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Abstract

Background: Small non-coding RNAs (sRNA) are emerging as major components of the cell’s regulatory

network, several possessing their own regulons. A few sRNAs have been reported as being involved in general

or toxic-metabolite stress, mostly in Gram- prokaryotes, but hardly any in Gram+ prokaryotes. Significantly, the role of

sRNAs in the stress response remains poorly understood at the genome-scale level. It was previously shown that

toxic-metabolite stress is one of the most comprehensive and encompassing stress responses in the cell, engaging

both the general stress (or heat-shock protein, HSP) response as well as specialized metabolic programs.

Results: Using RNA deep sequencing (RNA-seq) we examined the sRNome of C. acetobutylicum in response to the

native but toxic metabolites, butanol and butyrate. 7.5% of the RNA-seq reads mapped to genome outside annotated

ORFs, thus demonstrating the richness and importance of the small RNome. We used comparative expression analysis

of 113 sRNAs we had previously computationally predicted, and of annotated mRNAs to set metrics for reliably

identifying sRNAs from RNA-seq data, thus discovering 46 additional sRNAs. Under metabolite stress, these 159 sRNAs

displayed distinct expression patterns, a select number of which was verified by Northern analysis. We identified

stress-related expression of sRNAs affecting transcriptional (6S, S-box & solB) and translational (tmRNA & SRP-RNA)

processes, and 65 likely targets of the RNA chaperone Hfq.

Conclusions: Our results support an important role for sRNAs for understanding the complexity of the regulatory

network that underlies the stress response in Clostridium organisms, whether related to normophysiology,

pathogenesis or biotechnological applications.

Background

Small non-coding regulatory-RNAs (sRNAs), discovered

on the genome of all bacteria so far examined, have been

established as an integral component of the regulatory

system of the cell [1-3]. Unlike their counterparts in

eukaryotes, which are about 20 nucleotides long, sRNAs

in bacteria span a wider size range between 50 to 500

nts [4]. Regulation of gene expression at post-trans-

criptional level by sRNAs has been established in both

Gram-, such as Vibrio fischeri [5], Pseudomonas aerugi-

nosa [6], and Escherichia coli [1,7], and Gram+ bacteria,

such as Bacillus subtilis [8], Listeria monocytogenes [9]

and Streptococcus pyogenes [10]. Identification of sRNAs

in bacteria has been carried out experimentally using

whole genome microarrays, intergenomic tiling arrays,

shotgun cloning and, recently, RNA deep sequencing

(RNA-seq) [7,11-14]. In silico prediction of sRNAs has

been carried out using comparative genomic analyses by

employing algorithms such as SIPHT [15], QRNA [16],

ISI [17], and sRNAscanner [18]. Experimental detection

of sRNAs that are expressed only under specific culture

conditions may not be successful at other conditions,

while computational methods relying on sequence conser-

vation may not identify species-specific sRNAs. Hence, a

combination of the two approaches should be logically

preferable.
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A number of sRNAs have been identified to play an im-

portant role in the response to stress in Escherichia coli,

such as in oxidative stress (OxyS) [19], cold shock (SraF,

SraG and SraJ) [1], iron depletion (RyhB) [20-22] and

sugar stress (SgrS) [23]. The best and most celebrated case

so far uncovered is the regulation of the major stress

sigma factor, RpoS, in E. coli. RpoS orchestrates the cel-

lular response to a variety of stresses and the transition

to the stationary phase, and is regulated at the post-

transcriptional level by several sRNAs. DsrA, RprA and

ArcZ are positive regulators the RpoS expression, while

OxyS is a negative regulator [24-26]. Yet, little is known

regarding a role of sRNAs in the stress response of Gram+

prokaryotes, and nothing about the role of sRNAs in the

response to chemical stress. Here we are focusing on the

stress-responsive small RNome of Clostridium aceto-

butylicum, a model organism for the Clostridium genus

and more broadly the anaerobic endospore formers [27].

Clostridium organisms are Gram+, endospore-forming

firmicutes capable of fermenting a very broad set of

substrates and are of great importance in human and

animal pathogenesis and health, cellulose degradation,

non-photosynthetic CO2 fixation, bioremediation and bio-

technology, such as for the production of solvents and

other chemicals in the context of biofuel and biorefinery

applications [27,28].

The response to chemical stress, whether from autolo-

gous metabolites or allogeneic toxic chemicals (such as

from carboxylic acids, high H+ concentrations (low pH),

antibiotics, and solvents like ethanol and butanol), plays

a major role in cell physiology. Chemical stress affects

cell survival, metabolism, sporulation and pathogenesis

in physiological milieus, such as the gut microbiome

[29], and pathogenesis [19,30-32], and the natural envi-

ronment. Chemical stress is a major and well recognized

problem in modern bioprocessing due to toxic sub-

strates and desirable or undesirable toxic metabolites

[33]. Chemical stress in Clostridium organisms engages

the general stress response, better known as the heat-

shock protein (HSP) response, as well as more specialized

responses. The HSP response involves strong upregulation

of all major HSP proteins, including those of the GroESL

and DnaKJ systems. Specialized responses include the acid

resistance systems under acid stress [34-36], and changes

in metabolic and biosynthetic programs in response to

both acid and solvent stress [35,37-39]. Thus, chemical

stress is one of the broadest stress responses known in this

and other prokaryotes, and as such, understanding the

stress-related small RNome under chemical stress is of

broad and general interest.

