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ABSTRACT

We explore the cosmological implications of anisotropic clustering measurements in config-

uration space of the final galaxy samples from Data Release 12 of the Sloan Digital Sky

Survey III Baryon Oscillation Spectroscopic Survey. We implement a new detailed modelling

of the effects of non-linearities, bias and redshift-space distortions that can be used to extract

unbiased cosmological information from our measurements for scales s � 20 h−1 Mpc. We

combined the information from Baryon Oscillation Spectroscopic Survey (BOSS) with the

latest cosmic microwave background (CMB) observations and Type Ia supernovae samples

and found no significant evidence for a deviation from the � cold dark matter (�CDM)

cosmological model. In particular, these data sets can constrain the dark energy equation-

of-state parameter to wDE = −0.996 ± 0.042 when to be assumed time independent, the

curvature of the Universe to �k = −0.0007 ± 0.0030 and the sum of the neutrino masses to∑
mν < 0.25 eV at 95 per cent confidence levels. We explore the constraints on the growth rate

of cosmic structures assuming f(z) = �m(z)γ and obtain γ = 0.609 ± 0.079, in good agreement

with the predictions of general relativity of γ = 0.55. We compress the information of our

clustering measurements into constraints on the parameter combinations DV(z)/rd, FAP(z) and

fσ 8(z) at zeff = 0.38, 0.51 and 0.61 with their respective covariance matrices and find good

agreement with the predictions for these parameters obtained from the best-fitting �CDM

model to the CMB data from the Planck satellite. This paper is part of a set that analyses the

final galaxy clustering data set from BOSS. The measurements and likelihoods presented here

are combined with others by Alam et al. to produce the final cosmological constraints from

BOSS.

Key words: cosmological parameters – large-scale structure of Universe.

1 IN T RO D U C T I O N

Measurements of the large-scale clustering of galaxies offer a pow-

erful route to obtain accurate cosmological information (Davis &

⋆ E-mail: arielsan@mpe.mpg.de

Peebles 1983; Maddox et al. 1990; Tegmark et al. 2004; Cole et al.

2005; Eisenstein et al. 2005; Anderson et al. 2012, 2014a,b). Two-

point statistics such as the power spectrum, P(k), and its Fourier

transform, the two-point correlation function ξ (s), have been the

preferred tools for analyses of the large-scale structure (LSS) of

the Universe. The shape of these measurements can be used to

constrain the values of several cosmological parameters, providing
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Anisotropic clustering in the completed BOSS 1641

clues about the nature of dark energy, potential deviations from the

predictions of general relativity (GR), the physics of inflation, neu-

trino masses, etc. (Percival et al. 2002, 2010; Tegmark et al. 2004;

Sánchez et al. 2006, 2009, 2012; Blake et al. 2011; Parkinson et al.

2012).

A particularly important source of cosmological information con-

tained in the large-scale galaxy clustering pattern is the signature

of the baryon acoustic oscillations (BAO), which are the vestige

of acoustic waves that propagated through the photon–baryon fluid

prior to recombination. The BAO signature was first detected by

Eisenstein et al. (2005) in the correlation function of the luminous

red galaxy sample of the Sloan Digital Sky Survey (SDSS; York

et al. 2000), where it can be seen as a broad peak on large scales

(Matsubara 2004), and by Cole et al. (2005) in the power spectrum

of the

Two-degree Field Galaxy Redshift survey (Colless et al. 2001,

2003), where it appears as a series of wiggles (Eisenstein & Hu

1998; Meiksin, White & Peacock 1999). The position of the peak

in the correlation function and the wavelength of the oscillations

in the power spectrum closely match the sound horizon scale

at the drag redshift, rd ≃ 150 Mpc. This means that the BAO

scale inferred from the clustering of galaxies in the directions

parallel and perpendicular to the line of sight can be used as a

standard ruler to measure the Hubble parameter, H(z), and the

angular diameter distance, DM(z), through the Alcock–Paczynski

(AP) test (Alcock & Paczynski 1979; Blake & Glazebrook 2003;

Linder 2003).

As the AP test cannot be applied to angle-averaged cluster-

ing measurements, the full power of the BAO signal can only

be exploited by means of anisotropic clustering measurements.

That means measurements of the full two-dimensional correlation

function or power spectrum (Wagner, Müller & Steinmetz 2008;

Shoji, Jeong & Komatsu 2009), their Legendre multipole moments

(Padmanabhan & White 2008) or the clustering wedges statistic

(Kazin, Sánchez & Blanton 2012). These measurements are affected

by redshift-space distortions (RSD) due to the peculiar velocities of

the galaxies along the line of sight, which are significantly larger

than the geometric distortions due to the AP effect and must be

accurately modelled to avoid introducing systematic errors in the

obtained constraints. However, more than a complication for the

application of the AP test, RSD provide additional cosmological

information, as they can be used to constrain the growth rate of

cosmic structures (Guzzo et al. 2008). In this way, thanks to the

joint information from BAO and RSD, anisotropic clustering mea-

surements can provide information on the expansion history of the

Universe and the growth rate of density fluctuations, which is es-

sential to distinguish between dark energy and modified gravity as

the driver of cosmic acceleration.

Previous analyses of anisotropic clustering measurements based

on data from the SDSS-III (Eisenstein et al. 2011) Baryon Oscil-

lation Spectroscopic Survey (BOSS; Dawson et al. 2013), clearly

illustrated their constraining power (Anderson et al. 2014a,b; Reid

et al. 2012; Chuang et al. 2013; Samushia et al. 2013, 2014; Beutler

et al. 2014). In particular, Sánchez et al. (2013, 2014) explored the

cosmological implications of the full shape of measurements of two

clustering wedges based on the galaxy samples of BOSS Data Re-

lease 11 (DR11). In this paper, we extend these analyses to the final

galaxy samples from BOSS, corresponding to SDSS DR12 (Alam

et al. 2015). The volume probed by DR12 is only ∼10 per cent

larger than that of DR11. For this reason, we focus on improving

our analysis methodology in order to maximize the cosmological

information extracted from the sample. We make use of the joint

information of the LOWZ and CMASS galaxy samples into the

combined BOSS sample described in Reid et al. (2016), increasing

the effective volume of the survey with respect to the separate anal-

ysis of these samples (Alam et al. 2016). We also use state-of-the-art

models of the effect of non-linearities, bias and RSDs that allow us

to extend our analysis of the full shape of the clustering wedges to

smaller scales. We perform extensive tests of the performance of

our methodology on N-body simulations and mock catalogues and

find precise and accurate constraints.

Our analysis is part of a series of papers examining the informa-

tion in the anisotropic clustering pattern of the combined sample of

BOSS DR12. Salazar-Albornoz et al. (2016) perform a tomographic

analysis of the clustering properties of this sample by means of angu-

lar correlation functions in thin redshift shells. Grieb et al. (2016b)

use the same description of non-linearities, bias and RSD used in

our analysis to extract cosmological information from the full shape

of three clustering wedges measured in Fourier space. Satpathy et al.

(2016) use a model based on convolution Lagrangian perturbation

theory (Carlson, Reid & White 2013; Wang, Reid & White 2014)

and the Gaussian streaming model (Scoccimarro 2004; Reid &

White 2011) to fit the full shape of the monopole and quadrupole

of the two-point correlation function, ξ 0, 2(s). Beutler et al. (2016a)

apply a model based on Taruya, Nishimichi & Saito (2010) to the

power spectrum multipoles Pℓ(k) for ℓ = 0, 2, 4. Tinker et al. (in

preparation) present a comparison of the results of different RSD

analysis techniques. Ross et al. (2016) and Beutler et al. (2016b) per-

form BAO-only fits to the Legengre multipoles of order ℓ = 0, 2 of

the two-point functions in configuration and Fourier space obtained

after the application of the reconstruction technique (Eisenstein

et al. 2007; Padmanabhan et al. 2012) as described in Cuesta et al.

(2016). The potential systematics of these BAO-only measurements

are discussed in Vargas-Magaña et al. (2016). Alam et al. (2016)

use the methodology described in Sánchez et al. (2016) to combine

the results presented here with those of the other full-shape and

BAO-only analyses into a final set of BOSS consensus constraints

and explore their cosmological implications.

The outline of this paper is as follows. In Section 2, we describe

our galaxy sample, the procedure we follow to measure the cluster-

ing wedges and the mock catalogues used to compute our estimate

of their covariance matrices. Our model of the full shape of the clus-

tering wedges is described in Section 3.1, together with the tests

we have performed by applying it to N-body simulations and mock

catalogues. In Section 4, we study the cosmological implications

of our clustering measurements. After describing our methodology

to obtain cosmological constraints in Section 4.1, Sections 4.2–4.6

describe the results we obtained from different combinations of data

sets and parameter spaces. In Section 5, we compress the informa-

tion of the BOSS clustering wedges into geometric constraints and

measurements of the growth of structure. Finally, we present our

main conclusions in Section 6.

2 T H E BA RYO N O S C I L L AT I O N

SPECTROSCOPI C SURVEY

2.1 Galaxy clustering measurements from BOSS

We use the final galaxy samples of BOSS, corresponding to SDSS

DR12 (Alam et al. 2015). The catalogue is divided into two sam-

ples, called LOWZ and CMASS, which were selected on the basis of

the SDSS multicolour photometric observations (Gunn et al. 1998,

2006) to cover the redshift range 0.15 < z < 0.7 with a roughly uni-

form comoving number density n ≃ 3 × 10−4 h3 Mpc−3 (Eisenstein

MNRAS 464, 1640–1658 (2017)
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et al. 2011; Dawson et al. 2013). After identifying the galaxies with

previous spectroscopic observations from the SDSS I/II surveys

(York et al. 2000), the remaining redshifts were measured from the

spectra obtained with the BOSS spectrographs (Smee et al. 2013)

as described in Aihara et al. (2011) and Bolton et al. (2012).

The CMASS sample is approximately complete down to a lim-

iting stellar mass of M ≃ 1011.3 M⊙ for z > 0.45 (Maraston et al.

