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Francesco Montesano,2 Héctor Gil-Marı́n,7,8,9 Ashley J. Ross,7,10 Florian Beutler,7,11

Sergio Rodrı́guez-Torres,12,13,14 Chia-Hsun Chuang,14,15 Francisco Prada,12,14,16

Francisco-Shu Kitaura,15 Antonio J. Cuesta,17 Daniel J. Eisenstein,18 Will J. Percival,7

Mariana Vargas-Magaña,19 Jeremy L. Tinker,3 Rita Tojeiro,20 Joel R. Brownstein,21

Claudia Maraston,7 Robert C. Nichol,7 Matthew D. Olmstead,22 Lado Samushia,7,23,24

Hee-Jong Seo,25 Alina Streblyanska5 and Gong-bo Zhao7,26

Affiliations are listed at the end of the paper

Accepted 2016 December 30. Received 2016 December 23; in original form 2016 July 11

ABSTRACT

We extract cosmological information from the anisotropic power-spectrum measurements from

the recently completed Baryon Oscillation Spectroscopic Survey (BOSS), extending the con-

cept of clustering wedges to Fourier space. Making use of new fast-Fourier-transform-based

estimators, we measure the power-spectrum clustering wedges of the BOSS sample by filtering

out the information of Legendre multipoles ℓ > 4. Our modelling of these measurements is

based on novel approaches to describe non-linear evolution, bias and redshift-space distor-

tions, which we test using synthetic catalogues based on large-volume N-body simulations.

We are able to include smaller scales than in previous analyses, resulting in tighter cosmo-

logical constraints. Using three overlapping redshift bins, we measure the angular-diameter

distance, the Hubble parameter and the cosmic growth rate, and explore the cosmological im-

plications of our full-shape clustering measurements in combination with cosmic microwave

background and Type Ia supernova data. Assuming a � cold dark matter (�CDM) cos-

mology, we constrain the matter density to �M = 0.311+0.009
−0.010 and the Hubble parameter to

H0 = 67.6+0.7
−0.6 km s−1 Mpc−1, at a confidence level of 68 per cent. We also allow for non-

standard dark energy models and modifications of the growth rate, finding good agreement

with the �CDM paradigm. For example, we constrain the equation-of-state parameter to

w = −1.019+0.048
−0.039. This paper is part of a set that analyses the final galaxy-clustering data set

from BOSS. The measurements and likelihoods presented here are combined with others in

Alam et al. to produce the final cosmological constraints from BOSS.

Key words: cosmological parameters – cosmology: observations – dark energy – large-scale

structure of Universe.

1 IN T RO D U C T I O N

Together with observations of the cosmic microwave background

(CMB) and Type Ia supernova (SN) samples, the analysis of the

⋆E-mail: arielsan@mpe.mpg.de

large-scale structure (LSS) of the Universe based on galaxy redshift

surveys has been a prolific source of cosmological information over

the past few decades (Davis & Peebles 1983; Maddox et al. 1990;

Tegmark et al. 2004; Cole et al. 2005; Eisenstein et al. 2005;

Anderson et al. 2012, 2014a,b). These data sets have helped to

establish the � cold dark matter (�CDM) model as the current

standard cosmological paradigm, and to determine the values of
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its basic set of parameters with high precision. The �CDM model

assumes that the energy density of the observable universe is domi-

nated by (pressureless) CDM and a mysterious ‘Dark Energy’ (DE)

component that drives the accelerated expansion of the late-time

universe, which can be described by a cosmological constant � or

vacuum energy. Observations of the clustering of galaxies can shed

light on to the underlying physical nature of this energy component

by probing the growth of structure and the expansion history of the

Universe. Thus, important recent and ongoing spectroscopic galaxy-

redshift surveys, such as the Baryon Oscillation Spectroscopic Sur-

vey (BOSS; Dawson et al. 2013) and its extension eBOSS (Dawson

et al. 2016) are very valuable probes of the late-time evolution of

the Universe.

A major goal of galaxy surveys is to obtain precise measurements

of the expansion history of the Universe by means of a feature im-

printed into the two-point clustering statistics, the baryonic acoustic

oscillations (BAO; for a review see e.g. Bassett & Hlozek 2010).

The BAO are relics of pressure waves that propagated through the

photon–baryon plasma prior to recombination and froze in at the

time of last scattering. The interaction between dark and baryonic

matter after recombination resulted in a signal of enhanced correla-

tion of density peaks separated by a well-defined physical scale, the

sound horizon at the drag redshift. This scale can be used as a robust

standard ruler for measurements of cosmic distances (Eisenstein &

White 2004; Seo & Eisenstein 2005; Angulo et al. 2008; Sánchez,

Baugh & Angulo 2008). The first detections of the BAO feature

(Cole et al. 2005; Eisenstein et al. 2005) relied on angle-averaged

clustering statistics. However, separate measurements of the BAO

signal along the directions parallel and perpendicular to the line of

sight (LOS) can be used to obtain separate constraints on the Hub-

ble parameter H(z) at and the angular-diameter distance DA(z) to

the mean redshift of the survey by means of the Alcock–Paczynski

(AP; Alcock & Paczynski 1979) test. In this way, anisotropic clus-

tering measurements can break the degeneracy obtained from angle-

averaged quantities, which are only sensitive to the average distance

DV(z) ∝ (DA(z)2/H(z))1/3 (Hu & Haiman 2003; Wagner, Muller &

Steinmetz 2008; Shoji, Jeong & Komatsu 2009).

The dominant source of anisotropy of the measured clustering

signal are the redshift-space distortions (RSD), which are due to

the impact of the LOS component of the peculiar velocities of

the galaxies on the observed galaxy redshifts. The pattern of RSD

provides additional cosmological information beyond that of the

BAO signal. As, to linear order, peculiar velocities are related to

the infall of matter into gravitational potential wells (Kaiser 1987),

the RSD are a probe of the growth of structure. As modifications

to general relativity (GR) can change the growth rate of density

fluctuations, RSD can be used to constrain the theory of gravity (e.g.

Guzzo et al. 2008). However, the galaxy velocity field is highly non-

linear even on large scales so that a detailed modelling is required

(e.g. Scoccimarro 2004).

One way to characterize the anisotropies in the clustering of

galaxies is to use the concept of clustering wedges introduced by

Kazin, Sánchez & Blanton (2012), which correspond to the aver-

age the correlation function over wide bins of the LOS parameter,

μ, defined as the cosine of the angle between the total separation

vector between two galaxies and the LOS direction. Anisotropic

BAO distance measurements obtained using clustering wedges were

first presented in Kazin et al. (2013) as part of the BOSS DR9

(data release 9) CMASS analysis (Anderson et al. 2014a), while

Sánchez et al. (2013, 2014) performed an analysis of the full shape

of the wedges measured from the BOSS DR9 and DR11 galaxy

catalogues, respectively. Alternative tool to wedges are the Legen-

dre multipole moments of the two-point statistics (Padmanabhan

& White 2008). The multipoles of the correlation function mea-

sured from BOSS DR11 galaxy catalogues were used in several

recent galaxy-clustering analyses (e.g. Reid et al. 2014; Samushia

et al. 2014; Alam et al. 2015b). In Fourier space, the first anisotropic

clustering studies (e.g. Blake et al. 2011; Beutler et al. 2014) were

performed on measurements of the Legendre multipoles of the

power spectrum obtained by means of the Yamamoto–Blake es-

timator (Yamamoto et al. 2006; Blake et al. 2011). In this work, we

extend the concept of clustering wedges to Fourier space and adapt

the Yamamoto–Blake estimator to provide a measurement of these

statistics.

We perform an analysis of the full shape of the Fourier-space clus-

tering wedges measured from the final BOSS galaxy samples (Reid

et al. 2016), corresponding to Sloan Digital Sky Survey (SDSS)

DR12 (Alam et al. 2015a). In order to make use of new estima-

tors based on fast Fourier transforms (FFTs; Bianchi et al. 2015;

Scoccimarro 2015), we measure the power-spectrum clustering

wedges of the BOSS sample by filtering out the information of Leg-

endre multipoles ℓ > 4. Exploiting the signature of BAO and RSD

in these measurements, we derive distance and growth-of-structure

constraints. We also explore the implications of the full shape of our

measurements on the parameters of the standard �CDM model, as

well as its most important extensions, making use also of comple-

mentary cosmological information from CMB and SN samples.

This work is part of a series of papers that analyse the clustering

properties of the final BOSS sample. Besides the approach of this

work, the analogous full-shape analysis using configuration-space

wedges is discussed in Sánchez et al. (2017b). Complementary

RSD measurements using Fourier- and configuration-space multi-

poles are presented in Beutler et al. (2017a) and Satpathy et al.

(2016), respectively. Tinker et al. (in preparation) compares the per-

formance of the different methodologies to extract cosmological

information from the full shape of anisotropic clustering measure-

ments. Anisotropic BAO distance measurements are presented in

Ross et al. (2017) and Beutler et al. (2017b) for configuration and

Fourier space, respectively, making use of the linear density-field re-

construction technique (Eisenstein et al. 2007; Cuesta et al. 2016).

Vargas-Magaña et al. (2016) investigate the potential sources of

theoretical systematics in the anisotropic BAO analysis for the fi-

nal BOSS galaxy BAO analysis in configuration space. All final

BOSS analyses are summarized in Alam et al. (2016), where they

are combined into a set of consensus measurements following the

methodology described in Sánchez et al. (2017a). A different ap-

proach is followed in Salazar-Albornoz et al. (2016), who perform

a tomographic analysis by means of angular correlation functions

in thin redshift shells.

This paper is organized as follows. Section 2 describes the final

BOSS DR12 galaxy catalogue and the optimal estimator we use to

measure the Fourier-space clustering wedges of this sample, which

are the basis for our cosmological constraints. This section describes

also the methodology we follow to estimate the covariance matrix

of our measurements (Section 2.4) and to account for the window

function of the survey (Section 2.5). The model for the Fourier-space

wedges is discussed in Section 3 where we describe the recipe for

the non-linear gravitational dynamics, galaxy bias and RSD and

analyse the performance of the model using N-body simulations

and synthetic catalogues mimicking the clustering properties of

the BOSS galaxy sample. Anisotropic BAO and RSD constraints

derived from the full-shape analysis of the DR12 clustering wedges

analysis in Fourier space are described in Section 4. In Section 5, we

present the cosmological results from combining the measurements
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of the Fourier-space wedges with complementary data sets and infer

cosmological constraints for different parameter spaces. Finally, in

Section 6 we conclude our analysis with a summary and discussion

of the results.

2 C L U S T E R I N G M E A S U R E M E N T S F RO M T H E

BA RYO N O SCILLATION SPECTROSCOPIC

SURV EY

2.1 The final DR12 sample of BOSS

This work is based on the final galaxy catalogue of the BOSS

programme (Dawson et al. 2013), which is one of the four spectro-

scopic surveys of the third iteration of the SDSS programme (SDSS-

III; Eisenstein et al. 2011). The catalogue is constructed from the

spectra of ca. 1.5 million galaxies from the SDSS DR12 (Alam

et al. 2015a). The galaxies were selected from multicolour SDSS

imaging (Fukugita et al. 1996; Smith et al. 2002; Doi et al. 2010)

that was obtained with a drift-scanning mosaic CCD camera (Gunn

et al. 1998). The spectra were measured using the BOSS multifibre

spectrograph (Smee et al. 2013). The camera and spectrographs are

installed on a dedicated 2.5-m wide-field telescope at the Apache

Point Observatory (Gunn et al. 2006). The spectral classification

and redshift fitting pipeline was specially written for the BOSS

programme (Bolton et al. 2012). The survey consists of two large

patches in the sky that are located in the northern and southern

galactic caps (or NGC and SGC, for short). The final footprint of

the spectroscopic survey covers ca. 10 400 deg2 with a mean sec-

tor completeness of 0.98 (Reid et al. 2016), corresponding to an

increase in effective area of ca. 10 per cent over the internal DR11

release.

Previous works based on BOSS data have used two galaxy cat-

alogues, LOWZ and CMASS. The LOWZ catalogue (0.15 ≤ z ≤
0.43) extends the selection of the luminous red galaxy (LRG) popu-

lation of SDSS-II to higher redshifts and to fainter galaxies in order

to achieve a higher number density up to z ≤ 0.43. The CMASS sam-

ple (0.43 ≤ z ≤ 0.7) is nearly complete down to a stellar mass of M ≃
1011.3 M⊙ for z > 0.45 (Maraston et al. 2013). The selection criteria

for both samples were chosen to achieve a homogeneous comoving

number density of n̄ ≈ 3 × 10−4 h3 Mpc−3 (Dawson et al. 2013) in

the redshift range 0.15 < z < 0.7. The galaxies of both samples are

highly biased tracers of the matter density field with a linear bias

parameter of ∼2.0 (Nuza et al. 2013), which is ideal for cluster-

ing analysis as the power spectrum can be measured with a high

signal-to-noise ratio.

The DR12 LOWZ and CMASS samples have previ-

ously been analysed separately (e.g. Chuang et al. 2016;

Cuesta et al. 2016; Gil-Marı́n et al. 2016a,b). In this work, we

use the joint information of these samples by combining them

into a final BOSS ‘combined sample’ as described in Reid et al.

(2016), covering the redshift range 0.2 ≤ z ≤ 0.75. The BOSS com-

bined sample includes 1000 deg2 of additional ‘early’ data based

on slightly different selection criteria that have been included in

the low-redshift part of the catalogue, leading to a final effective

volume of Veff = 2.4 h−3 Gpc3. These data are publicly available at

the SDSS-III web site.1

The observed galaxy number density is affected by incomplete-

ness that originates in the targeting and observing strategies of the

survey. In order to account for such systematics, different weights

1 https://www.sdss3.org/science/boss_publications.php

Table 1. The redshift ranges, effective volumes and effective redshifts of

the redshift bins used in this work and its companion papers. The volumes

Veff (in units of h−3 Gpc3) of the two galactic caps (NGC and SGC) are

computed for the fiducial cosmology defined in Table 2.

Bin no. and label Redshift range zeff V NGC
eff V SGC

eff

1 Low 0.2 ≤ z ≤ 0.5 0.38 0.821 0.317

2 Intermediate 0.4 ≤ z ≤ 0.6 0.51 0.961 0.351

3 High 0.5 ≤ z ≤ 0.75 0.61 0.915 0.332

are assigned to the galaxies in the catalogue. A source of incom-

pleteness are the so-called fibre collisions, which are caused by

the fact that due to the physical size of the fibres it is not possible

to simultaneously take the spectra of two target galaxies that are

separated by less than 62 arcsec in the sky. Thus, missing targets

are accounted for by a weight wfc ≥ 1 that is applied to observed

neighbouring galaxies. In a similar way, the weight wrf ≥ 1 is used

to upweight a near-by galaxy in the case of a failure of the spectro-

scopic redshift determination. These two weights are combined into

the ‘counting weight’, wc = wfc + wrf − 1. An additional weight

wsys is assigned to each galaxy to correct for the systematic effects

introduced by the local stellar density and the seeing during the

photometric observations (Ross et al. 2012; Anderson et al. 2014b;

Reid et al. 2016). The final weight, wtot, of a galaxy is given by

wtot = wsys wc. (1)

The redshift binning for the analysis of the combined sample is

tuned for optimal extraction of cosmological information from the

two-point clustering statistics. We analyse the final sample in two

wide, non-overlapping redshift bins – referred to as ‘low’(0.2 ≤
z < 0.5) and ‘high’ (0.5 ≤ z < 0.75) – while consistency checks

are performed with an overlapping, ‘intermediate’ redshift bin

(0.4 ≤ z < 0.6). The definitions of the redshift ranges, their effective

redshift and effective volumes in the two galactic caps (NGC and

SGC) are given in Table 1.