C. acetobutylicum carries out the biphasic ABE (acetone-

butanol-ethanol) fermentation, which consists of an aci-

dogenic exponential phase resulting in the production

of butyrate and acetate, followed by the solventogenic

stationary phase characterized by the production of

acetone, butanol and ethanol, and driven by the reassi-

milation of the acids. Using a SIPHT-based comparative

genomics method, we recently predicted the existence of

113 sRNAs in C. acetobutylicum, among which 31 were

validated by either Q-RT-PCR or Northern analysis [40].

The goal of this study is to identify sRNAs, at the genome

scale, that respond to butanol and/or butyrate stress and

possibly start assigning mechanistic roles for these sRNAs.

sRNAs that modulate the stress response can be engaged

to engineer strains tolerant to these toxic metabolites, as

we and others have recently reported for both C. acetobu-

tylicum [34] and Escherichia coli [36,41].

Results and discussion

A large set of temporal RNA-seq data is essential for

discovery

Using RNA-seq, we aimed to identify sRNAs (previously

predicted [40] and novel) that are differentially expressed

under butanol and butyrate stress. To do so, we aimed to

collect a large set of temporal data, which, based on our

experience are more likely to lead to robust discovery out-

comes [35,38,39,42]. Cultures of C. acetobutylicum were

grown in batch mode in 4-L bioreactors up to the mid-

exponential phase of growth (O.D ~ 1.0), at which point

the cultures were stressed with three different concen-

trations of butanol and butyric acid, respectively, in 3

biological-replicate experiments each. For butanol stress

experiments, the cultures were stressed with 30 mM

(low), 60 mM (medium) and 90 mM (high), while for

butyric-acid stress, 30 mM (low), 40 mM (medium) and

50 mM (high) butyrate concentrations were used. These

levels of metabolite stress were chosen based on prior

studies [35,38,39] and preliminary experiments to achieve

the desirable low, medium or strong metabolic response

to the applied stress. Cultures were sampled at 15, 30, 60

and 75 min post stress for RNA isolation and sequencing.

These sampling times, which are of the order of the doub-

ling time of these cells, were meant to capture largely the

direct and immediate impact of these stresses on gene ex-

pression and the small RNome. Following RNA isolation,

mRNA and sRNA enrichment, cDNA generation, adapter

ligations and indexing, libraries were deep sequenced

using Illumina’s second generation HiSeq 2000 with a read

length of 50 bp.

High sequencing depth was observed for all 84 se-

quenced libraries from samples representing 7 distinct

culture conditions with 4 time points and 3 biological

replicates each. On average, for each sequenced library,

18,162,979 total reads were obtained, which are indica-

tive of a high sequencing depth (Additional file 1). From

these, for each sequenced library, 9,537,317 reads were

mapped into the genome with 884,618 distinct reads

after discarding unreliable reads. 46.5% of the reads
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mapped to annotated genes, while 2% of the reads were

mapped to the 113 sRNA we have previously predicted

[40]. The balance reads were mapped to structural RNA

components (47%) and interoperonic (IOR; genomic

DNA between operons [43]) and intergenic regions (IGR;

DNA between annotated ORFs) (5.5%). These data sug-

gest that the stress transcriptome is very rich in transcripts

beyond those coded by ORFs and rRNA components.

Read count distribution and metrics for robust

identification of sRNAs

Aiming to identify novel sRNAs and also assess which

sRNAs are transcribed as part of the stress transcriptome,

we desired to set metrics that would allow us to call

experimental reads from the RNA-seq data as factually

identifying sRNAs. To do so, we used two criteria for

identifying novel sRNAs on IORs. First, we selected IORs

with RNA-seq expression exceeding a minimal value of

read counts based on the previously annotated sRNAs

as well as annotated ORFs (protein coding mRNAs)

(Figure 1). The majority (ca. 75%) of annotated mRNAs

had a minimum of 50 read counts (Figure 1A). The 113

sRNAs we had previously predicted [40] were divided into

two categories: 31 previously validated sRNAs and the

balance of 82 sRNAs (Figure 1B and 1C). As expected,

read counts for sRNAs were lower than read counts

for mRNAs. The majority of the previously validated

31 sRNAs had read counts over 50 (Figure 1B). The

remaining 82 sRNAs had a read count distribution more

skewed towards lower read counts (Figure 1C). Based on

these data, we chose 50 as the read count that would most

robustly identify IORs containing new sRNAs. No effort

was made in this study to identify sRNAs coded on the

opposite strand of annotated ORFs. Using this “minimum

50” read count criterion, 729 IORs were identified as

possibly containing novel sRNAs.

Figure 1 The frequency distribution of the read counts for all annotated ORFs (A); 31 of the 113 predicted sRNAs that were previously

validated by Q-RT-PCR and /or Northern analysis (Chen et al. 2011) (B); the remaining 82 of the 113 predicted but not validated sRNAs

(C); and all interoperonic regions (IORs) (D).

Venkataramanan et al. BMC Genomics 2013, 14:849 Page 3 of 16

http://www.biomedcentral.com/1471-2164/14/849



As the second selection criterion, SIPHT-based com-

putational analysis for predicting sRNAs in the genome

of C. acetobutylicum was performed, and 79 sRNA

candidates, in addition to the previously identified 113

sRNAs, were found to be present within these 729 IORs.