2013), with an ∼10 per cent satellite fraction (White et al. 2011;

Nuza et al. 2013). Although it is dominated by early-type galax-

ies, ∼26 per cent of this sample consist of massive spirals showing

star formation activity in their spectra (Masters et al. 2011; Thomas

et al. 2013). The LOWZ sample consists primarily of red galaxies

located in massive haloes, and has ∼12 per cent satellite fraction

(Parejko et al. 2013). As described in Reid et al. (2016), a few re-

gions of the LOWZ sample in the Northern Galactic Cap (NGC)

were targeted using different photometric cuts, leading to a reduc-

tion of the galaxy number density. The obtained galaxy samples,

which cover approximately 1000 deg2, are labelled LOWZE2 and

LOWZE3.

Previous clustering analyses of BOSS data have made use of the

LOWZ and CMASS samples separately, excluding the LOWZE2

and LOWZE3 regions. Here, we use the full BOSS data set by

combining all these samples as described in Reid et al. (2016).

We follow Alam et al. (2016) and split this combined sample into

three overlapping redshift bins of roughly equal volume defined by

0.2 < z < 0.5, 0.4 < z < 0.6 and 0.5 < z < 0.75.

We study the clustering properties of the combined BOSS galaxy

sample by means of the clustering wedges statistic (Kazin et al.

2012), ξμ2
μ1

(s), which corresponds to the average of the full two-

dimensional correlation function ξ (μ, s), where μ is the cosine

of the angle between the separation vector s and the line-of-sight

direction, over the interval 
μ = μ2 − μ1, that is,

ξμ2
μ1

(s) ≡
1


μ

∫ μ2

μ1

ξ (μ, s) dμ. (1)

Sánchez et al. (2013, 2014) used two wide clustering wedges, divid-

ing the μ range from 0 to 1 into two equal-width intervals. Here, we

measure three wedges, which we denote by ξ 3w(s) and refer to each

individual wedge as ξ 3w, i(s) for the intervals (i − 1)/3 < μ < i/3.

In practice, the value of μ of a given galaxy pair is estimated as

the cosine of the angle between the separation vector, s, and the

line-of-sight direction at the mid-point of s.

The observed galaxy redshifts are converted into distances using

the same fiducial cosmology as in our companion papers, a flat �

cold dark matter (�CDM) model with a matter density parameter

�m = 0.31. This choice is taken into account in our modelling

as described in Section 3.2. We compute the full two-dimensional

correlation function ξ (μ, s) of the combined sample in each redshift

bin using the estimator of Landy & Szalay (1993). We employ a

random catalogue following the same angular and radial selection

function as the combined sample but containing 50 times more

objects. We compute the clustering wedges by averaging the full

ξ (μ, s) over the corresponding μ intervals. As in our companion

papers, we use a bin size of ds = 5 h−1 Mpc.

We assign a series of weights to each object in our galaxy and

random catalogues. First, we apply a weight designed to minimize

the variance of our measurements (Feldman, Kaiser & Peacock

1994) given by

wr(x) =
1

1 + Pwn̄(x)
, (2)

where n̄(x) is the expected number density of the catalogue at a

given position x and Pw is a scale-independent parameter, which

we set to Pw = 104 h−3 Mpc3. This choice is motivated by the

fact that this value is close to the amplitude of the BOSS power

spectrum at k = 0.14 h Mpc−1, which is the effective scale suggested

by Font-Ribera et al. (2014) to use for BOSS BAO measurements.

The galaxy catalogue also includes weights to account for redshift

failures and fibre collisions. The LOWZE2, LOWZE3 and CMASS

samples require additional weights to correct for the systematic

effect introduced by the local stellar density and the seeing of the

observations, as described in detail in Ross et al. (2016). Fig. 1 shows

the resulting wedges ξ 3w(s) of the DR12 combined sample in our

three redshift bins as a function of the pair separation expressed

in Mpc and Mpc h−1 in the lower and upper axes, respectively.

These measurements and their corresponding covariance matrices

(see Section 2.2) are publicly available.1 The signature of the BAO

is clearly visible in all wedges at s ≃ 150 Mpc. The anisotropic

clustering pattern generated by RSDs leads to significant differences

in the amplitude and shape of the three wedges. The solid lines in

the same figure correspond to the best-fitting models obtained as

described in Section 5.

2.2 Covariance matrix estimation

We assume a Gaussian likelihood function for our BOSS clustering

measurements given by

−2 lnL(ξ |θ ) =
(
ξ − ξ theo(θ)

)t
�

(
ξ − ξ theo(θ )

)
, (3)

where ξ is an array containing the measured clustering wedges and

ξ theo(θ ) corresponds to our theoretical modelling of these data for

the cosmological parameters θ . The evaluation of the likelihood

function requires the knowledge of the inverse of the covariance

matrix, � = C−1, also known as the precision matrix, which we es-

timate using the MULTIDARK-PATCHY(MD-PATCHY) BOSS mock galaxy

catalogues described in Kitaura et al. (2016a). These mocks consist

of a set of Nm = 2045 independent realizations of the final BOSS

combined sample, corresponding to the best-fitting �CDM cos-

mology to the Planck 2013 cosmic microwave background (CMB)

measurements (Planck Collaboration XVI 2014). We computed the

wedges ξ 3w(s) of each mock catalogue in the same way as for

the real BOSS data, and used these measurements to obtain an

estimate of the full covariance matrix Ĉ of our clustering measure-

ments. The error bars in Fig. 1 correspond to the square root of the

diagonal entries of Ĉ.

As a test of the robustness of our results with respect to the de-

tails in the estimation of the covariance matrix, we also used an

independent set of 1000 Quick Particle Mesh (QPM; White, Tinker

& McBride 2014) mock realizations of the BOSS combined sam-

ple. The covariance matrices inferred from the QPM and MD-PATCHY

mocks are consistent and lead to similar results. However, as the

MD-PATCHY mock samples give a somewhat better match to the clus-

tering properties of the BOSS combined sample than QPM (Kitaura

et al. 2016a) and have a significantly larger number of realizations,

we based our final constraints on the covariance matrices inferred

from these mock catalogues.

Our estimates of the covariance matrix are affected by sampling

noise due to the finite number of mock catalogues. Recent studies

have provided a clear description of the dependence of the noise in

the estimated covariance matrix on the number of mock catalogues

1 https://www.sdss3.org/science/boss_publications.php

MNRAS 464, 1640–1658 (2017)
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Anisotropic clustering in the completed BOSS 1643

Figure 1. Clustering wedges in the directions parallel (blue) intermediate (green) and transverse (red) to the line of sight measured from the combined galaxy

sample of BOSS DR12 in our three redshift bins, as a function of the pair separation expressed in Mpc and h−1 Mpc in the lower and upper axes, respectively.

The error bars correspond to the dispersion of the results inferred from a set of Nm = 2045 mock catalogues of the full BOSS survey. The solid lines correspond

to the best-fitting model to these measurements obtained as described in Section 5.

used (Taylor, Joachimi & Kitching 2013), its propagation to the de-

rived parameter uncertainties (Dodelson & Schneider 2013; Taylor

& Joachimi 2014) and the correct way to include this additional

uncertainty in the obtained constraints (Percival et al. 2014).

The first effect that must be taken into account is that when the

covariance matrix is estimated from a set of independent realiza-

tions, the uncertainties in Ĉ and its inverse follow the Wishart and

inverse-Whishart distributions (Wishart 1928), respectively. As the

inverse-Whishart distribution is asymmetric, the inverse of Ĉ pro-

vides a biased estimate of �. This can be corrected for by including

a prefactor in the estimate of the precision matrix as (Kaufman

1967; Hartlap, Simon & Schneider 2007)

�̂ =
(

1 −
Nb + 1

Nm − 1

)
Ĉ

−1
, (4)

where Nb corresponds to the total number of bins in our measure-

ments. We restrict our analysis to 20 h−1 Mpc < s < 160 h−1 Mpc

with a bin-width of ds = 5 h−1 Mpc, leading to Nb = 84 for our

three clustering wedges. As our estimates of the covariance matrix

are based on the Nm = 2045 MD-PATCHY mock catalogues, the factor

of equation (4) is equal to 0.96.

Although the estimate of the precision matrix �̂ of equation (4)

is unbiased, it is still affected by noise, which should be propagated

into the obtained cosmological constraints. Percival et al. (2014)

derived formulae for their impact on the errors of the cosmological

constraints measured by integrating over the likelihood function.

They demonstrated that, to account for this extra uncertainty, the

recovered parameter constraints must be rescaled by a factor that

depends on Nb, Nm and the number of parameters included in the

analysis, Np (see equation 18 in Percival et al. 2014). Depending on

the parameter space, our choice of range of scales and binning leads

to a modest correction factor of at most 1.6 per cent for the results

inferred from the clustering wedges. The additional uncertainty

due to the finite number of mock catalogues could be reduced

by implementing techniques such as covariance tapering (Paz &

Sánchez 2015) but, as the impact on our constraints is small, we

simply include the correction factor of Percival et al. (2014) in our

results.

3 TH E M O D E L

3.1 Modelling non-linear gravitational evolution, bias

and RSD

The prediction of the clustering wedges for a given cosmology

requires a model of the full two-dimensional correlation function

ξ (μ, s). It is convenient to express ξ (μ, s) as a linear combination

of Legendre polynomials, Lℓ(μ), as

ξ (μ, s) =
∑

even ℓ

Lℓ(μ)ξℓ(s), (5)

where the multipoles ξ ℓ(s) are given by

ξℓ(s) ≡
2ℓ + 1

2

∫ 1

−1

Lℓ(μ)ξ (μ, s) dμ. (6)

In order to obtain a description of the multipoles ξ ℓ(s), it is useful

to work with the two-dimensional power spectrum, P(μ, k). This

quantity can also be decomposed in terms of Legendre polynomials,

with multipoles given by

Pℓ(k) ≡
2ℓ + 1

2

∫ 1

−1

Lℓ(μ)P (μ, k) dμ, (7)

from which the multipoles ξ ℓ(s) can be obtained as

ξℓ(s) ≡
iℓ

2π
2

∫ ∞

0

Pℓ(k)jℓ(ks) k2dk, (8)

where jℓ(x) is the spherical Bessel function of order ℓ.

An accurate model of the full shape of P(μ, k) must take into

account the effects of the non-linear evolution of density fluctua-

tions, galaxy bias and RSD. We now describe how each of these

distortions is taken into account in our model.