The angular and radial survey selection function is described by

the set of Nrnd random points, which sample the survey volume more

densely than the galaxies (Nrnd ≃ 50 Ngal). Within the geometrical

boundaries of the survey, galaxies cannot be observed in certain

small regions, such as the centre posts of the observational plates or

the surroundings of a bright star. Despite the small angular size of

each individual ‘masked’ region, they are not randomly distributed

across the sky and their total effect adds up to a non-negligible

area. Thus, they are excluded from any analysis by the use of veto

masks removing points of the random catalogue that fall within

these masked regions (see Reid et al. 2016, for more details).

The spectroscopic redshifts are converted into distances adopt-

ing the same fiducial cosmology as in all BOSS DR12 clustering

analyses (Alam et al. 2016), which is specified in Table 2 and is

characterized by a matter density parameter close to the central

value measured from the latest analysis of the CMB data from the

Planck satellite (Planck Collaboration XIII 2016).

2.2 Optimal clustering wedges measurements in Fourier space

Let P(μ, k) be the anisotropic power spectrum in terms of the

wavenumber k and the LOS parameter μ. In Fourier space, the

latter parameter is defined as the cosine of the separation angle θ

between the Fourier mode k and the LOS direction r̂ ,

μ ≡ cos θ = |k · r̂| |k|−1. (2)
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Table 2. The set of cosmological parameters used in this work and its com-

panion papers. Except for the ‘template’ cosmology, all cosmologies are flat,

�� = 1 − �M, so that �ch2 can be derived from �ch2 = �Mh2 − �bh2.

For the template cosmology, there is a massive neutrino component in addi-

tion, �νh2 = 0.000 64 (corresponding to
∑

mν = 0.06 eV) – just as for the

Planck 2015 reference �CDM cosmology (Planck Collaboration I 2016).

Name �M h �bh2 σ 8 ns

Fiducial 0.31 0.676 0.022 0.8 0.97

MINERVA 0.285 0.695 0.021 04 0.828 0.9632

QPM 0.29 0.7 0.022 47 0.8 0.97

MD-PATCHY 0.307 115 0.6777 0.022 14 0.8288 0.96

Template 0.315 298 0.6726 0.022 204 0.828 0.9648

In principle, μ can take values in the range −1 to 1. However, due

to the symmetry along the LOS direction, the power spectrum is

an even function of μ and only the range from 0 to 1 needs to be

considered. The concept of clustering wedges (Kazin et al. 2012)

can be extended to Fourier space by defining the power-spectrum

wedge, as the average of the two-dimensional power spectrum,

P(μ, k), over a number of wide, non-intersecting bins in μ, that is

P μ2
μ1

(k) ≡
1

μ2 − μ1

∫ μ2

μ1

P (μ, k) dμ, (3)

where μ1 (μ2) is the lower (upper) limit for the LOS parameter.

The wedges are usually defined by dividing up the full range of μ ∈
[0, 1] into n intervals of equal width, μ2 − μ1 = n−1.

The Fourier-space wedges can be estimated from a galaxy cata-

logue by means of an analogue of the Yamamoto–Blake estimator

(Yamamoto et al. 2006; Blake et al. 2011; Beutler et al. 2014) used

to measure the power-spectrum multipoles. In this estimator, the

LOS direction for each pair of galaxies is approximated by the dis-

tance vector to one of them. This method, dubbed ‘moving-LOS’

significantly reduces the computational costs compared to the orig-

inal estimator of Yamamoto et al. (2006), while preserving most of

the LOS information. The more simplifying assumption of a fixed

(global) plane-parallel approximation for the LOS, the ‘fixed-LOS’

method (Samushia, Branchini & Percival 2015; Yoo & Seljak 2015),

would significantly bias the anisotropic clustering measurement for

wide-angle surveys such as BOSS.

The Feldman–Kaiser–Peacock (FKP) estimator for the power-

spectrum monopole (Feldman, Kaiser & Peacock 1994) assigns an

additional weight wFKP to each galaxy in order to minimize the

variance of the estimator. Here, we extend the optimal-variance

estimator to wedges. We define the weighted wedge overdensity

field,

Fμ2
μ1

(k) =
1

(μ2 − μ1)
√

A

[

Dμ2
μ1

(k) − αr R
μ2
μ1

(k)
]

, (4)

where A is a normalization constant and αr is the data-to-randoms

ratio (both are discussed later in this section). Further, the individual

density fields of the galaxies, Dμ2
μ1

(k), and the randoms, Rμ2
μ1

(k), are

given by

Dμ2
μ1

(k) =
Ngal
∑

i=1

wtot(xi) wFKP(xi) eik·xi 
μ2
μ1

(

k · xi

|k| |xi |

)

and (5)

Rμ2
μ1

(k) =
Nrnd
∑

j=1

wFKP(xj ) eik·xj 
μ2
μ1

(

k · xj

|k| |xj |

)

, (6)

respectively. Here 
μ2
μ1

(μ) is the top-hat function equal to one in-

side the range μ1 ≤ μ ≤ μ2 and to zero outside of it. The weight

wtot for the galaxies is given in equation (1). As derived in Ap-

pendix A3, the weight wFKP that minimizes the variance of the

measured power-spectrum wedges depends on the expected number

density of galaxies nexp(x) in addition to the systematic weights,

w−1
FKP(x) = ftp wsys(x) + (1 − ftp) wtot(x) + nexp(x) Pw, (7)

generalizing the original FKP weight given in equation (A10) to take

into account our treatment of fibre collisions (see Appendix A2).

In equation (7), ftp is the fraction of true fibre collision pairs and is

fiducially set to ftp = 0.5 in agreement with the value used in Gil-

Marı́n et al. (2015). In order to optimize the variance for the power

spectrum at the position of the BAO peaks of a CMASS-like sample,

the fiducial power-spectrum amplitude is set to Pw = 104 h−3 Mpc3

(consistently with the rest of the series of companion papers lead

by Alam et al. 2016). This choice is motivated by the fact that

this value is close to the amplitude of the power spectrum of the

BOSS combined sample at k = 0.14 h Mpc−1, which is the effective

scale suggested by Font-Ribera et al. (2014) to use for BOSS BAO

measurements.

The effective data-to-randoms ratio αr is defined by

αr ≡
(

∑Ngal

i wtot(xi) wFKP(xi)
) (

∑Nrnd

j wFKP(xj )
)−1

. (8)

This expression is further discussed in Appendix A, where we also

derive the normalization constant to be

A = αr

Nrnd
∑

j

nexp(xj ) w2
FKP(xj ). (9)

Here, nexp(xj ) is the expected number density, which already en-

tered the FKP-weight definition in equation (7).

The wedge power spectrum is estimated from the wedge over-

density field using

P μ2
μ1

(k) = Fμ2
μ1

(k)
[

F 1
−1(k)

]∗ − Sμ2
μ1

(k), (10)

where [·]∗ denotes complex conjugation and Sμ2
μ1

is the shot-noise

term. Following a derivation analogous to the one of the multipole

analysis in Gil-Marı́n et al. (2016a), it is easy to see that the shot-

noise term can be computed as2

Sμ2
μ1

(k) =
αr (αr + 1)

(μ2 − μ1) A

Nrnd
∑

j

w2
FKP(xj ) 
μ2

μ1

(

k · xj

|k| |xj |

)

. (11)

However, this treatment does not account for deviations from a

Poisson distributed galaxy and random sample in a real survey such

as BOSS. In order to account for exclusion effects caused by the

fibre collisions, we split the shot noise in separate sums over the

galaxies and the random points as discussed in Appendix A2,

S =
Ngal
∑

i

w2
FKP(xi)

A

[

ftp wtot(xi) wsys(xi) + (1 − ftp) w2
tot(xi)

]

+
α2

A

Nrnd
∑

j

w2
FKP(xj ). (12)

We remind the reader that the fiducial true-pair fraction is set to

ftp = 0.5. In equation (12), we dropped the indices on S to highlight

the fact that we assume a constant shot-noise contribution to all

wedges. Given that our wedges are defined using equal-width μ

2 Beutler et al. (2014) use a slightly different approach that also incorporates

a sum over the observed galaxies, which provides similar results compared

to the one we use.
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bins, the shot-noise contribution is also equally distributed among

the wedges.

2.3 FFT-based estimators

Even though the computing time of the Yamamoto–Blake estimator

has been significantly reduced by adopting the moving-LOS approx-

imation, time efficiency is still a concern as the power-spectrum

wedges must be estimated for thousands of synthetic catalogues

(cf. Section 2.4). As shown recently by Bianchi et al. (2015) and

Scoccimarro (2015), the estimation of power-spectrum multipoles

can be sped up significantly by use of multiple FFTs. The Legen-

dre polynomials Lℓ(μ) can be expressed as a sum of power-law

terms μℓ = (x̂ · k̂)ℓ, so that the x̂ and k̂ components can be factored

out. The multipole-analogue of the weighted density field of equa-

tion (4) is

Fℓ(k) =
(2ℓ + 1)

2

∫

F (x) eik·x Lℓ

(

k · x

|k| |x|

)

d3x , (13)

where F (x) is the usual FKP-weighted density field defined in

equation (A3). The power-spectrum multipoles can be estimated

using

Pℓ(k) = Fℓ(k) [F (k)]∗ − S δK
ℓ0, (14)

where δK
ℓ0 is the Kronecker delta ensuring that the shot-noise con-

tribution is only subtracted from the monopole.

The weighted quadrupole and hexadecapole density fields can be

written as

F2(k) =
3

2

∑

i,j

k̂i k̂j Qij (k) −
1

2
F (k) and

F4(k) =
35

8

∑

i,j ,k,l

k̂i k̂j k̂k k̂l Qijkl(k) −
15

4
F2(k) +

3

8
F (k), (15)

where Qij (k) and Qijkl(k) are the Fourier transforms of

Qij (x) = x̂i x̂j F (x) and Qijkl(x) = x̂i x̂j x̂k x̂l F (x), (16)

respectively. Due to the symmetries of the Q· tensors, the calcula-

tion of F̂2(k) needs six FFTs in addition to the one of the original

FKP estimator. Calculating F̂4(k) requires 15 additional transforms.

Because of the low computational costs of FFTs, the computing time

is negligible compared to the runtime of the original Yamamoto–

Blake estimator even for large grid sizes.

The FFT estimators cannot be directly applied to clustering

wedges because of the non-polynomial dependency of the wedge

top-hat kernel on the LOS parameter μ. However, the FFT-

Yamamoto scheme can be applied to compute an accurate approxi-

mation of the wedges. The relation between wedges and multipoles

is given by

P μ2
μ1

(k) =
∑

ℓ

Tnℓ Pℓ(k), (17)

where, Tnℓ are the elements of the transformation matrix

Tnℓ ≡
1

μ2 − μ1

∫ μ2

μ1

Lℓ(μ) dμ. (18)

While the FFT-based estimator can be defined for any multipole

order in principle, we only compute the power-spectrum multipoles

up to the hexadecapole. The power-spectrum wedges are approx-

imated from the combined multipole measurements by truncating

the series in equation (17) at the ℓ = 4 term. The resulting ‘pseudo-

wedges’ correspond to the result of filtering out the information of

multipoles ℓ > 4 of the full two-dimensional power spectrum. Even

in the case in which the intrinsic power-spectrum multipoles for

ℓ > 4 could be neglected, the AP distortions caused by the assump-

tion of different fiducial cosmologies would generate higher order

multipoles that would not be included in this approximation, leading

to small differences with the direct measurement of the wedges.

For our tests using N-body simulations, we use the full definition

of the clustering wedges. However, for time efficiency, in the anal-

ysis of the BOSS data and the different sets of mock catalogues,

we use the pseudo-wedges derived from the power-spectrum mul-

tipoles Pℓ = 0, 2, 4(k). Appendix A4 presents a comparison of the

full power-spectrum wedges obtained using the estimator of equa-

tion (10) and their approximation from the multipoles derived from

the FFT approach for a CMASS-like catalogue. This comparison

shows that, up to wavenumbers k ≤ 0.2 h Mpc−1, the pseudo-

wedges computed using equation (17) provide an accurate approxi-

mation of the full result. Note that, as the pseudo-wedges correspond

to the linear transformation of equation (17), they contain the same

information as the original multipoles and result in an identical like-

lihood function. However, we prefer to present our measurements

in terms of this linear combination instead of multipoles directly,

as they more closely represent the average of the full anisotropic

power spectrum in the different μ bins. For simplicity, we will re-

fer to these measurements as wedges, but the fact that they contain

exactly the same information as the combination of the multipoles

Pℓ = 0, 2, 4(k) should be taken into account when interpreting our re-

sults. We leave the quantification of the precise loss of information

to a future analysis.

Before applying the FFTs, F (x) is calculated on a mesh using

12003 grid cells applying the triangular-shaped-cloud scheme to

assign galaxies and randoms to the cells. The side length of the

grid is 4000 h−1 Mpc. After the FFT, the mass-assignment scheme

is corrected for by using the approximative anti-aliasing correc-

tion that was used in Montesano, Sanchez & Phleps (2010): each

Fourier mode is divided by the corrective term C1(k) given in Jing

(2005, equation 20). This yields a more precise power-spectrum esti-

mate than dividing by the Fourier transform of the mass-assignment

function.

The final measurements are estimated by averaging equa-

tion (17) over spherical k-space shells. We adopt wavenum-

ber bins with �k = 0.005 h Mpc−1 from kmin = 0 h Mpc−1 to

kmax = 0.25 h Mpc−1 and label the central wavenumbers of each

bin as ki. With this binning scheme, already the smallest central

wavenumber is much larger than the fundamental mode of the grid,

kfund = 1.57 × 10−3 h Mpc−1. Also, kmax is always much smaller

than the Nyquist frequency of the grid, kNy = 0.942 h Mpc−1. Using

the predictions in Sefusatti et al. (2016), we expect the error from

aliasing to be less than 0.01 per cent.

We consider configurations of two and three bins in μ defined

by dividing the μ range from 0 to 1 into equal-width intervals.

In each case, we denote the measurements corresponding to the

nth μ bin as P2w, n and P3w, n. For general references, we com-

bine all measurement bins into the vectors P2w =
(

P2w,n(ki)
)

and

P3w =
(

P3w,n(ki)
)

.

Fig. 1 shows the three power-spectrum wedges derived from

the FFT-based multipoles of the NGC (upper panels) and SGC

(lower panels) of the combined sample obtained in this way for

the low (left-hand panels), intermediate (centre panels) and high

(right-hand panels) redshift bins. The predictions shown as solid

lines are based on the model for the Fourier-space wedges that

is described in Section 3 and the maximum-likelihood parameters

from the full-shape BAO+RSD fits of each redshift bin separately.
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Figure 1. The power-spectrum wedges computed by filtering out the information of Legendre multipoles ℓ > 4 for NGC (upper panels) and SGC (lower

panels) of the BOSS DR12 combined sample in the low (left-hand panels), intermediate (centre panels) and high (right-hand panels) redshift bins defined in

Table 1. The error bars are derived as the square root of the diagonal entries of MD-PATCHY covariance matrix (see Section 2.4). The theoretical predictions are

based on the model described in Section 3 and for the maximum-likelihood BAO+RSD parameters using a best-fitting Planck 2015 input power spectrum. The

low-redshift bin fits use separate bias, RSD and shot-noise parameters for NGS and SGC, whereas the intermediate and high bins use only one set of nuisance

parameters.

