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Abstract. Continuing the work of a previous paper, the Glimm-Jaffe-Spencer
cluster expansion from constructive quantum field theory is adapted to treat
quantum statistical mechanical systems of particles interacting by potentials
that fall off exponentially at large distance. The Hamiltonian Ho + V need be
stable in the extended sense that Ho + 4V + BN ̂  0 for some B. In this situation,
with a mild technical condition on the potentials, the cluster expansion
converges and the infinite volume limit of the correlation functions exists, at low
enough density. These infinite volume correlation functions cluster exponen-
tially. A natural system included in the present treatment is that of matter with
the r~1 potential replaced by e~ar/r. The Hamiltonian is stable, but the system
would collapse in the absence of the exclusion principle—the potential is
unstable. Therefore this system cannot be handled by the classic work of
Ginibre, which requires stable potentials.

1. Introduction

In a previous paper, [1], we adapted the Glimm-Jaffe-Spencer cluster expansion [8]
to treat quantum statistical mechanical systems with finite range potentials. We
now extend this program to include potentials that fall off exponentially. Under
very general conditions we will obtain the infinite volume limit of correlation
functions (in the Euclidean region) and their exponential clustering, at low density.
We will later remark on some extensions of the present work to even more general
potentials.

Matter (positive charged particles and negative charged identical fermions
interacting with a Γ 1 potential) with the r~1 modified to e~*r/r, one of our matter-
like systems, has been our main motivational example. For this system the
Hamiltonian is stable; proofs of stability for the matter system [4, 5, 10] may be
modified to show this. But the potential is not stable, [11] and in fact the system
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would collapse in the absence of the exclusion principle [3]. The classic work of
Ginibre [7], does not apply, requiring stable potentials. For this system our method
will yield, at any fixed temperature for low enough density, the infinite volume limit
of expectations of products of spatially smeared Euclidean densities, and their
exponential clustering.

In fact the cluster expansion we use in this paper is different from the one used in
[1] and [8], and is a slightly simplified form of the expansion developed by Glimm,
Jaffe, and Spencer in [9]. We could have used the expansion from [1] and a scheme
like that in [6] to interpolate potentials, but the route taken in the present paper
leads to more general results. We are indebted to [9] for some conceptual ideas, and
a numerical estimate, but the reader is only assumed to be familiar with [1] and [8].

2. Notation

We follow the notation of [1] closely, but recall some of the equations for
convenience. There are / species of particles, each obeying either fermion or boson
statistics, described by fields, </>i,</>2> •• >( V̂ We set

H o o = £ (2m,)-ι ί dxiVφ'Wφd, (2.1)
ί = l

H0 = H00-Σμiίdxφ-φi, (2.2)
ί = l

Ni = \dxφ-ίφi; N=ΣNt, (2.3)
1 = 1

H = H0+V, (2.4)

Qjix) = φ~Mx), (2-5)

V=ll2Yj\dxdy:ρivijQj:. (2.6)

We consider objects A of the form

A = a1(t1)...as(ts), (2.7)

(2.8)

For a given i, each ftj is supported in a single cube. The ftj are real, measurable, and 0
^fij^l this allows our estimates to be taken to depend on A only through s, the
number of factors.

The objects of interest to us are expectations

{A }A = ΊrΛ( Γexp( - J HΛ(τ)dτ)A)/ΎτJexp{- βHΛ)). (2.9)
o

The times correspond to imaginary real times—one is in the Euclidean region—of
course if all the times in A are equal, the expectation (A)Λ is the same as a real time
expectation value. A is the large box one works in, Tr^ is the trace on the Fock space
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built on L2(Λ). For each ζeR3, we denote the translation, in the obvious sense, of A
by Aξ. β is fixed throughout our discussion, dependences on β are suppressed. All
our constants, {cj, satisfy

0 < c α < o o . (2.10)

3. Results and Discussion

We assume our system has the following properties
a) There are a c1 ? c2, and c 0 such that

^ ^ M ) (3.1)

for | x | ^ c 0 .

b) There is a B such that

c) Each vtj is in L 3 / 2 (The choice of L2 instead of L 3 / 2 would lead to a more
standard analysis.)

We then have the following basic theorems proven in the following sections.