3.1.1 Non-linear dynamics

The accurate modelling of the effects of the non-linear evolution

of density fluctuations has been the focus of significant work over

the last decade or so. In renormalized perturbation theory (RPT;

Crocce & Scoccimarro 2006) and subsequent developments in

terms of the multipoint propagator expansion (Bernardeau, Crocce

MNRAS 464, 1640–1658 (2017)
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& Scoccimarro 2008, 2012; Crocce, Scoccimarro & Bernardeau

2012; Taruya et al. 2012; Taruya, Nishimichi & Bernardeau 2013;

Bernardeau, Taruya & Nishimichi 2014), the matter power spectrum

is written as

PNL(k) = PL(k) G(k)2 + PMC(k), (9)

where the propagator G(k) corresponds to a resummation of all the

terms in the perturbation expansion that are proportional to the linear

spectrum PL(k), and PMC(k) contains mode-coupling contributions

(which at N loops involve convolutions over N linear spectra). To an

excellent approximation for CDM spectra, the propagator describes

the damping of the BAO, while the mode-coupling power describes

the shift of the BAO scale (Crocce & Scoccimarro 2008; Seo et al.

2010). Using e.g. the one-loop approximation to the mode-coupling

power in this approach has a limited reach in k (see e.g. Crocce et al.

2012), which is mainly set by the breaking of Galilean invariance

(Scoccimarro & Frieman 1996) due to the fact that the propagator

is resummed while the mode-coupling power is not. Here, we fol-

low the approach of Crocce, Blas & Scoccimarro (in preparation),

who uses Galilean invariance to find a resummation of the mode-

coupling power consistent with the resummation of the propagator.

With this approach, dubbed gRPT, it is possible to obtain an

improved description down to smaller scales, k � 0.25 h Mpc−1

for the uncertainties involved in our measurements, see Section 3.3.

3.1.2 Galaxy bias

To describe the clustering of galaxies, we write the bias relation

between the matter density fluctuations δ and the galaxy density

fluctuations, δg, as in Chan, Scoccimarro & Sheth (2012)

δg = b1δ +
b2

2
δ2 + γ2 G2 + γ −

3 
3G + · · · , (10)

where at cubic order the only term that contributes to the one-loop

galaxy power spectrum through the first two multipoint propagators

has been written down. The operators G2 and 
3G are defined as

G2(
v) = (∇ij
v)2 − (∇2
v)2, (11)

and


3G = G2(
) − G2(
v), (12)

where 
 and 
v are the normalized density and velocity potentials

∇2
 = δ and ∇2
v = θ .

A few points about the bias relation in equation (10) are worth

making here. First, under local Lagrangian bias, the non-local bias

parameters are related to the linear bias b1 as (Fry 1996; Catelan

et al. 1998; Catelan, Porciani & Kamionkowski 2000; Chan et al.

2012)

γ2 = −
2

7
(b1 − 1), (13)

γ −
3 =

11

42
(b1 − 1). (14)

Secondly, while there is no compelling argument for the validity

of local Lagrangian bias (Sheth, Chan & Scoccimarro 2013), a

bispectrum analysis of dark matter haloes shows that the γ 2(b1)

relation in equation (13) is at least a reasonable first approximation

(Baldauf et al. 2012; Chan et al. 2012; Sheth et al. 2013; Saito et al.

2014; Bel, Hoffmann & Gaztañaga 2015). In our context here this

is particularly relevant given that in this work we use two-point

statistics alone, which do not constrain γ 2 that well. Therefore,

we assume the γ 2(b1) relation in equation (13). We have in fact

checked relaxing this assumption, using CMASS-type galaxies in

the MINERVA simulations (discussed below), and it does not bias our

results.

Finally, the situation is somewhat different for the γ −
3 parameter,

and we do not assume the γ −
3 (b1) relation in equation (14) for a

number of reasons. First, the linear bias b1 is the only bias param-

eter that receives significant signal to noise over a broad range of

scales, as opposed to the rest of the terms in equation (10) that

only enter through loop corrections for our two-point function only

analysis. Therefore, one should in principle include the running of

b1 with scale, which corresponds to adding a ∇2δ term in equation

(10). However, such term is fairly degenerated with the contribution

coming from γ −
3 (McDonald & Roy 2009; Biagetti et al. 2014; Saito

et al. 2014), and thus provided we let γ −
3 (and b2 as well) be free

one can absorb such contributions given the range of scales consid-

ered in our analysis. The same holds for stress tensor contributions

to dark matter clustering (Pueblas & Scoccimarro 2009; Baumann

et al. 2012; Carrasco, Hertzberg & Senatore 2012; Pietroni et al.

2012) that are fully degenerated with the running of the linear bias.

Summarizing, our bias model has three free parameters corre-

sponding to b1, b2, γ
−
3 , with γ 2 given in terms of b1 by the local

Lagrangian bias relation in equation (13). For detailed expressions

of the galaxy power spectrum that follows from the equations men-

tioned above, see Appendix A.

3.1.3 Redshift-space distortions

We base our description of the redshift-space power spectrum on

(Scoccimarro, Couchman & Frieman 1999)

P (k, μ) =
∫

d3r

(2π)3
e−ik·r W (λ, r)

[
〈eλ
uzDsD

′
s〉c

+ 〈eλ
uzDs〉c + 〈eλ
uzD′
s〉c

]
, (15)

where λ = ifkμ, W (λ, r) = 〈eλ
uz 〉c is the generating function of

velocity differences, and Ds ≡ δg + f∇zuz, with a prime denoting

a quantity at x′ instead of x, and r = x − x′. In the Gaussian

approximation, the generating function can be written as

WG(λ, r) = eλ2(σ 2
v −ψ⊥+ν2
ψ), (16)

where ψ⊥ = (I0 + I2)/3, 
ψ = I2, σ 2
v = ψ⊥(0) and

Iℓ(r) ≡
∫

d3k jℓ(kr)
P (k)

k2
. (17)

In the large-scale limit WG(λ, r → ∞) = eλ2σ 2
v becomes scale in-

dependent. However, as pointed out in Scoccimarro (2004), it is

necessary to include non-linear corrections to this factor, which

correspond mostly to fingers-of-God (FOG) or virial motions, since

the large-scale limit of the velocity distribution function is not Gaus-

sian. Therefore, instead of WG(λ, r → ∞) we use,

W∞(λ) =
1√

1 − λ2a2
vir

exp

(
λ2σ 2

v

1 − λ2a2
vir

)
, (18)

where avir is a free parameter that describes the contribution of

small-scale velocities and characterizes the kurtosis of the velocity

distribution, while σ v is predicted as above. This is thus the form

of our FOG factor, which can be obtained by resumming quadratic

non-linearities as advocated in Scoccimarro (2004). To calculate the

expression in square brackets (whose Fourier transform corresponds
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Anisotropic clustering in the completed BOSS 1645

roughly to a ‘no-virial’ power spectrum), we use the one-loop ap-

proximation:

Pnovir(k, μ) =
∫

d3r

(2π)3
e−ik·r

[
〈DsD

′
s〉c + λ〈
uzDsD

′
s〉c

+ λ2〈
uzDs〉c〈
uzD
′
s〉c

]
. (19)

Therefore, the result for the redshift-space power spectrum is given

by

P (k, μ) = W∞(if kμ) Pnovir(k, μ), (20)

and multipoles can be obtained directly by integrating this equation

against Legendre polynomials Lℓ(μ) as in equation (7). We now

briefly describe how we calculate each of the terms in equation

(19). A more detailed description of the involved terms can be

found in Appendix A.

The first term involving 〈DsD
′
s〉c is simply the non-linear version

of the well-known Kaiser formula (Kaiser 1987),

P (1)
novir(k, μ) = Pgg(k) + 2f μ2Pgθ (k) + f 2μ4Pθθ (k). (21)

Assuming that there is no velocity bias, Pθθ (k) can be obtained

directly from the predictions of gRPT. Appendix A contains explicit

formulae for Pgg(k) and Pgθ (k).

The term involving 〈
uzDsD
′
s〉c in equation (19) is to leading

order given by the tree-level bispectrum between densities and ve-

locities as

P (2)
novir(k, μ) =

∫
qz

q2

[
BθDsDs

(q, k − q, −k)

+ BθDsDs
(q, −k, k − q)

]
, (22)

with the bispectra given by standard tree-level PT for densities and

velocities in terms of the F2 and G2 kernels and bias parameters b1,

b2, γ 2.

The term 〈
uzDs〉c〈
uzD
′
s〉c in equation (19) is already

quadratic in the power spectrum, so this can be evaluated using

linear perturbation theory. We then have

P (3)
novir(k, μ) =

∫
qz

q2

(kz − qz)

(k − q)2

(
b1 + f μ2

q

) (
b1 + f μ2

k−q

)

×Pδθ (k − q)Pδθ (q)d3q. (23)

The closest redshift-space model in the literature to ours (Taruya

et al. 2010; Beutler et al. 2014) also starts from equation (15).

Our approach has three main differences, namely, we include non-

linear bias contributions coming from b2 and γ 2 to the bispectra

in equation (22), our FOG factor equation (18) is non-Gaussian,

we let γ −
3 be a free parameter (instead of being fixed to its local

Lagrangian bias value), and we use gRPT to calculate matter loops

instead of RegPT (which is not Galilean invariant). In summary, note

that our redshift-space model has a single free parameter, avir. It can

be considered as the large-scale limit to a more complete model in

which the velocity dispersion is considered to be scale dependent

and other small-scale effects are taken into account (Scoccimarro,

in preparation). The main reason for these simplifications is that

the model as presented here can be numerically evaluated very

efficiently for cosmological parameter estimation.

3.2 The Alcock–Paczynski effect

As described in Section 2, clustering measurements from real galaxy

catalogues depend on the assumption of a fiducial cosmology used

to transform the observed redshifts into comoving distances. As-

suming a fiducial cosmology that deviates from the true underlying

one leads to a rescaling of the components parallel and perpendic-

ular to the line of sight, s‖ and s⊥, of the total separation vector s

between two galaxies as (Padmanabhan & White 2008; Kazin et al.