For the low-redshift bin, we use two different sets of clustering

nuisance parameters to account for the fact that the NGC and SGC

samples might contain two slightly different galaxy population at

low redshifts (see discussion in Appendix B3).

2.4 Covariance matrix estimates from mock catalogues

As current theoretical predictions of the anisotropic clustering co-

variance cannot account for the observational systematics of the

BOSS survey with the required accuracy, the covariance matrix for

the analysis of the BOSS DR12 combined sample is estimated from

large sets of synthetic catalogues. These mock catalogues are based

on large-scale haloes that are generated using fast, approximate

solvers for the gravitational evolution equations. Phenomenologi-

cal small-scale models are used to populate these haloes with syn-

thetic galaxies basing the calibration of the model on a few N-body

simulations. We use two sets of mock catalogues mimicking the

DR12 combined sample, both with a large number of realizations

to overcome the sample noise in the precision matrix estimate. All

synthetic survey catalogues incorporate the survey geometry (se-

lection window, veto mask) and the most important observational

systematics such as fibre collisions.

Here, we focus on the set of MULTIDARK-PATCHY (MD-PATCHY;

Kitaura et al. 2016) mocks that are based on the PATCHY (Kitaura,

Yepes & Prada 2014) recipe to generate mock halo catalogues. In

Appendix B2, we also use an alternative set of mocks, based on

the quick-particle-mesh (QPM; White, Tinker & McBride 2014)

technique, to cross-check our reference covariance matrix.

The first step of the MD-PATCHY recipe is to generate a DM density

and velocity field using the Augmented Lagrangian Perturbation

Theory (Kitaura & Hess 2013) formalism. This algorithm splits the

Lagrangian displacement field into a large-scale component, which

is derived by 2-LPT, and a small-scale component that is modelled

by the spherical collapse approximation. The initial conditions are

generated with cosmological parameters that are matched to the

BIG-MULTIDARK N-body simulations (Klypin et al. 2016). These pa-

rameters are given as ‘MD-PATCHY’ in Table 2. The halo density field

is then modelled using perturbation theory and non-linear stochas-

tic biasing with parameters calibrated against the fully non-linear

simulations (Rodrı́guez-Torres et al. 2016).

The second step populates the haloes with galaxies by abundance

matching between the DR12 combined sample and simulations us-

ing HADRON (Zhao et al. 2015). The clustering of the MD-PATCHY

catalogues reproduces the DR12 two- and three-point statistics

(Rodrı́guez-Torres et al. 2016). The survey selection is applied to

a light-cone interpolation of the galaxy snapshots at 10 different

intermediate redshifts.

A set of Nm = 2045 realizations exists from which we obtain the

reference covariance matrix for the fits of the clustering model to the

data. The elements of this matrix are estimated from the covariance

of the P3w, n(ki) measurements,

Cnm,ij = 〈P3w,n(ki) P3w,m(kj )〉 − 〈P3w,n(ki)〉 〈P3w,m(kj )〉, (19)
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Figure 2. MD-PATCHY power-spectrum wedges derived from the multipoles

Pℓ = 0, 2, 4(k) compared against the results of the BOSS DR12 combined

sample for the low (upper panel) and high (lower panel) redshift bin. These

measurements correspond to 2045 full survey (combining NGC and SGC)

mocks and have been performed assuming the fiducial cosmology.

Figure 3. Correlation matrix of the MD-PATCHY power-spectrum wedges de-

rived from the power-spectrum multipoles Pℓ = 0, 2, 4(k) for the high-redshift

bin. As in Fig. 2, for this measurement, NGC and SGC have been combined

for simplicity. The correlation matrix for the low-redshift bin looks similar.

where 〈 · 〉 represents the average over the Nm mock realizations.

The mean MD-PATCHY power-spectrum wedges show good agree-

ment with the clustering of the DR12 combined sample as shown by

the comparison in Fig. 2. For a better visualization of the structure

in the covariance matrix, we plot the correlation matrix, defined by

Rnm,ij = Cnm,ij

(

Cnn,ii Cmm,jj

)− 1
2 , (20)

for the high redshift bin in Fig. 3 (the correlation matrix for the two

other redshift bins are similar). The effect of the window function

(discussed later in Section 2.5) introduces a correlation between

neighbouring bins and wedges that can be seen as non-vanishing

subdiagonal entries. Especially, in the correlation for the most-

parallel wedge in the high-redshift bin, cross-covariance between

all bins is increased by the fibre collisions between pairs too close

in angular separation (the CMASS sample is more affected by this

problem than LOWZ; Reid et al. 2016).

Our power-spectrum measurements and their corresponding co-

variance matrices are publicly available.3

2.4.1 The precision matrix

We denote a point in the parameter space of a theoretical model

as ζ ∈ X and the model predictions of the observed Fourier-space

wedges as P̂3w(ζ ) =
(

P̂3w,n(ki)
)

. The comparison of model predic-

tions with the data P3w relies on the calculation of the likelihood

function. Assuming that the number of modes observed is large

enough, the power-spectrum wedges follow a multivariate Gaussian

distribution with a fixed covariance. This approximation is justified

on quasi-linear scales (Manera et al. 2012; Ross et al. 2013) and,

thus, the likelihood is given by

L[ P̂3w(ζ )] =
|�|
√

2π

exp

(

−
1

2
χ2( P̂3w(ζ ), P3w, �)

)

, (21)

where the precision matrix � is the inverse of the exact covariance

matrix. The log-likelihood function χ2 makes use of the difference

vector, �P(ζ ) ≡ P̂3w(ζ ) − P3w, as

χ2( P̂3w(ζ ), P3w, �) = �P(ζ )T · � · �P(ζ ), (22)

where PT denotes the transpose of P .

The exact covariance matrix is not known. Hence, the preci-

sion matrix is estimated as the inverse of the covariance matrix

inferred from our mock catalogues, C = (CAB, ij), whose elements

are given by equation (19). This estimate is affected by noise due

to the finite number of mocks. Consequently, the precision matrix

and the resulting parameter constraints are biased (Dodelson &

Schneider 2013; Taylor, Joachimi & Kitching 2013; Percival

et al. 2014). In the following, we account for this bias by a rescaling

(Hartlap, Simon & Schneider 2007),

� = (1 − D) C−1, where D =
Nb + 1

Nm − 1
, (23)

where Nb is the total number of bins in the measurements P3w(ki).

In addition, the effect of the noise propagates to the parameter

constraints, so that the obtained variance of each parameter needs

to be rescaled by (Percival et al. 2014)

M =

√

1 + BM (Nb − Np)

1 + AM + BM (Np + 1)
, (24)

where Np is the number of fitting parameters and the two factors AM

and BM are given as

AM ≡
2

(Nm − Nb − 1) (Nm − Nb − 4)
, (25)

BM ≡
Nm − Nb − 2

(Nm − Nb − 1) (Nm − Nb − 4)
. (26)

As Nm is large, the correction factors for the covariance of the

P3w, n(k) measurements and the fitted parameters, listed in Tables 3

and 4, respectively, are small despite the large number of measure-

ment bins used.

3 https://sdss3.org/science/boss_publications.php
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Table 3. The correction factors for the precision matrix as given by equa-

tion (23) for our configurations of measurement bins and numbers of real-

izations used to estimate the covariance matrix. kmin and kmax are given in

units of h Mpc−1.

Nm kmin kmax No.of ki No.of wedges Nb D

1000 0.02 0.2 36 3 108 0.1091

2045 0.02 0.2 36 3 108 0.0533

Table 4. The correction factors for the parameter constraints as given by

equation (24) for our configurations of measurement bins, numbers of re-

alizations used to estimate the covariance matrix and number of fitting

parameters. kmin and kmax are given in units of h Mpc−1.

Nm kmin kmax Nb Np (z-bin) M

1000 0.02 0.2 108 8 (int,high) 1.0494

1000 0.02 0.2 108 13 (low) 1.0439

2045 0.02 0.2 108 8 (int,high) 1.0231

2045 0.02 0.2 108 13 (low) 1.0206

2.5 The window function

A non-trivial survey geometry distorts the shape of the power-

spectrum estimator presented in Section 2.2. For scales of sizes close

to or larger than the distances between the boundaries of the survey,

the power spectrum is suppressed as the modes within the survey

fail to resolve the perturbations at their full length. Conversely, they

are enhanced at small scales due to mode coupling. As discussed

in Beutler et al. (2014) and Gil-Marı́n et al. (2016a), this effect

is stronger for higher order multipoles in a survey like BOSS that

covers a large angular area on the sky.4 We describe this effect by

the convolution of a theoretical prediction P̃ (k) with the survey

window function,

P̂ (k) =
∫

|W (k − k′)|2 P̃ (k′) d3k′ . (27)

As already done in Gil-Marı́n et al. (2016a), we neglect the integral

constraint (Beutler et al. 2014, section 5.2) due to its marginal effect

for large-volume surveys.

The window function W (k) is given by

W (k) =
1

√
A

∫

nexp(x) eik·r d3r , (28)

where A is the normalization factor given by equation (9). The

expected number density can be expressed by the random field,

nexp(x) = αr nr(x) (see details in Appendix A3).

As described in Section 2.3, we approximate the clustering

wedges as a linear combination of the power-spectrum multipoles

Pℓ = 0, 2, 4(k) computed using the Yamamoto-FFT estimator. We can

then apply the formalism of the multipole window functions de-

scribed in Beutler et al. (2014, section 5.1) to our clustering mea-

surements. The pseudo-wedge window function can be written in

terms of the multipole window functions, which we measure using

|W (k, k′)|2ℓL = 2iℓ(−i)L (2ℓ + 1)

Nrnd
∑

ij ,i �=j

wFKP(xi)wFKP(xj )

×jℓ(k|�x|) jL(k′|�x|)Lℓ(x̂h · x̂)LL(x̂h · x̂), (29)

4 See also the discussion of the binning effect due to a finite grid in k in

Beutler et al. (2016).

where �x = xi − xj , xh = 1
2
(xi + xj ), and jℓ(x) represents the

spherical Bessel function of order ℓ. Due to its immense compu-

tation time, this double sum is only performed for a subset of ca.

65 000 of the randoms. We performed a convergence test and did not

find improvement if a larger subset of randoms is used. In a second

step, these window functions are transformed into pseudo-wedge

window functions by use of the transformation matrix T, whose

elements are given in equation (18),

|W (k, k′)|23w,nm =
∑

ℓ,L∈{0,2,4}

Tnℓ T −1
Lm |W (k, k′)|2ℓL. (30)

Here, T −1
Lm are the elements of the inverse T−1.

In practice, the convolution of equation (27) is described by a

window matrix multiplication. The normalized elements w3w, nm

(ki, k′) of this window matrix are pre-computed using

w3w,nm(ki, k
′) = W−1

ki
wk′ |W (ki, k

′)|23w,nm (k′)2. (31)

Here, the input wavenumbers k′ and their weights wk′ are determined

using the Gauss–Legendre quadrature. The normalization Wki
is

chosen such that
∑

n,m

∑

k′ w3w,nm(ki, k
′) = 1 for each ki. The final

prediction for the vector P̂3w = (P̂3w,n(ki)) is then given by

P̂3w,n(ki) =
∑

k′

w3w,nm(ki, k
′) P̃3w,m(k′), (32)

where P̃3w,n(k′) are the wedges of the underlying power spectrum

at the input wavenumbers k′.

To illustrate the features of the window matrix, we plot its ele-

ments w3w, nm(ki, k′) for the NGC subsample in Fig. 4. In the upper

panel, we show that the window matrices for the low- and high-

redshift bin do not significantly differ. Further, this plot shows the

narrow range in which the window function is non-zero around each

ki. The window matrices for the NGC and the SGC have slightly

different normalizations due to the smaller volume of the south, but

otherwise follow the same trends with ki and k′. The lower panel

shows the cross- and autocontributions of the three power-spectrum

wedges for ki = 0.0275. This plot illustrates that the cross-talking

induced by the anisotropic window matrix is non-negligible for the

most-parallel wedge. As an illustration of the effect of the win-

dow function, Fig. 5 shows the theoretical power-spectrum wedges

corresponding to the best-fitting �CDM model to our BOSS mea-

surements in the high-redshift bin (see Section 5.2) together with

their convolution with the NGC and SGC window functions. While

the suppression of power caused by the window function is stronger

for the SGC subsample, the window functions computed for the

other redshift bins are very similar to each other.

Comparing the results of our analysis on simulated galaxy cata-

logues with the results on periodic boxes, we do not see a significant

loss of constraining power caused by the treatment of the window

function. An alternative, but mathematically identical technique to

account for the anisotropic window function effect using a plane-

parallel approximation was presented in Wilson et al. (2017). That

method has the advantage that the results of the window function

convolutions can be computed much faster by means of 1D FFTs.

Beutler et al. (2017a) show that this technique can be extended to

wide surveys such as BOSS. However, as the window matrix is com-

puted only once and this calculation does not represent a significant

fraction of the total computing time of our analysis, switching to

this new technique would not represent a significant improvement

in our methodology.
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Figure 4. The window matrix w3w, nm(ki, k′) of the DR12 combined sample

for the most-perpendicular wedge in the upper panel and for all wedges in the

lower panel. The upper panel shows the dependency of w3w, 11 on the redshift

range and the mean ki (given in h Mpc−1) of the output bin. The window

matrices of each redshift bin are similar (dashed lines – low-redshift bin,

solid lines – high-redshift bin). The lower panel shows the contributions of

the different input wedges to the output wedges for the bin ki = 0.0275 (from

left to right, the x-axis is split into repeating intervals for better visibility).

The SGC window matrix resembles that of the NGC, but the suppression of

power is slightly stronger as the volume is smaller (see also Fig. 5).

3 T H E M O D E L L I N G O F R E D S H I F T- S PAC E

C L U S T E R I N G W E D G E S

An accurate model of the redshift-space galaxy-clustering statis-

tics is a key element for precise cosmological constraints from

galaxy-clustering analysis. Our power-spectrum fits make use of a

state-of-the-art description of the effects of the non-linear evolution

of density fluctuations, bias and RSD that allowed us to extract

information from the full shape of our clustering measurements

including smaller scales than in previous studies. The analyses of

our companion papers Sánchez et al. (2017b) and Salazar-Albornoz

et al. (2016) are based on the same model. The modelling of the

non-linear matter power spectrum is described in Section 3.1.1. The

galaxy bias model and the theoretical framework for RSD are sum-

marized in Sections 3.1.2 and 3.1.3, respectively. The parameter

space of our model for the Fourier-space wedges is summarized in

Section 3.2. In Section 3.3, we present performance tests of this

model based on a set of large-volume N-body simulations, as well

as synthetic catalogues for the DR12 combined sample. Within the

BOSS collaboration, the performances of the various full-shape

clustering analysis techniques used for the DR12 combined sam-

Figure 5. The effect of the window matrix w3w, nm for the DR12 combined

sample on the Fourier-space wedges in the high-redshift bin. The solid lines

are the theoretical predictions P̃3w,n(k′) (using the model described in Sec-

tion 3.1 for best-fitting �CDM parameters), and the dashed (dash–dotted)

lines correspond to the prediction convolved with the window function,

P̂3w,n(ki ), for the northern (southern) galactic cap.

ple are compared with each other and checked for systematics by

means of the analysis of a set of ‘challenge’ catalogues. Details on

the generation of these catalogues and the accuracy with which each

method recovers the simulated distance and growth parameters can

be found in Tinker et al. (in preparation). Our RSD challenge results

are described in Section 3.3.3.

