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ABSTRACT

We investigate the anisotropic clustering of the Baryon Oscillation Spectroscopic Survey
(BOSS) Data Release 12 sample, which consists of 1198 006 galaxies in the redshift range
0.2 < z < 0.75 and a sky coverage of 10 252 deg2. We analyse this data set in Fourier space,
using the power-spectrum multipoles to measure redshift-space distortions simultaneously
with the Alcock–Paczynski effect and the baryon acoustic oscillation scale. We include the
power-spectrum monopole, quadrupole and hexadecapole in our analysis and compare our
measurements with a perturbation-theory-based model, while properly accounting for the
survey window function. To evaluate the reliability of our analysis pipeline, we participate
in a mock challenge, which results in systematic uncertainties significantly smaller than the
statistical uncertainties. While the high-redshift constraint on fσ 8 at zeff = 0.61 indicates
a small (∼1.4σ ) deviation from the prediction of the Planck �CDM (� cold dark matter)
model, the low-redshift constraint is in good agreement with Planck �CDM. This paper is
part of a set that analyses the final galaxy clustering data set from BOSS. The measurements
and likelihoods presented here are combined with others in Alam et al. to produce the final
cosmological constraints from BOSS.

Key words: gravitation – surveys – cosmological parameters – cosmology: observations –
dark energy – large-scale structure of Universe.

1 IN T RO D U C T I O N

Clustering in the matter density field carries an enormous amount
of information about cosmological parameters. The growth of the
matter clustering amplitude is directly sensitive to the sum of
the neutrino masses (e.g. Lesgourgues & Pastor 2006; Beutler
et al. 2014b), the dark energy equation of state and the nature
of Gravity (Kaiser 1987; Peacock et al. 2001; Guzzo et al. 2008).
Galaxy redshift surveys sample the underlying matter density field
with galaxies as tracer particles. A measurement of the matter clus-
tering amplitude, σ 8, could be compared to the precise measurement
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of the matter clustering amplitude at the recombination redshift,
measured in the cosmic microwave background providing a long
lever-arm with which to test the growth of structure. The formation
of galaxies is correlated with the underlying density field, but the
galaxy formation processes are complicated and do not allow us
to infer these correlations from first principles. That is, while the
clustering amplitude of the galaxy density field can be measured
to percent level precision, it cannot straightforwardly be related
to the clustering amplitude of the matter density field due to the
uncertainties in the bias relation.

Despite these limitations, galaxy redshift surveys still allow con-
straints on the matter clustering amplitude due to redshift-space
distortions (RSD). RSD are caused by the underlying peculiar ve-
locity field along the line of sight that Doppler-shifts the features
in the spectral energy distribution of a galaxy. If the redshift is
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used to estimate the distance to the galaxy using Hubble’s law,
peculiar velocity contributions to the redshift introduce errors in
the physical coordinates along the line of sight. Since it is nearly
impossible to estimate the line-of-sight peculiar velocities of mil-
lions of galaxies individually, with a precision anywhere near the
redshift uncertainty, rather than correcting the effect in the redshift
measurements, we account for the resulting statistical distortions in
the observed clustering signal.

Peculiar velocities trace the gravitational potential field, itself
produced by the underlying matter density field. Therefore, the dis-
tortion effect due to the peculiar velocity field is correlated with
the density field. Since the peculiar velocity field affects only the
line-of-sight positions without affecting the angular positions, the
distortions generate anisotropy in the observed clustering. In the lin-
ear regime, RSD lead to an angle-dependent increase in the power-
spectrum amplitude of (1 + βμ2)2 (Kaiser 1987), where μ is the
cosine of the angle to the line of sight and β = f/b is the growth rate
f divided by the galaxy bias b. Using the angular dependence of the
RSD signal, we can constrain the parameter combination f(z)σ 8(z).
The RSD signal is now considered one of the most powerful ob-
servables in large-scale structure (Peacock et al. 2001; Hawkins
et al. 2003; Tegmark et al. 2006; Guzzo et al. 2008; Yamamoto,
Sato & Huetsi 2008; Blake et al. 2011; Beutler et al. 2012; Reid
et al. 2012; Chuang et al. 2013; Samushia et al. 2013; Nishimichi
& Oka 2014).

Another source of anisotropy in the galaxy clustering signal is
known as the AP effect (Alcock & Paczynski 1979). The AP effect
is imprinted in the clustering measurement when converting from
observable (redshifts and angles) to physical coordinates, which
requires a fiducial cosmology. If that fiducial cosmology deviates
from the true cosmology, it distorts the clustering signal differ-
ently along the line of sight and in angular scales. The two effects
would be difficult to separate with a featureless power spectrum. By
measuring the distortion in the distinct baryon acoustic oscillations
(BAO) feature present in the power spectrum, we can constrain
the AP signal, thereby isolating the anisotropy in the clustering
amplitude due to the RSD (Ballinger, Peacock & Heavens 1996;
Matsubara & Suto 1996; Okumura et al. 2008; Padmanabhan &
White 2008). The AP test through the BAO signal constrains the
geometry, i.e. DV(z)/rs(zd) and FAP(z) = (1 + z)DA(z)H(z)/c, where
DV (z) = [(1 + z)2D2

A(z)cz/H (z)]1/3 is the angle averaged distance
depending on the angular diameter distance DA(z) and the Hubble
parameter H(z).

In this paper, we use the final data release (Alam et al. 2015,
Data Release 12 – DR12) of the Baryon Oscillation Spectroscopic
Survey (BOSS; Dawson et al. 2013), the largest galaxy redshift
data set available to date to measure the anisotropy in the galaxy
power spectrum. Our analysis framework follows our DR11 analysis
(Beutler et al. 2014a) with several modifications: (1) in addition to
the monopole and quadrupole we now include the hexadecapole,
(2) we modified the fitting range to k = 0.01–0.15 h Mpc−1 for
the monopole and quadrupole and k = 0.01–0.10 h Mpc−1 for the
hexadecapole, (3) we modified our method to include the effect due
to the discrete k-space grid when estimating the power spectrum, (4)
we use a computationally more efficient way to include window-
function effects, (5) we use larger k-bins to reduce the noise in
the covariance matrix estimation, (6) we use a new set of mock
catalogues called MultiDark-patchy, which have been introduced in
Kitaura et al. (2016) and (7) we employ the Fast Fourier Transform
(FFT) based power-spectrum estimator suggested by Bianchi et al.
(2015) and Scoccimarro (2015) instead of the O(N2) algorithm we
used previously to speed up the computation.

Our companion paper, Beutler et al. (2016b), presents a BAO-
only analysis, where we use the same power-spectrum multipole
measurements, but isolate the BAO signal by marginalizing over
the shape of the power spectrum (including RSD). While the BAO-
only analysis does not capture the information on RSD, it will allow
measurements of DV(z)/rs(zd) and FAP(z) = (1 + z)DA(z)H(z)/c that
do not depend on our understanding of RSD. Without the need to
model RSD in detail, the BAO-only analysis can use a wider range
of wavenumbers (kmax = 0.3 h Mpc−1), and improve the BAO signal
by using the BAO reconstruction technique (Eisenstein et al. 2007).
BAO measurements obtained using the monopole and quadrupole
correlation functions are presented in Ross et al. (2016), while
Vargas-Magana et al. (2016) diagnose the level of theoretical sys-
tematic uncertainty in the BOSS BAO measurements. Beside this
paper, there are three more measurements of the growth of struc-
ture (Grieb et al. 2016; Sanchez et al. 2016; Satpathy et al. 2016).
Alam et al. (2016) combine the results of these seven papers (in-
cluding this work) into a single likelihood that can be used to test
cosmological models.

This paper is organized as follows: Section 2 presents the BOSS
data set used in this analysis. Section 3 describes the power-
spectrum estimator, followed by the treatment of the window func-
tion in Section 4. Section 5 introduces our power-spectrum model,
which is based on renormalized perturbation theory. Section 6 dis-
cusses the mock catalogues used to derive covariance matrices for
our measurements. In Section 7, we use these mock catalogues as
well as N-body simulations to test our power-spectrum model. The
analysis together with the fitting results is presented in Section 8,
while Section 9 discusses the result and compares with previous
studies. We conclude in Section 10.

The fiducial cosmological parameters, which we use to turn the
observed angles and redshifts into comoving coordinates and to
generate our linear power-spectrum models as an input for the
power-spectrum templates, follow a flat �CDM (� cold dark mat-
ter) model with �m = 0.31, �b h2 = 0.022, h = 0.676, σ 8 = 0.8,
ns = 0.96,

∑

mν = 0.06 eV and rfid
s (zd) = 147.78 Mpc.

2 T H E B O S S D R 1 2 DATA SE T

The BOSS is part of Sloan Digital Sky Survey (SDSS)-III (Eisen-
stein et al. 2011; Dawson et al. 2013) and measured spectroscopic
redshifts of 1198 006 million galaxies using the SDSS multifibre
spectrographs (Bolton et al. 2012; Smee et al. 2013). The galaxies
are selected from multicolour SDSS imaging (Fukugita et al. 1996;
Gunn et al. 1998, 2006; Smith et al. 2002; Doi et al. 2010).

The survey is optimized for the measurement of the BAO scale
and hence covers a large cosmic volume with a density of n ≈
3 × 10−4 h3 Mpc−3, high enough to ensure that shot noise is not the
dominant error contribution at the BAO scale. Most BOSS galaxies
are red with a prominent 4000 Å break in their spectral energy
distribution; this feature allows a reliable redshift detection with a
short exposer, providing a fast survey speed.

The BOSS DR12 sample covers a redshift range of 0.2 < z < 0.75
over 10 252 deg2 divided in two patches on the sky. The North Galac-
tic Cap (NGC) contains 864 924 galaxies and the South Galactic
Cap (SGC) contains 333 082. Although the BOSS galaxy sample
consists of two separate selection algorithms, the so-called LOWZ

and CMASS, we utilize the whole galaxy sample by combining these
two samples. We refer to Reid et al. (2016) for concrete definitions
of selection criteria for LOWZ and CMASS. The completeness of this
sample in terms of stellar mass is studied in Leauthaud et al. (2016)
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Figure 1. Galaxy density distribution for the North Galactic Cap (NGC,
red), South Galactic Cap (SGC, black) as well as the early (E) regions 2 and
3, consisting of chunks 2–6 (for details see Section 2).

and Saito et al. (2016) using the deeper galaxy sample of S82-MGC
(Bundy et al. 2015).

The DR12 data release also includes a few regions on the sky
(early regions, chunks 2–6), which have not been included in pre-
vious data releases. Galaxies in these regions were selected with
different algorithms from those of subsequent data. We now create
separate masks for chunk 2 (LOWZE2) and chunks 3–6 (LOWZE3) and
combine these regions with the rest of the BOSS data set. However,
the density for chunks 2–6 is generally lower compared to the rest
of the data set, as shown in Fig. 1. Since chunks 2–6 are located
in the NGC, the expected bias parameters are different for NGC
and SGC. We will address this issue further in Section 5.3. Details
about the selection differences between chunks 2–6 and the rest of
the BOSS data set as well as the mask creation can be found in Reid
et al. (2016).

We include three different incompleteness weights to account
for shortcomings of the BOSS data set (see Ross et al. 2012 and
Anderson et al. 2014 for details): a redshift failure weight, wrf, a
fibre collision weight, wfc, and a systematics weight, wsys, which
is a combination of a stellar density weight and a seeing condition
weight. Each galaxy is thus counted as

wc = (wrf + wfc − 1)wsys. (1)

Accounting for redshift failure and fibre collisions, the weighted
galaxy count is 1265 350 (see Table 1).