2012)

s⊥ = q⊥s ′
⊥, (24)

s‖ = q‖s
′
‖, (25)

where the primes denote the quantities in the fiducial cosmology

and the scaling factors are given by the ratios of the angular di-

ameter distance and the Hubble parameter in the true and fiducial

cosmologies at the mean redshift of the sample, zm, as

q⊥ =
DM(zm)

D′
M(zm)

, (26)

q‖ =
H ′(zm)

H (zm)
. (27)

Equations (24) and (25) are the basis of the AP test (Alcock &

Paczynski 1979), which allows for anisotropic BAO measurements

(Blake & Glazebrook 2003; Hu & Haiman 2003; Linder 2003).

In terms of s and μ, these equations can be written as (Ballinger,

Peacock & Heavens 1996)

s = s ′q(μ′), (28)

μ = μ′ q‖

q(μ′)
, (29)

where

q(μ) =
[
q2

‖ (μ′)2 + q2
⊥(1 − (μ′)2)

]1/2
. (30)

The scaling factors of equations (26) and (27) are often denoted

α⊥, ‖. However, we will reserve that notation for the combination of

these purely geometric quantities with the sound horizon ratios in

the fiducial and true cosmology, as described in Alam et al. (2016).

For historical reasons, most clustering measurements are expressed

in units of h−1 Mpc. As the value of h of a given cosmological model

will in general be different from that of the fiducial cosmology, the

ratios of equations (26) and (27) must also be computed in these

units.

Before comparing the predictions of a given cosmological model

with our BOSS clustering measurements, we use equations (28) and

(29) to transform our model of ξ (μ, s) to the fiducial cosmology

assumed in their estimation by expressing the integral in equation

(1) as

ξ ′μ2
μ1

(s ′) ≡
1

μ′
2 − μ′

1

∫ μ′
2

μ′
1

ξ (μ(μ′, s ′), s(μ′, s ′)) dμ′. (31)

3.3 Performance of the model

3.3.1 Minerva simulations

To evaluate the performance of the model described in Section 3.1,

we used a set of 100 N-body simulations called MINERVA, which are

described in more detail in Grieb et al. (2016a). These simulations

represent different realizations of the same cosmology, correspond-

ing to the best-fitting flat �CDM model to the combination of CMB

data and the wedges of the CMASS sample from SDSS DR9 from

Sánchez et al. (2013). This model is characterized by a matter den-

sity of �m = 0.285, a baryon physical density of ωb = 0.022 24,
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1646 A. G. Sánchez et al.

Figure 2. Mean dark matter real-space power spectrum of the MINERVA simu-

lations at z = 0.57 (blue long-dashed lines) compared against the predictions

of linear theory (black short-dashed lines), two-loop RPT as implemented in

MPTBREEZE (orange dot–dashed lines) and one-loop gRPT (red solid lines).

The shaded region corresponds to a 2 per cent uncertainty in the value of

P(k).

a Hubble constant of H0 = 69.5 km s−1 Mpc−1, a scalar spectral

index of ns = 0.968 and an amplitude of density fluctuations of

σ 8 = 0.828. Each simulation traces the evolution of the dark mat-

ter density field with Npart = 10003 over a box of side length

Lbox = 1.5 Gpc h−1. The initial conditions were generated with the

second-order Lagrangian perturbation theory (2LPT) at a starting

redshift of zini = 63.

Fig. 2 shows a comparison of the mean dark matter real-space

power spectrum of the MINERVA simulations at z = 0.57 with the pre-

dictions of RPT (dashed lines) computed using MPTBREEZE (Crocce,

Scoccimarro & Bernardeau 2012), and one-loop gRPT (solid lines).

The shaded regions correspond to a 2 per cent uncertainty in the

value of P(k). The prediction from RPT is in good agreement with

the simulation results up to k � 0.15 h Mpc−1 and describes ac-

curately the damping of the first BAO peaks. Using gRPT, the

description of the simulation results can be extended up to modes

as high as k � 0.25 h Mpc−1. As our model of the full shape of the

clustering wedges is based on gRPT, we can expect to be able to

extend the range of scales included in our analysis with respect to

the analyses of Sánchez et al. (2013, 2014).

In order to extend these models to real galaxy clustering mea-

surements, it is necessary to include the effects of bias and RSD.

We model galaxy and halo bias including both local and non-local

contributions given by the parameters b1, b2, γ 2 and γ −
3 defined

in Section 3.1.2. As our two-point clustering measurements are not

significantly sensitive to γ 2, we use the local Lagrangian relation of

equation (13) to set its value in terms of b1 and treat the remaining

quantities as free parameters.

We used the snapshots at z = 0.57 of the MINERVA simulations, cor-

responding to the mean redshift of the CMASS sample, in which we

identified bound haloes using a friends-of-friends algorithm. The re-

sulting sample was later post-processed with SUBFIND (Springel et al.

2001) to eliminate spurious unbound objects, leading to a final halo

catalogue with a minimum mass of Mmin = 2.67 × 1012 h−1 M⊙.

Grieb et al. (2016a) populated the Minerva halo catalogues at

z = 0.57 with galaxies following a halo occupation distribution

Figure 3. Mean clustering wedges of the MINERVA HOD samples for the

two (upper panel) and three (lower panel) μ-bins configurations. The error

bars correspond to the square root of the diagonal entries of the covariance

matrices computed using the Gaussian recipes of Grieb et al. (2016a). The

solid lines correspond to the model described in Section 3.1, which gives an

excellent description of the simulation results.

(HOD) model parametrized as in Zheng, Coil & Zehavi (2007), in

order to match the monopole correlation function of the CMASS

sample. The values of the parameters characterizing this HOD are

similar to those used by Manera et al. (2013), but the mass resolu-

tion of the MINERVA simulations allows us to resolve the haloes of the

low-mass tail of the distribution. The clustering properties of the

resulting HOD galaxy samples closely match those of the CMASS

sample of BOSS. We use these HOD catalogues to test if our full

model of equation (20) correctly describes the effect of non-linear

evolution, bias and RSD, including the impact of the FOG effect,

on a sample that contains both central and satellite galaxies.

The points in Fig. 3 correspond to the mean wedges from the

HOD galaxies of all MINERVA realizations for two (upper panel)

and three μ-bins (lower panel) configurations. As the 100 MINERVA

realizations are not enough to obtain a robust estimate of the covari-

ance matrix of these measurements, we use the Gaussian recipes

of Grieb et al. (2016a), computed using the multipoles of the non-

linear power spectrum model of Section 3.1 as input. The error bars

in Fig. 3 correspond to the square root of the diagonal entries of the

resulting covariance matrices. As shown by Grieb et al. (2016a),

these Gaussian formulae give an excellent description of the
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Figure 4. Mean values (points) and 68 per cent CL on q⊥, q‖ and fσ 8

derived from the measurements of two (squares) and three (circles) clus-

tering wedges from the MINERVA HOD galaxy samples as a function of the

minimum scale included in the fits. The dashed lines correspond to the true

values of these parameters. Based on this test we set a minimum scale of

smin = 20 h−1 Mpc for our fits to the BOSS combined sample clustering

wedges.

results inferred from the MINERVA simulations. Using these covari-

ance matrices, we fitted for the nuisance parameters of the model

using the measurements of two clustering wedges, while fixing all

cosmological parameters to their true values. The solid lines in Fig. 3

correspond to the model described in Section 3.1, computed using

the resulting values for the nuisance parameters, which show an

excellent agreement with the results from the MINERVA simulations

up to small scales.

In order to test the ability of our model to provide unbiased

cosmological constraints, we treated the quantities q⊥, q‖ and fσ 8

as free parameters and fit for them using the mean clustering wedges

from the MINERVA simulations, varying simultaneously the nuisance

parameters of the model while fixing all cosmological parameters

to their correct values (i.e. fixing the shape of the linear-theory

power spectrum). Fig. 4 shows the obtained constraints for the

cases of two (squares) and three (circles) wedges as a function of

the minimum scale included in the fits, smin. The points indicate the

mean values of these parameters derived from our Markov chain

Monte Carlo (MCMC), while the error bars correspond to their

respective 68 per cent confidence levels (CL). In all cases, the

maximum scale was set to smax = 160 h−1 Mpc. The dashed lines in

the same figure correspond to the true values of these parameters.

The constraints obtained using both configurations are in perfect

agreement with the true underlying values of these parameters, but

the 68 per cent CL obtained with three clustering wedges are sig-

nificantly smaller than those recovered from the analysis of two

μ-bins. This clearly illustrates the power of the additional informa-

tion recovered from three clustering wedges, with respect to that

of using only two. These results are consistent with those of the

Fourier-space analysis of Grieb et al. (2016b), which is based on

the same underlying model of non-linearities, bias and RSD. As

smin is reduced, the allowed ranges for all parameters decrease. The

results from this test indicate that the application of the model de-

scribed in Section 3.1 to a measurement of three clustering wedges

can give unbiased cosmological constraints even when including

Figure 5. Difference between the values of α⊥, α‖ and fσ 8 obtained from

the measurements of two (squares) and three (circles) wedges from each

of the HOD boxes (labelled A–G) of the RSD challenge of Tinker et al.

(in preparation). The dashed lines correspond to the mean differences over

all boxes. The shaded regions indicate the uncertainties associated with the

constraints on these parameters inferred from the real BOSS sample (see

Section 5).

scales as small as smin ≃ 15 h−1 Mpc. As this limit might depend

on the details of the cosmological model, we fixed the value of

smin = 20 h−1 Mpc for our analysis of the clustering wedges from

the BOSS combined galaxy sample.

3.3.2 The BOSS RSD challenge

Our companion paper Tinker et al. (in preparation) presents the

results of a comparison or ‘challenge’ of various RSD models and

methodologies to extract cosmological information from the full

shape of anisotropic clustering measurements. This challenge con-

sisted of two different tests: an ensemble of 83 mock catalogues of

the NGC CMASS subsample, and a series of seven simulation boxes

corresponding to different cosmologies and HOD parametrizations.

A more detailed description of these data sets and the results ob-

tained by the different methods can be found in Tinker et al. (in

preparation). Here, we summarize the results obtained by applying

the model described in Section 3.1 to the measurements of three

clustering wedges in configuration space obtained from these data

sets.