In order to test the model on artificial catalogues that match

the clustering properties of the BOSS combined sample, we also

performed fits of the wedges P3w(k) obtained from the set of MD-

PATCHY mocks. These fits also serve as a basis for the estimation of

the cross-covariance between the results of the different analysis

approaches that are applied to the BOSS combined galaxy sample,

as described in Sánchez et al. (2017a). This estimate is needed to

generate the consensus distance and growth measurements of Alam

et al. (2016). Sánchez et al. (2017b) present complementary tests of

the model using the correlation function wedges.

3.1 The modelling of the redshift-space clustering

3.1.1 Non-linear gravitational dynamics

The constraining power of galaxy-clustering measurements in-

creases as smaller scales are included in the analysis. However,

this requires a careful modelling of the real- and redshift-space

galaxy two-point statistics beyond the linear regime.

Our model of the non-linear matter power-spectrum wedges is

based on gRPT (Blas, Crocce & Scoccimarro, in preparation), a new

version of RPT (Crocce & Scoccimarro 2006) and later develop-

ments such as RegPT (Bernardeau, Crocce & Scoccimarro 2008).

This approach uses the symmetries of the equations of motion to

resume the mode-coupling power spectrum consistently with the re-

summation of the propagator in order to avoid symmetry-breaking

one-loop approximations of the mode-coupling term. The one-loop

gRPT approximation allows us to predict the matter power spectrum

inferred from N-body simulations with an accuracy sufficient for our

analysis up to k ∼ 0.25 h Mpc−1. This corresponds to a significant

improvement over previous fast implementations along these lines

(e.g. ‘MPTBREEZE’; Crocce, Scoccimarro & Bernardeau 2012). A

MNRAS 467, 2085–2112 (2017)



2094 J. N. Grieb et al.

more detailed description of the theoretical framework for the non-

linear gravitational dynamics of the model is given in Blas et al. (in

preparation). Sánchez et al. (2017b) describe the implementation of

this model in our analysis pipeline in more detail.

3.1.2 The modelling of galaxy bias

As galaxies are biased tracers of the total matter, we consider the

non-linear and non-local contributions to the galaxy bias in order to

achieve improved accuracy. Assuming the velocity field to be bias

free, our galaxy bias prescription consistently includes terms up to

second-order Lagrangian bias (Chan, Scoccimarro & Sheth 2012).

The galaxy density contrast δg is given by

δg = b1 δm +
b2

2
δ2

m + γ2 G2[φv] + γ −
3 �3G[φ, φv] + · · · , (33)

Here, δm is the matter density contrast, b1 and b2 are the linear and

second-order local bias, respectively, and γ 2 and γ −
3 are non-local

bias terms of second order. The ‘Galileon’ operators G2 and �3G of

the gravitational potential φ and the velocity potential φv are given

by

G2[φv] =
(

∇ijφv

)2 −
(

∇2φv

)2
, (34)

�3G[φ, φv] = G2[φ] − G2[φv]. (35)

In principle, the non-local bias terms can be expressed in terms of

the first-order bias assuming a local bias in Lagrangian coordinates

(Chan et al. 2012),

γ2 = −
2

7
(b1 − 1), γ −

3 =
3

2
×

11

63
(b1 − 1) . (36)

Our tests on N-body simulations show that treating γ −
3 as a

free parameter yields more accurate results than fixing it to the

local-Lagrangian prediction. This is consistent with recent studies

showing that Eulerian bias is not necessarily compatible to local-

Lagrangian bias in the non-linear regime (Matsubara 2011). Thus,

we vary γ −
3 independently of b1 in our fits. However, we notice

that the precise value of γ 2 has little impact on our theoretical pre-

dictions and we use the local-Lagrangian relation of equation (36)

to relate this parameter to a given b1. These choices are further

discussed in Sánchez et al. (2017b, section 3.1.2).

3.1.3 Modelling redshift-space distortions

To linear order in Lagrangian perturbation theory (1-LPT;

Zel’dovich 1970), the effect of RSD is given by a velocity field

whose divergence is proportional to the density contrast. The coef-

ficient of this dependence is the growth-rate parameter f(z), defined

by

f (z) ≡
d ln D

d ln a
(z). (37)

Here, D(z) is the linear growth function and a(z) the scalefactor.

Thus, the redshift-space clustering signal can be used as a probe of

the growth of structure (Guzzo et al. 2008).

Quasi-linear perturbative approaches for the RSD have been

developed in Scoccimarro (2004), Percival & White (2009) and

Taruya, Nishimichi & Saito (2010). For a more advanced mod-

elling of the non-linear effects, we use the one-loop approxima-

tion of the Gaussian generation function approach in Scoccimarro,

Couchman & Frieman (1999) for the redshift-space power spec-

trum, P̃zs(k, μ), which yields (compare to equations 19 and 20 in

Sánchez et al. 2017b)

P̃ (k, μ) =

{

∫

d3r

(2π)3
e−ik·r

[

〈DsD
′
s〉c + λ〈�uzDsD

′
s〉c

+λ2〈�uzDs〉c 〈�uzD
′
s〉c

]

}

W (k, μ), (38)

where λ = ifkμ, Ds = δg + f�zuz, and a prime denotes evaluation at

x′ ≡ x + r instead of x. Defining the velocity divergence θ ≡ ∇ · v

and assuming no velocity bias, the first term is the non-linear version

of the Kaiser formula in Fourier space,

P (1)
zs (k, μ) = Pgg(k) + 2f μ2Pgθ (k) + f 2μ4Pθθ (k), (39)

depending on Pgg = 〈δg δg〉, Pgθ = 〈δg θ〉, and Pθθ = 〈θ θ〉. The other

two terms are given by a three-level PT bispectrum contribution

between the densities and velocities,

P (2)
zs (k, μ) =

∫

qz

q2
[BθDsDs

(q, k − q,−k)

+BθDsDs
(q, −k, k − q)], (40)

and a quadratic linear-theory power-spectrum expression,

P (3)
zs (k, μ) =

∫

qz (kz − qz)

q2(k − q)2
(b1 + f μ2

q ) (b1 + f μ2
k−q )

×Pδθ (k − q) Pδθ (q) d3q
]

. (41)

Further, W(k, μ) is the generating function of velocity differences

which, in the large-scale limit, we describe as

W (k, μ) ≡
1

√

1 + f 2 μ2 k2 a2
vir

exp

(

−f 2 μ2 k2

1 + f 2 μ2 k2 a2
vir

)

, (42)

where avir is a free parameter that describes the kurtosis of the small-

scale velocity distribution. The factor W(k, μ) is usually associated

with the ‘Fingers-of-God’ (FOG) effect caused by the non-linear

velocity component due to virialization.

The power-spectrum multipoles can be obtained by integrating

equation (38) against the Legendre polynomials Lℓ(μ). From now

on, we refer to our model as ‘gRPT+RSD’. More details on the

implementation of this model can be found in Sánchez et al. (2017b).

A similar description for the non-linear RSD effect, dubbed the

‘eTNS model’ (Taruya et al. 2010; Nishimichi & Taruya 2011), is

based on the same approach and was used in previous analyses of

galaxy-clustering measurements from BOSS (Beutler et al. 2014;

Oka et al. 2014; Gil-Marı́n et al. 2015, 2016a). That model differs

from our method in certain aspects: first, the second-order bias con-

tributions (depending on b2 and γ 2) to the first corrective one-loop

term in equation (40) are dropped, while in our approach, these

terms are kept in order to consistently include all second-order bias

terms. Secondly, our FOG term in equation (42) is non-Gaussian.

Thirdly, we treat γ 3 as a free parameter instead of fixing its value

according to the local-Lagrangian relation. Fourthly, our the predic-

tions of the non-linear matter power spectrum are computed using

gRPT instead of RegPT.

3.1.4 Modelling the AP effect

The clustering measurements inferred from real galaxy cata-

logues depend on the assumption of a fiducial cosmology used to
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transform the observed redshifts into distances. A mismatch be-

tween the assumed and true cosmologies leads to a geometrical dis-

tortion (the AP effect) corresponding to a rescaling of the wavenum-

bers transverse, k⊥, and parallel, k‖, to the LOS direction as

k′
⊥ = q⊥k⊥ and k′

‖ = q‖k‖, (43)

where the primes denote quantities observed assuming the fiducial

cosmology and the two distortion parameters q‖ and q⊥ are given

by

q⊥ =
DA(zeff)

D′
A(zeff)

and q‖ =
H ′(zeff)

H (zeff)
, (44)

that is, the ratios of the angular-diameter distance, DA(zeff), and the

Hubble parameter, H(zeff), in the true and fiducial cosmologies at

the effective redshift of the sample, zeff.

The theoretical prediction for the distorted power-spectrum

wedges, P̃ μ2
μ1

(k′), can be computed as

P̃ μ2
μ1

(k′) =
q−1

⊥ q−2
‖

μ2 − μ1

∫ μ2

μ1

P̃ (k(k′, μ′), μ(k′, μ′)) dμ′, (45)

where P̃ (k, μ) is the model prediction of equation (38) and the

relations

k(μ′, k′) ≡ k′
√

q−2
‖ (μ′)2 + q−2

⊥
(

1 − (μ′)2
)

(46)

μ(μ′, k′) ≡ μ′ q−1
‖

[

q−2
‖ (μ′)2 + q−2

⊥
(

1 − (μ′)2
)]−1/2

, (47)

correspond to those of equation (43) expressed in terms of k and

μ (Ballinger, Peacock & Heavens 1996). The scaling of the power

spectrum with q−1
⊥ q−2

‖ is due to the volume distortion from the

AP effect.

In BAO distance measurements, the results rely on a prediction for

the underlying power spectrum, computed using a fixed ‘template’

cosmology. DA(zeff) and H(zeff) are measured relative to the sound

horizon scale at the drag redshift, rd ≡ rs(zd), of the template. The

distortion parameters q⊥ and q‖ of equation (43) only take into

account the geometric AP effect. Thus, results that are comparable

across different analyses (using different templates) can be obtained

by defining a second set of AP parameters, which also include an

additional rescaling of the angular-diameter distance DA(zeff) and

the Hubble parameter H(zeff) by the fiducial sound horizon scale,

r ′
s(zd),

α⊥ ≡
DM(zeff)

D′
M(zeff)

r ′
d

rd

and α‖ ≡
H ′(zeff)

H (zeff)

r ′
d

rd

. (48)

Table 5 lists the values of DA(zeff), H(zeff) and rd for the different

cosmologies used in this work.

Table 5. The sound horizon scale rd ≡ rs(zd) at the drag redshift (in units

of Mpc) and the derived angular-diameter distances DA(zeff) and Hubble

parameters H(zeff) (in units of Mpc and km s−1 Mpc−1, respectively) for the

cosmologies specified in Table 2 at the effective redshifts zeff of the ranges

defined in Table 1.

Cosmology rd DA(zeff) H(zeff)

zeff 0.38 0.51 0.61 0.38 0.51 0.61

Fiducial 147.8 1109 1313 1433 82.9 89.6 95.2

MINERVA 148.5 zeff = 0.57: 1364 93.7

QPM 147.1 1077 1277 1395 84.9 91.5 97.0

MD-PATCHY 147.7 1107 1311 1431 83.0 89.7 95.5

Template 147.3 1112 1316 1436 82.8 89.5 95.2

3.2 Summary of the model parameters

We perform two kinds of cosmological clustering analyses. For the

first type, we use a fixed set of cosmological parameters (to which

we refer as our ‘template’ cosmology) to predict a template for

the two-dimensional power spectrum. Then, we distort the template

according to equation (45) in order to constrain the AP parame-

ters of equation (48). We refer to this method as ‘BAO+RSD’ fits

in the following. Secondly, we perform ‘cosmological full-shape

fits’, for which we explore the parameter space of a given cos-

mological model directly. This means that the predictions for the

power-spectrum wedges are directly computed for the parameters

being considered and then compared with the observed Fourier-

space wedges. Thus, the parameter spaces of the two fitting meth-

ods are not exactly the same. We explore these parameter spaces by

means of the Markov chain Monte Carlo (MCMC) technique.

For our BAO+RSD fits, the shape of the input power spectrum

is kept fixed. Variations of the cosmology are modelled by treating

the distortion parameters q⊥ and q‖ and the growth rate fσ 8 as free

parameters. We account for possible deviations from a pure Poisson

shot noise with a free, constant and additive shot-noise contribution

N to all power-spectrum wedges. Thus, the full parameter space X
for these fits consists of eight parameters,

ζ = (q⊥, q‖, f σ8, b1, b2, γ −
3 , avir, N )

T ∈ X . (49)

When performing fits on the real BOSS data or our mock catalogues,

we allow for different values of the parameters {b1, b2, γ
−
3 , avir, N}

for the NGC and SGC subsamples in the low-redshift bin, increasing

the total number of parameters to 13.

For the cosmological fits of Section 5, full model predictions must

be computed for each point in the parameter space being considered.

In this case, q⊥, q‖ and fσ 8 are not treated as free parameters and

are instead derived from the cosmological parameters being tested.

The MCMC are constructed using the 2015 July version

of COSMOMC
5 (Lewis & Bridle 2002) modified to compute the

gRPT+RSD model predictions as described in Section 3.1. Further

details can be found in our companion paper (Sánchez et al. 2017b).

Using the MCMC technique, the choice of the prior distribution

can have an influence on the accuracy of the obtained parameter

constraints. We choose flat priors on all parameters given by the

limits listed in Table 6. The chains are considered converged if

the Gelman–Rubin convergence criterion (Gelman & Rubin 1992)

satisfies R − 1 < 0.02.

3.3 Performance of the model

3.3.1 Model verification with full non-linear simulations

As a first test of the model described in Section 3.1, we used the

MINERVA N-body simulations described in Grieb et al. (2016). These

are a set of 100 large-volume N-body simulations run using GADGET.6

Each realization is a cubic box of side length 1500 h−1 Mpc with

10003 dark-matter (DM) particles. The initial conditions (at red-

shift zini = 63) were derived using second-order Lagrangian per-

turbation theory (2-LPT)7 from a linear CAMB (Lewis, Challinor

5 http://cosmologist.info/cosmomc/
6 The latest public release is GADGET-2 (Springel 2005), which is available at

http://www.gadgetcode.org/.
7 A 2-LPT code for generating initial conditions is available at

http://cosmo.nyu.edu/roman/2LPT/.

MNRAS 467, 2085–2112 (2017)

http://cosmologist.info/cosmomc/
http://www.gadgetcode.org/
http://cosmo.nyu.edu/roman/2LPT/


2096 J. N. Grieb et al.

Table 6. The parameter space X of our full-shape fits with the gRPT+RSD

model. BAO+RSD fits use the distortion, growth, bias, RSD and shot-noise

parameters. Fits for the cosmological interference use the bias, RSD and

shot-noise parameters, besides the parameters of cosmological model and

the nuisance parameters of the complementary cosmological probes. All

parameters have a flat prior that is uniform within the given limits and zero

outside.

Param. Function Unit Prior limits

Bias

b1 Linear bias – 0.5–9

b2 Second-order bias – (−4)–4

γ −
3 Non-local bias – (−3)–3

RSD

avir FoG kurtosis – 0.2–10

Shot noise

N Extra shot noisea h−3 Mpc3 (−1800)–1800

AP distortion

q⊥ k⊥ rescaling – 0.5–1.5

q‖ k‖ rescaling – 0.5–1.5

Growth

fσ 8 Growth-rate factor – 0–3

aIn the case of the low-redshift bin, N is varied within (−1000)–1000 as the

estimate for the Poisson shot noise is also smaller.