These were chosen for further analysis. To minimize

false positives, we eliminated from the candidate list

IORs having read counts predominantly from the 5’ and

3’ untranslated regions (UTRs) of the neighboring ORFs

(genes), provided the neighboring ORFs also had a sig-

nificant read counts (≥ 50). This elimination process was

executed with the aid of a custom web viewer built to

visually analyze the RNA-seq data (Figure 2). Following

the screening for false positives, we successfully identi-

fied 46 novel sRNAs (Additional file 1).

What sRNAs are expressed and differentially expressed

under metabolite stress

We examined the expression profiles of the 159 (113

previously identified and the newly identified 46) sRNAs

aiming to identify which are expressed and differentially

expressed under the various metabolite-stress condi-

tions. 114 of the 159 sRNAs had a minimum expression

of 50 read counts in 20% of the sequenced libraries,

while 70 of the 159 sRNAs had read counts over 50 read

counts for 90% of the sequenced libraries representing a

very broad set of culture conditions. Expression of genes

and sRNAs are specific to culture conditions and not all

of them are expressed at all culture conditions. Thus,

expression of over 60% of the predicted sRNAs under all

culture conditions in this study provides strong support

for an important role of sRNAs in orchestrating the cel-

lular response to metabolite stress.

Using pair-wise (for each time point) analysis of the

159 sRNAs for each level of metabolite stress against

the unstressed control, we identified sRNAs that were

differentially expressed with a p-value (DEseq analysis,

Bioconductor package) ≤ 0.05. Under both butanol and

butyrate stress, the number of differentially expressed

sRNAs were found to be dependent on the level of stress

(Figure 3A). For example, we identified 32 of the 159

sRNAs as being downregulated under low butanol stress

(Figure 3A). In contrast, under medium and higher

levels of butanol stress, the number of downregulated

sRNAs was significantly lower. Under butyrate stress,

the largest number of downregulated sRNAs was found

at low levels of stress, as well. This larger number of dif-

ferentially downregulated genes under lower stress levels

was also observed in the mRNA expression analysis

(Additional file 2: Table S1).

Butyrate stress gave rise to more (45) differentially up-

regulated sRNAs than butanol stress (33), while butanol

Figure 2 Custom web viewer to analyze the RNA-seq data and predict novel sRNAs in C. acetobutylicum. RNA-seq data screenshots of

two predicted candidate sRNAs and their orientation (thick arrows), neighboring genes (→/←) and Rho-independent terminators (Ϙ) are shown.

The sRNA in (A) INTEROP0218 (sCAC381; a predicted Hfq target: see text) was validated by Northern analysis (Figure 5), while (B) sCAC1893

(INTEROP1092) was found to contain σG element (Additional File 1). BuOH- butanol, BA- butyrate, NS- no stress, 30 & 60 min post stress.
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stress had more differentially downregulated sRNAs

(51) compared to butyrate (44). 42 sRNAs were differen-

tially expressed under both metabolite stresses: 21 were

upregulated and 21 were downregulated under both

stresses (Figure 3B & 3C). Although the two metabolite

stresses result in differential expression of specific sets

of sRNAs that are stress and dose dependent, we found

a considerable conservation of expression patterns for

the two stressors among these sRNAs, thus suggesting

a possible role of these sRNAs in the general stress

response.

Northern analysis of select stress-related sRNAs

Among the differentially expressed sRNAs under meta-

bolite stress described above, 31 have been previously vali-

dated by Northern and/or Q-RT-PCR analysis [40]. Here,

we used Northern analysis (using single-stranded DNA

probes to identify the strand specificity of the sRNA [34])

to examine the patterns of expression of a select number

of differentially-expressed sRNAs. Selection was based

on potential relevance to metabolite stress response (see

below), but also on the ability to design probes, which

requires that sRNAs have high GC content or GC rich

regions. tmRNA (sCAC834), when analyzed by Northern

blot, resulted in a single prominent band of ca. 300 nts.

Northern blots of 6S (sCAC1377) and S-box (SAM,

sCAC1132) (Figure 4) revealed multiple bands indicating

possible post-transcriptional processing by enzymes such

as RNaseP, as has been reported [44].

The sRNA predicted on INTEROP0218 (sCAC381 -

174 nt - predicted length), INTEROP0009 (sCAC22 - 48

nt - predicted length), INTEROP1858 (sCAC3276 - 129

nt - predicted length) and INTEROP1958 (sCAC3463 -

156 nt - predicted length) were successfully validated as

being metabolite-stress responsive, with experimentally-

estimated sizes (Figure 5) consistent with computational

predicted lengths. Northern analysis of sCAC381 re-

vealed two bands (~300 bp and ~174 bp), indicating

possible RNA processing or two transcriptional start

sites (TSS for the larger transcript may be located up-

stream of the regular TSS, but this needs to verified

using either strand specific sequencing or 5’RACE).

