysfunction may

underlie this reduced response in diabetes. Sasongko et al re-

ported that serum apolipoprotein levels may possibly be a

better biomarker of diabetic retinopathy compared with tradi-

tional lipids, as they were associated with flicker-light retinal

arteriolar vasodilation and retinal arteriolar tortuosity in peo-

ple with diabetes [78]. Impaired flicker light-induced vasodi-

lation has been found to be associated with wider retinal vas-

cular calibre in people with diabetes and in people with or at

high risk of coronary artery disease, independent of traditional

risk factors [79, 80]. This information may provide further

insights into the pathophysiological relationships and mecha-

nisms underlying the relationship of serum apolipoprotein,

retinal vascular variables and diabetic vascular complications.

It is notable that impaired flicker light-induced vasodilation

can also reflect neurodegeneration, as retinal blood flow is

coupled with neuronal activity. Thus, reduced flicker light-

induced vasodilation may reflect damage to both the retinal

neural tissue and microcirculation in diabetes [71].

Retinal blood flow Alterations in blood flow affect the deliv-

ery of oxygen and metabolic substrates necessary for the

maintenance of retinal structure and function. Retinal blood

flow can be estimated non-invasively by a bidirectional laser

Doppler velocimetry system, which measures the absolute

values of the red blood cells flowing in the centre line of the

main retinal vessels. Laser Doppler flowmetry and laser

speckle flowgraphy can also be used to quantify retinal blood

flow noninvasively to evaluate the retinal haemodynamics

[81, 82].

Alterations in retinal blood flow have been found in both

diabetic humans and animal models of diabetes [83].

However, the different studies have reported contrasting find-

ings, which may reflect the complex pathological alterations

that occur in the diabetic retina [83]. For example, some stud-

ies reported that in individuals with early diabetes and early

stage diabetic retinopathy, retinal blood flow was decreased,

compared with that in non-diabetic controls. This suggests

that decreased blood flow may be associated with endothelial

dysfunction and that the decreased blood flow may result in a

reduction of nutrient delivery to the retinal tissue that may

contribute to the resultant development of microvascular

changes [84, 85]. However, Patel et al have found that in-

creased retinal blood flow was associated with early diabetic

retinopathy [86]. In a longitudinal study, Konno et al showed

an initial decrease in retinal blood flow and then an increase

with longer disease duration in prospective diabetic patients

[87]. Although alterations in retinal blood flow may appear

before any clinical symptoms, none of the above techniques

has found its way into clinical practice.

�Fig. 4 (a) Assessment of the flicker-induced vasodilatory response in the

retina using the Dynamic Vessel Analyzer (DVA). (b) Retinal vascular

response to flicker light is represented by an average percentage increase

over baseline diameter as calculated by the software over three

measurement cycles. Examples of flicker light-induced retinal

vasodilation in (c) an individual without and (d) a patient with diabetic

retinopathy. The summary data will be reflected as percentage of arterial

dilation (thick red line) or percentage of venular dilation (thick blue line).

The two green lines demarcate the region of normal dilation of the

vessels. Other variables as calculated by the software include diameter

of the examined vessel, valid percentage (indicates the total number of

examined values in relation to the total time of examination), maximum

dilatation and maximum constriction of the vessel, and difference

between constriction and dilatation. Flicker light-induced retinal

vasodilation is reduced in the patient with diabetic retinopathy

compared with that in the individual without diabetic retinopathy
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Oxygen saturation The retina is one of the most metabolically

active tissues in the human body and as such consumes oxy-

gen more rapidly than other tissues [88]. Retinal oxygen

saturation may provide valuable information on retinal metab-

olism, and it can now be estimated using a technique known as

retinal oximetry. Retinal oximetry is based on measurements
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of the colour of haemoglobin in the retina from the reflection

of light at two different wavelengths (586 nm light and

605 nm light) (Fig. 5) [89, 90]. Oxygen saturation is defined

as the proportion (percentage) of haemoglobin that is bound to

oxygen. Recent studies have observed increased retinal oxy-

gen saturation and a lower arteriovenous oxygen saturation

Fig. 5 Pseudocolour maps of retinal vessel oxygen saturation in (a)