We divide the BOSS data set into three overlapping redshift bins
defined by 0.2 < z < 0.5, 0.4 < z < 0.6 and 0.5 < z < 0.75. The
effective redshift for these samples can be calculated as

zeff =
∑Ngal

i wFKP(xi)wc(xi)zi

∑Ngal
i wFKP(xi)wc(xi)

, (2)

where wFKP = 1/(1 + n(z)P0) is a signal-to-noise ratio weight
suggested by Feldman, Kaiser & Peacock (1993, we adopt
P0 = 10 000 h−3 Mpc3). With the above definition of the effec-
tive redshift we find zeff = 0.38, 0.51 and 0.61 for the three redshift
bins.

3 THE P OWER - SPECTRUM ESTIMATO R

We employ the FFT-based anisotropic power-spectrum estimator
suggested by Bianchi et al. (2015) and Scoccimarro (2015). This
estimator follows the ideas of Feldman et al. (1993), but also al-

lows one to estimate the higher order multipoles by decompos-
ing the power-spectrum estimate into its spatial vector components
and performing a series of FFTs for each component. This ap-
proach accounts for the different line-of-sights for different galaxy
pairs within the local plane-parallel approximation.1 By using FFTs
rather than summing over all galaxy pairs (Yamamoto et al. 2006;
Beutler et al. 2014a), this estimator allows a computational com-
plexity ofO(N log N ), which is much faster than a naive pair count-
ing analysis (here, N is the number of grid cells used to bin the data).

The power-spectrum multipoles can be calculated as (Feld-
man et al. 1993; Yamamoto et al. 2006; Bianchi et al. 2015;
Scoccimarro 2015) follows:

P0(k) =
1

2A

[

F0(k)F ∗
0 (k) − S

]

, (3)

P2(k) =
5

4A
F0(k)

[

3F ∗
2 (k) − F ∗

0 (k)
]

, (4)

P4(k) =
9

16A
F0(k)

[

35F ∗
4 (k) − 30F ∗

2 (k) + 3F ∗
0 (k)

]

, (5)

with

F0(k) = A0(k), (6)

F2(k) =
1

k2

[

k2
xBxx + k2

yByy + k2
zBzz

+ 2
(

kzkyBxy + kxkzBxz + kykzByz

)]

, (7)

F4(k) =
1

k4

[

k4
xCxxx + k4

yCyyy + k4
zCzzz

+ 4
(

k3
xkyCxxy + k3

xkzCxxz + k3
ykxCyyx

+ k3
ykzCyyz + k3

zkxCzzx + k3
zkyCzzy

)

+ 6
(

k2
xk

2
yCxyy + k2

xk
2
zCxzz + k2

yk
2
zCyzz

)

+ 12kxkykz

(

kxCxyz + kyCyxz + kzCzxy

)]

(8)

and

A0(k) =
∫

drF (r)eik·r , (9)

Bxy(k) =
∫

dr
rxry

r2
F (r)eik·r , (10)

Cxyz(k) =
∫

dr
r2
x ryrz

r4
F (r)eik·r . (11)

F (r) is the overdensity field calculated from the data and random
galaxies as

F (r) = G(r) − α′R(r), (12)

where r is defined on a 3D Cartesian grid, in which we bin all
data and random galaxies. The function G(r) gives the number of
weighted galaxies at the location r , while R(r) is the equivalent
function for the random galaxies. The normalization of the random
field is given by α′ = N ′

ran/N
′
gal; N ′

ran and N ′
gal are the number of

1 We define the local plane-parallel approximation to be the assumption that
the position vectors of a given galaxy pair can be treated as parallel such that
xh = x1+x2

2 ≈ x1 ≈ x2, while the lines of sight vary for different pairs. The
global plane-parallel approximation assumes that the line of sight is fixed
for all galaxy pairs. See Beutler et al. (2014a, section 3.1) for more details.
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Table 1. The number of galaxies Ngal, the weighted (incompleteness weight) number of galaxies N ′
gal and the effective volume for

the three redshift bins used in this analysis. Equation (2) produces the effective redshifts of zeff = 0.38, 0.51 and 0.61 for the three
redshift bins, respectively.

0.2 < z < 0.5 0.4 < z < 0.6 0.5 < z < 0.75
NGC SGC NGC SGC NGC SGC

Ngal 429 182 174 820 500 875 185 500 435 742 158 262
N ′

gal 445 261 182 678 534 725 197 084 467 504 169 907
Veff[Gpc3] 2.7 1.0 3.1 1.1 3.0 1.1

weighted random and data galaxies, respectively. All the integrals
above can be solved with FFTs. The normalization is given by

A = α′
Nran
∑

i

n′
g(xi)w

2
FKP(xi), (13)

where n′
g is the weighted galaxy number density. The shot-noise

term is only relevant for the monopole and is given by

S =
Ngal
∑

i

[

fcwc(xi)wsys(xi)w
2
FKP(xi) (14)

+ (1 − fc)w2
c (xi)w

2
FKP(xi)

]

(15)

+ α′2
Nran
∑

i

w2
FKP(xi), (16)

where fc is the probability of a fibre collided galaxy being associ-
ated with its nearest neighbour, which we set to 0.5 based on the
study by Guo, Zehavi & Zheng (2012). Guo et al. (2012), however,
studied the fibre collision only for the CMASS sample and their fibre
collision correction assumes a uniform tiling algorithm. Although
this definition of the shot noise deviates from the one used in Beutler
et al. (2014a), the difference does not actually impact our analysis
since we marginalize over any residual shot-noise component (see
Section 5).

The final power spectrum is calculated as the average over spher-
ical k-space shells:

Pℓ(k) = 〈Pℓ(k)〉 =
1

Nmodes

∑

k− 
k
2 <|k|<k+ 
k

2

Pℓ(k), (17)

where Nmodes is the number of k modes in that shell. In our analysis,
we use 
k = 0.01 h Mpc−1. We employ a Triangular Shaped Cloud
method to assign galaxies to the 3D Cartesian grid and correct for the
aliasing effect following Jing (2005). The grid configuration implies
a Nyquist frequency of kNy = 0.6 h Mpc−1, four times as large as the
largest scale used in our analysis (kmax = 0.15 h−1 Mpc), and the ex-
pected error on the power-spectrum monopole at k = 0.15 h−1 Mpc
due to aliasing is <0.001 per cent (Sefusatti et al. 2016).

4 T H E S U RV E Y W I N D OW FU N C T I O N

In this paper, we include the window-function effect in the power-
spectrum model rather than attempting to remove the effect from the
data. Unlike Beutler et al. (2014a), our window-function treatment
follows the method suggested by Wilson et al. (2015). However,
Wilson et al. (2015) employ the global plane-parallel approximation
in their derivation by setting μ = k̂ · η̂, where η defines a fixed
global line-of-sight vector. The global plane-parallel approximation

might be an acceptable approximation for small angle surveys,2

but is generally not valid for wide area surveys such as BOSS.
In Appendix A, we will rederive this window-function treatment
within the local plane-parallel approximation, which justifies its
use in our analysis.

The three main steps to include the effect of the window function
in our power-spectrum model are as follows.

(i) For each model power spectrum, which we intend to compare
to the data, we first calculate the model power-spectrum multipoles
and Fourier transform them to determine the correlation function
multipoles ξmodel

ℓ (s).
(ii) We calculate the ‘convolved’ correlation function ξ̂model

ℓ (s)
by multiplying the correlation function with the window function.

(iii) We Fourier transform the convolved correlation function
multipoles back into Fourier space to get the convolved power-
spectrum multipoles, P̂ℓ(k).

The convolved power-spectrum multipoles are given by

P̂ℓ(k) = 4π(−i)ℓ
∫

ds s2ξ̂ℓ(s)jℓ(sk). (18)

For our analysis, we need to calculate the convolved monopole,
quadrupole and hexadecapole power spectra. The convolved corre-
lation function multipoles in equation (18), relevant for our analysis,
are

ξ̂0(s) = ξ0W
2
0 +

1

5
ξ2W

2
2 +

1

9
ξ4W

2
4 + · · · (19)

ξ̂2(s) = ξ0W
2
2 + ξ2

[

W 2
0 +

2

7
W 2

2 +
2

7
W 2

4

]

+ ξ4

[

2

7
W 2

2 +
100

693
W 2

4 +
25

143
W 2

6

]

+ · · · (20)

ξ̂4(s) = ξ0W
2
4 + ξ2

[

18

35
W 2

2 +
20

77
W 2

4 +
45

143
W 2

6

]

+ ξ4

[

W 2
0 +

20

77
W 2

2 +
162

1001
W 2

4

+
20

143
W 2

6 +
490

2431
W 2

8

]

+ · · · (21)

We truncate after the hexadecapole contribution of the correlation
function but use all window-function multipoles up to ℓ = 8.

2 Wilson et al. (2015) apply their formalism to the VIPERS survey (Garilli
et al. 2014).
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Figure 2. Window-function multipoles for BOSS DR12 as given in equation (22) and used for the convolved correlation functions in equations (19)–(21).
The top panels display the window functions for the NGC in the three redshift bins used in this analysis; the bottom panels show the window functions for the
SGC.

The different window-function multipoles included in our anal-
ysis can be derived from the random pair distribution as

W 2
ℓ (s) ∝

∑

x1

∑

x2

RR(s, μs)Lℓ(μs). (22)

The first five non-zero window functions used in our analysis are
shown in Fig. 2. The shape of these functions can be understood by
investigating equation (22). The monopole is a spherically averaged
function, and on small scales, where survey edge effects do not
matter, the window will be equal to 1 (given the choice of our
normalization). Similarly, the quadrupole, which is an integral over
a function oscillating around zero, will average to zero on small
scales, while as soon as it reaches scales as large as the survey, it
will no longer average to zero.

Fig. 3 shows the unconvolved and convolved power-spectrum
multipoles for the SGC in the lowest redshift bin. Given that the
SGC in the smallest redshift bin has the smallest volume, we expect
window-function effects to be largest in this case.

When one reaches the scale of the survey, the window func-
tion becomes crucial for the correct interpretation of the data. We
find a significant leakage of power from the quadrupole to the
monopole on large scales due to the window function. The effect is
shown in Fig. 4, which presents the ratio of the convolved power-
spectrum monopole relative to the unconvolved (linear) power-
spectrum monopole. The window-function effect is of the order
of 2 per cent for k � 0.04 h Mpc−1 and significantly increases for
k � 0.01 h Mpc−1. The quadrupole contribution to the monopole
becomes significant at k � 0.015 h Mpc−1. The hexadecapole con-
tribution (see the difference between the red and the black lines in
Fig. 4) is negligible on all scales. While these effects are of mi-
nor importance for our analysis given that we have a minimum k

value of 0.01 h Mpc−1, they can be quite important for studies of
non-Gaussianity, where the observable is at very small k.

We also tested our window-function treatment by comparing the
power-spectrum multipoles for 84 CMASS-like mock catalogues with
the convolved multipoles of the corresponding periodic boxes (see

Figure 3. Illustration of the discreteness and the window-function effects
on the power-spectrum multipoles for the low-redshift bin in the SGC. The
monopole (top), the quadrupole (middle) and hexadecapole (bottom) are
displayed in the range used in this analysis. The solid black lines show
the input linear power-spectrum multipoles using a linear bias of b1 = 2
and a growth rate of f = 0.7, while the black dashed lines are the same
power spectra convolved with the window function. The main effect of the
window function is a damping at small k. The red line also includes the
discreteness effect using equation (40). The discreteness effect is caused by
the finite k-space grid, used to estimate the power-spectrum multipoles (see
Section 5.1).

Fig. 5). The agreement is far better than the measurement uncer-
tainties and confirms that our convolution method is capturing the
geometric effects correctly.

5 T H E P OW E R - S P E C T RU M M O D E L

Our model for the anisotropic galaxy power spectrum is based on
the work of Taruya, Nishimichi & Saito (2010, TNS) and is the same
as used in our DR11 analysis (Beutler et al. 2014a). We summarize
this model below but refer the reader to Beutler et al. (2014a) for
more details.