Patterns of expression: hierarchical clustering of sRNA

expression under metabolite stress

Expression patterns under metabolite stress of the 159

sRNAs were compared against the non-stressed control

cultures (pair-wise & point-by-point) and analyzed

using hierarchical clustering. Both butyrate and butanol

stress data displayed distinct clusters. Butyrate stress

data resulted in four clusters. The 1st, “red”, cluster

(Figure 6B) represents sRNAs that were expressed consist-

ently higher compared to the control. The 2nd “green”

cluster (Figure 6C) consists of weakly downregulated

Figure 3 Differential expression analysis of the 159 sRNAs under metabolite stress. (A) Table representing the output of the differential

expression analysis of the 159 sRNAs under butanol and butyrate stress. Comparison of the differentially upregulated (B) and downregulated

(C) sRNAs under stress with each other. The black circle represents the comparison between the differentially expressed sRNAs under metabolite

stress with the subset of 31 experimentally validated sRNAs from Chen et al. (2011).
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sRNAs. The 3rd cluster (Figure 6D) contained sRNAs that

were downregulated with a small delay post-stress. The

4th cluster (Figure 6E) contains sRNAs showing a stronger

(> 4.0 fold) downregulation at all three levels of butyrate

stress. The blue plots display the level of relative expres-

sion (intensity ranking) among all sRNAs [45], and com-

bined with the differential expression heat maps, provide a

more accurate assessment of temporal patterns in differ-

ential expression and strength of expression. The sRNAs

in the 1st, 2nd and 4th cluster show overall higher expres-

sion levels compared to the sRNAs of the 3rd cluster.

sRNA expression under butanol stress also resulted in

distinct, but more complex clusters. The 1st cluster repre-

sented mostly upregulated sRNAs (Figure 7B). The 3rd

small cluster contained consistently downregulated sRNAs

(Figure 7D). The remaining three clusters displayed

a more complex pattern. The 2nd cluster (Figure 7C) con-

tained upregulated sRNAs only at low levels but not at

medium or high levels of butanol stress. The 4th and 5th

clusters (Figure 7E & 7 F) consisted of sRNAs that were

downregulated at low levels of butanol stress, but not con-

sistently so for medium or high levels of stress. The newly

identified sRNAs, sCAC3400 (INTEROP1928), sCAC3507

(INTEROP1985) and sCAC2920 (INTEROP1658) were

found to be upregulated under both stress conditions

(Figures 6B & 7B), and these sRNAs had relatively stron-

ger upregulation under butyrate stress than under butanol

stress. Typically most target mRNAs of the trans sRNAs

are located at a distant and different location on the

genome. For example, the sRNAs ArcZ, DsrA, RprA and

OxyS target the stress specific sigma factor RpoS in E. coli

despite being located at different loci on the genome

Figure 4 Validation of sRNA expression by Northern analysis. (A) 6S RNA; (B) tmRNA; & (C) SAM. The right arrow (→) and left arrows (←)

indicate the positive or negative orientation of the genes adjacent to the sRNA, while the orientation of the sRNA is represented by the double

lined arrow. The symbol P, upstream of the sRNA represents the presence of a promoter region corresponding to one of the sigma factors

(A, G, E & F) and the Ϙ symbol at the 3’ downstream end of the sRNA represents the rho independent terminator. The 6S RNA secondary

structure shows the conserved asymmetric bubbles with G-C pairs at the end (arrows) (see text for details). BuOH- butanol, BA- butyrate, NS- no

stress, 30 & 60 min post stress.
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[24,25]. The differential expression of the sRNAs and

their neighboring genes was analyzed by pairwise com-

parison of the no stress control sample against the three

different levels of butanol or butyrate stress, (DEseq,

p-value ≤ 0.05). Our analysis found very poor correlation

between the differential expression of sRNAs and the

neighboring genes (data not shown).

The clustered data were analyzed to identify shared

regulatory elements, such as promoter sequences and

transcription factor binding sites (TFBS) upstream of the

sRNAs in the same cluster. Upstream regions of the

sRNAs were scanned for putative promoter sites using

B. subtilis position specific scoring matrices (PSSM) in the

patser program within SIPHT [15] and the prokaryotic

promoter prediction (PPP) tool for Lactococcus binding

sites [46]. B. subtilis is the model Gram+ organism, while

the (also Gram+) Lactococcus model was used as it has a

more similar G + C content (35%) to C. acetobutylicum

(29%). Using the B. subtilis model, we predicted that 52 of

the 159 sRNAs (Additional file 1 & [40]) contain putative

σA, σE, σF and σG promoters. Using the PPP webtool led

to the identification of previously known stress-related

motifs. Specifically, we analyzed two upregulated sRNA

clusters: B1 (sCAC3507 to sCAC3713, Figure 6B) and B2

(sCAC3184 to sCAC1128, Figure 6B); and two clusters

containing downregulated sRNAs: C (Figure 6C) and E

(Figure 6E). Motifs for σA, the house-keeping sigma fac-

tor, were identified in the upstream regions for most of

the sRNAs analyzed. In addition to σA, the upstream

regions of the four clusters were enriched in binding

motifs for σB (the general-stress response sigma factor in

B. subtilis; however no σB ortholog has been identified in

C. acetobutylicum or any other Clostridium organism

[47]) and transcriptional factor binding sites (TFBS) for

transcriptional factors such as FlpAB (the FNR family

transcriptional regulator – which has two C. acetobu-

tylicum ortholog genes, CAC1511 & CAP0082) [48,49],

Llrb (two component system response regulator – with

one C. acetobutylicum ortholog gene, CAC1700), Ahrc

(arginine repressor – one C. acetobutylicum ortholog

gene, CAC2074, coding for ArgR) (Foster, 2004) and Rex

(redox sensing transcriptional repressor – one C. acetobu-

tylicum ortholog gene, CAC2713) [50]. These proteins/

transcriptional regulators (Figure 8) and their regulons

have been identified to be part of oxidative stress response

in some, at least, prokaryotes, and this might explain the

Figure 5 Northern analysis of select, newly identified sRNAs and their predicted secondary structure. (A) sCAC381; (B) sCAC22;