& Lasenby 2000) power spectrum whose cosmological parame-

ters were chosen to match the best-fitting results of the WMAP9 +
BOSS DR9 ξ (r) analysis (Sánchez et al. 2013, table I), which are

listed as ‘MINERVA’ in Table 2. At each redshift output z ∈ {2.0, 1.0,

0.57, 0.3, 0}, the DM particle positions and velocities were stored

along with the halo catalogues obtained with a friends-of-friend

algorithm, which were later post-processed with SUBFIND (Springel

et al. 2001) to eliminate spurious unbound objects. The halo mass

resolution is mmin = 2.67 × 1012 M⊙ h−1.

We used the snapshot at z = 0.57 to obtain galaxy catalogues

comparable to the CMASS sample by populating the haloes and

subhaloes with galaxies according to a halo occupation distribution

(HOD) model with suitable parameters, as described in Grieb et al.

(2016). The final synthetic galaxy catalogues have a mean galaxy

density of n̄ ≈ 4 × 10−4 h3 Mpc−3 and a linear bias of b ≈ 2.

The points in Fig. 6 show the mean MINERVA HOD power-spectrum

wedges, which we use as a test case to validate the model described

in Section 3.1 using a sample with similar clustering properties as

the real CMASS galaxies. We used these measurements in the range

kmin = 0.01 h Mpc−1 and kmax = 0.2 h Mpc−1 to fit for the nuisance

parameters of the model, while fixing all cosmological parameters

to their underlying values. For this test, we use the recipe for the

theoretical covariance matrix for clustering wedges in Fourier space

presented in Grieb et al. (2016). The error bars in Fig. 6 correspond

to the square root of the diagonal entries of the resulting covariance

matrix. The solid lines in Fig. 6 correspond to the model computed

using the resulting values for the nuisance parameters, showing

excellent agreement with the results from the MINERVA simulations

that extend even into the non-linear regime outside the range of

scales included in the fits.

In order to validate the wavenumber range for which the model

provides the tightest unbiased estimates of the distortion and growth

parameters, we use the gRPT+RSD model to perform BAO+RSD

fits to the mean power-spectrum wedges of the MINERVA HOD sample

using two and three μ-bins as a function of the upper limit of the

fitting range, kmax. The obtained results, shown in Fig. 7, are in

excellent agreement with the correct values of these parameters for

the case of two and three wedges, but we find a higher accuracy

Figure 6. Best-fitting gRPT+RSD model to the mean power-spectrum

wedges of the MINERVA HOD sample using kmin = 0.01 h Mpc−1 and

kmax = 0.2 h Mpc−1. The cosmology was fixed, i.e. q‖ = q⊥ = 1,

fσ 8(zeff) = 0.473 (cf. MINERVA in Table 2).

Figure 7. Marginalized results for q‖, q⊥ and fσ 8(zeff) from gRPT+RSD

model fits to the mean Fourier-space wedges of the MINERVA HOD samples

using different fitting ranges 0.01 h Mpc−1 ≤ ki ≤ kmax. The fits using three

wedges (red) have significantly smaller error bars than for two wedges.

for the latter case. The marginalized confidence intervals of the

distortion parameters are not exactly centred on the true values,

which we find is due to the correlation between these parameters and

the additional shot-noise contribution N. Although that parameter

is not necessary to fit the results of the MINERVA simulations, we

included it to mimic the analysis that we apply to the real BOSS

data, where it is required to account for the uncertainties in the shot-

noise level of our clustering measurements. However, the results

from MINERVA show that the potential systematic errors introduced

by this parameter are much smaller than the statistical error for a
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Table 7. The results for α‖, α⊥ and fσ 8(zeff) from gRPT+RSD model fits

to the three Fourier-space wedges that were measured from the MD-PATCHY

catalogues filtering out the information of Legendre multipoles ℓ > 4. In all

three redshift bins, the fitting range is 0.02 h Mpc−1 ≤ ki ≤ 0.2 h Mpc−1.

Here, we report the mean and standard deviation of the best-fitting param-

eters of the 2045 individual fits and compare them to the expected values.

The low-redshift bin fits used separate bias, RSD and shot-noise parameters

for NGS and SGC, whereas the other two bins used only one set of nuisance

parameters.

Bin Parameter Best-fitting value Expected

α⊥ 0.996 ± 0.023 0.999

Low α‖ 0.998 ± 0.037 1.000

fσ 8 0.462 ± 0.048 0.483

α⊥ 0.999 ± 0.020 0.999

Intermediate α‖ 1.014 ± 0.031 1.000

fσ 8 0.467 ± 0.039 0.483

α⊥ 0.004 ± 0.020 1.000

High α‖ 1.004 ± 0.028 1.001

fσ 8 0.479 ± 0.038 0.478

single MINERVA volume.8 Thus, we do not take it into account for

the RSD analyses in the following. Due to the higher constraining

power of the analyses with three wedges over using two wedges

only, from now on we present results obtained using P3w only,

restricting the fitting range to kmax = 0.2 h Mpc−1, as we do not

see improvements in the recovered mean and error of fσ 8 for larger

kmax. Measuring a number of wedges that is larger than three from a

real survey is impracticable with current methods, and thus we did

not include such cases into our analysis.

3.3.2 Model verification with synthetic catalogues

for the BOSS DR12 combined sample

The MD-PATCHY mocks described in Section 2.4 can be used to test

our modelling of non-linearities and RSD on a sample matching the

full redshift range and survey geometry of the BOSS combined sam-

ple. As described in Section 2.2, we measured the power-spectrum

wedges of each MD-PATCHY mock catalogue by filtering out the in-

formation of Legendre multipoles ℓ > 4 for the three redshift bins

defined in Table 1 taking into account the effect of the window

function of the survey as described in Section 2.5. For consistency

with the treatment of the real BOSS data, two different sets of bias,

RSD and shot-noise parameters are assumed for the low-redshift

bin to account for the two potentially different galaxy populations

(see Appendix B3). As described in Section 2.4.1, the obtained pa-

rameter uncertainties must be rescaled by the correction factor M of

equation (24) in order to account for the impact of sampling noise

on the precision matrix. The rescaling factor is given in Table 4 for

Nm = 2045.

The mean constraints on α‖, α⊥ and fσ 8(zeff) from the fits to

the 2045 individual MD-PATCHY measurements are given in Table 7.

For illustration, the 2D contours and 1D histograms of the best-

fitting parameters for the intermediate-redshift bin are shown in

Fig. 8. The mean and dispersion of the best-fitting values are in

good agreement with the expected values. The largest systematic

8 The volume of a single MINERVA realization, V = (1500 h−1 Mpc)3, is

roughly equivalent to the effective volume of the full BOSS combined

sample, cf. Table 1.

Figure 8. The best-fitting parameters for α‖, α⊥ and fσ 8(zeff) from

gRPT+RSD model fits to the three Fourier-space wedges, derived from

the power-spectrum multipoles Pℓ = 0, 2, 4(k), of the 2045 MD-PATCHY cata-

logues in the intermediate-redshift bin are indicated as dots in the 2D plots

in the panels below the diagonal. Their histograms are plotted in the diago-

nal panels in fainter colours. In all panels, the Gaussian approximations of

the parameter distributions are shown in darker colours. The mean of the

best-fitting parameters are indicated as black dashed lines in the histograms

and as a black filled circle in the 2D plots. The results for the low- and

high-redshift bin are similar but show smaller deviations from the correct

values (see Table 7).

deviations are found for fσ 8 in the low-redshift bin and for α‖ in

the intermediate bin, where they correspond to ≈50 per cent of the

statistical errors for one realization, but are significantly smaller in

all other cases.

In order to verify that our treatment of the window function

does not introduce any systematic bias into our analysis, we stud-

ied the scale-dependency of the results of the gRPT+RSD fits to

the Fourier-space wedges. By varying kmin, we exclude the regime

of lower wavenumbers from the fitting range where the window

function is more important. An incorrect treatment of the window

function effect can introduce a trend with kmin in the parameter

constraints. We do not find any dependency of the BAO+RSD re-

sults for the mean MD-PATCHY P3w measurements on kmin, indicating

that our window matrix formalism does not induce any systematic

bias into our analysis. We also tested for a scale-dependency of

the cosmological parameters due to inaccuracies of our clustering

model for the (approximative) non-linear evolution of the cluster-

ing obtained from the MD-PATCHY catalogues. We performed fits with

varying kmax and find consistent results, free of systematic trends

with kmax, even when smaller scales than our fiducial fitting range

are included in the analysis.

As described in Sánchez et al. (2017a), the constraints obtained

here from the individual MD-PATCHY mocks can be used to compute

the cross-covariance matrix between the results inferred from P3w

and those of the other analysis methods applied to the BOSS DR12

combined galaxy sample in our companion papers. This is a key

ingredient in the estimation of the final consensus results presented

in Alam et al. (2016).
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3.3.3 Fourier-space results on the challenge mocks

Within the BOSS collaboration, special attention was paid to per-

form stringent cross-checks of the different modelling and measure-

ment techniques used in the DR12 analysis of the combined sample,

especially for those approaches that are combined into the final con-

sensus constraints (Alam et al. 2016). Hence, the performance of

the various methodologies to extract cosmological information from

the full-shape approaches are compared in an RSD-fit ‘challenge’

in which the results obtained all contributing methods are discussed

and compared with each other in on large-volume synthetic cata-

logues to check for possible systematics and the consistency of the

results from the different analysis techniques. The results of this

comparison are described in detail in Tinker et al. (in preparation).

The first part of this comparison was based on the analysis of

seven different HOD galaxy samples constructed out of large-

volume N-body simulations. Apart from standard HOD parame-

ters, other non-standard cases, including velocity or assembly bias,

are considered. The simulations correspond to �CDM cosmologies

with slightly different density parameters. The Fourier-space results

of the gRPT+RSD model reach the same level of precision as the

corresponding configuration-space results; in general, the different

methods show excellent accuracy and consistency in the obtained

constraints on the challenge catalogues.

The second part of the model comparison was based on a set

of 84 synthetic catalogues mimicking the DR12 CMASS NGC

subsample (dubbed ‘cut-sky’ mocks). These mocks are designed

to test for systematic biases in the obtained parameter constraints

as they are all generated from N-body simulations assuming the

same cosmological parameters and HOD model. As the full survey

geometry is modelled, we measure the multipole-filtered wedges

for consistency with the rest of the analysis and the window matrix

prescription of Section 2.5 is used to take the selection function into

account in our fits. Fig. 9 shows the best-fitting distortion and growth

parameters from the N series fits using three Fourier-space wedges.

We obtain results that are in good agreement with those inferred

from MINERVA, but the mean α⊥ and α‖ results found in the light-

cone catalogues deviate a little more from the true values. These

deviations are significantly smaller than the statistical uncertainty

obtained from a single realization. The results obtained using two

wedges show a similar accuracy but are less precise.

4 BAO A N D R S D M E A S U R E M E N T S F RO M T H E

D R 1 2 FO U R I E R - S PAC E W E D G E S

In this section, we present the constraints obtained from the

BAO+RSD fits of our BOSS clustering measurements. For this

analysis, the three power-spectrum wedges of the DR12 com-

bined sample of each redshift bin are fitted separately9 using the

gRPT+RSD model described in Section 3.1. We assume a Planck

2015 input power spectrum, whose cosmological parameters are

listed as ‘Template’ in Table 2.

Using the definitions of the AP parameters in equation (48) and

the fiducial distances given in Table 5, our results can expressed

in terms of the combinations, DM(z)
(

rfid
d /rd

)

, H (z)
(

rd/r
fid
d

)

and

fσ 8(z). The green contours in Fig. 10 correspond to the 68 and

9 All results in this and the following section have been obtained by fitting the

power-spectrum wedges filtering out the information of Legendre multipoles

ℓ > 4. Unless stated otherwise, we use the fiducial wavenumber range of

0.02 h Mpc−1 ≤ k ≤ 0.2 h Mpc−1 and the reference covariance matrix

obtained from the MD-PATCHY mock catalogues (see Section 2.4).

Figure 9. Best-fitting q‖, q⊥ and fσ 8(zeff) parameters from gRPT+RSD

model fits to the 84 challenge N series measurement of three Fourier-space

wedges fitting wavenumbers in the range 0.02 h Mpc−1 ≤ ki ≤ 0.2 h Mpc−1.

The diagonal panels show the histogram of these results, with the mean

best-fitting parameters indicated as black dashed lines. The panels below

the diagonal show 2D plots with the 84 individual best-fitting parameters as

orange dots and the mean as a filled circle. A Gaussian fit to the marginalized

parameter distribution is plotted as red contours and histograms in all panels.

The results using two wedges is similarly accurate but less precise.

95 per cent confidence levels (CL) of the two-dimensional pos-

terior distributions of these parameters inferred from the BOSS

DR12 power-spectrum wedges for the low-, intermediate-, and

high-redshift bins (top, middle and lower panels, respectively). The

dotted lines in the same figure correspond to the Gaussian approxi-

mation of these constraints, which give a good description of the full

distributions. The blue dashed contours correspond to the �CDM

predictions from the Planck 2015 (Planck Collaboration XIII 2016)

TT+lowP measurements to which we refer simply as Planck, which

are in excellent agreement with our results. The mean values of these

parameters and their associated 68 per cent confidence intervals are

listed in Table 8. BAO distance measurements are often expressed

in terms of certain derived parameters: the ratio of the volume-

averaged distance and the sound horizon scale, DV(z)/rd and the

AP parameter FAP(z), where

DV(z) =
(

D2
M(z) cz H−1(z)

)1/3
, (50)

FAP(z) = DM(z) H (z) c−1. (51)

Thus, we give these quantities as well. Appendixes B1 and B2 show

various consistency tests of the results of our BAO+RSD fits, such

as a change in the number of wedges used, the covariance matrix or

the wavenumber ranges included in the fits. The results from these

tests show that our constraints are robust with respect to the details

of our analysis methodology.

The solid lines in Fig. 1 correspond to the model predictions for

the best-fitting parameters from BAO+RSD fits to each redshift

bin, which closely describe the clustering wedges measured from

the BOSS DR12 combined sample. The model predictions were

convolved with the window function as described in Section 2.5. In
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Figure 10. The regions of 68 and 95 per cent CL in the marginalized 2D posteriors of the ratio of the comoving transverse distance and the sound horizon,

DM(zeff ) [rfid
s (zd)/rs(zd)], the product of the Hubble parameter and the sound horizon, H (zeff ) [rs(zd)/rfid

s (zd)] (these combinations are normalized by the

sound horizon of the fiducial cosmology), and the growth parameter fσ 8(zeff) from BAO+RSD fits to the DR12 combined sample in the low- (upper panel),

intermediate- (middle panel), and high-redshift bin (lower panel). For these MCMC-estimated contours plotted in green, three power-spectrum wedges P3w

have been fitted in the wavenumber range 0.02 h Mpc−1 ≤ k ≤ 0.2 h Mpc−1 using the covariance from 2045 MD-PATCHY mocks. The low-redshift bin fits used

separate bias, RSD and shot-noise parameters for the NGC and SGC subsamples, whereas the results in the intermediate- and high-z bins were obtained using

only one set of nuisance parameters. For comparison, the theoretical predictions for the standard cosmological model (�CDM) from the Planck 2015 TT+lowP

(Planck Collaboration XIII 2016) observations are overplotted as blue confidence regions.