MNRAS 466, 2242–2260 (2017)



BOSS: anisotropic Fourier-space analysis 2247

Figure 4. The leakage of higher order multipoles to the observed monopole
power spectrum due to the window-function effect. The blue line shows the
contribution from the monopole to the observed monopole; the red line in-
dicates the contributions from the monopole and quadrupole and the black
line represents the contributions from the monopole, quadrupole and hexade-
capole. The total window-function effect (black) is of the order of 2 per cent
for k � 0.04 h Mpc−1 and significantly increases for k � 0.01 h Mpc−1. The
quadrupole contribution (from the difference between the blue and red lines)
becomes significant at k � 0.015 h Mpc−1. The hexadecapole contribution
(from the difference between the red and the black lines) is negligible on all
scales.

The anisotropic power spectrum is given by

Pg(k, μ) = exp
{

−(f kμσv)2
}

[

Pg,δδ(k)

+ 2f μ2Pg,δθ (k) + f 2μ4Pθθ (k)

+ b3
1A(k, μ, β) + b4

1B(k, μ, β)
]

, (23)

where μ denotes the cosine of the angle between the wavenumber
vector and the line-of-sight direction. The overall exponential factor
represents the suppression due to the ‘Finger of God’ (FoG) effect,
and we treat σ v as a free parameter.

The first three terms in the square brackets in equation (23) de-
scribe an extension to the simple Kaiser model. The density (Pδδ),
velocity divergence (Pθθ ) and their cross-power spectra (Pδθ ) are
identical in linear theory, while in the quasi non-linear regime,
the density power spectrum increases and velocities are random-
ized on small scales, which damp the velocity power spectrum
(Scoccimarro 2004). In addition to this fact, we need to relate the
density and velocity fields for (dark) matter to those of galaxies.
Here we assume no velocity bias, i.e. θg = θ , but include every pos-
sible galaxy bias term at the next-to-leading order using symmetry
arguments (McDonald & Roy 2009):

Pg,δδ(k) = b2
1Pδδ(k) + 2b2b1Pb2,δ(k) + 2bs2b1Pbs2,δ(k)

+ 2b3nlb1σ
2
3 (k)P lin

m (k) + b2
2Pb22(k)

+ 2b2bs2Pb2s2(k) + b2
s2Pbs22(k) + N, (24)

Pg,δθ (k) = b1Pδθ (k) + b2Pb2,θ (k) + bs2Pbs2,θ (k)

+ b3nlσ
2
3 (k)P lin

m (k), (25)

where P lin
m is the linear matter power spectrum. Here, we introduce

five galaxy bias parameters: the renormalized linear bias, b1, second-
order local bias, b2, second-order non-local bias, bs2, third-order
non-local bias, b3nl, and the constant stochasticity term, N. We
evaluate the non-linear matter power spectra, Pδδ , Pδθ , Pθθ , with

the RegPT scheme at two-loop order (Taruya et al. 2012) using the
fiducial cosmology specified at the end of Section 1. The other bias
terms are given by

Pb2,δ(k) =
∫

d3q

(2π)3
P lin

m (q)P lin
m (|k − q|)F (2)

S (q, k − q), (26)

Pb2,θ (k) =
∫

d3q

(2π)3
P lin

m (q)P lin
m (|k − q|)G(2)

S (q, k − q), (27)

Pbs2,δ(k) =
∫

d3q

(2π)3
P lin

m (q)P lin
m (|k − q|)

× F
(2)
S (q, k − q)S(2)(q, k − q), (28)

Pbs2,θ (k) =
∫

d3q

(2π)3
P lin

m (q)P lin
m (|k − q|)

× G
(2)
S (q, k − q)S(2)(q, k − q), (29)

Pb22(k) =
1

2

∫

d3q

(2π)3
P lin

m (q)
[

P lin
m (|k − q|) − P lin

m (q)
]

, (30)

Pb2s2(k) = −
1

2

∫

d3q

(2π)3
P lin

m (q)

[

2

3
P lin

m (q)

− P lin
m (|k − q|)S(2)(q, k − q)

]

, (31)

Pbs22(k) = −
1

2

∫

d3q

(2π)3
P lin

m (q)

[

4

9
P lin

m (q)

− P lin
m (|k − q|)S(2)(q, k − q)2

]

, (32)

where the symmetrized second-order PT kernels, F (2)
S , G(2)

S and S(2)

are given by

F
(2)
S (q1, q2) =

5

7
+

q1 · q2

2q1q2

(

q1

q2
+

q2

q1

)

+
2

7

(

q1 · q2

q1q2

)2

, (33)

G
(2)
S (q1, q2) =

3

7
+

q1 · q2

2q1q2

(

q1

q2
+

q2

q1

)

+
4

7

(

q1 · q2

q1q2

)2

, (34)

S(2)(q1, q2) =
(

q1 · q2

q1q2

)2

−
1

3
. (35)

If we additionally define

D(2)(q1, q2) =
2

7

[

S(2)(q1, q2) −
2

3

]

, (36)

we can express σ 2
3 (k) of equation (25) as

σ 2
3 (k) =

105

16

∫

d3q

(2π)3
P lin

m (q)

[

D(2)(−q, k)S(2)(q, k − q) +
8

63

]

.

(37)

In the case of the local Lagrangian bias picture, we can predict the
amplitude of the non-local bias as (Saito et al. 2014)

bs2 = −
4

7
(b1 − 1), (38)

b3nl =
32

315
(b1 − 1), (39)

which are in good agreement with N-body simulations (e.g. Baldauf
et al. 2012). The impact of second-order tidal bias on the power
spectrum is expected to be very small on the scales included in
this analysis, while the impact of the third-order non-local bias is
expected to be larger than the second-order contribution, as shown
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in Saito et al. (2014). Nevertheless, we argue that our assumption
does not have an impact for our purpose, since we validate our
modelling well within the precision of the final constraints in the
test with the mock challenge.

In this work, we adopt these relations for simplicity, while we take
b1, b2 and N as independent parameters to vary. Since we measure
the amplitude of the biased clustering, the actual free parameters
used are b1σ 8(z), b2σ 8(z) and N at each redshift bin, as discussed in
Section 5.3.

Our RSD model is based on the local distant observer approxi-
mation, i.e. without accounting for the wide angle effect. The wide
angle effect has been shown to be negligible compared to the sam-
ple variance for surveys such as BOSS (Beutler et al. 2011, 2012;
Samushia, Percival & Raccanelli 2011; Yoo & Seljak 2015).

Recently, potential improvements for the model discussed above
have been proposed. For the non-linear RSD model, Zheng & Song
(2016) try to improve the TNS model by further examining our
FoG suppression term and directly comparing the correction terms
between perturbation theory and simulations. For the non-linear
galaxy bias, Lazeyras et al. (2016) study the separate universe sim-
ulations that enable to directly measure and assess the non-linear
local bias of dark matter haloes (see also Li, Hu & Takada 2016).
They also discuss the importance of the k2 bias term that we ig-
nore just for simplicity (see also McDonald & Roy 2009; Biagetti
et al. 2014; Schmidt 2016 etc.). Also, the developments in terms of
the distribution function approach (e.g. Okumura et al. 2015) and
the effective field theory approach (e.g., Lewandowski et al. 2015)
are ongoing and can be complementary to our model.

5.1 Correction for the irregular µ distribution

Because the survey volume is not infinite, the measured power spec-
tra are estimated on a finite and discrete k-space grid. Performing
FFTs in a Cartesian lattice makes the angular distribution of the
Fourier modes irregular and causes increasing deviation from the
isotropic distribution at smaller k. As a result, fluctuation-like devia-
tions appear in the measured power-spectrum multipoles that are not
caught by the window function, as shown in the bottom panel (SGC)
of Fig. 6. The effect is larger for the quadrupole than the monopole
since the quadrupole is more sensitive to an anisotropy. Our DR11
analysis corrected the measured data for this effect, while here we
include this effect in our power-spectrum model. When integrating
the model power spectrum P (k, μ)L(μ) in equation (40) over μ,
we weight each μ bin by the normalized number of modes N(k, μ)
counted on the k-space grid used to estimate the power spectrum.

Pℓ(k) =
∫ 1

−1
dμ P (k, μ)

Nmodes(k, μ)

Nbin(k)
Lℓ(μ), (40)

with the normalization for each k given by

Nbin(k) =
∫ 1

−1
dμ Nmodes(k, μ). (41)

This Pℓ(k) is used to calculate ξ ℓ in equations (19)–(21). Fig. 3
shows the effect of irregular μ distribution in the three power-
spectrum multipoles. While the effect is most pronounced in the
higher order multipoles, it never exceeds the measurement uncer-
tainties and hence is not a dominant effect.

The inclusion of a μ-dependent function in equation (40) is in-
consistent with our derivation of the window-function convolution
in equation (A12). A completely consistent approach would include
the effect of irregular μ distribution after the window-function con-
volution, or would properly include this function in equation (A12).

Figure 5. Here we show the difference between the mean power-spectrum
multipoles of a set of CMASS-like mock catalogues and the mean power-
spectrum multipoles of the corresponding periodic boxes convolved with
the window function. A value of zero indicates that our window-function
convolution method does correctly model the effects introduced by the
survey geometry. The colour bands indicate the uncertainties as given by the
diagonal terms of the NGC covariance matrix for the second redshift bin.

We tested the impact of this assumption by including the discrete-
ness effect after the convolution (using multipole expansion) and
found that this does not change our results.

5.2 The Alcock–Paczynski effect

When transforming our observables, such as celestial position and
redshift, into physical coordinates, we assume specific relations be-
tween the redshift and the line-of-sight distance (i.e. the Hubble
parameter) and between the angular separation and the distance
perpendicular to the line of sight (i.e. the angular diameter dis-
tance) given by the fiducial cosmological model. Therefore, if we
assume a fiducial cosmology that is different from the true cosmol-
ogy, it will produce geometric warping and artificially introduce an
anisotropy in an otherwise isotropic feature in the galaxy clustering,
independently from the effect of RSD. This behaviour is known as
the AP effect (Alcock & Paczynski 1979) and can be used to mea-
sure cosmological parameters (Ballinger et al. 1996; Matsubara &
Suto 1996). The anisotropy due to the AP effect is often difficult to
separate from the RSD effect for a featureless power spectrum given
the uncertainties in the models for RSD (Seo & Eisenstein 2003;
Shoji, Jeong & Komatsu 2009). The presence of the BAO feature
in the power spectrum, however, helps to break this degeneracy.