macular-centred and (b) optic disc-centred view using the Oxymap T1

retinal oximeter (Oxymap, Reykjavik, Iceland) in a diabetic patient. The

colour indicates the calculated oxygen saturation of retinal vessels as a

percentage. Seven variables can automatically be calculated for selected

vessel segment from the built-in specialised software: mean optical

density ratio, standard deviation of optical density ratio, calculated oxy-

gen saturation [SatO2 (%)], calculated partial pressure of oxygen [PO2

(mmHg)], mean diameter of the selected vessel segments in pixels, ap-

proximate mean diameter of the selected vessels in micrometres, and

length of the selected vessel segment in pixels
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difference as measured by retinal oximeter in diabetic people

with diabetic retinopathy [91, 92] compared with normal con-

trols [93, 94]. It has been speculated that increased oxygen

saturation in retinal arterioles may be the result of either in-

creased retinal blood flow or reduced oxygen extraction in the

eye resulting in a higher oxygen saturation in the retinal ve-

nules and a reduced arteriovenous oxygen gradient to drive

the countercurrent exchange [93]. Oxygen distributionmay be

affected by at least three mechanisms: shunting and capillary

nonperfusion, thickening of capillary basement membranes,

and greater oxygen affinity of haemoglobin in diabetic pa-

tients [92, 94]. In addition, retinal oxygen tone is tightly con-

trolled by autoregulation of the vessel diameters [95]. These

data, together with impaired flicker light-induced vasodilation

in diabetes, lend support to the hypothesis of an impaired

regulation of oxygen supply to the diabetic retina [96].

Technological challenges in retinal vascular imaging

There are various technological challenges in retinal vascular

imaging that limit the reliability of measurements. Cataract

and other ocular media opacities (e.g. vitreous haemorrhage),

pupil size and retinal pigmentation may result in variations of

image brightness, focus and contrast of retinal vascular im-

ages, which affect the precision of measurements of retinal

vascular structure and function. Refractive error (e.g. myopia)

and axial length may also affect the magnification and appar-

ent dimensions of retinal structures on fundus photography.

Ambient haemodynamic changes during the cardiac cycle

may potentially affect the variability of the measurements.

Photographic technique, camera type (e.g. mydriatic, non-

mydriatic, hand-held) and grader variability may also affect

the image quality. These factors should be accounted for when

possible. Full automation of measurements is an important

goal and further development of retinal vascular imaging tech-

nology should aim to minimise artefacts.

Retinal vasculature measurements in clinical practice

Retinal vascular imaging offers an opportunity to examine the

effects of diabetes on the microcirculation, and may be an

additional test in clinical practice. However, to date, the

strength of associations between retinal vascular changes

and disease prediction has been relatively modest. Moreover,

consistency of associations has not been demonstrated, and

improvements in predicted risk in diabetic cohorts indepen-

dent of traditional risk factors are small. Nevertheless, there is

great potential for retinal vascular imaging, particularly in the

following two clinical scenarios.

Retinal vascular imaging as a risk stratification tool for reti-

nal and systemic diabetic complications Estimation of a dia-

betic patient’s risk of retinal and systemic vascular complica-

tion development is crucial as early treatment is associated

with better outcomes [97]. While classical CVD risk factors

(e.g. elevated serum cholesterol level and blood pressure) are

used clinically to assess a person’s risk of CVD, these risk

factors do not fully explain the higher risk of CVD events in

diabetics [91, 92].

Retinal vascular calibre may be predictive of the risk of

diabetic retinopathy and CVD [67, 98]. In the WESDR study,

retinal venular widening over time was associated with the

subsequent incidence and progression of diabetic retinopathy

[99]. Changes in retinal vascular calibre may also represent an

individualised indicator of how well diabetes is controlled

[100]. Recent studies in the general population have demon-

strated that the addition of retinal vascular imaging to existing

models of stroke can improve risk stratification [101, 102].

However, the overall improvement is only about 10% beyond

that of established risk factors. Further studies are needed to

determine whether detection of retinal vascular changes has

additional value beyond the methods currently used to stratify

the risk of diabetic retinopathy or systemic vascular compli-

cations, and to target the test to a more specific subgroup of

patients who could benefit frommore intensive investigations.

This includes work to optimise the risk-prediction algorithm,

to determine how it may influence clinical decision-making,

and to estimate the cost-effectiveness and acceptability of this

type of investigation to patients in different settings.