Theorem 1. There exists a μ0 such that if μ^μ^ all i, then for any A as defined in
Section 2,

lim (AyΛ

exists. The limit is understood to be taken through any sequence of boxes centered at
the origin whose minimum width goes to infinity.

We denote the limit in the theorem as (Ay.

Theorem 2. There exists a μ0 such that if μ{ ^ μ0, all i, then for any A and B as defined
in Section 2,

\(ABξ} - (Ay (By\ ^ cA,B exp( - c(μo)\ξ\) (3.2)

for \ξ\ large enough. c(μo)-+c2 as μuμ2,..., μ^-*-co.

We choose the μ0 in Theorem 1 and Theorem 2 to be the same, at the expense of
possibly not using the best value of μ0 in Theorem 1. Theorem 3.4 and Proposition
3.1 from [1] also hold but we do not restate them.

We carry out the proofs using unit cubes and barriers of width 2/10 as in [1]. We
assume instead of a) above the following condition:

a') There are a c\ and c2 such that

|^ .(x) |^c;exp(-c 2 M) (3.3)

if |x|^2/10.
A length scaling argument then shows this is sufficient to yield our general results.
This is equivalent to using larger cubes.
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Remarks. 1) In condition b) above it is sufficient to have (1 + ε)V with ε > 0 instead of
4V.

2) The technical condition c) may be weakened, to include infinitely repulsive
hard cores, for example.

3) It is not difficult to accommodate many-body potentials that satisfy suitable
substitutes for a) and c).

4) It should be possible to treat potentials that fall off as a suitably high power
rather than exponentially, yielding a weaker cluster property. One may have to
modify the cluster expansion to obtain the best results here.

5) Suitably smeared reduced density matrices are also tractable.
6) The Mayer expansion may be shown to converge. The ratio of Z's for complex

z may be studied as in [8] the techniques of [1] are not sufficient here.
After we have developed the cluster expansion and proved convergence

(Estimate 5.1), the proof of Theorem 1 proceeds as in [1]. In Theorem 2, (3.2) is
deduced from the cluster expansion by a "doubling the measure" argument. See for
example [8]. The statement c(μi)-> c2 in Theorem 2 is a consequence of tracing the
effects of μf->> —oo painfully through the convergence proof. Various remarks
about this are inserted through the remainder of the paper.

In summary, the cluster expansion in statistical mechanics is a powerful tool in
the study of low density systems. Some of the lines of possible development have
been mentioned above. Constructive quantum field theory should continue to be a
source of ideas for statistical mechanics.

4. The Cluster Expansion

Since, as mentioned above, the cluster expansion differs from that in [1], we will
redevelop the expansion, with a minimal change in notation. R3 is filled with closed
unit cubes, {At}, with disjoint interiors. The set of faces of these cubes, taken as
closed, are called {Sa}. The set of points within distance 1/10 of Sa is called ηa (the
barrier α)

τ/α = {xe#3:dist(x,Sα)^l/10} (4.1)

Λ,the large box we work in, is a union of cubes A{. {Aj :jeJ\} is a distinguished set of
cubes.

The expectation (A}Λ given in Equation (2.9) is rewritten in path space with the
same notation as Equation (2.8) of [1].

j > e x p - j V^dήa^)... αs(ίs) / Jdμexp - f V(τ)dτ)\ (4.2)

We refer to [1] for the definitions of the path space integrals. For simplicity we
define a function U on path space

β

U=\V(τ)dτ. (4.3)
o
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For a set SC>1 we define 3S = (S-IntS)-9/1; and S = {x£S:dist(x,SS)> 1/10}.
Ea is the characteristic function of the subset of path space consisting of all n-paths
such that no particle hits the barrier ηa. Ha = 1 — Ea. If N is a union of faces Sα, then

EN= Π Ea
S*eN

HN= Π Ha. (4.4)
SxeN

Given a set of cubes {Δj :jeJ], a union of cubes X and a union of faces Γ, the pair
(X, Γ) will be said to isolate J if

l )(ΓnϊntX)"=Γ
2) each connected component ofX — Γc contains at least one Af\jeJ.