To account for the AP effect due to the different geometric scaling
along and perpendicular to the line-of-sight directions between the
true and fiducial cosmology, we introduce the scaling factors

α‖ =
H fid(z)rfid

s (zd)

H (z)rs(zd)
, (42)

α⊥ =
DA(z)rfid

s (zd)

Dfid
A (z)rs(zd)

, (43)

where Hfid(z) and Dfid
A (z) are the fiducial values for the Hubble

parameter and angular diameter distance at the effective redshifts
of the data set, and rfid

s (zd) is the fiducial value of the sound horizon
scale at the drag epoch assumed in the power-spectrum template.
By using the sound horizon scale as the reference scale for the
AP test, we are assuming that the main feature that contributes
to the AP test is the BAO. The true wavenumbers k′

‖ and k′
⊥ are

then related to the observed wavenumbers by k′
‖ = k‖/α‖ and k′

⊥ =
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Figure 6. Comparison of the BOSS DR12 power-spectrum multipoles (coloured data points) and the mean of the MultiDark-PATCHY mock catalogues (coloured
solid lines) with the same selection function as the data. The top panels show the power-spectrum multipoles for the three redshift bins in the NGC and the
bottom panels are the same measurements for SGC. The different multipoles are colour coded, where blue represents the monopole, red represents the
quadrupole and black shows the hexadecapole. The shaded area is the variance between all mock catalogues and is identical to the extent of the error bars
on the data points. For SGC (bottom panels), the mock catalogues show some correlated fluctuations at small k, which is most prominent in the higher order
multipoles. This feature is a discreteness effect, due to the finite number of modes at large scales. This effect is present in the data as well, and we discuss how
to account for this effect in our power-spectrum model in Section 5.1.

k⊥/α⊥. Transferring this information into scalings for the absolute

wavenumber k =
√

k2
‖ + k2

⊥ and the cosine of the angle to the line-

of-sight μ, we can relate the true (k′, μ′) and observed values (k, μ)
by (Ballinger et al. 1996)

k′ =
k

α⊥

[

1 + μ2

(

1

F 2
− 1

)]1/2

, (44)

μ′ =
μ

F

[

1 + μ2

(

1

F 2
− 1

)]−1/2

, (45)

with F = α‖/α⊥. The multipole power spectrum including the AP
effect can then be written as

Pℓ(k) =
(

rfid
s

rs

)3
(2ℓ + 1)

2α2
⊥α‖

∫ 1

−1
dμ Pg

[

k′(k, μ), μ′(μ)
]

Lℓ(μ),

(46)

where we use the model of Section 5 for Pg[k′(k, μ), μ′(μ)]. The

factor ( rfid
s
rs

)3 1
2α2

⊥α‖
accounts for the difference in the cosmic volume

in different cosmologies. The ratio of sound horizon scales is needed
to compensate for the sound horizon scale included in the definitions
of the α values. To treat this rs properly, we could apply the Planck

measurement (Planck Collaboration XIII 2016) on rs as a prior
during the parameter fitting. Since the Planck uncertainty on rs is
only at the level of ∼0.2 per cent, fixing rs = 147.41 h−1 Mpc has a
negligible effect on our measurements of α‖ and α⊥.

The AP effect (from the anisotropic warping of the BAO) con-
strains the parameter combination FAP(z) = (1 + z)DA(z)H(z)/c,
while the radial dilation of the BAO feature constrains the combina-
tion DV (z)/rs(zd) ∝

[

D2
A(z)/H (z)

]1/3
. Together these two signals

allow one to break the degeneracy between DA(z) and H(z).

5.3 Model parametrization

Based on the discussion of our model in Section 5 we have four
nuisance parameters, b1σ 8, b2σ 8, σ v and N, which we fit to our
measurements together with the three cosmological parameters fσ 8,
α‖ and α⊥. We need to put a prior on σ 8 when calculating the higher
order corrections, where we use the fiducial value of σ 8 = 0.8. Note
that this prior only affects the second-order correction, while the
linear contribution in the form of b1σ 8 is a free parameter. The two
α parameters carry the BAO and AP information; we can rephrase
these parameters to

FAP = (1 + zeff)DA(zeff)H (zeff)/c (47)

=
α⊥

α‖
(1 + zeff)D

fid
A (zeff)H

fid(zeff)/c (48)

and

DV (zeff)
rfid

s (zd)

rs(zd)
=

(

α2
⊥α‖[(1 + zeff)D

fid
A (zeff)]

2 czeff

H fid(zeff)

)
1
3

.

(49)

At low redshift the BOSS galaxies follow a slightly different selec-
tion in the SGC and NGC (see Section 2, Reid et al. 2016 and Ross
et al. 2016). These differences lead to different power-spectrum
amplitudes in the SGC and NGC. To account for this issue, we
marginalize over the four nuisance parameters independently for
NGC and SGC, while we use the same cosmological parameters.
Tests on mock catalogues demonstrated that using separate nuisance
parameters for the NGC and SGC does not degrade our cosmolog-
ical constraints. We therefore have a total of 11 parameters for
each redshift bin in our analysis: bNGC

1 σ8(z), bSGC
1 σ8(z), bNGC

2 σ8(z),
bSGC

2 σ8(z), σ NGC
v , σ SGC

v , NNGC, NSGC, f(z)σ 8(z), α‖ and α⊥.
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6 M O C K C ATA L O G U E S

To derive a covariance matrix for the power-spectrum multi-
poles we use the MultiDark-PATCHY mock catalogues (Kitaura
et al. 2016). These mock catalogues have been calibrated to
an N-body-based reference sample using approximate gravity
solvers and analytical–statistical biasing models. The reference
catalogue is extracted from one of the BigMultiDark simula-
tions (Klypin et al. 2016), which used 38403 particles on a
volume of (2.5 h−1 Mpc)3 assuming a �CDM cosmology with
�m = 0.307115, �b = 0.048206, σ 8 = 0.8288, ns = 0.9611, and a
Hubble constant of H0 = 67.77 km s−1Mpc−1.

Halo abundance matching is used to reproduce the observed
BOSS two- and three-point clustering measurements (Rodrguez-
Torres et al. 2016). This technique is applied at different redshift
bins to reproduce the BOSS DR12 redshift range. These mock cata-
logues are combined into light cones, also accounting for selection
effects and masking. In total, we have 2045 mock catalogues avail-
able for the NGC and 2048 mock catalogues for the SGC.

The mean power-spectrum multipoles for MultiDark-PATCHY

mock catalogues are shown in Fig. 6 (lines with shaded area) for
the NGC (top panels) and SGC (bottom panels), together with the
BOSS measurements (coloured points with error bars). The mock
catalogues closely reproduce the data power-spectrum multipoles
for the entire range of wavenumbers relevant for this analysis.

The SGC mock catalogues show some correlated fluctuations
in the power spectra at small k, which are more prominent in the
quadrupole and hexadecapole. This behaviour is a discreteness ef-
fect due to the finite number of Fourier modes, which is more severe
at small k. This effect is present in the data as well; we discuss how to
account for this effect in our power-spectrum model in Section 5.1.

6.1 The covariance matrix

We can derive a covariance matrix from the set of mock catalogues
described in the last section as

Cxy =
1

Ns − 1

Ns
∑

n=1

[

Pℓ,n(ki) − P ℓ(ki)
]

×
[

Pℓ′,n(kj ) − P ℓ′ (kj )
]

, (50)

with Ns being the number of mock catalogues. Our covariance ma-
trix contains the monopole, quadrupole and hexadecapole uncer-
tainties as well as their covariances. The elements of the matrices
are given by (x, y) = ( nbℓ

2 + i, nbℓ′

2 + j ), where nb is the number
of bins in each multipole power spectrum. Our fitting range is
k = 0.01–0.15 h Mpc−1 for the monopole and quadrupole (nb = 14),
and k = 0.01–0.10 h Mpc−1 for the hexadecapole (nb = 9); hence,
the dimensions of the covariance matrices are 37 × 37. The mean
of the power spectra is defined as

P ℓ(ki) =
1

Ns

Ns
∑

n=1

Pℓ,n(ki). (51)

Since the mock catalogues have the same selection function as
the data, they automatically incorporate the window-function and
integral-constraint effects present in the data.

Fig. 7 presents the correlation matrices for the three redshift bins
of BOSS NGC (top panels) and SGC (bottom panels), where the
correlation coefficient is defined as

rxy =
Cxy

√

CxxCyy

. (52)

Each panel shows a matrix with three horizontal and vertical division
lines. The first column displays the correlation between k bins in the
monopole with itself (bottom), with the quadrupole (middle) and
with the hexadecapole (top). The second column is the correlations
for the quadrupole and the third column presents the correlations
for the hexadecapole. There is a correlation between the monopole
and quadrupole, as well as a correlation between the quadrupole
and hexadecapole, while the correlation between the monopole and
hexadecapole is quite weak.

Since the estimated covariance matrix C is inferred from mock
catalogues, its inverse, C−1, provides a biased estimate of the true
inverse covariance matrix, due to the skewed nature of the inverse
Wishart distribution (Hartlap, Simon & Schneider 2007). To correct
for this bias, we rescale the inverse covariance matrix as

C
−1
ij ,Hartlap =

Ns − nb − 2

Ns − 1
C

−1
ij , (53)

where nb is the number of power-spectrum bins. With these
covariance matrices, we can perform a standard χ2 minimiza-
tion to find the best-fitting parameters. In our analysis, we have
Ns = 2048 (2045) and nb = 37, which yield a Hartlap factor of
∼0.98, representing an increase in the variance of about 1 per cent.

6.2 Fitting preparation

Using the covariance matrix derived in Section 6.1, we perform
a χ2 minimization to find the best-fitting parameters. In addition
to the scaling of the covariance matrix of equation (53), we have
to propagate the error in the covariance matrix to the error on
the estimated parameters. This test is accomplished by scaling the
variance for each parameter by (Percival et al. 2014)

M1 =

√

1 + B(nb − np)

1 + A + B(np + 1)
, (54)

where np is the number of parameters, and

A =
2

(Ns − nb − 1)(Ns − nb − 4)
, (55)

B =
Ns − nb − 2

(Ns − nb − 1)(Ns − nb − 4)
. (56)

Taking the quantities that apply in our case [Ns = 2048 (2045),
nb = 76, np = 11] results in a modest correction of M1 ≈ 1.01.

When dealing with the variance or standard deviation of a dis-
tribution of finite mock results that also has been fitted with a
covariance matrix derived from the same mock results, the standard
deviation from these mocks must be corrected as

M2 = M1

√

Ns − 1

Ns − nb − 2
. (57)

When the error is estimated from the likelihood distribution, the
resulting standard deviation is multiplied by M1 alone since the
second factor, i.e. Hartlap factor (Hartlap et al. 2007), is already
included in equation (53).

We calculate the power spectrum in bins of 
k = 0.01 h Mpc−1.
Tests on mock data sets have shown that such a binning choice is
small enough so that it does not dilute any of the cosmologically
relevant information, while sufficiently large so that it keeps the
Hartlap et al. (2007) correction factor small.

The fitting range for our analysis is fixed to k = 0.01–
0.15 h Mpc−1 for the monopole and quadrupole and k = 0.01–
0.1 h Mpc−1 for the hexadecapole. This choice is based on many
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Figure 7. Covariance matrices including the monopole, quadrupole and hexadecapole of the NGC (top) and SGC (bottom) for the three redshift bins used in
this analysis. We include all bins between k = 0.01 and 0.15 h−1 Mpc for the monopole and quadrupole and all bins between k = 0.01 and 0.10 h−1 Mpc for the
hexadecapole. The colour indicates the level of correlation, where red represents 100 per cent correlation and blue–magenta means low level of anticorrelation.

mock tests to get the best-possible unbiased constraints with the
available data. Using the hexadecapole up to kmax = 0.15 h Mpc−1

and/or the monopole and quadrupole up to kmax = 0.2 h Mpc−1 does
introduce small systematic biases, which we decided to avoid in this
analysis.

To derive the likelihood distribution for the different parameters
given the measurements we use a Monte Carlo Markov Chain ap-
proach based on a modified version of the PYTHON EMCEE package
(Foreman-Mackey et al. 2013). We test the convergence of four
chains run in parallel using the Gelman & Rubin (1992) conver-
gence criterion.

7 T E S T I N G T H E M O D E L W I T H M O C K

C ATA L O G U E S

To confirm that our model is accurate enough to extract the true
cosmological parameters within the measurement precision, we re-
fer the reader to our DR11 analysis (Beutler et al. 2014a), where
we already performed many tests of our analysis pipeline. Here,
we discuss two further investigations: tests on the MD-PATCHY mock
catalogues, and the participation on a challenge exercise, conducted
on a set of high-fidelity mocks. For the purposes of the results pre-
sented in this paper, the latter can be considered a blind test.