Retinal vascular imaging as a tool to monitor treatment

outcomes Changes in retinal vasculature may also be markers

of the effectiveness of new therapies and reflect treatment

response. For example, studies have demonstrated changes

in retinal vascular calibre in response to treatment in patients

with DMO. DMO results from endothelial cell dysfunction,

retinal capillary basement membrane thickening and a reduc-

tion in the number of pericytes, leading to increased perme-

ability and incompetence of retinal vasculature. Lundberg et al

have reported that following focal/grid laser treatment of

DMO, the macular arteriole and venule diameters decreased

[103], and Wickremasinghe et al reported a significant

narrowing effect on both retinal arteriolar and venular calibres

in patients with DMO in response to intravitreal triamcinolone

[104]. Studies have also demonstrated regression of retinal

vascular changes in response to blood pressure reduction

and that regression differs between different antihypertensive

regimens [105–107].

VEGF increases vascular permeability and instigates vessel

leakage leading to DMO, and higher levels of VEGF have

been found in the aqueous humour of patients with DMO

[58, 108]. Treatment of DMO has improved dramatically dur-

ing the last few years. Injections of anti-VEGF drugs (e.g.
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ranibizumab, bevacizumab and aflibercept), sometimes in

combination with laser photocoagulation, are currently the

mainstay of treatment [109]. However, there remains a lack

of vascular biomarkers to indicate retinal microvasculature

changes in response to DMO treatment. Retinal venular wid-

ening has been associated with a poorer response to intravit-

real ranibizumab injections in patients with neovascular age-

related macular degeneration [110]. The evidence to date sug-

gests that quantitative measurement of retinal vessels may

allow physicians to monitor the progress and success of both

local and systemic treatment.

Future research

There are several areas for future research. First, while data

from the above epidemiological and clinical studies suggest

that retinal vascular changes are markers of early retinal as

well as systemic microvascular damage, the specific underly-

ing pathophysiological mechanisms (e.g. impaired vascular

tone, autoregulation, inflammation, endothelial dysfunction)

are still unclear. Experimental research and animal models

may shed further light onto these.

Second, studies to date have primarily focused on retinal

photography, a snapshot measurement of retinal vascular

changes at baseline, and the associations of these changes with

different clinical outcomes [100]. Dynamic functional chang-

es in retinal vessels can now be detected and monitored over

time by the use of other retinal imaging technologies.

Additional studies are required to further elucidate the clinical

relevance of assessing longitudinal changes in retinal

vasculature.

Third, the current range of software programs for measur-

ing retinal vascular changes is not fully automated nor easy to

use without standardised protocols, training and additional

input by technicians. New software programs incorporating

automated measurement and documentation of retinal vascu-

lar changes and risk prediction algorithms are being developed

to improve precision and reliability. The next generation of

software should reduce existing limitations and improve its

implementation in a wider clinical setting.

There are many new retinal vascular imaging technologies.

For example, adaptive optics retinal imaging [111, 112], en

face optical coherence tomography angiography [113],

Doppler optical coherence tomography [114], scanning laser

Doppler flowmetry [115], spectral-domain optical coherence

tomography [116], and sequential and diameter response anal-

ysis [117], are now being studied to further measure and ana-

lyse the detailed structure and functions of the retina (includ-

ing the foveal capillary network, choroidal vasculature, blood

flow, choroidal flow, wall:lumen ratio and retinal vessel re-

sponses to flickering light). These developments may offer an

improved understanding of how early diabetic complications

develop and offer improved risk stratification in clinical

practice.

Conclusion

The retina is traditionally seen as a site of diabetic damage that

results in the classical signs of diabetic retinopathy and sub-

sequent vision loss. The retinal blood vessels, however, pro-

vide additional information that allow the study of early struc-

tural and functional changes in the microvasculature, possibly

prior to the onset of clinically significant microvascular and

macrovascular complications of diabetes. Studies using new

imaging techniques have provided data and strong evidence

that quantitatively measured retinal vascular changes from

retinal photographs mirror preclinical changes in the microcir-

culation associated with diabetes and predict a range of clini-

cal complications. These retinal vascular measures are there-

fore potential biomarkers of early microvascular damage in

pre-diabetes, diabetes and diabetic complications, and may

be tools for monitoring interventions. Further development

of retinal vascular imaging techniques, with more consistent

data on incremental benefit and clinical utility, will allow the

translation of retinal vascular imaging as a useful tool to im-

prove the diagnosis, prognostication and management of dia-

betes in clinical practice.
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