[The bar in 1) indicates closure, Γc is the set of faces Sa in Λ, complementary to Γ,
considered as a subset of R3.'] We have the crucial identity, for any J, as above

l=Σ«Λ^ (4.5)
X,Γ

where the sum is over pairs (X, Γ) that isolate J. ΓcrX is the union of faces inX not
in Γ. The identity of functions on path space given by Equation (4.5) substituted into
the numerator of Equation (4.2) is exactly the cluster expansion of [1], for a correct
choice of J.

We now must discuss the interpolation of potentials. Given a union of cubes, X,
in Λ, we interpolate the two body potential between its original form, and the
potential with elimination of any interaction between a particle inX and a particle
in A— X. This process introduces a parameter 5. Specifically

l:Qi(x)co(x,y)Qj(y): (4.6)

becomes

ί LxxMxx(y)+χΛ- X(*)XΛ - xiy)+SXX(*)XΛ - x(y)+sχΛ _ x(χ)χx(y)]

:ρi(x)ω(x,y)ρj(y):. (4.7)

For convenience we define 0(X,s) as an operation that carries (4.6) to (4.7). (This
interpolation is the same as the interpolation of covariances in [9].) For an operator
M built up as sums and integrals of objects like (4.6), such as U of (4.3), we have

e-M = e-o(x,o)M+ \ds(d/ds)e-°iX>s)M. (4.8)
o

The differentiation in (4.8) brings down from the exponent an operator that only
involves interactions between particles in X with particles in A —X.

We now describe the cluster expansion. Yl5 Y2,..., Yn is a sequence of non-empty
unions of cubes with disjoint interiors. All the Yt except possibly Yx will be
connected. We also defineX1 = Yί9Xi+ί =XiuYi + 1.Jn=J1^j{j2, ...Jn} with^-.e^.
Any such choice of {Y^ and {/J we denote as a pair (ξn,Jn). There are parameters
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su ...,sn with Orgs^ 1, the ordered set of st will be denoted by σn. The interpolated
potentials U(ξn, σn) are defined inductively

U(ξn9 σn) = O(Xn, sn)U(ξn_u σn_ x). (4.9)

We define

^ ) (4.10)

where the subscript indicates the localization of the interaction to Λji + ί9 this
localization of the term in parentheses then involves interaction between a particle
in Ajι+ι with a particle in Xt.

We consider subsets of faces Γt, Γ1CΓ2C ... CΓn, and define

F(ξn,Jn)=ΣHΓnEΓCnnXn (4.11)

where the sum is over Γn such that the pair (Yh Γt — Γt_ x) isolate^(J^ for i = 1). The
expansion, finally, for (4.2) follows

f rfμ exp( - l/)4/f dμ exp( - [/) = ^K(20 J dμexp( - l^/f ^μ exp( - C7) (4.12)
i y

whereX appearing in the sum is required to contain the union of cubes inJ1. K(X) is
given by

= Σ Σ fΠ \ds)μμF(ξn,Jn)
M = l (ξn,Jn) \ i = l 0 / X

1 ,σ I ,_ 1 )).4. (4.13)

The n = 1 term in the sum is understood as

(4.14)

In the sum over ξn and J n in (4.13), the restrictions mentioned before Equation (4.9)
hold, 2inάXn=X.

The expansion [Eqs. (4.12) and (4.13)] has been developed by iterative ap-
plications of (4.5) and (4.8). We enter a casual discussion to help the reader get a
feeling for how this has been done, and refer to Figures 1 through 7. One desires the
expectation of an operator A located at J 1 ? schematically represented in Figure 1.
The use of Equation (4.5) yields a sum of terms isolating J1. Figure 2 shows a region
Xί containing Jt from this sum. There is a barrier of width 2/10 around the
boundary of this region, along both sides of which particles obey Dirichlet data. If
as in [1] the range of the potentials was less than 2/10 one could stop at this stage, as
there would be no interaction between the interior and exterior regions. We rather
interpolate the interaction between the interior and exterior regions, writing the
result as a term with sί = 0 in which there is no mutual interaction, that contributes
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to the n = 1 term in (4.13), and a differentiated term giving an interaction between
particles at j 2 and the interior ofX^ This is illustrated in Figure 3. (4.5) is used again
to isolate^ in a new component Y2 Figure 4 illustrates the two regions Xλ = Y1 and
y2, together forming X2.