7.1 Test using the blind mock challenge results

We participated in a mock challenge within the BOSS galaxy clus-
tering working group (Tinker et al. 2016). This activity was divided
into two parts, where (1) we had to reproduce the correct cos-

Figure 8. Results of the blind mock challenge for the power-spectrum
model used in this analysis when applied to 84 CMASS-like mock catalogues
derived from N-body simulations. The grey data points are the results for all
84 mock catalogues for the three parameters of interest. The red data points
indicate the mean and error on the mean. The y-axis shows the (absolute)
deviation from the true underlying cosmology.

mological parameters for several simulation boxes with different
cosmologies and halo occupation distributions set-up, and (2) we
were required to reproduce the correct cosmological parameters for
a set of 84 N-body-based mock catalogues with the same selec-
tion function as the CMASS data set. The results for the second part
of the mock challenge are displayed in Fig. 8. Assuming that the
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84 mock catalogues are uncorrelated,3 we can use them to test for
potential biases of the model up to the level of

√
84 = 9.16 times

smaller than the measurement uncertainties. Based on the offsets
of our measurements from the true cosmology shown in Fig. 8, we
can reproduce the correct cosmological parameters with a bias of

fσ 8 = 0.004 85, 
α⊥ = 0.002 924 and 
α‖ = 0.0034. These
potential biases are �10 per cent of our measurement uncertainties.

For comparisons of our model to other RSD studies and a more
detailed discussion of the blind mock challenge, we refer the reader
to Tinker et al. (2016).

7.2 Tests on the MultiDark-PATCHY mock catalogues

We applied our analysis pipeline to the MultiDark-PATCHY mock
catalogues; the results are shown in Fig. 9 and Table 2. Fig. 9
presents the maximum-likelihood results for all MultiDark-PATCHY

mock catalogues including the hexadecapole (black data points) and
excluding the hexadecapole (magenta data points). The red cross in-
dicates the mean and variance between the black data points, while
the black dashed lines show the fiducial parameters of the simula-
tion. The results in Table 2 show that including the hexadecapole
reduces the scatter by ∼30 per cent, while still reproducing the cor-
rect cosmological parameters within 2.7 per cent, 1.3 per cent and
0.5 per cent for fσ 8, α‖ and α⊥.

We can reproduce the fiducial parameters to a similar level as
for the mock challenge discussed earlier. However, the MultiDark-
PATCHY mock catalogues are not real N-body simulations but use
approximate methods to allow a large number of mocks to be pro-
duced. Therefore, we adopt the blind mock challenge results to
determine the potential systematic biases.

8 BOSS DR12 DATA A NA LY SIS

Here, we will present the main results of our data analysis. The best-
fitting results of the BOSS DR12 data are summarized in Table 3
and plotted in Figs 10–12.

8.1 Cosmological parameter constraints

Marginalizing over all other parameters produces the following
constraints on the growth of structure parameter: f(zeff)σ 8(zeff) =
0.477 ± 0.051 at zeff = 0.38, 0.453 ± 0.050 at zeff = 0.51
and 0.410 ± 0.044 at zeff = 0.61 from the low-, middle-
and high-redshift bin, respectively. For the AP parameter
FAP = (1 + zeff)DA(zeff)H(zeff)/c = 0.424 ± 0.020, 0.593 ± 0.031
and 0.732 ± 0.034; for the BAO scale parameter DV rfid

s /rs =
1490 ± 33, 1913 ± 44 and 2134 ± 46 Mpc at zeff = 0.38, 0.51 and
0.61, respectively. These values are our default, final results.

When excluding the hexadecapole, the best-fitting values shift
upwards in the high- and middle-redshift bin, while they shift down-
wards in the low-redshift bin. In all cases, the best fits agree with
our default results within 1σ . Fig. 11 shows the likelihood distri-
butions for the fit with and without the hexadecapole. Including
hexadecapoles reduces the uncertainties for all parameters in all
redshift bins while maintaining the consistency in the constraints.
This result agrees with our tests on mock catalogues as shown in
Fig. 9.

3 In reality, there is a small level of correlation between the different mocks;
thus, our systematic bias is slightly overestimated.

The reduced χ2 for the three fits is 79.3/(74 − 11) = 1.26,
74.1/(74 − 11) = 1.18 and 54.0/(74–11) = 0.86 from low-to-
high redshift, and the probability of having a reduced χ2 value that
exceeds this value is Q = 8 per cent, 16 per cent and 78 per cent, re-
spectively. The increase in χ2 for the lower redshift bins could arise
because our model does not describe the low-redshift measurements
as well as the high-redshift measurements due to the stronger non-
linearity at low redshift. To test the sensitivity of the low redshift
result on our modelling of non-linearity, we vary the choice of kmax

and repeat the analysis using the fitting range k = 0.01–0.13 h Mpc−1

for the monopole and quadrupole, while we keep the fitting range
of k = 0.01–0.10 h Mpc−1 for the hexadecapole. We obtain fσ 8 =
0.470 ± 0.066, FAP = 0.422 ± 0.023 and DV rfid

s /rs = 1482 ±
38 Mpc, i.e. 15–30 per cent increase in the constraints by decreas-
ing kmax. The reduced χ2 of the best fit is 70.1/(66 − 11), i.e.
the reduced χ2 increases slightly from 1.26 to 1.27. Moreover, our
best-fitting constraints are in good agreement with our results for the
larger fitting range. We therefore conclude that the fitting constraints
from the low-redshift bin are robust against the choice of kmax. Given
that the probability of exceeding this χ2 is still 8 per cent, the most
likely explanation is a statistical fluctuation.

9 D I SCUSSI ON

9.1 Power-spectrum multipoles

Fig. 10 compares the best-fitting power-spectra models with the
data, where we indicate the NGC with filled data points and the
SGC with open squares. The corresponding best-fitting models are
indicated as a solid line for the NGC and a dashed line for the SGC.
We use different nuisance parameters for the NGC and SGC, which
makes the best-fitting models appear quite different, even though
the underlying cosmology is the same. The need to have separate
nuisance parameters for NGC and SGC is limited to the lowest
redshift bin, where the two power spectra have different amplitudes
in the monopole. The source of this difference is connected to
chunks 2–6 (in NGC) that have a different target selection from
the rest of the survey, leading to a lower density at low redshift
(see Section 2, Reid et al. 2016 and Ross et al. 2016). The use of
separate nuisance parameters for NGC and SGC does not degrade
our parameter constraints and hence we used this approach for all
redshift bins. The best-fitting models include the correction for the
irregular μ-distribution as explained in Section 5.1.

The lower panels in Fig. 10 show the residual for the three multi-
poles. In the lowest redshift bin, the monopole data seem to prefer
a systematically larger amplitude at small k, which the model does
not appear to be able to accommodate given the constraints on large
k. This might contribute to the overall larger χ2 for this bin (see also
the kmax test above). However, all fits result in reasonable reduced
χ2, indicating that the model is adequate in describing the data.

9.2 Parameter degeneracies and correlations

Here, we compare the correlation between different parameters with
the theoretical expectation, with a focus on the second redshift bin. If
we express the α value in DA(z)rfid

s /rs and H (z)rs/r
fid
s , the following

correlation matrix (DA(z)rfid
s /rs, H (z)rs/r

fid
s , fσ 8) is produced:

R
DA−H
z2 =

⎛

⎜

⎜

⎝

1 0.257 0.503

0.257 1 0.547

0.503 0.547 1

⎞

⎟

⎟

⎠

. (58)
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Figure 9. The maximum-likelihood results for all MultiDark-PATCHY mock catalogues. The black points show the results when fitting the monopole, quadrupole
and hexadecapole with the fitting range k = 0.01–0.15 h Mpc−1 for the monopole and quadrupole and k = 0.01–0.10 h Mpc−1 for the hexadecapole. The
magenta data points are the result of fits to only the monopole and quadrupole between k = 0.01 and 0.15 h Mpc−1. The red cross indicates the mean of the
black points together with their variance. The histograms on the right show the corresponding χ2 distributions, where the dashed lines indicate the degrees of
freedom.

Table 2. The results for the fits to the MultiDark-PATCHY mock catalogues for the three redshift bins used in this analysis. For each bin, we show the result for the
fit to the monopole, quadrupole and hexadecapole (M+Q+H) as well as the fit excluding the hexadecapole (M+Q). The fitting range is k = 0.01–0.15 h Mpc−1

for the monopole and quadrupole and 0.01–0.10 h Mpc−1 for the hexadecapole. The model to analyse the mock data is based on the BOSS fiducial cosmological
model (see the end of Section 1) i.e. the α-values do not have to agree with unity. The expectation values for each redshift bin are given in the column labelled
‘True’. The uncertainties represent the variance between all mock catalogues (not the error on the mean).

Test on mock catalogues
0.2 < z < 0.5 0.4 < z < 0.6 0.5 < z < 0.75

M+Q M+Q+H True M+Q M+Q+H True M+Q M+Q+H True

fσ 8 0.470 ± 0.073 0.471 ± 0.053 0.484 0.485 ± 0.068 0.484 ± 0.047 0.483 0.496 ± 0.068 0.488 ± 0.044 0.478
α‖ 0.993 ± 0.065 0.992 ± 0.048 1.000 0.990 ± 0.065 0.990 ± 0.046 1.000 0.982 ± 0.060 0.987 ± 0.039 1.001
α⊥ 1.001 ± 0.032 1.002 ± 0.025 0.999 1.005 ± 0.027 1.005 ± 0.022 0.999 1.006 ± 0.029 1.003 ± 0.022 0.999

The Fisher formalism (Seo & Eisenstein 2003, 2007; Shoji
et al. 2009) predicts that if we understand RSD perfectly, the pure
AP limit will give a correlation coefficient between DA(z) and H(z)
of 1 (FAP ∝ DA(z)H(z)). If we increase the free parameters for RSD,
the coefficient decreases. If we marginalize over all RSD informa-

tion and use the BAO alone, the expected correlation coefficient is
−0.4. Therefore, for the BAO-only analysis, we expect r ∼ −0.4
(see our companion paper Beutler et al. 2016b). Since we are using
RSD as well as BAO information, we expect r somewhere between
−0.4 and 1, depending on our freedom in RSD parameters. Our
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Table 3. The best-fitting values for the three redshift bins in BOSS DR12. The results are also shown in Figs 10–12. The first section of the table shows
the fit to the monopole, quadrupole and hexadecapole, while the second part excludes the hexadecapole. The fitting range is k = 0.01–0.15 h Mpc−1 for the
monopole and quadrupole and k = 0.01–0.10 h Mpc−1 for the hexadecapole. We use separate nuisance parameters for the NGC and SGC. The parameters
FAP = (1 + z)DAH(z)/c and DV rfid

s /rs are derived from α‖ and α⊥ following equations (48) and (49). The error bars are obtained by marginalizing over all
other parameters.