Table 8. The 68 per cent CL results of the BAO+RSD fits to

the DR12 combined-sample power-spectrum wedges P3w, in terms

of DM(z)(rr
dmf id/rd), H (z)(rd/r

fid
d ) (expressed in units of Mpc and

km s−1 Mpc−1, respectively), and the growth parameter fσ 8(z) for our three

redshift bins. We also give the ratio of the angle-averaged BAO distance and

fiducial sound horizon scale, DV(z)/rd, and the AP parameter FAP(z).

Parameter Low Intermediate High

DM(z)
(

rfid
d /rd

)

1525 ± 24 1990 ± 32 2281+42
−43

H (z)
(

rd/r
fid
d

)

81.2+2.2
−2.3 87.0+2.3

−2.4 94.9 ± 2.5

fσ 8(z) 0.498+0.044
−0.045 0.448 ± 0.038 0.409 ± 0.040

DV(z)/rd 10.05 ± 0.13 12.92 ± 0.18 14.60 ± 0.24

FAP(zeff) 0.424 ± 0.017 0.578 ± 0.018 0.722 ± 0.022

the low-redshift bin, we use two different sets of nuisance param-

eters for the bias and RSD model to account for the fact that the

NGC and SGC samples might contain two slightly different galaxy

populations at low redshifts (as discussed in Appendix B3). For the

intermediate- and high-redshift bins, the NGC–SGC difference in

the model prediction is the result of the different window matrices

only.

In Fig. 11 we compare our fσ 8 measurements in the three red-

shift bins defined in Table 1 with Planck �CDM predictions and

previous results on BOSS samples: the Sloan DR7 LRG sam-

ple (Oka et al. 2014, correlation function (CF) multipoles), the

configuration-space clustering wedges of the LOWZ and CMASS

samples (Sánchez et al. 2014, CF wedges), the most-recent anal-

ysis of the DR11 CMASS sample in configuration space (Alam

et al. 2015b, CF multipoles) and Fourier space (Beutler et al. 2014,

power spectrum (PS) multipoles), and the DR12 LOWZ and

CMASS samples (Gil-Marı́n et al. 2016a, PS multipoles). All

these results are consistent with each other. The LOWZ measure-

ment of the last reference is lower than our constraint from the

low-redshift bin at roughly 1σ . However, differences of this or-

der can be expected, as our low-redshift measurement corresponds

to a larger volume than that of the LOWZ sample. In the high-

redshift bin, we measure fσ 8 to be lower than the Planck �CDM
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Figure 11. The red symbols show the measurements of fσ 8(zeff) in the three

different redshift bins. The two outer redshift bins are shown as filled circles

to indicate that they are independent from each other. The intermediate

result has an open symbol in order to indicate the correlation with the other

two results due to the overlap in the redshift ranges. The Planck �CDM

predictions are shown as blue bands where the darker (lighter) shaded region

indicates the 1σ (2σ ) region. See text for the references to the previous

measurements on BOSS samples; the measurements using the CMASS

sample (zeff = 0.57) are separated by a small offset for better visibility.

prediction by roughly 1σ . This is consistent with the results of recent

measurements based on the CMASS sample (e.g. Beutler et al. 2014;

Sánchez et al. 2014).

The constraints derived here and the results of our companion

BAO-only and full-shape analyses of the BOSS DR12 combined

sample are summarized and compared to each other in Alam et al.

(2016), showing the consistency of the result from various fitting

methods. All BOSS DR12 results are combined into the final set of

BOSS consensus constraints in the same paper, using the method-

ology described in Sánchez et al. (2017a).

5 C O S M O L O G I C A L I M P L I C AT I O N S

O F T H E D R 1 2 FO U R I E R - S PAC E W E D G E S

In this section, we explore the cosmological implications of the

BOSS DR12 power-spectrum wedges by directly comparing the

galaxy-clustering measurements themselves with the predictions

obtained for a given model. We then compare the constraints that

result from combining our clustering measurements with various

other cosmological data sets. These data sets are described in Sec-

tion 5.1, which also contains a summary of the parameter spaces

we consider. Sections 5.2–5.7 describe our constraints on the pa-

rameters of the standard �CDM model as well as some of its most

common extensions.

5.1 Parameter spaces and additional data sets

A redshift survey such as BOSS probes the geometry of the Uni-

verse and the growth of structure in a limited redshift range. In order

to improve the obtained cosmological constraints, we combine the

information encoded in the full shape of our clustering measure-

ments with complementary cosmological probes, most importantly

CMB observations to determine the sound horizon scale at the drag

epoch. In this work, we use the temperature and low-ℓ polarization

measurements and derived implications (denoted simply as Planck;

Planck Collaboration XIII 2016) of the Planck 2015 release (Planck

Collaboration I 2016). We also include the information from SN,

Table 9. The parameters and priors of the cosmological standard

model and its extensions considered in this work. All parameters

have flat priors defined by the given limits. The parameters for

the extensions are set to a fiducial value for the standard �CDM

model.

Parameter (Unit) Prior limits Fiducial value

�CDM (flat, standard ν)

�b h2 0.005–0.1 –

�c h2 0.001–0.99 –

100 θMC 0.5–10 –

τ 0.01–0.8 –

ns 0.8–1.2 –

ln (1010 As) 2–4 –

Extensions of Sections 5.3–5.7

w, w0 (−3)–(−0.3) −1

wa (−2)–2 0

γ 0–3 0.55

�K (−0.3)–0.3 0
∑

mν ( eV) 0–2 0.06

Neff 0.05–10 3.046

which probe the cosmic expansion history at low redshifts via the

luminosity distance scale. We make use of the joint light-curve

analysis (JLA; Betoule et al. 2014) of the SN samples of SDSS-II

and the Supernova Legacy Survey. In order to avoid a complex sys-

tematic error budget and measurements that are highly correlated

with the ones described above, we abstain from including other

cosmological probes.

We start our analysis with the standard six-parameter �CDM

model. It assumes that the energy budget of the Universe contains

contributions from (pressureless) CDM, baryonic non-relativistic

matter, relativistic radiation and DE modelled as a cosmological

constant. The upper part of Table 9 lists the parameters of the

�CDM parameter space. In the MCMC code COSMOMC, the baryon

and CDM density are modelled by the physical density parameters

�b h2 and �c h2, respectively. The angular size of the sound hori-

zon at recombination is given by θMC. Finally, τ is the optical depth

to the last-scattering surface. The primordial power spectrum has

an amplitude (given by As) and a tilt given by ns. In this standard

model, the Universe is assumed to be flat (i.e., �K = 0) and the

equation of state (EOS) parameter of DE is fixed to a constant value

w = −1. The effective number of relativistic degrees of freedom

(DOF) is given by Neff = 3.046. We follow Planck Collaboration I

(2016) and assume also fixed contribution from massive neutrinos

of �νh2 = 0.000 64. This corresponds to a fixed sum over the neu-

trino masses of
∑

μν = 0.06 eV (corresponding to the minimal total

neutrino mass that is consistent agreement with neutrino oscillation

experiments; Otten & Weinheimer 2008). All cosmological obser-

vations are consistent with this standard paradigm (e.g. Anderson

et al. 2014b; Planck Collaboration XIII 2016).

In order to test non-standard cosmologies, we explore the most

important extensions to the �CDM model by varying also the ad-

ditional parameters listed in the second part of Table 9, with flat

priors in the given ranges. For all parameter spaces, the value of the

Hubble parameter h was restricted to the range 0.2 ≤ h ≤ 1.

In all cases, the cosmological parameter spaces were extended

by the nuisance parameters of the model described in Section 3.2.

The range of wavenumbers included in the fits was the same as

for the BAO+RSD fits to each individual redshift bin presented in

Section 4. Our clustering measurements on the intermediate-z bin

are strongly correlated with those of the two independent bins and

do not lead to a significant improvement in the obtained constraints.
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Figure 12. The marginalized 68 and 95 per cent CL in the �M–h plane for

the �CDM parameter space from the Planck 2015 TT+lowP (Planck Col-

laboration XIII 2016) observations (blue) and adding the DR12 combined

sample P3w (green). The Planck confidence contours as well as those of the

combined fits follow the �M h3 degeneracy (Percival et al. 2002) shown as

dotted grey line.

To avoid the complication of including the covariance between these

measurements, in this section we only use the information from the

wedges of the low- and high-z bins. While for the high-redshift bin

we assumed that the NGC and SGC subsamples can be described by

the same nuisance parameters, in the low-redshift bin we allowed

for different values of these parameters for the galaxies in these two

subsamples.

5.2 The �CDM parameter space

We first focus on the standard �CDM parameter space. The result-

ing constraints on �M and h from the combined Planck[+]BOSS

P3w fits (green) are shown in Fig. 12, compared with the con-

straints from Planck alone (blue). The corresponding marginal-

ized 68 per cent CL intervals of these parameters are listed in the

upper part of Table 10. The full shape of our BOSS clustering

measurements prefers slightly lower values for the matter density

parameter10 (�M = 0.312+0.008
−0.009) than the Planck data alone, while

the constraints on the Hubble parameter (h = 0.675+0.007
−0.006) are cen-

tred around a similar mean value. Adding the JLA SN data to the fits

does not improve the obtained constraints. The confidence contours

follow a degeneracy along �M h3 = const, indicated by a dotted

line in the plot. This degeneracy is given by equally good fits to

the locations and relative heights of the acoustic peaks (Percival

et al. 2002). In summary, we find excellent consistency between the

three different probes assuming a �CDM cosmology as could be

expected from the agreement between Planck and BOSS data that

was a result of the BAO+RSD fits described in Section 4.

5.3 The wCDM parameter space

The first relaxation of the assumptions of the standard �CDM model

is to abandon the idea that DE can be described by a cosmological

constant. The simplest case, the wCDM model, assumes a constant

DE EOS parameter,

pDE = w ρDE. (52)

10 Unless stated otherwise, all constraints given in this section correspond

to a CL of 68 per cent.

Table 10. The 68 per cent CL intervals of the most-relevant parameters

for fits using the cosmological standard model and its extensions. The fits

include at least the Planck 2015 TT+lowP data, which are successively

combined with the power-spectrum wedges P3w of the BOSS DR12 low-

and high-redshift bins and the JLA SN data. The constraints for curvature

extensions are listed in Table 11, those for neutrino extensions in Table 12.

Parameter Planck + BOSS P3w + JLA SN

�CDM (flat, standard ν)

�M 0.312+0.008
−0.009 0.311+0.009

−0.010

h 0.675+0.007
−0.006 0.676+0.007

−0.006

wCDM (linear EOS for DE)

�M 0.306+0.014
−0.015 0.307+0.011

−0.012

w −1.029+0.070
−0.054 −1.019+0.048

−0.039

w0waCDM (CPL parametrization for DE)

w0 −1.03 ± 0.24 −0.98 ± 0.11

wa −0.06+0.77
−0.62 −0.16+0.46

−0.36

�CDM + γ (modified growth)

�M 0.312+0.008
−0.009 0.311+0.009

−0.010

γ 0.52 ± 0.10 0.52 ± 0.10

wCDM + γ (linear EOS for DE, modified growth)

w −1.04+0.10
−0.07 −1.02+0.06

−0.05

γ 0.56+0.12
−0.14 0.54 ± 0.11

For w = −1, the �CDM model with a cosmological constant is

recovered.

As the EOS parameter w controls the late-time expansion of the

Universe, galaxy clustering and SN are ideal cosmological probes

to constrain DE, which is not well constrained by CMB data alone.

In this last case, w follows a degeneracy with �M and values signifi-

cantly lower than w = −1 are preferred, resulting in poor constraints

of w = −1.55+0.32
−0.30. As shown in the left-hand panel of Fig. 13, in-

cluding the power-spectrum wedges in the fits results in confidence

regions that are centred around the standard �CDM value of w =−1

(indicated by a dotted line in the figure), with w = −1.029+0.066
−0.062. In-

cluding also SN data, the late-time expansion is even better probed

so that w is measured to 5 per cent accuracy, w = −1.019+0.043
−0.045, in

good agreement with �CDM at 1σ .

5.4 The w0waCDM parameter space

Here, we explore the constraints on the time evolution of DE. We use

the Chevallier–Polarski–Linder (CPL) parametrization (Chevallier

& Polarski 2001; Linder 2003) of a time-dependent EOS for DE,

w(z) = w0 + wa (1 − a(z)) = w0 + wa

z

1 + z
, (53)

where w0 is the current value of w(z) and wa controls its time

evolution. This parametrization recovers �CDM for w0 = −1 and

wa = 0.

As in the case of a constant w, the constraints on the EOS pa-

rameters significantly improve when late-time expansion probes are

taken into account. The w0–wa parameter plane is practically un-

constrained by CMB data alone:a large region roughly below the

line wa = −3 (w0 + 1) is preferred. This plane becomes tightly

constrained by including the BOSS DR12 power-spectrum wedges,

yielding

w0 = −1.02+0.25
−0.26, wa = −0.06+0.70

−0.72. (54)
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Figure 13. Left-hand panel: the 68 and 95 per cent CL in the �M–w plane of the wCDM parameter space from the Planck 2015 (blue) fits, successively

adding the BOSS DR12 P3w (green) and JLA SN (orange) data. Right-hand panel: the same CL in the w0–wa plane of the w0waCDM parameter space from

the Planck (blue) fits, successively adding the BOSS P3w (green) and SN (orange) data.

As shown in the right-hand panel of Fig. 13, the constraints roughly

follow a linear degeneracy. This is due to the fact that the combina-

tion of Planck + BOSS DR12 has the most constraining power on

w(z) at a ‘pivot scale’ zp given by the effective mean redshift probed

by the data. For the combination of Planck and BOSS DR12, this

is at zp ≈ 0.5; including SN data as well, the pivot redshift moves

closer to zp ≈ 0.3, resulting in the tighter constraints in the w0–wa

parameter plane following a slightly different degeneracy. The re-

sulting constraints are closely centred on the �CDM values and the

error bars are cut down by half compared to the Planck + BOSS

case,

w0 = −0.98 ± 0.11, wa = −0.16 ± 0.42. (55)

Our final constraints on the EOS parameter of DE are consistent

with no evolution of w(z), with DE well described by a cosmological

constant at all redshifts.

5.5 Modified gravity

The growth-rate parameter f defined in equation (37) depends on

the gravitational potential and thus measurements of this quantity

via RSD can be used as a probe of the theory of gravity (Guzzo

et al. 2008). As described in Linder & Cahn (2007) and Gong

(2008), the growth rate has an approximate dependency on the

matter density parameter �M given by

f (z) = [�M(z)]γ , where γ ≃
3(1 − w)

5 − 6 w
, (56)

if the growth of structure is bound to Einstein’s GR. For the �CDM

case, the exponent is γ ≃ 0.55; otherwise, its value only mildly

depends on w.

In order to test for modifications of the fundamental relations of

GR, we treat the exponent γ in equation (56) as a free parameter in a

�CDM background universe (dubbed �CDM + γ parameter space

here). In the left-hand panel of Fig. 14, we plot the posterior distri-

butions of the growth index γ as constrained from the combination

of Planck and full-shape BOSS P3w observations (marginalized

over all other parameters). The blue solid line corresponds to the

combination of the two non-overlapping redshift bins, while the

red dashed, green dot–dashed and black dotted lines correspond to

the measurements of the Fourier-space wedges of each redshift bin

separately. We see a slight trend of the centroid of the γ distribution

from values smaller than the GR value, which is indicated by a hor-

izontal dotted line, for the fit of the low-redshift bin to values above

this value for the fit of the high-redshift bin. This shift is consistent

with the trend of the fσ 8(zeff) measurements compared to the Planck

�CDM predictions in Fig. 11. The final posterior distribution (we

obtain γ = 0.52 ± 0.10) is in excellent agreement with γ GR = 0.55.