Now particles inside and outside X2 are separated by a barrier, but the potential
still may reach across the barrier. Interpolating again yields a term with no mutual
interaction between the interior and exterior of X2, included in the n = 2 term in
(4.13), and a differentiated term involving interaction between particles at j 3 and
particles inside X2. Figures 5 and 6 illustrate two different possibilities that will be
important to distinguish in the estimates of the next sections. Figure 7 isolates j 3 in
a new region Y3, giving the three regions comprising X3.

If one is familiar with the cluster expansion of [1], the present expansion is
thus quite straightforward, although the notation is complex.

5. Convergence

Define | |Z| | = sup |x-x' | . W e w i l 1 P r o y e

x,x'eX

(5.1)

where c(μo)->c'2 as μo-+ — oo. The convergence of (4.12) is implied by (5.1) and



26 D. Brydges and P. Federbush

Lemma 5.1. if AXCA

\τrΛι(exp(-βHΛi)/ΊτΛ(exp(-βHΛ)\ ^ 1

This is a simple consequence of the Minimax Principle. K(X) is estimated by

Lemma 5.2. Let Bbe a product of r functions on path space each depending on the n-
paths at a single time, then

(5.2)
X

where

ικ-)iιP,x=ίί%ικ )h1/p-

This estimate is a slight generalization of the result in Section 4 of [1]. Further-
more

§dμEdYιu ΛjdYnGxp( — 2U(ξn_1,σn_ι))^:Qxp(c5\X\) (5.3)
x

by the hypothesis b) for the Hamiltonian, combined with the observation that the
left hand side of (5.3) is the trace of the exponential of a convex combination of
operators of the form

U Yi U r .

lfeSl © ...

where (S1,..., Sr) is a partition of (1,2,..., ή).
This is a very helpful feature of the expansion we are using.
We next describe the choice of B in Lemma 5.2. Let η be a map from {1,2,..., n

-1} into itself such that η(i)^i for i = l, ...,n —1. Let (F(ί)), 'f 7 be the interaction
potential energy of paths in Δp at time ί with paths inzl^ at time ί. The definition
(4.10) is equivalent to

W(ξn_1,Jn,σn_1)=(lγi$c
\ ί = l 0 / ι/

Λ Σ - ., ieΣ _ π W ) k Λ + 1 (5.4)

n-ί

where j e 7 means ΛjCY and f(η,σn-2)= Π si-isi-2'" s

η(iy ^Y convention

s f_! ...s^(ί) = l if η(ϊ) = i. Thus we choose B in Lemma 5.2 to be A Y[{V(ti))j'iji + 1.
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\\F(ξn,Jn)B\\2iχ is estimated by the Holder inequality. We write (with a simplified

notation) F-B=F Aγ[ Vb and further decompose the product

F-B=F-Al\EexYi
i

using the fact that FEex.=F. Thus

il6 is treated as in [1] [see Eq. (4.4)]. The following two lemmas handle the other
two terms.

Lemma 5.3.

with c7(μ0)—>oo asμo-> — oo.

This is a simple consequence of the result in Appendix D in [1].

Lemma 5.4. Assume Δj., ί = 1,..., n— 1, are paίrwίse distinct, then

ί = l 6,X

n-1

i= 1

c'2<c'2, c3(μo)—>0 as μo-> — oo. dist(j'J)= inf |x' — x\.

c2 may be chosen close to c'2 at the expense of c3(μ0) which can be tolerated
more when |μo | is very large. This leads to c(μo)-+c'2 in (5.1) and c(μι )->c2 in Theo-
rem 2 as μo-> — oo. Lemma 5.4 is proved in the appendix. The hypothesis (3.1)
is essential to the proof of this lemma.

On collecting these estimates, we obtain

n=l η

Yu - , Yn

(5.5)

where Yf is restricted by Yt3ji9 Yn{i)3J'b J^-i =(J'u ••• Jn-x)- ^ o H 0 0 a s μ 0 - ^ - o o ,
c9(μ0)-^0 as μo -> — oo. The factor exp( — c(μQ)D) has been obtained at the expense of
the constants c'A, c8(μ0), c9(μ0), and c'2 <c2.