(C) sCAC346; & (D) sCAC3276. BuOH- butanol, BA- butyrate, NS- no stress, 30 & 60 min post stress.
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presence of these motifs on sRNA promoters differentially

expressed under butyrate stress, which is frequently simi-

lar to oxidative-stress response [35]. Identification of regu-

latory elements in the differentially expressed sRNA

clusters B1, B2, C and E (Figure 6) reveal the presence of

both general stress responsive elements (σB) and the more

specific oxidative stress response regulators (FNR, ArgR

and Rex) supports the clustering of co-regulated stress

responsive sRNAs.

Hfq binding motifs on clostridial sRNAs

In E. coli and a few other prokaryotes, it has been shown

that activity of several sRNAs (and notably of many

trans-acting sRNAs) requires the assistance of, or is en-

hanced by, the hexameric RNA chaperone Hfq [51-55].

Thus, we wanted to examine which of the 159 sRNAs in

C. acetobutylicum might be Hfq targets, and if these

putative targets might be responsive to metabolite stress.

sRNAs co-immunoprecipitated with Hfq contain the

signature Hfq-binding motif and are designated as Hfq-

associated sRNAs [11,12,55,56]. This binding motif

was discovered largely based on the E. coli sRNAs, but

appears to be valid in other organisms [5,21,51,52,57]

since the Hfq protein is well conserved among many

prokaryotes. A structural CBLAST of the annotated

C. acetobutylicum Hfq (CAC1834) with the two Hfq

Figure 6 Hierarchical clustering & expression profiles of sRNAs during butyric acid stress. The expression profile is presented as the ratio

of the normalized read counts under butyric acid stress against the corresponding time point in the no stress control. (A) Hierarchical clustering

of the 159 sRNAs. Colored vertical bars represent expanded views of the regions on the right. (B) higher expression during butyric acid stress

(C) weakly downregulated sRNAs (D) lower expression with delayed downregulation and (E) strongly downregulated genes. The blue plots show

the expression/abundance ranking of each sRNA with respect to others as a percentile between 0 and 100.
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crystal structures, one from E. coli [58] (3GIB_B) and

the other from S. aureus [54] (1KQ1_H), showed conser-

vation in the sequence and the secondary structure of

the Hfq monomeric unit (Additional file 3: Figure S1).

Thus, we hypothesized that the binding motif of Hfq on

sRNAs in E. coli might be preserved on sRNAs from

C. acetobutylicum. This Hfq binding motif is characterized

by U-rich regions, specifically a poly-U tail at the 3’ end of

the sRNA (downstream of the Rho independent termi-

nator), and the U-rich or the AU-rich region upstream

of the rho-independent terminator or other secondary

hairpin structure; the 5’ region of the sRNA is involved

in (non-perfect) base-pairing with the target mRNA

[52,53,55]. Using this model, we identified 65 potential

Hfq-associated sRNAs in C. acetobutylicum. Among these

65 sRNAs, 20 sRNAs belonged to the 46 newly identified

sRNA from the deep sequencing data (Additional file 4).

We clustered these putative 65 Hfq-associated sRNAs and

found most of them to be differentially expressed under

both butanol and butyrate stress (Additional file 5:

Figure S2). The Hfq gene (CAC1834) was found to be

mildly differentially expressed (upregulated) only under

butanol stress.

Identification of the putative Hfq binding module on

65 sRNAs may prove useful for deconvoluting the

stress-responsive regulatory network in Clostridia,

since the unstructured 5’ region of sRNAs that are tar-

gets of Hfq contains information that can be possibly

Figure 7 Hierarchical clustering & expression profiles of sRNAs during butanol stress. The expression profile is presented as the ratio of the

normalized read counts under butanol stress against the corresponding time point in the no stress control. (A) Hierarchical clustering of the 159

sRNAs. Colored vertical bars represent expanded views of the regions on the right; (B) higher expression during butanol; (C) higher expression in

low butanol stress (D) weakly downregulated sRNAs (E) and (F) downregulation only in low butanol stress. The blue plots show the expression/

abundance ranking of each sRNA with respect to others as a percentile between 0 and 100.
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used to identify potential target mRNAs of these

sRNAs [59].

Differentially expressed sRNAs that can be related to

physiological events of the metabolite-stress response:

SRP RNA, 6S RNA, tmRNA, SAM RNA and solB (sCAP_176)

The data presented above showing a large number of

sRNAs exhibiting differential expression under metabo-

lite stress provides strong evidence that sRNAs are an

integral part of the clostridial stress response system.

While the detailed action of these sRNAs remains to be

elucidated, there are several sRNAs whose action can be

readily related to the phenotypic response of these cells

to metabolite stress affecting various metabolic pathways

as previously shown [35,37,39,42,60] and further con-

firmed by the present set of RNA-seq data as well as the

accompanying large set of new microarray and pro-

teomic data [61].