Fig. 5 shows the difference between the values of α⊥, α‖ and fσ 8

recovered from the measurements of ξ 3w(s) from each of the seven

HOD boxes, labelled A–G [see Tinker et al. (in preparation) for

details on the HOD applied in each case]. The dashed lines corre-

spond to the mean differences over all boxes. A covariance matrix

derived from a set of 1000 QPMs (White et al. 2014) simulations

with a box size of 2.5 h−1 Gpc and an HOD matching the clustering

of the CMASS sample was used for all the fits. As these results

correspond to different cosmologies and HODs, it is not possible to

derive a general conclusion about the expected deviation between

the true and obtained results. However, with the exception of the

value of fσ 8 recovered from box F, the obtained deviations are al-

ways smaller than the uncertainties with which these parameters

can be recovered from the BOSS sample (see Section 5), which are

indicated by the grey shaded regions. More details can be found
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Figure 6. Constraints on q⊥, q‖ and fσ 8 obtained from the 83 CMASS

mock catalogues of the RSD challenge of Tinker et al. (in preparation.). The

points in the off-diagonal panels correspond to the values recovered from

the individual mocks, while the histograms in the diagonal panels show the

distribution of the obtained results from the full set of mocks. The red solid

lines correspond to a Gaussian fit to the obtained distribution.

in Tinker et al. (in preparation), but the HOD of box F includes

the effect of assembly bias weighted to high densities. Other meth-

ods based on configuration-space measurements give similar results

when applied to box F. At least part of the observed deviations could

be due to cosmic variance, but this result could signal the limitations

of these methods to deal with assembly bias (which is not explicitly

taken into account in our model). However, as this result is based on

a single box, we leave a more detailed study of the possible impact

of assembly bias on the obtained constraints for a future analysis.

Fig. 6 summarizes the constraints on q⊥, q‖ and fσ 8 obtained

from the set of 83 CMASS mock catalogues. The points in the

off-diagonal panels correspond to the recovered values of these

parameters from each individual realizations, while the histograms

in the diagonal panels show the distribution of the obtained results

from the full set of mocks. The red solid lines correspond to the

Gaussian fit to the obtained distribution. The constraints obtained

using our methodology are in excellent agreement with the true

underlying values of these parameters indicated by the dotted lines.

3.3.3 The MD-PATCHY mock catalogues

As a final test of our model, we applied to the measurements of

ξ 3w(s) from each of the 2045 MD-PATCHY mocks of the BOSS DR12

combined sample described in Section 2.2. Besides providing an-

other test for possible systematic errors in our constraints, the ob-

tained values can give us an idea of the uncertainties we can expect to

obtain from the analysis of the real BOSS data. These constraints are

also used in Sánchez et al. (2016) to compute the cross-correlation

coefficients between the results inferred from ξ 3w(s) and those of

our companion papers.

Table 1 lists the mean and dispersion of the difference between

values of α⊥, α‖ and fσ 8 obtained from the MD-PATCHY mocks and

Table 1. Mean and dispersion of the deviations between the parameter

constraints obtained from the individual MD-PATCHY mock catalogues and

their true underlying values for our three redshift bins.

Parameter 0.2 < z < 0.5 0.4 < z < 0.6 0.5 < z < 0.75

δα⊥ 0.003 ± 0.022 0.001 ± 0.018 0.001 ± 0.018

δα‖ 0.006 ± 0.032 0.005 ± 0.027 0.005 ± 0.028

δfσ 8 −0.018 ± 0.052 0.009 ± 0.044 0.004 ± 0.044

Figure 7. Distributions of the marginalized 68 per cent CL on the values

of the parameters α⊥, α‖ and fσ 8 obtained from the individual MD-PATCHY

mocks in each of our three redshift bins. The vertical dashed lines indicate

uncertainties on these parameters obtained from the real BOSS clustering

wedges (see Section 5).

their correct values in each of our three redshift bins. Deviations

of the order of 0.3σ and 0.2σ can be seen in the value of fσ 8

obtained using data from the low- and intermediate-redshift bins,

respectively. Although this might indicate the presence of a small

systematic error in these measurements, as these differences are

much smaller than their associated statistical errors we do not in-

clude a systematic uncertainty in our results.

Fig. 7 shows the distributions of the marginalized 68 per cent

CL on the values of α⊥, α‖ and fσ 8 obtained from the PATCHY

mocks in the low- (upper panels), intermediate- (middle panels)

and high-redshift (lower panels) bins. The vertical dashed lines

indicate the uncertainties on these parameters obtained from the

real BOSS clustering wedges as described in Section 5, which

are in good agreement with the distributions obtained from the

MD-PATCHY mocks.

4 C O S M O L O G I C A L I M P L I C AT I O N S

4.1 Methodology for parameter constraints

We derive cosmological constraints from our BOSS clustering mea-

surements following the same methodology as in Sánchez et al.

(2014), with small modifications. The clustering wedges of the

MNRAS 464, 1640–1658 (2017)

 at U
n
iv

ersity
 o

f P
o
rtsm

o
u
th

 L
ib

rary
 o

n
 N

o
v
em

b
er 2

4
, 2

0
1
6

h
ttp

://m
n
ras.o

x
fo

rd
jo

u
rn

als.o
rg

/
D

o
w

n
lo

ad
ed

 fro
m

 

http://mnras.oxfordjournals.org/


Anisotropic clustering in the completed BOSS 1649

Table 2. Cosmological parameters constrained in our analysis. The upper

part lists the parameters of the standard �CDM model while the middle

section lists a number of its possible extensions. The lower part lists a

number of additional quantities whose values can be derived from the first

two sets.

Parameter Description

Parameters of the standard �CDM model

θMC Approximate angular size of the sound

horizon at recombinationa

ωb Physical baryon density

ωc Physical cold dark matter density

τ Optical depth to reionization

ns Scalar spectral indexb

As Amplitude of the scalar perturbationsb

Extensions to the standard model

w0 Present-day dark energy equation of state, wDE

wa Time-dependence of wDE (assuming

wDE(a) = w0 + wa(1 − a))

�k Curvature contribution to energy density∑
mν Total sum of the neutrino masses

γ Power-law index of the structure growth rate

parameter, assuming f (z) = �
γ
m

Derived parameters

�m Total matter density

�DE Dark energy density

h Dimensionless Hubble parameter

σ 8 Linear-theory rms mass fluctuations in spheres

of radius 8 h−1 Mpc

S8 σ8

√
�m/0.3

Notes. aDefined as in the 2015 July version of COSMOMC.
bQuoted at the pivot wavenumber of k0 = 0.05 h Mpc−1.

overlapping redshift bin are strongly covariant with those obtained

in the two independent bins and do not lead to a significant im-

provement in the total constraining power of our measurements.

Therefore, to avoid the complication of including the covariance

between our clustering measurements in this section, we use only

the information from the wedges measured in our low- and high-

redshift bins, and refer to these data sets as ‘BOSS ξ 3w’. We use

our BOSS ξ 3w data set in combination with the latest CMB tem-

perature and polarization power spectra from the Planck satellite

(Planck Collaboration XIII 2016), to which we refer simply as

‘Planck’. We do not include CMB lensing information. We also

use the information from the joint SDSS-II and Supernova Legacy

Survey Light-Curve Analysis Type Ia supernovae (SN) sample

(JLA; Betoule et al. 2014).

We use the 2015 July version of COSMOMC (Lewis & Bridle 2002),

which in turn uses CAMB to compute the linear-theory CMB and mat-

ter power spectra (Lewis, Challinor & Lasenby 2000), modified to

compute the model of non-linearities, bias and RSD described in

Section 3.1. We constrain the cosmological parameters listed in

Table 2 by directly comparing the theoretical predictions obtained

for a given model with the galaxy clustering measurements them-

selves. Note that this approach is different from the one followed in

Alam et al. (2016), where the combined growth and geometric con-

straints of the various BOSS clustering analyses (including those

derived in Section 5) are used as a proxy for these measurements and

compared with the predictions from different cosmological models.

In Section 4.2, we explore the parameter space of the standard flat

�CDM model, where the dark energy component is characterized

Table 3. The marginalized 68 per cent constraints on the most relevant

cosmological parameters of the extensions of the �CDM model analysed in

Sections 4.3–4.6, obtained using different combinations of the data sets de-

scribed in Section 4.1. Appendix B contains a complete list of the constraints

obtained in each case.

Planck+BOSS Planck+BOSS

+SN

Constant dark energy equation of state

wDE −0.991+0.062
−0.047 −0.996 ± 0.042

�m 0.308+0.014
−0.012 0.306 ± 0.011

Time-dependent dark energy equation of state

w0 −0.73+0.27
−0.18 −0.92 ± 0.10

wa −0.83+0.58
−0.80 −0.32+0.45

−0.36

�m 0.325 ± 0.020 0.308 ± 0.010

Non-flat models

100�k −0.01+0.34
−0.31 −0.07 ± 0.30

�DE 0.715 ± 0.0145 0.6941 ± 0.0079

�m 0.288 ± 0.016 0.3052+0.0079
−0.0095

Dark energy and curvature

wDE −0.977+0.076
−0.070 −0.985+0.053

−0.049

100�k 0.16+0.38
−0.43 0.10+0.36

−0.39

�m 0.308 ± 0.13 0.306 ± 0.010

Massive neutrinos∑
mν /(eV) <0.26 (95 per cent CL) <0.25 (95 per cent CL)

�m 0.310+0.009
−0.013 0.308+0.009

−0.011

Deviations from GR

γ 0.609 ± 0.079 <0.610 ± 0.079 (95 per cent CL)

�m 0.3049+0.0078
−0.0092 0.3042+0.0074

−0.0087

Dark energy and modified gravity

γ 0.65+0.10
−0.13 0.627+0.086

−0.099

wDE −1.05+0.10
−0.08 −1.016+0.053

−0.046

by an equation-of-state parameter wDE = pDE/ρDE = −1, by varying

the six parameters of the upper section of Table 2. In Sections 4.3–

4.6, we constrain a number of possible extensions of the �CDM

model by allowing for variations on the parameters presented in the

middle section of Table 2. We consider more general dark energy

models, non-zero curvature, varying contributions from massive

neutrinos, and possible deviations from GR. Table 3 summarizes

the constraints on these cosmological parameters obtained from the

combination of the Planck CMB measurements with the full shape

of the clustering wedges from BOSS, and when this information is

combined with the JLA SN data. When it is not treated as a free

parameter, we assume a non-zero massive neutrino component with

a total mass
∑

mν = 0.06 eV. For all parameter spaces, we also fol-

low the constraints on the derived quantities listed on the final part

of Table 2. In all cases, the nuisance parameters of the model, b1,

b2, γ −
3 and avir, are also included in our MCMC and marginalized

over.