As SN do not depend on the growth, their inclusion does not yield

tighter confidence regions.

This behaviour is different if we allow for w �= −1, as now

SN data help to constrain the EOS parameter via the late-time

expansion history. The resulting confidence contours in the w–γ

parameter plane are shown in the right-hand panel of Fig. 14. While

we obtain w = −1.04+0.08
−0.09 for the combination of Planck and BOSS

DR12 data, the EOS parameter is constrained to w = −1.02 ± 0.05

by the inclusion of SN data, similar to the one obtained for the

wCDM model. However, the exponent γ is only marginally better

constrained, with γ = 0.54 ± 0.11. The final constraints are in good

agreement with the standard �CDM + GR cosmological model,

whose parameter values are indicated by the dotted lines.

5.6 The curvature of the universe

In a non-flat �CDM universe, the curvature constant K describes a

spatial geometry with open (hyperbolic, K < 0) or closed (elliptical,

K > 0) hypersurfaces. The standard case is a flat geometry, K = 0.

CMB observations alone cannot discriminate between a flat and a

closed universe, as the density parameters �M and �K follow the

‘geometric degeneracy’ (Efstathiou & Bond 1999), because these

parameters can be varied simultaneously to keep the same angular

acoustic scale. Including late-time cosmological observations such

as our BOSS clustering measurements helps to break this degener-

acy leading to significantly tighter constraints. This is shown by the

68 and 95 per cent CL regions in the left-hand panel of Fig. 15. The

corresponding one-dimensional marginalized constraints are listed

in Table 11. The addition of the power-spectrum wedges results

in constraints on the matter density parameter that are of a similar

order than for standard �CDM fits, with �M = 0.312 ± 0.009.

The curvature constraints, �K = −0.001 ± 0.003, are closely cen-

tred around a flat universe. Adding SN data does not improve these

constraints at a significant level.

The geometric degeneracy receives an additional degree of free-

dom in the K-wCDM parameter space as the EOS parameter w

changes the relation between �M, �K and the angular scale of the

acoustic peaks. The �CDM case (w = −1 and �K = 0, indicated

by dotted lines) is outside the 95 per cent confidence region for
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Figure 14. Left-hand panel: the posterior distributions for the growth index γ in the �CDM + γ parameter space from the Planck 2015 and BOSS DR12

P3w observations in the two non-overlapping redshift bins (solid blue lines), and for the combination of Planck with the measurements in each individual

redshift bin (dashed red, dot–dashed green and dotted black lines for the low-, intermediate-, and high-redshift bin, respectively). The vertical dotted line

indicates γ GR = 0.55. Right-hand panel: the 68 and 95 per cent CL in the w–γ plane of the wCDM + γ parameter space from the Planck and the BOSS P3w

observations (green), and adding SN data (orange). The horizontal dotted line shows the value of the exponent γ depending on the EOS parameter w as given

by equation (56).

Figure 15. Left-hand panel: the 68 and 95 per cent CL in the �M–�K plane of the K-�CDM parameter space from the Planck 2015 observations (blue), and

adding BOSS DR12 P3w data (green). The horizontal dotted line indicates a flat universe, K = 0. Right-hand panel: the same CL in the w–�K plane of the

K-wCDM parameter space from the Planck observations (blue), and successively adding BOSS P3w (green) and SN (orange) data. The vertical dotted line

shows the value of the EOS parameter w = −1 for a cosmological constant (as in the �CDM model).

Table 11. The regions of 68 per cent CL of the most-relevant model pa-

rameters for fits using curvature extensions of the cosmological standard

model. The fits include at least the Planck 2015 TT+lowP data, which are

successively combined with the power-spectrum wedges P3w of the BOSS

DR12 low- and high-redshift bins and the JLA SN data.

Parameter Planck + BOSS P3w + JLA SN

K-�CDM (curvature, standard ν)

�M 0.312 ± 0.009 0.311 ± 0.009

�K −0.001 ± 0.003 −0.001 ± 0.003

K-wCDM (curvature, linear EOS for DE)

�M 0.304+0.015
−0.016 0.308 ± 0.011

�K −0.002 ± 0.004 −0.001+0.004
−0.003

w −1.052+0.088
−0.071 −1.027+0.052

−0.045

the CMB-only fits. Including our P3w restricts the allowed range of

values of the matter density parameter to �M = 0.304+0.015
−0.016, leaving

a residual degeneracy in the w–�K parameter plane. The statistical

error on the EOS parameter of DE (≈8 per cent) is slightly larger

than for wCDM fits (≈6.5 per cent). Additionally, including SN

data places a tighter constraint on w by probing the late-time ex-

pansion history, resulting in �K = −0.001+0.004
−0.003 and w = −1.027

± 0.049, in close agreement with the standard �CDM model.

5.7 Parameter spaces with non-standard massive and sterile

neutrino species

In this section, we extend the �CDM parameter space by treat-

ing
∑

mν as a free parameter. The one-dimensional marginalized

constraints obtained in this case are listed in Table 12. The blue

contours in the upper left-hand panel of Fig. 16 corresponds to the

constraints in the �M–
∑

mν parameter plane obtained using CMB

data from Planck 2015 alone. These constraints follow a degeneracy

of the matter density parameter �M and the sum of neutrino masses
∑

mν that is elongated along a line given by a constant value of the

redshift of matter–radiation equality zeq, which is well constrained

by the ratio of the heights of the first and third CMB acoustic peaks

(Komatsu et al. 2009). Marginalized over all other parameters, we

obtain11
∑

mν < 0.644 eV. Adding the BOSS P3w data (green

11 The upper limits in this section are given for 95 per cent CL.
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Table 12. The regions of 68 per cent CL of the most-relevant model param-

eters for fits using neutrino extensions of the cosmological standard model.

Consistent with the text, the given range corresponds to 95 per cent CL

in the case of upper limits. In the standard �CDM model, massive neutri-

nos with
∑

mν = 0.06 eV are included; the effective number of relativistic

DOF corresponding to the radiation and neutrino background is given by

Neff = 3.046. The fits include at least the Planck 2015 TT+lowP data,

which are successively combined with the power-spectrum wedges P3w of

the BOSS DR12 low- and high-redshift bins and the JLA SN data.

Parameter Planck + BOSS P3w + JLA SN

�CDM + non-minimal ν (free
∑

mν )

�M 0.32+0.009
−0.010 0.32+0.009

−0.010
∑

mν <0.275 <0.260

Neff-�CDM (free (no. of relativistic DOF))

�M 0.311+0.010
−0.011 0.310+0.010

−0.011

Neff 3.05+0.020
−0.024 3.08+0.021

−0.024

Neff-�CDM + non-minimal ν (free
∑

mν and (no. of rel. DOF))

�M 0.314+0.010
−0.012 0.312+0.010

−0.011
∑

mν <0.380 <0.357

Neff 3.18+0.25
−0.29 3.19+0.24

−0.29

wCDM + non-minimal ν (linear EOS for DE, free
∑

mν )

�M 0.302 ± 0.016 0.310 ± 0.012
∑

mν 0.28+0.17
−0.20 <0.416

w −1.14+0.12
−0.10 −1.06+0.07

−0.06

contours) tightens the confidence limits on �M. The sum of neu-

trino masses is constrained to an upper limit of
∑

mν < 0.275 eV.

Only minor improvement is found by including SN data (orange

contours), yielding
∑

mν < 0.260 eV.

The effective number of relativistic DOF in the neutrino sector,

Neff, can also be constrained by CMB and LSS observations. Again,

the constraints in the �M–Neff parameter plane follow a degeneracy

defined by tight constraints on the matter–radiation equality. Just as

for
∑

mν , the correlation of the parameter is broken by an indirect

measurement of �M from the BOSS DR12 analysis. The constraints

on the �M–Neff parameter plane are shown in the upper right-hand

panel of Fig. 16. Marginalized over all other parameters, we obtain

Neff = 3.05+0.020
−0.024, which corresponds to a reduction of the statisti-

cal error by a factor of 1.5 compared to Neff = 3.12 ± 0.32 from

CMB data alone. We do not find any improvement in the marginal-

ized constraints for the �M–Neff parameter plane from adding the

SN data.

The same scenario as described before also applies to the exten-

sion of the �CDM parameter space by allowing for simultaneous

variations of Neff and
∑

mν : degeneracies between Neff,
∑

mν and

�M along lines of constant zeq are broken by better constraints on

�M from LSS observations. The 68 and 95 per cent CL contours are

shown for the Neff–
∑

mν parameter plane in the lower panel of the

left-hand side in Fig. 16. As there is a residual degeneracy between

Neff and
∑

mν , the final constraints (Planck + BOSS P3w + SN)

are slightly larger than when these parameters are varied separately,
∑

mν < 0.357 eV and Neff = 3.19±+0.24
−0.29.

For the last parameter space discussed here, a wCDM cosmol-

ogy with a sum of neutrino masses, including SN data significantly

improves the constraints. As shown in the lower right-hand panel

of Fig. 16, the
∑

mν–w parameter plane is hardly constrained by

CMB data alone. The information in the DR12 power-spectrum

wedges can constrain the late-time expansion and thus w, but the

remaining freedom along a degeneracy of �M and w also leaves

limits on
∑

mν that are roughly twice as large as those obtained on

the �CDM case. This results in a 1σ signal for the sum of the neu-

trino masses,
∑

mν = 0.28+0.17
−0.20 eV, and also the EOS parameter

of DE is constrained to an interval that does not contain the �CDM

value at 68 per cent CL, w = −1.14+0.12
−0.10. The addition of further

information from the JLA SN data breaks the remaining freedom

and helps to tighten the constraints on
∑

mν and w. In this case, we

obtain
∑

mν < 0.416 eV and w = −1.06+0.11
−0.12, in perfect agreement

with a cosmological constant and without a signal of a lower bound

of the sum of neutrino masses. The statistical errors obtained in this

case correspond to a ≈50 per cent increase with respect to the errors

found for each parameter individually in the �CDM and wCDM

cases.

6 C O N C L U S I O N S

In this work, we performed a cosmological analysis of the full

shape of anisotropic clustering measurements in Fourier space, of

the final galaxy samples from BOSS, the DR12 combined sample

(Reid et al. 2016), a galaxy catalogue that is unprecedented in its

volume. This information can be used to place tight constraints on

the expansion history of the Universe and the growth rate of cosmic

structures.

We extended the concept of clustering wedges (Kazin et al. 2012)

to Fourier space by defining an estimator for this quantity analo-

gous to the Yamamoto–Blake estimator for the power-spectrum

multipoles (Yamamoto et al. 2006; Blake et al. 2011). We revised

the definitions of the shot noise and optimal-variance weights of

the power-spectrum estimator to fully account for the observational

systematics of BOSS. However, in order to make use of FFT-based

estimators (Bianchi et al. 2015; Scoccimarro 2015), we approxi-

mate the power-spectrum wedges of the BOSS sample by filtering

out the information of Legendre multipoles ℓ > 4. We obtain the

estimate for the covariance matrices associated with our clustering

measurements from the MD-PATCHY (Kitaura et al. 2016) and QPM

mock catalogues, which were specifically designed to mimic the

clustering and observational systematics of the BOSS combined

sample.

Our modelling of the anisotropic power spectrum relies on novel

approaches to describe non-linearities, galaxy bias and RSD. The

full model was validated using synthetic galaxy catalogues obtained

from a set of 100 full N-body simulations using the theoretical

recipe of the covariance matrix of the power-spectrum wedges of

Grieb et al. (2016). Further model performance tests were conducted

as part of the BOSS RSD ‘challenge’ and using the MD-PATCHY

mocks that mimic the entire combined sample. These tests show

that any systematic biases in the distance and growth measurements

introduced by our analysis method are smaller than the statistical

errors obtained from the DR12 sample and can be neglected.

The BAO distance and the growth rate measurements inferred

from our BAO+RSD fits of the Fourier space wedges are in excel-

lent agreement with the configuration-space results of Sánchez et al.

(2017b), which are based on the same gRPT+RSD model, and are

consistent with previous measurements on the BOSS LOWZ and

CMASS samples. However, thanks to the optimization of the anal-

ysis and the improved modelling, our constraints are significantly

more precise than the results obtained from previous analyses. The

BAO and RSD measurements inferred from BOSS are in good

agreement with the �CDM predictions from the Planck data at the

1σ level. The results presented here and those of all companion pa-

pers in the series analysing the BOSS DR12 combined sample are

combined into the final consensus constraints in Alam et al. (2016),
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Figure 16. The 68 and 95 per cent CL in the most relevant parameter planes of extensions to the �CDM parameter space including massive and sterile

neutrinos. Upper left-hand panel: the �M–
∑

mν plane of the �CDM parameter space extend by a non-minimal sum of neutrino masses showing the confidence

regions from the Planck 2015 observations (blue), and successively adding BOSS DR12 P3w (green) and JLA SN (orange) data. The horizontal dotted line

indicates the minimal sum of neutrino masses,
∑

mν = 0.06 eV. Upper right-hand panel: the �M–Neff plane of the Neff-�CDM parameter space (allowing for

variations in the effective number of relativistic DOF) with the confidence regions from the same data sets as for the upper left-hand panel. The vertical dotted

line shows the value of Neff for the standard model, Neff = 3.046. Lower left-hand panel: the
∑

mν–Neff plane of the Neff-�CDM parameter space extended by

a non-minimal sum of neutrino masses, showing the confidence regions from the same data sets as for the upper left-hand panel. The vertical and horizontal

dotted lines indicate the cuts through this parameter plane that correspond to the conventional �CDM case. Lower right-hand panel: the
∑

mν–w plane of the

parameter space of wCDM with a varying sum of neutrino masses with the confidence regions from the same data sets as for the upper left-hand panel. The

vertical and horizontal dotted lines correspond to the standard �CDM model.

which are computed using the methodology described in Sánchez

et al. (2017a).

We also explored the cosmological implications of our cluster-

ing measurements by directly comparing them with the predic-

tions obtained for different cosmological models. We combined

the information in the full shape of the clustering wedges with

CMB data from the Planck satellite and the JLA SN sample to

infer constraints on the parameters of the standard �CDM cos-

mological model and a number of its most important extensions

such as modified DE models, non-flat universes, neutrino masses

and possible deviations from the predictions of GR. Assuming a

�CDM cosmology, the combined data sets constrain the matter

density parameter to �M = 0.311+0.009
−0.010 and the Hubble constant to

H0 = 67.6+0.7
−0.6 km s−1 Mpc−1. These values are in good agreement

with the results from the Planck 2013 + DR11 BAO + SN con-

straints found in Anderson et al. (2014b). Relaxing the assumption

of a cosmological constant and allowing for a constant EOS with

w �= −1, we find w = 1.019+0.048
−0.039. In all tested DE models, the

�CDM case is always found to be very well within the 1σ confi-

dence intervals. The most extreme case are the constraints using a

wCDM model and a free
∑

mν , in which case we find w = −1 close

to the edge of the 1σ interval. Allowing for a modification in the

growth rate by varying the exponent γ in f = [�M(z)]γ , we measure

γ = 0.52 ± 0.10 in perfect agreement with GR (γ GR = 0.55) and

with an uncertainty reduced by a factor of 1.5 compared to the pre-

vious results of Sánchez et al. (2014). The curvature parameter �K

is found to be completely consistent with zero in the tested cases.