Both butanol and butyrate stress affect membrane phy-

siology and homeostasis by reducing the transmembrane

electrochemical potential and proton gradient (ΔpH)

[33,34,62]. Bacteria respond to the toxicity of these metab-

olites by altering the membrane composition by increasing

the percentage of saturation in the lipid tails and also by

incorporating various integral membrane and transport

proteins [63]. We have previously shown that the signal

recognition particle (SRP) system and upregulation of

several membrane proteins are apparently important in

imparting butyric-acid tolerance [34]. The SRP, which

consists of the SRP RNA and the Ffh protein, recognizes a

motif on mRNAs coding for membrane proteins and,

thus, transports the corresponding ribosomes to the mem-

brane to synthesize the targeted proteins [64]. In this light,

upregulation of the 4.5S SRP-RNA (Figures 6 & 7) is con-

sistent with its role in the biosynthesis and localization of

membrane proteins and the role of membrane proteins in

Figure 8 Expression profile of genes involved in sulfur amino acid metabolism; part of the sol operon; and genes coding for Hfq and

other regulatory proteins (see text for details).
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metabolite stress response and tolerance [34]. The Ffh

gene is not differentially expressed under metabolite stress

(Figure 8), thus further supporting its role as a housekee-

ping protein.

C. acetobutylicum, like other Clostridium organisms

and most prokaryotes, reorganizes its transcriptional and

translational machineries during the transition from ex-

ponential to stationary phase of growth and under stress

conditions [35,37,38,42,45,47,60,65]. Downregulation of

non-essential transcripts and overexpression of different

transcript sets requires a quick turnover in the engage-

ment of sigma factors. The 6S RNA (also known as SsrS

RNA) has been shown to negatively regulate the tran-

scripts under the control of the major sigma factor σ70

in E. coli and B. subtilis (where it is better known as σA)

during the stationary phase of growth by interacting

with the RNA polymerase holoenzyme [66]. 6S RNA has

been found to be important in cell survival under stress

in both E. coli and B. subtilis [67,68]. We have previously

shown that the 6S RNA in C. acetobutylicum, which dis-

plays the conserved secondary structure (Figure 4A) of

an asymmetric bubble [69], is expressed at high levels

[40]. Its Northern blot (Figure 4A) confirms its strong

expression and displays multiple bands, which corres-

pond to distinct processed RNA forms as in other pro-

karyotes [66,69]. In contrast to previously reported 6S

RNAs displaying two sRNA forms of distinct size, here

the 6S sRNA displays three bands (Figure 4A). 6S RNA

acts as a template for binding of σ70, and is thus capable,

when upregulated, of titrating σ70 thus leading to down-

regulation of genes under σ70 control. This stress re-

sponsive role of 6S RNA has been established in E. coli

[70,71], and our data support that it has a similar role in

C. acetobutylicum. It is notable that the 6S sRNA here

contains the two characteristic central bubbles with a

short stem loop attached [72]. The two components of

the σA (the σ70 in C. acetobutylicum) binding motif

(UUGACA [−35] & UAUAAU [−10], which corresponds

to the DNA motif TTGACA and TATAAT) are found to

be perfectly preserved, one on each of the central asym-

metric bubbles (Figure 4A), thus apparently regulating

the transcriptional responses to metabolite and other

stresses. It is interesting to note that in Legionella pneu-

mophila, 6S RNA was found to regulate the expression

of secretion system effectors, and stress response pro-

teins such as GroES and RecA [73]. As discussed, the

GroESL system is one of the most upregulated HSP sys-

tems under a broad spectrum of stresses in Clostridium

organisms.

The transfer-messenger RNA (tmRNA or SsrA RNA,

which has both tRNA- and mRNA like properties)

together with 3 proteins (small protein B [SmpB], elon-

gation factor Tu [EF-Tu], and ribosomal protein S1)

forms the tmRNP complex. The tmRNP complex is

involved in the quality- control, so-called trans-trans-

lation process, recycling stalled ribosomes and facili-

tating the degradation of aberrant proteins and mRNAs

[74,75]. Trans-translation is especially important in the

transition between growth phases and under stress con-

ditions [75-77], whereby many ribosomes may stall on

damaged or partially degraded mRNAs. In this context,

the stress-induced upregulation (Figures 4B, 6 & 7) of

the C. acetobutylicum tmRNA (sCAC834) confirms its

role in the quality-control process of trans-translation. It

is worth noting that tmRNA is one of the most highly

expressed sRNAs in these experiments (blue plots of

Figures 6 & 7), further confirming its critical roles for

the trans-translation process under stress. Of note, none

of the three proteins (CAC0716 – smpB, SsrA-binding

protein; CAC1964 – rpsA, 30S ribosomal protein S1; &

CAC3136 – tuf, elongation factor Tu) of the tmRNP

complex appear to be differentially expressed under

stress (Figure 8), thus suggesting that the tmRNA up-

regulation is controlling the trans-translation process

under stress. This is the first experimental evidence for

the expression and role of a tmRNA in a Clostridium

organism. Deletion of tmRNA in Streptomyces coelicolor

was shown [78,79] to affect the translation of proteins

that play a vital role in survival such as cell-cycle and

stress proteins including the major HSP protein DnaK, a

protein universally engaged in the stress response of

Clostridium organisms as already discussed.