Monopole + quadrupole + hexadecapole
0.2 < z < 0.5 (zeff = 0.38) 0.4 < z < 0.6 (zeff = 0.51) 0.5 < z < 0.75 (zeff = 0.61)

Max. like. Mean ±1σ Max. like. Mean ±1σ Max. like. Mean ±1σ

α‖ 1.001 1.007 ± 0.037 1.007 1.015 ± 0.046 0.977 0.982 ± 0.040
α⊥ 1.008 1.014 ± 0.027 1.014 1.015 ± 0.027 0.982 0.984 ± 0.024
f(z)σ 8(z) 0.478 0.482 ± 0.053 0.456 0.455 ± 0.050 0.412 0.410 ± 0.042
χ2/d.o.f. 79.3/(74 − 11) – 74.1/(74 − 11) – 54.0/(74 − 11) –

FAP 0.426 0.427 ± 0.022 0.600 0.594 ± 0.035 0.732 0.736 ± 0.040

DV (z)rfid
s /rs (Mpc) 1485 1493 ± 28 1908 1913 ± 35 2132 2133 ± 36

H (z)rs/r
fid
s (km s−1 Mpc−1) 82.8 82.4 ± 3.0 89.0 88.5 ± 4.0 96.9 97.1 ± 3.9

DA(z)rfid
s /rs (Mpc) 1118 1124 ± 30 1331 1333 ± 35 1407 1410 ± 35

bNGC
1 σ8 1.339 1.336 ± 0.040 1.300 1.303 ± 0.040 1.230 1.235 ± 0.041

bSGC
1 σ8 1.337 1.332 ± 0.057 1.305 1.305 ± 0.046 1.259 1.247 ± 0.043

bNGC
2 σ8 1.16 1.11+0.77

−0.89 2.08 1.95+0.58
−0.66 2.83 2.70+0.47

−0.54

bSGC
2 σ8 0.32 0.52+0.64

−0.69 0.56 0.61+0.60
−0.52 0.98 0.71+0.55

−0.60

NNGC −1580 −1100+1410
−780 −1710 −1555+620

−570 −350 −350+950
−740

NSGC −930 −500+1880
−1400 −900 790+1000

−970 −910 −130+860
−650

σNGC
v 6.15 6.10 ± 0.69 5.84 5.84+0.70

−0.77 5.39 5.35+0.76
−0.81

σ SGC
v 6.80 6.78 ± 0.83 6.39 6.46 ± 0.87 5.08 4.93+0.88

−0.95

Monopole + quadrupole
0.2 < z < 0.5 (zeff = 0.38) 0.4 < z < 0.6 (zeff = 0.51) 0.5 < z < 0.75 (zeff = 0.61)

Max. like. Mean ±1σ Max. like. Mean ±1σ Max. like. Mean ±1σ

α‖ 1.017 1.019 ± 0.045 0.982 0.982 ± 0.059 0.951 0.953 ± 0.046
α⊥ 0.999 1.001 ± 0.030 1.025 1.031 ± 0.031 0.996 1.000 ± 0.027

f(z)σ 8(z) 0.457 0.459 ± 0.060 0.483 0.494+0.071
−0.065 0.441 0.443 ± 0.054

χ2/d.o.f. 54.5/(56 − 11) – 40.8/(56 − 11) – 34.9/(56 − 11) –

FAP 0.416 0.417 ± 0.027 0.619 0.626 ± 0.051 0.767 0.771 ± 0.052

DV (z)rfid
s /rs (Mpc) 1484 1490 ± 28 1905 1912 ± 37 2129 2135 ± 37

H (z)rs/r
fid
s (km s−1 Mpc−1) 81.5 81.5 ± 3.6 91.3 91.6 ± 5.6 100.1 100.1 ± 4.9

DA(z)rfid
s /rs (Mpc) 1107.7 1110 ± 33 1345.7 1354 ± 40 1427 1433 ± 39

bNGC
1 σ8 1.347 1.332 ± 0.047 1.289 1.283 ± 0.050 1.220 1.225 ± 0.045

bSGC
1 σ8 1.344 1.335+0.55

−0.62 1.289 1.271+0.049
−0.056 1.246 1.229 ± 0.046

bNGC
2 σ8 1.03 0.84+0.78

−0.95 2.02 1.48+0.64
−0.75 2.85 2.66+0.45

−0.61

bSGC
2 σ8 0.32 0.6 ± 1.2 0.55 0.46 ± 0.63 0.93 0.55+0.50

−0.61

NNGC 1460 −600+1550
−750 −1760 −1180 ± 1000 −380 −440+940

−760

NSGC 920 −600+3370
−1650 −900 −70+1290

−860 −910 20+860
−690

σNGC
v 6.16 6.03 ± 0.73 5.75 5.67 ± 0.74 5.20 5.19 ± 0.74

σ SGC
v 6.89 6.87 ± 0.81 6.20 6.06 ± 0.85 4.94 4.71 ± 0.85

value of r = 0.257 indicates a mixture of BAO and RSD informa-
tion with a modest freedom in our RSD model. The most natural
parametrization is given by (DV (z)rfid

s /rs, FAP, fσ 8), which corre-
sponds to the actual signals in the data. The correlation matrix is
given by

R
DV −FAP
z2 =

⎛

⎜

⎜

⎝

1 −0.291 −0.0562

−0.291 1 0.648

−0.0562 0.648 1

⎞

⎟

⎟

⎠

. (59)

There is a clear correlation between the AP parameter (FAP) and
growth rate fσ 8, while the BAO dilation parameter DV rfid

s /rs and
fσ 8 are almost uncorrelated. We include the correlation matrices,
covariance matrices and inverse covariance matrices for these three
parameters in Appendix B.

The correlation matrices indicate a correlation of about
60 per cent between FAP and fσ 8. Therefore, if we hold FAP fixed,
i.e. if we assume that we know FAP precisely, the constraints on fσ 8

can be significantly improved. This is an interesting case to con-
sider, since when combining our results with the Planck constraints,
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Figure 10. The best-fitting power-spectrum monopole (blue), quadrupole (red) and hexadecapole (black) models (lines) compared to the BOSS DR12
measurements (data points) in the three redshift bins used in this analysis. The measurements for the NGC are shown as filled circles, while the SGC data are
displayed as open squares. The solid line represents the fit to the NGC, while the dashed line shows the result for the SGC. The best-fitting models include
the irregular μ distribution effect as explained in equation (40), which is more prominent in the SGC since the volume is smaller. The NGC and SGC power
spectra are fitted simultaneously for fσ 8, α‖ and α⊥, while we marginalize over different NGC and SGC nuisance parameters (b1σ 8, b2σ 8, N and σ v). As a
result, the best-fitting power spectra show different shapes for NGC and SGC, especially in the lowest redshift bin. The three lower panels show the residual
for the three multipoles separately.

Figure 11. Likelihood distributions for the three redshift bins of BOSS DR12. We show the results for the parameters α⊥, α‖ and fσ 8. The blue contours use
the monopole, quadrupole and hexadecapole, while the red contours exclude the hexadecapole. The fitting range is k = 0.01–0.15 h Mpc−1 for the monopole
and quadrupole, and k = 0.01–0.10 h Mpc−1 for the hexadecapole. The numerical values are summarized in Table 3.

we effectively fix the background cosmological model. Fixing FAP

to the best-fitting value yields fσ 8 = 0.482 ± 0.037, 0.455 ± 0.038
and 0.410 ± 0.034 for the low- (zeff = 0.38), middle- (zeff = 0.51)
and high-redshift bin (zeff = 0.61), respectively.

9.3 Comparison to DR11 and other boss results

We compare these new results with our DR11 analysis (Beutler
et al. 2014a). Our DR11 study found a growth of structure constraint
of f(zeff)σ 8(zeff) = 0.419 ± 0.043 at zeff = 0.57, consistent with
our high-redshift measurement in this analysis of f(zeff)σ 8(zeff) =
0.410 ± 0.042 at zeff = 0.61. Our new uncertainties are slightly larger
compared to the DR11 result, which is caused by (1) the smaller
redshift range given that our high-redshift bin has a low-redshift
cut-off at 0.5 compared to 0.43 in the CMASS sample in Beutler et al.
(2014a), and (2) the fact that we use different mock catalogues

compared to our DR11 analysis to generate the covariance matrix,
which tend to result in larger uncertainties.

In Gil-Marin et al. (2016), the BOSS DR12 data have been anal-
ysed in Fourier space using the LOWZ and CMASS samples. They
found a growth of structure constraint of f(zeff)σ 8(zeff) = 0.395 ±
0.064 at zeff = 0.32 and f(zeff)σ 8(zeff) = 0.442 ± 0.037 at zeff = 0.57
for LOWZ and CMASS, respectively. The LOWZ result is significantly
(more than 1σ ) smaller than our constraint in the low-redshift bin,
which is f(zeff)σ 8(zeff) = 0.482 ± 0.053 at zeff = 0.38. There are
many potential sources for this difference: (1) our low-redshift bin
covers a redshift range of z = 0.2–0.5, which is slighter higher
compared to the redshift range of z = 0.2–0.43 of LOWZ; (2) the
additional data in our analysis (chunks 2–6) causes a difference
in the target selection mainly in the low-redshift bin; (3) Gil-Marin
et al. (2016) fit the power-spectrum monopole and quadrupole down
to kmax = 0.24 h Mpc−1 compared to kmax = 0.15 h Mpc−1 in our
analysis, which suggests that their constraint is dominated by high k
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Figure 12. The constraints on the AP parameter (y-axis) and the growth of
structure (x-axis). The Planck prediction for these values is shown as the
black solid line, where we used the best-fitting �CDM model for the Planck

data to extrapolate from the redshift of decoupling to low redshift. The red
contours represent the results of the WiggleZ survey (Blake et al. 2012) at
zeff = 0.44, 0.6 and 0.73, and the black data point indicates the measurement
in 6dFGS (Beutler et al. 2012) at zeff = 0.067. Both parameters, FAP(z) and
f(z)σ 8(z), evolve with redshift and hence these contours at different zeff are
not expected to overlap. Short black lines connect the best-fitting values for
each measurement with the Planck extrapolation for that particular redshift.
The orientation of the degeneracy (i.e. the major axis of each contour el-
lipse) rotates with redshift, indicating that cosmological constraints can be
improved by including measurements from many redshift bins.

modes; and (4) we include the hexadecapole in our analysis, which
is not used in Gil-Marin et al. (2016).

The consistency between our results and our companion papers
Sanchez et al. (2016), Grieb et al. (2016) and Satpathy et al. (2016)
is discussed in Alam et al. (2016).

9.4 Comparison to other galaxy survey

Fig. 12 compares our measurements of the AP parameter and fσ 8

with measurements from the 6-degree Field Galaxy Survey (6dFGS;
black data point; Beutler et al. 2012) at zeff = 0.067 and the Wig-
gleZ survey (red contours; Blake et al. 2012) at zeff = 0.44, 0.6 and
0.73. The 6dFGS measurement ignored the AP effect by assuming
that DA(z) and H(z) are known, since the sensitivity to this signal
becomes small at the 6dFGS redshift. The BOSS measurements
cover a redshift range almost as wide as the WiggleZ measurement
and with significantly reduced uncertainties. Given a smooth evo-
lution of fσ 8 with redshift, the WiggleZ and BOSS measurements
are consistent with each other.4

4 Note that there is a small level of correlation between these two surveys
(Beutler et al. 2016a; Marin et al. 2016).

The only large-scale structure analysis in the literature we are
aware of, which makes use of the hexadecapole, is the study by
Oka et al. (2014), which, however, ignores all window-function
effects. Our analysis suggests that the window-function effects in
the hexadecapole are indeed negligible when compared to the mea-
surement uncertainties, while the effects of the window function on
the monopole and quadrupole are significant; ignoring these effects
would significantly bias our results.

9.5 Comparison to Planck 2015

Next, we can compare our measurements to the Planck 2015 re-
sults (Planck Collaboration XIII 2016). Using a �CDM model to
extrapolate from the redshift of decoupling to the effective redshifts
of our large-scale-structure measurements, Planck predicts values
for the growth of structure of f(zeff)σ 8(zeff) = 0.4784 ± 0.0077,
0.4763 ± 0.0060 and 0.4707 ± 0.0058 for the low- (zeff = 0.38),
middle- (zeff = 0.51) and high-redshift bins (zeff = 0.61), respec-
tively. The largest deviation between our measurements and the
Planck �CDM predictions occurs at the highest redshift bin, where
our value is lower than Planck by about 1.4σ . Fig. 12 compares our
two-dimensional constraints on the growth of structure and the AP
effect with the Planck �CDM predictions for these parameters. The
deviation of the highest redshift data point is not statistically signif-
icant. Together with our low-redshift measurements, which agree
well with the Planck predictions, there is overall good consistency
between the RSD constraints from BOSS and the Planck data set.

1 0 C O N C L U S I O N S

We measure the power-spectrum multipoles from the final BOSS
DR12 data set in the redshift range 0.2 < z < 0.75. We extract the
BAO, AP and RSD signals using a model based on renormalized
perturbation theory. For the first time, we include the hexadecapole
in our analysis, while appropriately accounting for the survey win-
dow function, which reduced the uncertainties on f(z)σ 8(z) by about
20 per cent. The main results of this analysis are as follows.