We perform the sum over JJ,_ l5 JΠJ 71 ?..., 7n in the following order

Σf Σ Σ Σ )•••( Σ Σ Σ ) (5-6)



12 otherwise

28 D. Brydges and P. Federbush

and by the estimates

ir.ΔJA if /'=1

(5.7)

(5.8)

deduce

Σ \K(X)\ ^ c"A exp( - c(μ0) D) Σ c\- \μ0) sup
\\X\\^D n=l l y i l l ^ - i |

' exp(- "Σ \Ytί]Σίd^-iMσn_2)\Yηil)\... \Yηin_1}\ (5.9)
\ f = i In

where c15(μo)->0 as μo-» — oo. The proof of (5.1) is completed by

Lemma 5.5. Given ut, ...,un_1^0, n arbitrary,

/ π - l

Proof of Lemma 5.5. Σ\dσn_J{η,σn_2)un{1)... uη{n_ί}

n

1 1

0 0 η

in-\ i \

* e χ p Σ Σ si-~skUk)'
\ i = l k = l /

Perform the s integrals in the indicated order using

1

j dsv exp(st ) ̂  exp(^)
o

for v^O. Lemma 5.5 is the result. We are indebted to [9] for this procedure.

Appendix

Proof of Lemma 5.4, namely:

n-1 II

Π EdXι{V{tϊ))jUtA

n- 1

i-Î D Π C3(μo)exp( —c'2dist(/ίjί+1)) (A.I)

under the condition that Aji + ι are pairwise distinct for ί = 1,2,..., n — 1. c"2 < c'2 and
c3(μ0)^0 as μo-> — oo.
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As a function on path space

/ί,Λ +1))

.„'<) (A.2)

where ρ(Δ, 0 = Σ ί d3xχΛ(x)Qk(x) with χ^ denoting the characteristic function of A.

Inequality (A.2) follows from the hypothesis (3.3). By combining (A.2) with

ί = l

(A.3)

where c3(μo)->0 as μo-> — oo and n(Aj) = \{A jr.fi =j, i= 1,..., n— 1}| + 1, the proof of
(A.I) is completed. c'2 is constrained to be strictly less than c'2 because some
configurations of Aj; lead to large values of n(Δj) for some/s, and these are to be
controlled by a factor

using the hypothesis that the cubes Δji + ί are pairwise distinct.

Proof of (A3). Write the left hand side of (A.3) in terms of a trace of products of
annihilation and creation operators and evaluate it as a sum of quantities labelled
by graphs by using

TrJΓexp \-\Hl{τ)dτ )Ylψ*(xk,tk)

= Tr x(exp(-/
γeP

-\Hx(τ)d, (A.4)

where 0 # is either φ or φ , P runs over all possible partitions of {1,2, ...,p} into
unordered pairs 7 = (y1,y2) The times ίfc5 as usual, are dummy and serve only to
define the ordering of the operators. If ίyι 4= ίγ2 the corresponding trace in the right
hand side of (A.4) vanishes. It also vanishes if φ * , φf are both φ's or both φ"'s. The
remaining cases satisfy

Γexp - f Hx(τ)dτ φk(x, t)φk(x', f)

/Ύrx(exp(-βHx))

where

q(x — x', t — t', μ0) if t' < t

q(x-x',-t + t' + βo,μo) if f>t
(A.5)

• exp( - t(k2 - - exp( - β(k2 - (A.6)
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This may be seen by noting that the left hand side of (A.5) is the measure of paths
going from x to y in times t-t' + nβ if t — t'>0, -t + t' + (n + l)β if t — t'<0,
n = 0,1,.... The paths are constrained to remain in X for these times. This is
majorized by the path integral obtained by giving away the restriction that the
paths remain in X. The latter, by explicit computation, is equal to the right hand
side of (A.6).

The analyticity properties of the integrand in (A.6) show that q(x, t, μ0) decays
exponentially in |x| away from zero, uniformly in t. Using this, the graphs arising in
the evaluation of the left hand side of (A.3) may be counted using the method of
Dimock and Glimm, [2], Lemma 2.6. Individual graphs may be estimated in terms
of local L2 norms [e.g., see (A.7) below] of (A.5) by the Cauchy Schwarz inequality.
The reader is referred to [2] for more details. The constant c3(μ0) in (A.3) is obtained
by keeping track of the μ0 dependence of the local L2 norms.

J γ
, μ 0 ) l 2 ] 1 / 2 . (A.7)
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