S-box (SAM) and T-box riboswitches regulate the ex-

pression of genes involved in the metabolism of cysteine

and methionine in C. acetobutylicum and are typically

found adjacent to the genes involved in sulfur amino

acid metabolism [80]. S-box, which is dependent on the

concentration of s-adenosyl methionine (SAM), has been

shown to regulate the expression of genes in methionine

metabolism through transcriptional anti-terminator sys-

tems [80]. In C. acetobutylicum, genes involved in sulfur

metabolism were found to be upregulated (Figure 8)

during high levels of acid stress. We note that an earlier

study from our lab had reported that under acid stress,

the genes involved in cysteine, methionine and serine

metabolism were downregulated [35]; this difference be-

tween the two studies can be attributed to the role of

proton concentration since in this present study, in con-

trast to the earlier one, we used pH control in the fer-

mentation experiments.

Solventogenesis in C. acetobutylicum is controlled by the

pSOL1-megaplasmid borne genes (adhE1(aad)-ctfA-ctfB)

of the sol operon and the convergent monocistronic adc

operon [81,82]. Expression of the sol operon is dependent

on Spo0A [83] but other genes are also involved in regu-

lating its expression through a long 5’ UTR, which appears

like a good target for sRNA regulation. solB (sCAP_176),

located just upstream of the sol operon, has been
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identified as the putative repressor of the sol operon and

thus of solventogenesis [84]. Although expressed at very

low levels (Figures 6 & 7), solB appears to be a very potent

repressor: upon solB inactivation (originally achieved by

inactivating the adjacent gene CAP0161 [85]), solvent for-

mation starts earlier and leads to considerably higher levels

of solvents [86]. Thus, solB downregulation promotes sol

mRNA expression and solvent production, and vice versa.

Here, we found that solB is downregulated (Figure 6D)

under butyrate stress, except for the first time point

(15 min post stress). Accordingly, the sol-operon genes

display a strong upregulation pattern (Figure 8). Butanol

stress leads to a more complex pattern of solB expression

(Figure 7E), thus leading to a largely opposite expression

of the sol-operon genes, except for the first two time

points of the high butanol stress (Figure 8). Schiel et al.

(2010) reported a putative antisense binding of the solB

repressor to the upstream region of the sol operon [87]

(Additional file 6: Figure S3).

Conclusions

The goal of this study was to identify sRNAs that respond to

butanol and/or butyrate stress, and also general stress, since,

as we discussed, it was previously shown that toxic-chemical

stress in Clostridium organisms engages both the general

HSP systems as well as specialized systems. One can logically

argue that the sRNAs that are differentially expressed under

both butanol and butyrate stress would belong to the general

stress response. In this sense, the putative roles of SRP RNA,

6S RNA, tmRNA and SAM RNA are part of the general

stress response, but perhaps solB belongs to the specialized

stress response (Figures 6, 7 & Additional file 7: Figure S4).

The metabolite-stress sRNome in C. acetobutylicum was

investigated using deep RNA sequencing, in combination

with computational analyses. 46 novel sRNAs were identi-

fied. The sRNA expression patterns under different levels of

butanol and butyrate stress strongly support a role of many

sRNAs in orchestrating stress-related cellular changes

to deal with the complex, pleiotropic effects of the toxic me-

tabolite stress. This is further supported by the fact that 7.5%

of the RNA-seq reads map to non-annotated IOR and IGR

of the genome. This is the first comprehensive study of

genome-scale expression of sRNAs in a Clostridium or any

organism under metabolite stress. Use of extensive temporal

RNA-seq data in combination with computational predic-

tions and Northern-based assays are essential in reaching ro-

bust outcomes in identifying previously unexplored sRNAs.

These data can be used for understanding the role of sRNAs

in regulating growth and metabolism thus aiming to provide

a more comprehensive understanding of the regulatory net-

work of the cell, and how that network can be engineered

for practical applications to produce chemicals and fuels or

for remediation processes.

Methods
Strain and growth conditions

Three biological replicate cultures of C. acetobutylicum

ATCC 824 were carried out in pH- controlled (pH > 5)

batch fermentations in 4 L bioreactors (Bioflow II and

110, New Brunswick Scientific, Edison, NJ, USA) in a

defined clostridial growth media [61]. The cultures were

stressed with butanol (30 mM, 60 mM and 90 mM) and

butyric acid (30 mM, 40 mM and 50 mM) at mid-

exponential phase of growth at an OD of 1.0 and were

sampled at 4 different time points: 15 min, 30 min,

60 min and 75 min post stress. Parallel cultures (n = 3)

that were exposed to neither stress were used as the

non-stress controls.

RNA isolation and construction of cDNA libraries for RNA-

seq

Samples for RNA isolation were collected by centrifuga-

tion at 5000 rpm at 4°C for 10 min and the pellets were

stored at −80°C. RNA isolation was carried out using the

Qiagen’s miRNeasy Mini kit [45]. After RNA extraction,

mRNA and sRNA were enriched by using Microbe

Express kit from Ambion® kit as per the manufacturer’s

protocol. The Ovation Prokaryotic RNA-Seq System

(NuGEN® Technologies, Inc, San Carlos, CA) was used

to synthesize cDNA from 500 ng of enriched RNA. In

brief, 2 μL of first primer mix was added to the 500 ng

of the RNA and incubated at 65°C for 5 min. Later,

10 μL of the master mix (first strand buffer and enzyme)

were added to the above reaction for first strand synthe-

sis followed by the purification of the first strand cDNA

using the QiaQuick PCR purification kit (QIAGEN, Inc.