(i) An FFT-based window-function method, first suggested in
Wilson et al. (2015) using the global plane-parallel approximation,
can be derived within the local plane-parallel approximation, which
makes it applicable to wide-angle surveys like BOSS. We present
the detailed derivation in Appendix A.

(ii) By fitting the monopole and quadrupole between k = 0.01
and 0.15 h Mpc−1 and the hexadecapole between k = 0.01
and 0.10 h Mpc−1, we were able to extract the constraints
f(zeff)σ 8(zeff) = 0.482 ± 0.053, 0.455 ± 0.050 and 0.410 ± 0.042 at
the effective redshifts of zeff = 0.38, 0.51 and 0.61, respectively. For
the AP parameter FAP = (1 + zeff)DA(zeff)H(zeff)/c, we find 0.427 ±
0.022, 0.594 ± 0.035 and 0.736 ± 0.040 and the BAO scale pa-
rameter is DV rfid

s /rs = 1493 ± 28, 1913 ± 35 and 2133 ± 36 Mpc.
Assuming Gaussian likelihood, we provide a covariance matrix that
contains the parameter constraints as well as their correlations (see
Appendix B).

(iii) We demonstrated the accuracy of our analysis pipeline by
participating in a mock challenge, which resulted in systematic
uncertainties � 10 per cent of the statistical error budget. The de-
scription of this mock challenge can be found in our companion
paper (Tinker et al. 2016).

(iv) Our high-redshift result on fσ 8 is in agreement with our
DR11 analysis using the CMASS sample, and shows a small 1.4σ

deviation from the Planck prediction. The low-redshift results
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obtained in this analysis show good agreement with the Planck

prediction.

Alam et al. (2016) combine our measurements with the corre-
sponding growth of structure measurements of Grieb et al. (2016),
Sanchez et al. (2016) and Satpathy et al. (2016) and the BAO-only
measurements of Beutler et al. (2016b) and Ross et al. (2016) into
a final BOSS likelihood and investigate the cosmological implica-
tions.

AC K N OW L E D G E M E N T S

FB acknowledges support from the UK Space Agency through grant
ST/N00180X/1.

Funding for SDSS-III has been provided by the Alfred P. Sloan
Foundation, the Participating Institutions, the National Science
Foundation, and the US Department of Energy Office of Science.
The SDSS-III web site is http://www.sdss3.org/.

SDSS-III is managed by the Astrophysical Research Consor-
tium for the Participating Institutions of the SDSS-III Collabora-
tion including the University of Arizona, the Brazilian Participation
Group, Brookhaven National Laboratory, Carnegie Mellon Uni-
versity, University of Florida, the French Participation Group, the
German Participation Group, Harvard University, the Instituto de
Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Par-
ticipation Group, Johns Hopkins University, Lawrence Berkeley
National Laboratory, Max Planck Institute for Astrophysics, Max
Planck Institute for Extraterrestrial Physics, New Mexico State Uni-
versity, New York University, Ohio State University, Pennsylvania
State University, University of Portsmouth, Princeton University,
the Spanish Participation Group, University of Tokyo, University
of Utah, Vanderbilt University, University of Virginia, University
of Washington and Yale University.

This research used resources of the National Energy Research
Scientific Computing Center, which is supported by the Office of
Science of the US Department of Energy under Contract no. DE-
AC02-05CH11231.

This work was supported by World Premier International Re-
search Center Initiative (WPI Initiative), MEXT, Japan. Numerical
computations were partly carried out on Cray XC30 at Center for
Computational Astrophysics, National Astronomical Observatory
of Japan.

H-JS is supported by the US Department of Energy, Office of
Science, Office of High Energy Physics under Award number DE-
SC0014329. C-HC acknowledges support as a MultiDark Fellow. C-
HC acknowledges support from the Spanish MICINNs Consolider-
Ingenio 2010 Programme under grant MultiDark CSD2009-00064,
MINECO Centro de Excelencia Severo Ochoa Programme under
grant SEV-2012-0249, and grant AYA2014-60641-C2-1-P. MV is
partially supported by Programa de Apoyo a Proyectos de Inves-
tigación e Innovación Tecnológica (PAPITT) No IA102516 and
Proyecto Conacyt Fronteras No 281.

R E F E R E N C E S

Alam S. et al., 2015, ApJS, 219, 12
Alam et al., 2016
Alcock C., Paczynski B., 1979, Nature, 281, 358
Anderson L. et al., 2014, MNRAS, 441, 24
Baldauf T., Seljak U., Desjacques V., McDonald P., 2012, Phys. Rev. D, 86,

083540
Ballinger W. E., Peacock J. A., Heavens A. F., 1996, MNRAS, 282, 877
Beutler F. et al., 2011, MNRAS, 416, 3017

Beutler F. et al., 2012, MNRAS, 423, 3430
Beutler F. et al., 2014a, MNRAS, 443, 1065
Beutler F. et al., 2014b, MNRAS, 444, 3501
Beutler F., Blake C., Koda J., Marin F., Seo H. J., Cuesta A. J., Schneider

D. P., 2016a, MNRAS, 455, 3230
Beutler F. et al., 2016b
Biagetti M., Chan K. C., Desjacques V., Paranjape A., 2014, MNRAS, 441,

1457
Bianchi D., Gil-Mar n H., Ruggeri R., Percival W. J., 2015, MNRAS, 453,

L11
Blake C. et al., 2011, MNRAS, 415, 2876
Blake C. et al., 2012, MNRAS, 425, 405
Bolton A. S. et al., 2012, AJ, 144, 144
Bundy K. et al., 2015, ApJ, 798, 7
Chuang C.-H. et al., 2013, MNRAS, 433, 3559
Dawson K. S. et al., 2013, AJ, 145, 10
Doi M. et al., 2010, AJ, 139, 1628
Eisenstein D. J., Seo H. J., Sirko E., Spergel D., 2007, ApJ, 664, 675
Eisenstein D. J. et al., 2011, AJ, 142, 72
Feldman H. A., Kaiser N., Peacock J. A., 1994, ApJ, 426, 23
Foreman-Mackey D., Hogg D. W., Lang D., Goodman J., 2013, PASJ, 125,

306
Fukugita M., Ichikawa T., Gunn J. E., Doi M., Shimasaku K., Schneider

D. P., 1996, AJ, 111, 1748
Garilli B. et al., 2014, A&A, 562, A23
Gelman A., Rubin D. B., 1992, Stat. Sci., 7, 457
Gil-Marin H. et al., 2016, MNRAS, 460, 4188
Grieb J. N. et al., 2016
Gunn J. E. et al., 1998, AJ, 116, 3040
Gunn J. E. et al., 2006, AJ, 131, 2332
Guo H., Zehavi I., Zheng Z., 2012, ApJ, 756, 127
Guzzo L. et al., 2008, Nature, 451, 541
Hartlap J., Simon P., Schneider P., 2007, A&A, 464, 399
Hawkins E. et al., 2003, MNRAS, 346, 78
Jing Y. P., 2005, ApJ, 620, 559
Kaiser N., 1987, MNRAS, 227, 1
Kitaura F. S. et al., 2016, MNRAS, 456, 4156
Klypin A., Yepes G., Gottlober S., Prada F., Heß S., 2016, MNRAS, 457,

4340
Lazeyras T., Wagner C., Baldauf T., Schmidt F., 2016, J. Cosmol. Astropart.

Phys., 1602, 018
Leauthaud A. et al., 2016, MNRAS, 457, 4021
Lesgourgues J., Pastor S., 2006, Phys. Rep., 429, 307
Lewandowski M., Senatore L., Prada F., Zhao C., Chuang C. H., 2015,

preprint (arXiv:1512.06831)
Li Y., Hu W., Takada M., 2016, Phys. Rev. D, 93, 063507
McDonald P., Roy A., 2009, J. Cosmol. Astropart. Phys., 0908, 020
Marin F. A., Beutler F., Blake C., Koda J., Kazin E., Schneider D. P., 2016,

MNRAS, 455, 4046
Matsubara T., Suto Y., 1996, ApJ, 470, L1
Nishimichi T., Oka A., 2014, MNRAS, 444, 1400
Oka A., Saito S., Nishimichi T., Taruya A., Yamamoto K., 2014, MNRAS,

439, 2515
Okumura T., Matsubara T., Eisenstein D. J., Kayo I., Hikage C., Szalay

A. S., Schneider D. P., 2008, ApJ, 676, 889
Okumura T., Hand N., Seljak U., Vlah Z., Desjacques V., 2015, Phys. Rev.

D, 92, 103516
Padmanabhan N., White M. J., 2008, Phys. Rev. D, 77, 123540
Peacock J. A. et al., 2001, Nature, 410, 169
Percival W. J. et al., 2014, MNRAS, 439, 2531
Planck Collaboration XIII, 2016, A&A, 594, A13
Reid B. A. et al., 2012, MNRAS, 426, 2719
Reid B. et al., 2016, MNRAS, 455, 1553
Rodrguez-Torres S. A. et al., 2016, MNRAS, 460, 1173
Ross A. J. et al., 2012, MNRAS, 424, 564
Ross A. J. et al., 2016
Saito S., Baldauf T., Vlah Z., Seljak U., Okumura T., McDonald P., 2014,

Phys. Rev. D, 90, 123522

MNRAS 466, 2242–2260 (2017)

http://www.sdss3.org/
http://arxiv.org/abs/1512.06831


2258 F. Beutler et al.

Saito S. et al., 2016, MNRAS, 460, 1457
Samushia L., Percival W. J., Raccanelli A., 2012, MNRAS, 420, 2102
Samushia L. et al., 2013, MNRAS, 429, 1514
Sanchez A. G. et al., 2016
Satpathy et al., 2016
Schmidt F., 2016, Phys. Rev. D, 93, 063512
Scoccimarro R., 2004, Phys. Rev. D, 70, 083007
Scoccimarro R., 2015, Phys. Rev. D, 92, 083532
Sefusatti E., Crocce M., Scoccimarro R., Couchman H., 2016, MNRAS,

460, 3624
Seo H.-J., Eisenstein D. J., 2003, ApJ, 598, 720
Seo H. J., Eisenstein D. J., 2007, ApJ, 665, 14
Shoji M., Jeong D., Komatsu E., 2009, ApJ, 693, 1404
Smee S. et al., 2013, AJ, 126, 32
Smith J. A. et al., 2002, AJ, 123, 2121
Taruya A., Nishimichi T., Saito S., 2010, Phys. Rev. D, 82, 063522 (TNS)
Taruya A., Bernardeau F., Nishimichi T., Codis S., 2012, Phys. Rev. D, 86,

103528
Tegmark M. et al., 2006, Phys. Rev. D, 74, 123507
Tinker J. L. et al., 2016
Vargas-Magana et al., 2016
Wilson M. J., Peacock J. A., Taylor A. N., de la Torre S., 2015, preprint

(arXiv:1511.07799)
Yamamoto K., Nakamichi M., Kamino A., Bassett B. A., Nishioka H., 2006,

PASJ, 58, 93
Yamamoto K., Sato T., Huetsi G., 2008, Prog. Theor. Phys. 120, 609
Yoo J., Seljak U., 2015, MNRAS, 447, 1789
Zheng Y., Song Y. S., 2016, J. Cosmol. Astropart. Phys., 08, 050

A P P E N D I X A : W I N D OW FU N C T I O N

Here, we describe the inclusion of the survey window-function
effects in our power-spectrum model. First we will discuss the con-
volution of the power-spectrum model with the window function,
followed by the integral-constraint effect. We also show a rederiva-
tion of the window-function formalism of Wilson et al. (2015) using
the local plain-parallel approximation (instead of the global plain-
parallel approximation as in Wilson et al. 2015); this approach
allows the application of this method to wide-angle surveys like
BOSS.