Grieb et al. (2016b) perform an analysis of the cosmological im-

plications of the BOSS DR12 combined sample similar to the one

presented here but based on Fourier-space clustering measurements,

which are combined with the same CMB and SN data sets used here

(see their section 5). They use the full shape of the Fourier-space

wedges obtained by filtering out the information of Legendre mul-

tipoles ℓ > 4, which are fitted with theoretical predictions based on
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1650 A. G. Sánchez et al.

Figure 8. The marginalized posterior distribution in the �m–h plane for

the �CDM parameter set. The dashed lines show the 68 and 95 per cent

contours obtained using the CMB measurements from Planck alone. The

solid contours correspond to the results obtained from the combination of

the Planck data plus the full shape of the BOSS DR12 combined sample

clustering wedges ξ3w(s).

the model of non-linearities, bias and RSD described in Section 3.

Thus, our analyses represent the first time that the same model is

applied in configuration and Fourier-space fits. A comparison of the

results of Grieb et al. (2016b) with those presented here shows ex-

cellent agreement, with both sets of measurements providing similar

constraining power.

4.2 The �CDM parameter space

In this section, we focus on the constraints on the parameters of the

standard �CDM model. The dashed lines in Fig. 8 show the two-

dimensional marginalized constraints in the �m–h plane obtained

using Planck data alone. As described in (Percival et al. 2002),

CMB-only results follow a narrow degeneracy that can be well de-

scribed by a constant value of �mh3. The solid lines in Fig. 8 show

the result of combining the Planck data set with the configuration-

space clustering wedges of BOSS. The information provided by

our measurements of ξ 3w(s) at low redshift leads to a significant im-

provement of the obtained constraints, with �m = 0.3054 ± 0.0087

and h = 0.6798 ± 0.0065. These results represent constraints at the

2.8 and 1 per cent level and are essentially unchanged by the inclu-

sion of the information from SN measurements. The fact that these

data sets can constrain the basic parameters of the �CDM model

to this precision is a clear illustration of the constraining power

achieved by current CMB and LSS measurements. Appendix B

gives a summary of the constraints on the full set of cosmological

parameters of the �CDM model.

The best-fitting �CDM model gives a good description of our

measurements of the clustering wedges, with χ2 values of 90 and

82 for the low- and high-redshift bins, respectively, for 84 bins. This

model is also very close to the parameters values that best describe

the Planck CMB data alone, showing the consistency between these

data sets.

Figure 9. The marginalized posterior distribution in the �m–wDE plane for

the �CDM parameter set extended by treating the redshift-independent

value of wDE as a free parameter. The dashed lines show the 68 and

95 per cent contours obtained using Planck CMB data alone. The solid

contours correspond to the results inferred from the combination of Planck

and our BOSS ξ3w(s) measurements. The dot–dashed lines indicate the re-

sults obtained when the JLA SN sample is also included in the analysis. The

dotted line indicates the standard �CDM value of wDE = −1.

4.3 The dark energy equation of state

In the �CDM model, the dark energy component can be described

as vacuum energy, which behaves analogously to a cosmological

constant. In this section, we explore the constraints on more general

dark energy models. We start by treating the redshift-independent

value of wDE as an additional parameter. The dashed lines in Fig. 9

correspond to the two-dimensional marginalized constraints in the

�m–wDE plane obtained from the Planck CMB measurements,

which follow a degeneracy that spans a wide range of values of

these parameters. The solid lines in the same figure correspond to

the constraints obtained when the Planck data are combined with our

BOSS ξ 3w(s) data set. The information encoded in these measure-

ments provides much tighter constraints than in the previous case,

leading to �m = 0.308+0.014
−0.012 and wDE = −0.991+0.062

−0.047. This result

is in excellent agreement with the standard �CDM model value of

wDE = −1, indicated by a dotted line in Fig. 9. The dot–dashed

contours correspond to the results obtained by including also the

information from the JLA SN data, leading to our final constraints

of �m = 0.306 ± 0.011 and wDE = −0.996 ± 0.042.

In more general dark energy models, the equation-of-state pa-

rameter might be a function of time. To explore this possibility, we

use the linear parametrization of Chevallier & Polarski (2001) and

Linder (2003) given by

wDE(a) = w0 + wa(1 − a), (32)

where a is the scalefactor and w0 and wa are free parameters. The

dashed lines in Fig. 10 show the marginalized constraints in the

w0–wa plane obtained using Planck data alone, which cover a large

fraction of the parameter space. The solid lines show the effect of

including the information from the BOSS ξ 3w(s) measurements in

the analysis. Although the LSS information leads to a significant

reduction of the allowed region for these parameters, the result-

ing constraints on w0 and wa exhibit a strong degeneracy that al-

lows for models whose behaviour can be significantly different to
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Anisotropic clustering in the completed BOSS 1651

Figure 10. Marginalized 68 and 95 per cent CL in the w0–wa plane, the

parameters controlling the redshift evolution of the dark energy equation

of state, parametrized as in equation (32). The contours show the results

obtained using the Planck CMB data alone (dashed lines), the combination

of Planck and the BOSS ξ3w(s) (solid lines), and when this information is

combined with the JLA SN data set (dot–dashed lines). The fiducial values

of these parameters in the �CDM model are indicated by the dotted lines.

a cosmological constant. Additionally, including information from

the JLA SN sample helps us to reduce the allowed region of the

parameter space even further, leading to our final constraints of

w0 = −0.92 ± 0.10 and wa = −0.32+0.45
−0.36, in good agreement with

the �CDM values indicated by the dotted lines in Fig. 10.

4.4 The curvature of the universe

In this section, we focus on non-flat models and extend the �CDM

parameter space to models with �k �= 0. The dashed lines in Fig. 11

show the constraints in the �m–�k plane obtained by the Planck

CMB measurements alone, which allow for significant deviations

from a flat universe due to the well-known geometric degeneracy

(Efstathiou & Bond 1999). The information from the clustering

wedges from BOSS efficiently breaks this degeneracy, reducing the

allowed region of the parameter space to a small area centred on the

flat Universe value �k = 0, which is shown by the dotted line. As

indicated in Table 3, these data sets can constrain the curvature of the

Universe to �k = −0.0001+0.0034
−0.0030. Additionally, including the JLA

SN does not significantly improve the results over those obtained

using the Planck+BOSS ξ 3w combination, with a final constraint

of �k = −0.0007 ± 0.0030 obtained from the combination of all

data sets.

When �k and wDE are varied simultaneously, the geometric de-

generacy extends to a two-dimensional sheet in the parameter space,

degrading even more the constraints obtained from CMB informa-

tion alone. This is shown by in the dashed contours in Fig. 12, which

correspond to the 68 and 95 per cent CL in the wDE–�k plane de-

rived from the Planck CMB measurements. The information in the

full shape of the wedges ξ 3w(s) is still very effective at reducing the

allowed region for these parameters, which shrinks to a small area

around the standard �CDM values indicated by the dotted lines.

In this case, we find �k = 0.0016+0.0038
−0.0043 and wDE = −0.977+0.076

−0.070.

As shown by the dot–dashed lines in Fig. 12, these constraints

Figure 11. The marginalized posterior distribution in the �m–�k plane

for the �CDM parameter set extended to allow for non-flat models. The

contours show the 68 and 95 per cent contours obtained using Planck infor-

mation alone (dashed lines) and the combination of these CMB data plus

the clustering wedges of the final BOSS. The dotted line corresponds to the

�CDM model, where �k = 0.

Figure 12. The marginalized constraints in the wDE–�k plane for the

�CDM parameter set extended by allowing for simultaneous variations on

both of these parameters. The contours correspond to the 68 and 95 per cent

CL derived from the Planck CMB data alone (dashed lines), the combination

of Planck plus the clustering wedges (solid lines), and when the JLA SN

data sets are added to the later combination (dot–dashed lines). The dotted

lines correspond to the values of these parameters in the �CDM model.

are slightly improved when the JLA SN information is also in-

cluded in the analysis. In this case, we find �k = 0.0010+0.0036
−0.0039

and wDE = −0.985+0.053
−0.048. These constraints are similar to the ones

we find when only one of these parameters is allowed to deviate

from their standard values. This indicates that current constraints

on the dark energy equation of state do not depend strongly on the

assumption of a flat Universe.
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Figure 13. The marginalized posterior distribution in the �m–�mν plane

for the �CDM parameter set extended by allowing for massive neutrinos.

The dashed and solid lines correspond to the 68 and 95 per cent CL derived

from the Planck CMB measurements alone (dashed lines) and by combining

them with the BOSS ξ3w(s) measurements (solid lines).

4.5 Massive neutrinos

The combination of CMB and galaxy clustering measurements of-

fers one of the best observational windows into neutrino masses.

In the previous sections, we assumed a total neutrino mass of∑
mν = 0.06 eV, the minimum value allowed by neutrino oscillation

experiments under the assumption of a normal hierarchy (Otten &

Weinheimer 2008). We now explore the constraints obtained when

the total neutrino mass is allowed to vary freely. Fig. 13 shows the

68 and 95 per cent constraints in the �m–
∑

mν plane obtained when

the �CDM parameter space is extended by treating
∑

mν as a free

parameter. The dashed lines correspond to the results obtained using

the Planck CMB data alone. A higher total neutrino mass leads to

an increase in the redshift of matter-radiation equality, which can

be compensated by an increase in �m in order to leave the CMB

power spectrum unaffected. This is the origin of the degeneracy

followed by the CMB-only constraints. Including the low-redshift

information from the BOSS clustering wedges helps us to break this

degeneracy, significantly improving the constraints. In this case, we

find a limit of
∑

mν < 0.25 eV at the 95 per cent CL, which is

almost unchanged by additionally including the JLA SN data.