Valencia, CA). The last step of cDNA synthesis was syn-

thesizing the 2nd strand, which was then purified using

the Minelute Reaction clean up kit (QIAGEN®) and

eluted in 10 μL of elution buffer. The elution buffer was

used to make up the volume of the cDNA to 50 μL. The

resulting 50 μL of cDNA was used to construct libraries

using the TruSeq DNA Sample preparation kit (Illumina®,

San Diego, CA). In brief, the cDNA underwent end repair,

3’ end adenylation, adapter ligation and enrichment. Clean

up of DNA fragments after each process were carried out

using AMPure XP Beads. The fragment length of the

libraries was checked using a Bioanalyzer before loading

onto HiSeq 2000.

RNA sequencing and data analyses

Deep sequencing was performed using Illumina's HiSeq

2000 with a read length of 50 bp, generating individual

library sequence files. Sequence files were processed to

remove barcodes, trim adapters, and count read abun-

dances using a set of custom perl, python, and MySQL

scripts. Reads were mapped to the C. acetobutylicum

genome using Tophat [88]. Gene annotations were
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downloaded from NCBI, and predicted sRNA regions

were included from Chen et al. [40]. Differential ex-

pression analysis of sRNAs was performed using DESeq,

part of the R Bioconductor package [89]. Differentially

expressed sRNAs were determined at a p-value ≤ 0.05, for

a pairwise comparison between the control library set and

any of the six stress groups (low, medium, and high

butanol and low, medium, and high butyrate). Intero-

peronic regions were defined using previously predicted

operons [43]. The data was submitted to Gene Expression

Omnibus (GEO) and can be accessed with the accession

number GSE48349.

Prediction of novel sRNAs using RNA-seq data

The IORs used in this study were the same as those identi-

fied and used by Chen et al. for predicting the 113 sRNAs

in C. acetobutylicum [40]. Identification of new sRNAs was

based on selecting interoperonic regions (IORs) with a min-

imal read count of 50. This metric was assigned based on

the analysis of the RNA-seq data for mRNAs and sRNAs

(Figure 1). Only IORs that met the criteria of a minimal

read count were considered for further analysis. Computa-

tional prediction of sRNAs was performed using SIPHT

based on the comparative analysis of the 21 Clostridium

genomes in NCBI. The previously identified 113 sRNAs [40]

were removed for predicting novel sRNAs. Thus, IORs

expressed at a minimal read count of 50 and were also com-

putationally predicted to contain sRNAs in the expressed

IORs, were manually curated to eliminate false positives.

False positives were defined as IORs, which had predominant

expression only from the untranslated region (UTRs) of the

neighboring genes, even though sRNAs were computation-

ally predicted in those regions. Identification of false positives

was carried out using a custom web viewer (generated using

custom PHP scripts) by visually analyzing RNA-seq data.

Northern analysis

Northern analysis of select sRNAs was performed as des-

cribed previously using single stranded oligo DNA probes

[40]. The probes used in Northern analysis are listed in

Additional file 2: Table S2. For each lane, 10 μg of total

RNA was loaded in a 5% precast polyacrylamide Ready

Gel TBE-urea (Bio-Rad, Hercules, CA), and was elec-

trophoretically resolved along with molecular markers of

single stranded RNA ranging from 50 nt to 1000 nt (New

England Biolabs, Ipswich, MA). Following electrophoresis,

the RNA was transferred to a BrightStar®-Plus positively

charged nylon membrane (Ambion). Probes were labeled

with ATP [γ32P] using Optikinase (USB, Cleveland, OH)

and the unincorporated radioactive material was removed

using Micro Bio-Spin Column (Bio-Rad, Hercules, CA).

The prehybridization and hybridization of the membrane

with labeled oligo probes was carried using the ULTRAhyb

hybridization solution (Ambion) at 42°C.

Promoters and Rho-independent terminators of sRNAs

Promoter prediction in the upstream region of the sRNAs

were carried out using PSSMs of B. subtilis promoter con-

sensus sequences [15]. For the Lactococcus promoters, we

used the promoter HMM model from the PPP tool [46].

Rho independent terminators were predicted using RNA-

motif [90], Erpin [91] and Findterm (www.softberry.com).

Secondary structures of sRNAs were predicted using

Vienna RNAfold [92,93].

sRNA nomenclature

The sRNA nomenclature for the newly identified sRNAs

was done in the same manner as described previously [40].

Additional files

Additional file 1: Detailing the information on the sequenced

libraries and the list of newly identified 46 sRNAs.

Additional file 2: Table S1. Differential expression of annotated mRNAs

of C. acetobutylicum. Pair-wise and point by point by comparison of each

stress level to the no stress control using DEseq at a p-value ≤ 0.05.

Table S2: Probes sequences used for Northern analysis.

Additional file 3: Figure S1. CBLAST of the C. acetobutylicum hfq

(CAC1834, gi_15895109) with the Hfq from E. coli (3GIB_B), reveals

conservation in the secondary structure on the Hfq monomeric unit.

(A) The α-β1-5 structural unit can be found to be conserved. (B) The

corresponding conservation in the protein sequence is displayed below.

Additional file 4: Containing the Hfq binding model.

Additional file 5: Figure S2. Hierarchical clustering of the 65 sRNAs

belonging to the Hfq constellation (see text for details).

Additional file 6: Figure S3. Putative antisense binding of solB to the

sol (adhE1-ctfA-ctfB) operon.

Additional file 7: Figure S4. Hierarchical clustering of 159 sRNAs under

both butanol and butyric acid stress.
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