A1 Derivation within the local plane-parallel approximation

The convolved correlation function multipoles can be expressed as

ξ̂ℓ(s) =
2ℓ + 1

2

∫

dμs

∫

dφ

2π

ξ (s)W 2(s)Lℓ(ŝ · x̂h), (A1)

where Lℓ is the Legendre polynomial of order ℓ and ξ (s) and
W 2(s) are the anisotropic correlation function and window function,
respectively:

ξ (s) =
∑

L

ξL(s)LL(μs) (A2)

and

W 2(s) =
∫

dx1W (x1)W (x1 + s) =
∑

p

W 2
p (s)Lp(μs). (A3)

Here, s = x2 − x1 is the pair separation vector, and μs is the cosine
of the angle of the separation vector relative to the line of sight, i.e.
μs = ŝ · x̂h, where xh = (x1 + x2)/2 = x1 + s/2 is known as the
local plane-parallel approximation (see Beutler et al. 2014a, section
3.1). The window-function multipoles W 2

p (s) are given by

W 2
p (s) =

2p + 1

2

∫

dμs

∫

dφ

2π

∫

dx1W (x1)W (x1 + s)Lℓ(μs).

(A4)

Multipole expanding the correlation function and window func-
tion in equation (A1) produces

ξ̂ℓ(s) =
2ℓ + 1

2

∫

dμs

∑

L

ξL(s)LL(μs)

∑

p

W 2
p (s)Lp(μs)Lℓ(μs). (A5)

Using the relation

LℓLp =
∑

t

aℓ
ptLt , (A6)

leads to

ξ̂ℓ(s) =
2ℓ + 1

2

∫

dμs

∫

dφ

2π

∑

L

ξL(s)
∑

p

W 2
p (s)

×
∑

t

aℓ
LtLt (μs)Lp(μs). (A7)

We can further simplify this expression using the integral relation
∫

dμs

∫

dφ

2π

Lp(μs)Lt (μs) =
2

2p + 1
δpt (A8)

to find

ξ̂ℓ(s) = (2ℓ + 1)
∑

L

ξL(s)
∑

p

1

2p + 1
W 2

p (s)aℓ
Lp. (A9)

To determine the coefficients aℓ
Lp , we use equation (A6), multiply

the polynomial expressions for the Legendre polynomials on the
left, and use

μn =
∑

ℓ=n,(n−1),...

(2ℓ + 1)n!Lℓ(μs)

2(n−ℓ)/2( 1
2 (n − ℓ))!(ℓ + n + 1)!!

. (A10)

Equation (A9) is fairly straightforward to evaluate for any model
correlation function ξ ℓ(s). The window-function multipoles can be
calculated from the random pair counts RR(s, μs) as

W 2
ℓ (s) ∝

∑

μs

∑

x1

∑

x2

RR(s, μs)Lℓ(μs), (A11)

where the normalization is chosen as W 2
ℓ (s → 0) = 1 for ℓ = 0.

Now we want to include the simple window-function treatment
in configuration space into our Fourier-space model. The observed
power spectrum is

P̂ (k) =
∫

dx1

∫

dx2 〈δ(x1)δ(x2)W (x1)W (x2)〉 eik·x1 e−ik·x2

=
∫

dx1

∫

ds 〈δ(x1)δ(x1 + s)〉

× W (x1)W (x1 + s)eik·x1 e−ik·(x1+s) (A12)

=
∫

dx1

∫

ds ξ (s)W (x1)W (x1 + s)e−ik·s (A13)

=
∫

dx1

∫

ds

(

∑

L

ξL(s)LL(x̂h · ŝ)

)

× W (x1)W (x1 + s)e−ik·s, (A14)

where we used

〈δ(x1)δ(x1 + s)W (x1)W (x1 + s)〉
= 〈δ(x1)δ(x1 + s)〉W (x1)W (x1 + s). (A15)
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The multipole moment power spectrum in the local plain-parallel
approximation is then

P̂ℓ(k) =
2ℓ + 1

2

∫

dμk

∫

dφ

2π

∫

dx1

∫

dx2eik·x1 e−ik·x2

× 〈δ(x1)δ(x2)W (x1)W (x2)〉Lℓ(k̂ · x̂h)

=
2ℓ + 1

2

∫

dμk

∫

dφ

2π

∫

dx1

∫

ds

×

(

∑

L

ξL(s)LL(x̂h · ŝ)

)

× W (x1)W (x1 + s)e−ik·s
Lℓ(k̂ · x̂h), (A16)

where
∫

dμk represents the integration over all the possible cosine
angles between k̂ and x̂h. Now, we apply the relations

eik·s =
∑

p

(−i)p(2p + 1)jp(ks)Lp(k̂ · ŝ), (A17)

and
∫

dμk

∫

dφ

2π

Lℓ(k̂ · x̂h)Lp(k̂ · ŝ) =
2

2ℓ + 1
Lℓ(ŝ · x̂h)δℓp, (A18)

which allows us to express the multipole power spectra as

P̂ℓ(k) =
2ℓ + 1

2

∫

dμk

∫

dφ

2π

∫

dx1

∫

ds

×
∑

L

ξL(s)
∑

p

ip(2p + 1)jp(ks)

× W (x1)W (x1 + s)Lℓ(k̂ · x̂h)Lp(k̂ · ŝ)LL(x̂h · ŝ) (A19)

=
∫

dx1

∫

ds
∑

L

ξL(s)iℓ(2ℓ + 1)jℓ(ks)

× W (x1)W (x1 + s)Lℓ(x̂h · ŝ)LL(x̂h · ŝ). (A20)

Using LℓLL =
∑

t aℓ
LtLt (from equation A6) leads to

P̂ℓ(k) =
∫

ds
∑

L

ξL(s)iℓ(2ℓ + 1)jℓ(ks)

×
∫

dx1W (x1)W (x1 + s)
∑

t

aℓ
LtLt (x̂h · ŝ) (A21)

=
∫

2πs2ds
∑

L

ξL(s)iℓ(2ℓ + 1)jℓ(ks)

×
∑

t

aℓ
Lt

∫

dμs

∫

dφ

2π

∫

dx1

× W (x1)W (x1 + s)Lt (x̂h · ŝ). (A22)

Using the definition of the window-function multipoles of equa-
tion (A4), we can write the equation above as

P̂ℓ(k) = iℓ(2ℓ + 1)
∫

2πs2ds jℓ(ks)

×
∑

L

∑

t

2

2t + 1
aℓ

LtξL(s)W 2
t (s). (A23)

Substituting with equation (A9), the convolved power-spectrum
multipoles are given by

P̂ℓ(k) = 4πiℓ

∫

ds s2ξ̂ℓ(s)jℓ(sk). (A24)

For our analysis, we need to calculate the convolved monopole,
quadrupole and hexadecapole power spectra. Therefore, the con-
volved correlation function multipoles in equation (18), relevant for
our analysis, are given by

ξ̂0(s) = ξ0W
2
0 +

1

5
ξ2W

2
2 +

1

9
ξ4W

2
4 + · · · (A25)

ξ̂2(s) = ξ0W
2
2 + ξ2

[

W 2
0 +

2

7
W 2

2 +
2

7
W 2

4

]

+ ξ4

[

2

7
W 2

2 +
100

693
W 2

4 +
25

143
W 2

6

]

+ · · · (A26)

ξ̂4(s) = ξ0W
2
4 + ξ2

[

18

35
W 2

2 +
20

77
W 2

4 +
45

143
W 2

6

]

+ ξ4

[

W 2
0 +

20

77
W 2

2 +
162

1001
W 2

4

+
20

143
W 2

6 +
490

2431
W 2

8

]

+ · · · (A27)

We truncate the formula after the hexadecapole contribution of the
correlation function, but use all window-function multipoles up to
ℓ = 8.

A2 The integral-constraint correction

Whenever we estimate a power spectrum, we must make an assump-
tion of the mean density of the Universe, so that we can properly
define an overdensity field. The standard assumption is that the
mean density of the Universe is equivalent to the mean density of
the survey. The non-zero sample variance expected at the wave-
lengths that correspond to the size of the survey invalidates this
assumption. In general, this assumption affects only the mean den-
sity, i.e. forcing the power spectrum near k = 0 to be zero, which
is known as the integral constraint. However, the window function
correlates various modes with k = 0 and therefore propagates the
incorrect estimation of k = 0 to other scales that are relevant for
cosmological measurements. Equations (19) and (20) demonstrate
how the integral constraint affects the correlation function. Without
the window-function effect, i.e. W0 = 1 with Wℓ ≥ 2 = 0, the integral
constraint will simply introduce a constant offset to ξ 0(s) and there-
fore to ξ̂0(s). With scale-dependent non-zero W0 and W2 however, a
constant offset in ξ 0(s) becomes scale-dependent in ξ̂0(s) and ξ̂2(s),
affecting the shape of the correlation function.

We can account for the integral-constraint bias by correcting the
model power spectrum as

P ic−corrected
ℓ (k) = P̂ℓ(k) − P0W

2
ℓ (k), (A28)

where the window functions W 2
ℓ (k) can be obtained from W2(s)

defined in equation (22) as

W 2
ℓ (k) = 4π

∫

ds s2W 2
ℓ (s)jℓ(sk). (A29)

The integral-constraint correction in BOSS only affects modes
�0.005 h Mpc−1 and does not affect any of our results.
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A P P E N D I X B : C O R R E L AT I O N , C OVA R I A N C E

A N D I N V E R S E C OVA R I A N C E M AT R I C E S

We determine the correlation between the three cosmological pa-
rameter constraints (DV (z)rfid

s /rs, FAP, fσ 8) using the MultiDark-
PATCHY mock catalogues. This approach leads to the following cor-
relation matrix for the first redshift bin

Rz1 =

⎛

⎜

⎜

⎝

1 −0.206 0.0490

−0.206 1 0.652

0.0490 0.652 1

⎞

⎟

⎟

⎠

, (B1)

which leads to a covariance matrix of

Cz1 =

⎛

⎜

⎜

⎝

1090 −0.136 0.0825

−0.136 0.000 400 0.000 665

0.0825 0.000 665 0.002 60

⎞

⎟

⎟

⎠

(B2)

and the inverse of this matrix is

C
−1
z1 =

⎛

⎜

⎜

⎝

0.001 02 0.697 −0.211

0.697 4830 −1260

−0.211 −1260 713

⎞

⎟

⎟

⎠

. (B3)

For the second redshift bin, we find

Rz2 =

⎛

⎜

⎜

⎝

1 −0.291 −0.056

−0.291 1 0.648

−0.056 0.648 1

⎞

⎟

⎟

⎠

(B4)

and the covariance matrix is

Cz2 =

⎛

⎜

⎜

⎝

1940 −0.397 −0.124

−0.397 0.000 961 0.001 00

−0.124 0.001 00 0.002 50

⎞

⎟

⎟

⎠

. (B5)

Inverting this matrix yields

C
−1
z2 =

⎛

⎜

⎜

⎝

0.000 582 0.360 −0.115

0.360 2010 −784

−0.115 −784 708

⎞

⎟

⎟

⎠

. (B6)

Finally, for the third redshift bin, we have

Rz3 =

⎛

⎜

⎜

⎝

1 −0.126 0.101

−0.126 1 0.619

0.101 0.619 1

⎞

⎟

⎟

⎠

(B7)

and

Cz3 =

⎛

⎜

⎜

⎝

2120 −0.197 0.205

−0.197 0.001 16 0.000 927

0.205 0.000 927 0.001 94

⎞

⎟

⎟

⎠

. (B8)

The inverse matrix is

C
−1
z3 =

⎛

⎜

⎜

⎝

0.000 506 0.208 −0.153

0.208 1480 −729

−0.153 −729 880

⎞

⎟

⎟

⎠

. (B9)

Only the first and second redshift bins are independent, while
the middle redshift bin is correlated with the other two. These
results can be used together with the data vector for any like-
lihood analysis, e.g. for the first redshift bin the data vector is
Dz1 = (1485, 0.426, 0.478) and the corresponding likelihood is
Lz1 = DT

z1C
−1
z1 Dz1.
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