4.6 Consistency with GR

In the context of GR, the redshift evolution of the structure growth-

rate parameter can be accurately computed as

f (z) = �m(z)γ , (33)

with γ = 0.55 with a small correction depending on the value of

wDE (Linder & Cahn 2007). This means that measurements of f(z)

as those obtained from anisotropic clustering measurements can be

used as a test of the predictions of GR. This information is essential

to distinguish between the dark energy and modified gravity scenar-

ios for the origin of the current phase of accelerated expansion of the

Universe (Zhang et al. 2007; Guzzo et al. 2008). The measurements

of f(z) obtained from anisotropic clustering measurements could be

directly compared with the predictions of specific modified gravity

Figure 14. The one-dimensional marginalized posterior distribution of the

power-law index of the structure growth-rate parameter γ derived from the

combination of the CMB measurements from Planck and the BOSS ξ3w(s)

(solid lines). These results are consistent with the value of γ = 0.55 predicted

by GR, which is indicated by the dotted line. The dashed and dot–dashed

lines correspond to the results obtained when the CMB data are separately

combined with the clustering wedges of our low- and high-redshift bins,

respectively.

models (e.g. Raccanelli et al. 2013; Wyman, Jennings & Lima 2013;

Taruya et al. 2014; Song et al. 2015; Barreira, Sánchez & Schmidt

2016). Here, we follow a simpler approach and treat γ in equation

(33) as a free parameter. In this way, the information on the growth

of the structure contained in our galaxy clustering measurements

can be used as a consistency test of GR. Assuming wDE = −1, a

detection of a deviation from γ = 0.55 can be interpreted as an

indication that the growth of density fluctuations is not consistent

with the predictions of GR.

We tested the consistency of our clustering measurements with

GR by extending the �CDM parameter space using equation (33)

to compute f(z) and treating γ as a free parameter. The solid line

in Fig. 14 corresponds to the one-dimensional marginalized con-

straints on γ obtained from the combination of the Planck CMB

measurements with the full shape of the BOSS ξ 3w(s) clustering

wedges. In this case, we find γ = 0.609 ± 0.079, in good agree-

ment with the GR prediction of γ = 0.55 indicated by the verti-

cal dotted line. Additionally, including the JLA SN data does not

improve this result. The dashed and dot–dashed lines correspond

to the results obtained when the Planck CMB data are separately

combined with the information from the wedges measured in our

low- and high-redshift bins, respectively. While the constraint of

γ = 0.543 ± 0.096 obtained in the former case is in excellent

agreement with GR, the latter case prefers a higher value, with

γ = 0.74 ± 0.13.

If the growth of structure is assumed to follow the predictions

of GR of equation (33) with γ = 0.55, the measurements of the

redshift evolution of f(z) obtained from RSD can be translated into

constraints on the matter density parameter. When this assumption

is relaxed by allowing γ to vary freely this information is lost,

leading to weaker constraints on wDE (Amendola, Quercellini &

Giallongo 2005). To test this, we extended the �CDM parameter

space by allowing for simultaneous variations of wDE (assumed
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Figure 15. The marginalized posterior distribution in the wDE–γ plane for

the �CDM parameter set extended by allowing for simultaneous varia-

tions on both of these parameters. The contours correspond to the 68 and

95 per cent CL derived from the combination of the Planck CMB measure-

ments plus the clustering wedges (solid lines), and when the JLA SN data set

is also added to the analysis (dot–dashed lines). The dotted lines correspond

to the values of these parameters in the standard �CDM + GR model.

time independent) and γ . Fig. 15 presents the two-dimensional

marginalized constraints in the γ –wDE plane obtained by means

of the Planck+BOSS ξ 3w combination (dashed lines), and when

these data are combined with the JLA SN sample (solid lines).

Including γ as a free parameter degrades the constraints on the dark

energy equation of state with respect to the results of Section 4.3. In

this case, we find wDE = −1.05+0.10
−0.08 and γ = 0.65+0.10

−0.13. Including

the JLA SN data reduces the allowed region for these parameters,

leading to wDE = −1.016+0.053
−0.046 and γ = 0.627+0.086

−0.099, similar to the

ones derived when these parameters are varied separately and are

in agreement with the standard �CDM+GR cosmological model.

5 BAO A N D R S D C O N S T R A I N T S

In most anisotropic clustering analyses, the cosmological infor-

mation contained in the full shape of the clustering measure-

ments is compressed into constraints on the parameter combinations

DM(z)/rd, H(z)rd and fσ 8(z) and their respective covariance matrix.

Alternatively, these constraints are often expressed in terms of the

analogous combinations DV(z)/rd, where

DV(z) =
(

DM(z)2 cz

H (z)

)1/3

, (34)

and the AP parameter

FAP(z) = DM(z)H (z)/c. (35)

This information is then used as a proxy for the LSS measurements

when deriving constraints on cosmological parameters. Here, we

use the model described in Section 3.1 to derive constraints on

these parameters from the clustering wedges ξ 3w of the final BOSS

combined galaxy sample in each of our three redshift bins. To this

end, we fixed the values of ωb, ωc and ns to match the best-fitting

�CDM model to the CMB measurements from Planck (fixing in

this way the shape of the linear-theory power spectrum) and treated

the values of α⊥, α‖ and fσ 8 as free parameters using separately

the clustering wedges of each redshift bin. The nuisance parameters

of the model, b1, b2, γ −
3 and avir, are also included in our MCMC

and marginalized over. This reproduces the analysis of the PATCHY

mock catalogues described in Section 3.3.3 on the real clustering

measurements from BOSS. The lines in Fig. 1 correspond to the

best-fitting models obtained in this way for each of our redshift bins,

which are characterized by reduced χ2 values of 1.15, 1.07 and 1.03

for our low-, intermediate- and high-redshift bins, respectively.

The solid lines in Fig. 16 show the two-dimensional marginalized

posterior distributions of DV(z)/rd, FAP(z) and fσ 8(z) for each of our

three redshift bins. The dotted lines in the same figure correspond

to the Gaussian approximation of these constraints, which give a

good description of the full distributions. The corresponding mean

values and their covariance matrices are listed in Tables 4 and 5, re-

spectively. The dashed lines in Fig. 16 correspond to the constraints

inferred from the Planck CMB measurements under the assump-

tion of a �CDM model. The agreement between these results and

the ones obtained from the BOSS clustering wedges indicates the

consistency between these data sets and their agreement with the

�CDM model.

As shown in Alam et al. (2016), a comparison of our results with

those of our companion papers shows good agreement. At all red-

shifts, the constraints derived from the wedges analyses presented

here and in Grieb et al. (2016b) are tighter than the ones of the mul-

tipole analyses. Rather than the statistics used in the analysis, this

is due to the fact that the model described in Section 3 makes it pos-

sible to use the information from smaller scales, where the effects

of non-linearities and RSD are stronger. Alam et al. (2016) com-

bine the results from the different BOSS analyses into a final set of

consensus constraints using the methodology described in Sánchez

et al. (2016). These consensus results are slightly tighter than those

of the individual analyses showing that additional information is

gained from the combination.

6 C O N C L U S I O N S

We have analysed the cosmological implications of the measure-

ments of three clustering wedges ξ 3w(s) of the final galaxy samples

from BOSS corresponding to SDSS-DR12. We make use of the

BOSS combined sample described in Reid et al. (2016), contain-

ing the joint information of the LOWZ and CMASS samples that

were analysed separately in former studies, including also the early

regions that were previously excluded.

We have focused on adjusting our analysis methodology to max-

imize the information extracted from the BOSS data. We imple-

mented a state-of-the-art description of the effects of the non-linear

evolution of density fluctuations, bias and RSD that allowed us

to extract information from the full shape of our clustering mea-

surements including smaller scales than in previous analyses. We

performed extensive tests of this model using various N-body sim-

ulations and BOSS mock catalogues, showing that it can be used to

extract cosmological information from our measurements of three

clustering wedges for scales s � 20 h−1 Mpc without introducing

any significant systematic errors.

We used the information from our clustering measurements in

combination with the latest CMB measurements from Planck and

the JLA SN sample to constrain the parameters of the �CDM

model and a number of its potential extensions, including more

general dark energy models, non-flat universes, neutrino masses

and possible deviations from the predictions of GR. Our results are

completely consistent with the standard �CDM plus GR cosmo-

logical paradigm. When this model is extended by allowing one
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Figure 16. Two-dimensional 68 and 95 per cent marginalized constraints on DV(z)/rd, FAP(z) and fσ 8(z). The solid lines show the results obtained from the

measurements of the clustering wedges ξ3w(s) of the final BOSS combined sample in each of our three redshift bins. The dotted lines show the Gaussian

approximation of these results using the mean values and covariance matrices of Tables 4 and 5. The dashed lines correspond to the constraints inferred from

the Planck CMB measurements under the assumption of a �CDM model.

Table 4. Mean values and 68 per cent CL on DV(z)/rd, FAP(z) and fσ 8(z)

obtained from the clustering wedges ξ3w(s) of the final BOSS combined

sample in each of our three redshift bins.

Parameter zeff = 0.38 zeff = 0.51 zeff = 0.61

DV(z)/rd 9.89 ± 0.15 12.86 ± 0.18 14.51 ± 0.21

FAP(z) 0.413 ± 0.014 0.605 ± 0.018 0.742 ± 0.024

fσ 8(z) 0.468 ± 0.052 0.470 ± 0.041 0.439 ± 0.039

additional parameter to vary freely, the combination of the CMB

data from Planck and our BOSS LSS measurements is enough to put

tight constraints on the additional variable, with the SN data leading

only to marginal improvements. The SN information is most useful

when more than one additional parameter is included in the anal-

ysis, leading to final constraints in agreement with the canonical

�CDM values. The full data set combination can constrain the dark

energy equation-of-state parameter to wDE = −0.996 ± 0.042 when

assumed time independent, with no indication of a departure from

this value when it is allowed to evolve with redshift according to

equation (32). The simultaneous variation of additional cosmologi-

cal parameters does not affect this limit significantly. Our results are

also completely consistent with the flat-Universe prediction from

the most simple inflationary models, with �k = −0.0007 ± 0.0030.

We derive tight constraints on the total sum of neutrino masses to∑
mν < 0.25 eV at 95 per cent CL. We also test the agreement of our

clustering measurements with the predictions of GR by assuming

the parametrization of equation (33) for the growth rate of cosmic

structure and find γ = 0.609 ± 0.079, in agreement with the GR

value of γ = 0.55.

Of our companion papers based on the BOSS DR12 combined

sample, the analysis of Grieb et al. (2016b) is the one more similar

to ours. They use Fourier-space wedges measured by filtering out

the information of Legendre multipoles ℓ > 4 in the same redshift
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Table 5. Covariance matrices associated with the constraints on DV(z)/rd,

FAP(z) and fσ 8(z) inferred from our MCMC fits to the clustering wedges

of the final BOSS combined sample in each of our three redshift bins. The

online files have the full numerical precision, which we recommend for

parameter fits.

Parameter DV(z)/rd FAP(z) fσ 8(z)

0.2 < z < 0.5, zeff = 0.38

DV(z)/rd 2.309 28 × 10−2 −2.201 48 × 10−4 8.840 51 × 10−4

FAP(z) −2.201 48 × 10−4 2.005 47 × 10−4 4.826 76 × 10−4

fσ 8(z) 8.840 51 × 10−4 4.826 76 × 10−4 2.762 87 × 10−3

0.4 < z < 0.6, zeff = 0.51

DV(z)/rd 3.244 93 × 10−2 −8.316 65 × 10−4 7.009 01 × 10−4

FAP(z) −8.316 65 × 10−4 3.307 09 × 10−4 4.028 45 × 10−4

fσ 8(z) 7.009 01 × 10−4 4.028 45 × 10−4 1.689 99 × 10−3

0.5 < z < 0.75, zeff = 0.61

DV(z)/rd 4.253 31 × 10−2 −9.324 43 × 10−4 1.312 94 × 10−3

FAP(z) −9.324 43 × 10−4 5.626 34 × 10−4 4.608 68 × 10−4

fσ 8(z) 1.312 94 × 10−3 4.608 68 × 10−4 1.515 96 × 10−3

bins as in our analysis, which are also fitted using the model of non-

linearities, bias and RSD described in Section 3. This is then the first

time that the same model is applied in configuration and Fourier-

space fits. A comparison of our results with those of Grieb et al.

(2016b) shows excellent agreement, with both sets of measurements

providing similar constraining power.

The information of our clustering measurements can be com-

pressed into constraints on the parameter combinations DV(z)/rd,

FAP(z) and fσ 8(z) at the mean redshifts of each of our three redshift

bins with their respective covariance matrices. These results are in

excellent agreement with the predictions of the best-fitting �CDM

model to the CMB measurements from Planck, highlighting the

consistency between these data sets. Our results are combined with

those of our companion papers into a final set of consensus con-

straints in Alam et al. (2016) using the methodology described in

Sánchez et al. (2016).

Our results show that anisotropic clustering measurements have

become one of the most powerful available cosmological probes. By

exploiting the BAO and RSD signals imprinted in these measure-

ments, the BOSS galaxy samples have significantly improved our

knowledge of the basic cosmological parameters. The application

of the methodology presented here to galaxy samples from future

surveys such as the Dark Energy Spectroscopic Instrument (Levi

et al. 2013) and the ESA space mission Euclid (Laureijs et al. 2011)

will help to push our tests of the �CDM paradigm to even higher

accuracies. A joint analysis of two-point statistics with higher or-

der measurements such as the three-point correlation function or

the bispectrum (Gil-Marı́n et al. 2015), a detailed study of RSDs

on small scales including the impact of effects such as velocity or

assembly bias (Reid et al. 2014), or the advancement of methods

to reconstruct the underlying density field (Kitaura et al. 2016b)

are strategies that could help us to further increase the informa-

tion extracted from LSS data sets, which will continue shaping our

understanding of cosmic history.
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A P P E N D I X A : D E TA I L S O F T H E M O D E L L I N G

O F T H E T WO - D I M E N S I O NA L P OW E R

SPECTRUM

In this appendix, we present a more detailed description of our

model of non-linear evolution, bias and RSDs. The operators defined

in Section 3.1.2 can be expressed in Fourier space as

G2(k) = [δD]k
12 [(k̂1 · k̂2)2 − 1] θ (k1)θ (k2) (A1)

≡ [δD]k
12 K(k1, k2) θ (k1)θ (k2), (A2)
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with [δD]k
n ≡ δD(k − kn), k1...n ≡ k1 + · · · + kn and repeated

Fourier arguments are understood to be integrated over. Using this

equation, the cubic operator can be written as


3G(k) = [δD]k
12 [(k̂1 · k̂2)2 − 1] (δ(k1)δ(k2) (A3)

− θ (k1)θ (k2)). (A4)

Now, since in second-order perturbation theory

δ(2)(k) − θ (2)(k) = −
2

7
G2(k), (A5)

we have to leading order (and fully symmetrizing)


3G(k) = −
4

21
[δD]k

123 [K(k12, k3)K(k1, k2)

+ K(k23, k1)K(k2, k3) + K(k31, k2)K(k3, k1)]

× δ(1)(k1)δ(1)(k2)δ(1)(k3), (A6)

in terms of the linear density fluctuations.

The galaxy auto power spectrum can be written as usual, to one-

loop

Pgg(k) = b2
1P (k) + b1b2Pb1b2

(k) + b1γ2Pb1γ2
(k)

+ b2
2 Pb2b2

(k) + b2γ2Pb2γ2
(k) + γ 2

2 Pγ2γ2
(k)

+ b1γ
−
3 Pb1γ −

3
(k) + Pnoise(k). (A7)

Each of these contributions is given by (in the following all powers

inside integrands are linear)

Pb1b2
(k) =

∫
2F2(k − q, q)P (k − q)P (q)d3q, (A8)

Pb1γ2
(k) = P mc

b1γ2
(k) + P

prop

b1γ2
(k)

=
∫

4F2(k − q, q)K(k − q, q)P (k − q)P (q)d3q

+ 8P (k)

∫
G2(k, q)K(k − q, q)P (q)d3q, (A9)

Pb2b2
(k) =

1

2

∫
P (k − q)P (q)d3q, (A10)

Pb2γ2
(k) =

∫
2K(k − q, q)P (k − q)P (q)d3q, (A11)

Pγ2γ2
(k) =

∫
2K(k − q, q)2P (k − q)P (q)d3q, (A12)

Pb1γ −
3

(k) = −2
8

21
P (k)

∫
6K(k − q, q)K(k, q)P (q)d3q. (A13)

Out of these, there are two terms that can be reduced to 1D integrals,

they are the propagator-type integrals,

P
prop

b1γ2
(k) = −P (k)

∫ ⎡

⎣ (k2 + q2)(33k4 + 14k2q2 + 33q4)

42 k2 q4

+
(k2 − q2)2(11k4 + 34k2q2 + 11q4)

56 k3 q5
ln

(k − q)2

(k + q)2

⎤

⎦P (q)d3q,

(A14)

and

Pb1γ −
3

(k) = 2 P (k)

∫ ⎡

⎣ (k2 + q2)(3k4 − 14k2q2 + 3q4)

21 k2 q4

+
(k2 − q2)4

28 k3 q5
ln

(k − q)2

(k + q)2

⎤

⎦P (q)d3q. (A15)

The term Pb2b2 does not reduce to zero at low-k; therefore, we

renormalize that limit as (McDonald 2006)

Pb2b2
(k) =

1

2

∫ (
1 −

P (q)

P (k − q)

)
P (k − q)P (q)d3q, (A16)

which now reduces to zero as k2. This constant low-k limit enters

as an additional shot noise

Pnoise(k) =
b2

2

2

∫
P (q)2d3q; (A17)

in practice, we marginalize over shot noise for power spectrum

analysis (Grieb et al. 2016a), and we can ignore shot noise renor-

malization for the two-point function analysis.

Similarly, we have to one-loop for the cross spectrum between

galaxy fluctuations and velocity divergence that

Pgθ (k) = b1Pδθ (k) + b2Pb2
(k) + γ2Pγ2

(k)

+ γ −
3 Pγ −

3
(k), (A18)

where

Pb2
(k) =

∫
G2(k − q, q)P (k − q)P (q)d3q, (A19)

Pγ2
(k) = P mc

γ2
(k) + P prop

γ2
(k),

=
∫

2 G2(k − q, q)K(k − q, q)P (k − q)P (q)d3q

+ 4 P (k)

∫
G2(k, q)K(k − q, q)P (q)d3q, (A20)

and note that P prop
γ2

= P
prop

b1γ2
/2 and Pγ −

3
= Pb1γ −

3
/2.

A P P E N D I X B : C O N S T R A I N T S O N T H E �C D M

PARAMETER SPAC E

In this appendix, we summarize the constraints on the cosmological

parameters of the �CDM model analysed in Section 4.2. Table B1

Table B1. Marginalized 68 per cent constraints on the cosmological param-

eters of the standard �CDM model, obtained using different combinations

of the data sets described in Section 4.1.

Planck + BOSS ξ3w Planck + BOSS ξ3w

+ SN

Main parameters

100 ωb 2.228 ± 0.020 2.229 ± 0.020

100 ωc 11.81+0.13
−0.16 11.80+0.13

−0.15

104 × θMC 104.104 ± 0.042 104.107 ± 0.042

ns 0.9680 ± 0.0048 0.9682 ± 0.0048

ln (1010As) 3.078 ± 0.033 3.078 ± 0.033

Derived parameters

100�DE 69.46+0.95
−0.79 69.52+0.91

−0.76

100�m 30.54+0.79
−0.95 30.48+0.76

−0.91

h 0.6798+0.0070
−0.0062 0.6803+0.0067

−0.0059

σ 8 0.820 ± 0.014 0.820 ± 0.014

S8 0.827+0.018
−0.020 0.826 ± 0.018
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list the 68 per cent confidence limits obtained in this parameter

space. The upper section of the table lists the constraints on the main

parameters included in the fits, while the lower section contains the

results on the parameters derived from the first set.

1Max-Planck-Institut für extraterrestrische Physik, Postfach 1312, Giessen-

bachstr., D-85741 Garching, Germany
2Center for Cosmology and Particle Physics, Department of Physics, New

York University, New York, NY 10003, USA
3Institut de Ciències de l’Espai, IEEC-CSIC, Campus UAB, Carrer de Can
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