Using the Planck + BOSS measurements for a K-�CDM model,

the total density of the Universe today is only allowed to deviate

less than 0.3 per cent from the critical density at 68 per cent CL.

The neutrino mass is found to be
∑

mν < 0.260 eV (95 per cent

CL), which is consistent with other recent cosmological analyses

such as weak lensing based on CFHTLenS (Kitching et al. 2016,
∑

mν < 0.28 eV at 68 per cent CL). We conclude that �CDM is

the preferred cosmological model among the variations explored

in this work and the standard paradigm has thus been further

consolidated.

Our analysis methodology can easily be applied to the data from

other galaxy samples. In the near future, surveys such as the Hobby

Eberly Telescope Dark Energy Experiment (Hill et al. 2008), the

Dark Energy Spectroscopic Instrument (Levi et al. 2013), the Subaru

Prime Focus Spectrograph (Ellis et al. 2014) and the ESA space

mission Euclid (Laureijs et al. 2011) will provide even more detailed

views of the LSS of the Universe, helping to improve our knowledge

of the basic cosmological parameters and to further test for possible

deviations from the standard �CDM model.

MNRAS 467, 2085–2112 (2017)



2106 J. N. Grieb et al.

AC K N OW L E D G E M E N T S

We acknowledge useful discussions with Chi-Ting Chiang, Daniel

Farrow, Eiichiro Komatsu, Martha Lippich, Christian Wagner and

Philipp Wullstein. JNG, AGS, SS-A and FM acknowledge support

from the Transregional Collaborative Research Centre TR33 ‘The

Dark Universe’ of the German Research Foundation (DFG). CDV

acknowledges financial support from the Spanish Ministry of Econ-

omy and Competitiveness (MINECO) under the 2011 and 2015

Severo Ochoa Programs SEV-2011-0187 and SEV-2015-0548, and

grants AYA2013-46886 and AYA2014-58308. C-HC acknowledges

support from the Spanish MICINN’s Consolider-Ingenio 2010 Pro-

gramme under grant MultiDark CSD2009-00064 and AYA2010-

21231-C02-01 grant. C-HC was also supported by the Comunidad

de Madrid under grant HEPHACOS S2009/ESP-1473 and as a

MultiDark fellow. SR-T is grateful for support from the Campus de

Excelencia Internacional UAM/CSIC. MV-M is partially supported

by Programa de Apoyo a Proyectos de Investigación e Innovación

Tecnológica (PAPITT) No IA102516. The analysis has been per-

formed on the computing cluster for the Euclid project and the

‘Hydra’ cluster at the Max Planck Computing and Data Facility

(MPCDF).

Funding for SDSS-III has been provided by the Alfred P. Sloan

Foundation, the Participating Institutions, the National Science

Foundation and the US Department of Energy Office of Science.

The SDSS-III web site is http://www.sdss3.org/.

SDSS-III is managed by the Astrophysical Research Consor-

tium for the Participating Institutions of the SDSS-III Collabora-

tion including the University of Arizona, the Brazilian Participation

Group, Brookhaven National Laboratory, Carnegie Mellon Uni-

versity, University of Florida, the French Participation Group, the

German Participation Group, Harvard University, the Instituto de

Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Par-

ticipation Group, Johns Hopkins University, Lawrence Berkeley

National Laboratory, Max Planck Institute for Astrophysics, Max

Planck Institute for Extraterrestrial Physics, New Mexico State Uni-

versity, New York University, Ohio State University, Pennsylvania

State University, University of Portsmouth, Princeton University,

the Spanish Participation Group, University of Tokyo, University

of Utah, Vanderbilt University, University of Virginia, University

of Washington, and Yale University.

This work is based on observations obtained with Planck

(http://www.esa.int/Planck), an ESA science mission with instru-

ments and contributions directly funded by ESA Member States,

NASA and Canada.

R E F E R E N C E S

Alam S. et al., 2015a, ApJS, 219, 12

Alam S., Ho S., Vargas-Magaña M., Schneider D. P., 2015b, MNRAS, 453,

1754

Alam S. et al., 2016, MNRAS, preprint (arXiv:1607.03155)

Alcock C., Paczynski B., 1979, Nature, 281, 358

Anderson L. et al., 2012, MNRAS, 427, 3435

Anderson L. et al., 2014a, MNRAS, 439, 83

Anderson L. et al., 2014b, MNRAS, 441, 24

Angulo R., Baugh C. M., Frenk C. S., Lacey C. G., 2008, MNRAS, 383,

755

Baldauf T., Seljak U., Smith R. E., Hamaus N., Desjacques V., 2013, Phys.

Rev. D, 88, 083507

Ballinger W. E., Peacock J. A., Heavens A. F., 1996, MNRAS, 282, 877

Bassett B. A., Hlozek R., 2010, Dark Energy: Observational and Theoretical

Approaches. Cambridge Univ. Press, Cambridge

Bernardeau F., Crocce M., Scoccimarro R., 2008, Phys. Rev. D, 78, 103521

Betoule M. et al., 2014, A&A, 568, A22

Beutler F. et al., 2014, MNRAS, 443, 1065

Beutler F. et al., 2017a, MNRAS, 466, 2242

Beutler F. et al., 2017b, MNRAS, 464, 3409

Bianchi D., Gil-Marı́n H., Ruggeri R., Percival W. J., 2015, MNRAS, 453,

L11

Blake C. et al., 2011, MNRAS, 415, 2876

Bolton A. S. et al., 2012, AJ, 144, 144

Casas-Miranda R., Mo H. J., Sheth R. K., Boerner G., 2002, MNRAS, 333,

730

Chan K. C., Scoccimarro R., Sheth R. K., 2012, Phys. Rev. D, 85, 083509

Chevallier M., Polarski D., 2001, Int. J. Mod. Phys. D, 10, 213

Chuang C.-H. et al., 2016, MNRAS, 461, 3781

Cole S. et al., 2005, MNRAS, 362, 505

Crocce M., Scoccimarro R., 2006, Phys. Rev. D, 73, 063519

Crocce M., Scoccimarro R., Bernardeau F., 2012, MNRAS, 427, 2537

Cuesta A. J. et al., 2016, MNRAS, 457, 1770

Davis M., Peebles P. J. E., 1983, ApJ, 267, 465

Dawson K. S. et al., 2013, AJ, 145, 10

Dawson K. S. et al., 2016, AJ, 151, 44

Dodelson S., Schneider M. D., 2013, Phys. Rev. D, 88, 063537

Doi M. et al., 2010, AJ, 139, 1628

Efstathiou G., Bond J. R., 1999, MNRAS, 304, 75

Eisenstein D. J., White M. J., 2004, Phys. Rev. D, 70, 103523

Eisenstein D. J. et al., 2005, ApJ, 633, 560

Eisenstein D. J., Seo H.-J., Sirko E., Spergel D., 2007, ApJ, 664, 675

Eisenstein D. J. et al., 2011, AJ, 142, 72

Ellis R. et al., 2014, PASJ, 66, R1

Feldman H. A., Kaiser N., Peacock J. A., 1994, ApJ, 426, 23

Font-Ribera A. et al., 2014, J. Cosmol. Astropart. Phys., 5, 027

Fukugita M., Ichikawa T., Gunn J. E., Doi M., Shimasaku K., Schneider

D. P., 1996, AJ, 111, 1748

Gelman A., Rubin D. B., 1992, Stat. Sci., 7, 457

Gil-Marı́n H., Noreña J., Verde L., Percival W. J., Wagner C., Manera M.,

Schneider D. P., 2015, MNRAS, 451, 5058

Gil-Marı́n H. et al., 2016a, MNRAS, 460, 4188

Gil-Marı́n H. et al., 2016b, MNRAS, 460, 4210

Gong Y., 2008, Phys. Rev. D, 78, 123010

Grieb J. N., Sánchez A. G., Salazar-Albornoz S., Dalla Vecchia C., 2016,

MNRAS, 457, 1577

Gunn J. E. et al., 1998, AJ, 116, 3040

Gunn J. E. et al., 2006, AJ, 131, 2332

Guzzo L. et al., 2008, Nature, 451, 541

Hamaus N., Seljak U., Desjacques V., Smith R. E., Baldauf T., 2010, Phys.

Rev. D, 82, 043515

Hartlap J., Simon P., Schneider P., 2007, A&A, 464, 399

Hill G. J. et al., 2008, in Kodama T., Yamada T., Aoki K., eds, ASP Conf.

Ser. Vol. 399, Panoramic Views of Galaxy Formation and Evolution.

Astron. Soc. Pac., San Francisco, p. 115

Hu W., Haiman Z., 2003, Phys. Rev. D, 68, 063004

Jing Y. P., 2005, ApJ, 620, 559

Kaiser N., 1987, MNRAS, 227, 1

Kazin E. A., Sánchez A. G., Blanton M. R., 2012, MNRAS, 419, 3223

Kazin E. A. et al., 2013, MNRAS, 435, 64

Kitaura F.-S., Hess S., 2013, MNRAS, 435, 78

Kitaura F.-S., Yepes G., Prada F., 2014, MNRAS, 439, 21

Kitaura F.-S. et al., 2016, MNRAS, 456, 4156

Kitching T. D., Verde L., Heavens A. F., Jimenez R., 2016, MNRAS, 459,

971

Klypin A., Yepes G., Gottlober S., Prada F., Hess S., 2016, MNRAS, 457,

4340

Komatsu E. et al., 2009, ApJS, 180, 330

Laureijs R. et al., 2011, preprint (arXiv:1110.3193)

Levi M. et al., 2013, preprint (arXiv:1308.0847)

Lewis A., Bridle S., 2002, Phys. Rev. D, 66, 103511

Lewis A., Challinor A., Lasenby A., 2000, ApJ, 538, 473

Linder E. V., 2003, Phys. Rev. Lett., 90, 091301

Linder E. V., Cahn R. N., 2007, Astropart. Phys., 28, 481

MNRAS 467, 2085–2112 (2017)

http://www.sdss3.org/
http://www.esa.int/Planck
http://arxiv.org/abs/1607.03155
http://arxiv.org/abs/1110.3193
http://arxiv.org/abs/1308.0847


BOSS DR12 Fourier-space wedges 2107

Maddox S. J., Efstathiou G., Sutherland W. J., Loveday J., 1990, MNRAS,

242, 43 plbibsc-p

Manera M., Gaztanaga E., 2011, MNRAS, 415, 383

Manera M. et al., 2012, MNRAS, 428, 1036

Maraston C. et al., 2013, MNRAS, 435, 2764

Matsubara T., 2011, Phys. Rev. D, 83, 083518

Montesano F., Sanchez A. G., Phleps S., 2010, MNRAS, 408, 2397

Nishimichi T., Taruya A., 2011, Phys. Rev. D, 84, 043526

Nuza S. E. et al., 2013, MNRAS, 432, 743

Oka A., Saito S., Nishimichi T., Taruya A., Yamamoto K., 2014, MNRAS,

439, 2515

Otten E. W., Weinheimer C., 2008, Rep. Prog. Phys., 71, 086201

Padmanabhan N., White M. J., 2008, Phys. Rev. D, 77, 123540

Percival W. J., White M., 2009, MNRAS, 393, 297

Percival W. J. et al., 2002, MNRAS, 337, 1068

Percival W. J. et al., 2014, MNRAS, 439, 2531

Planck Collaboration I, 2016, A&A, 594, A1

Planck Collaboration XIII, 2016, A&A, 594, A13

Reid B. A., Seo H.-J., Leauthaud A., Tinker J. L., White M., 2014, MNRAS,

444, 476

Reid B. A. et al., 2016, MNRAS, 455, 1553

Rodrı́guez-Torres S. A. et al., 2016, MNRAS, 460, 1173

Ross A. J. et al., 2012, MNRAS, 424, 564

Ross A. J. et al., 2013, MNRAS, 428, 1116

Ross A. J. et al., 2017, MNRAS, 464, 1168

Salazar-Albornoz S. et al., 2016, MNRAS, preprint (arXiv:1607.03144)

Samushia L. et al., 2014, MNRAS, 439, 3504

Samushia L., Branchini E., Percival W., 2015, MNRAS, 452, 3704

Sánchez A. G., Baugh C. M., Angulo R., 2008, MNRAS, 390, 1470

Sánchez A. G. et al., 2013, MNRAS, 433, 1202

Sánchez A. G. et al., 2014, MNRAS, 440, 2692

Sánchez A. G. et al., 2017a, MNRAS, 464, 1493

Sánchez A. G. et al., 2017b, MNRAS, 464, 1640

Satpathy S. et al., 2016, MNRAS, preprint (arXiv:1607.03148)

Schlafly E. F., Finkbeiner D. P., 2011, ApJ, 737, 103

Scoccimarro R., 2004, Phys. Rev. D, 70, 083007

Scoccimarro R., 2015, Phys. Rev. D, 92, 083532

Scoccimarro R., Couchman H. M. P., Frieman J. A., 1999, ApJ, 517, 531

Sefusatti E., Crocce M., Scoccimarro R., Couchman H., 2016, MNRAS,

460, 3624

Seljak U., Hamaus N., Desjacques V., 2009, Phys. Rev. Lett., 103, 091303

Seo H.-J., Eisenstein D. J., 2005, ApJ, 633, 575

Shoji M., Jeong D., Komatsu E., 2009, ApJ, 693, 1404

Smee S. et al., 2013, AJ, 146, 32

Smith J. A. et al., 2002, AJ, 123, 2121

Springel V., 2005, MNRAS, 364, 1105

Springel V., White S. D., Tormen G., Kauffmann G., 2001, MNRAS, 328,

726

Taruya A., Nishimichi T., Saito S., 2010, Phys. Rev. D, 82, 063522

Taylor A., Joachimi B., Kitching T., 2013, MNRAS, 432, 1928

Tegmark M. et al., 2004, ApJ, 606, 702

Vargas-Magaña M. et al., 2016, MNRAS, preprint (arXiv:1610.03506)

Wagner C., Muller V., Steinmetz M., 2008, A&A, 487, 63

White M., Tinker J. L., McBride C. K., 2014, MNRAS, 437, 2594

Wilson M. J., Peacock J. A., Taylor A. N., de la Torre S., 2017, MNRAS,

464, 3121

Yamamoto K., Nakamichi M., Kamino A., Bassett B. A., Nishioka H., 2006,

PASJ, 58, 93

Yoo J., Seljak U., 2015, MNRAS, 447, 1789

Zel’dovich Y. B., 1970, A&A, 5, 84

Zhao C., Kitaura F.-S., Chuang C.-H., Prada F., Yepes G., Tao C., 2015,

MNRAS, 451, 4266

APPEN D IX A : POW ER-SPECTRU M

E STIMATION

In this section, we discuss the estimation of the anisotropic power

spectrum from the galaxy samples observed by BOSS, taking into

account the various weights that correct for the observational sys-

tematic effects.

A1 Survey selection function and completeness

The FKP estimator (Feldman et al. 1994) for the power spectrum

relies on the assumption that the expected number density, nexp(x),

is related to a constant underlying homogeneous number density,

n̄ = const, by the survey selection function, �(x),

nexp(x) = �(x) n̄. (A1)

The BOSS survey selection is assumed to be separable in an angular

part, described by the sector completeness C (for the definition, see

Reid et al. 2016), and a radial part, given by the (radial) selection

function n(z),

nexp(x) = C(α, δ) n(z). (A2)

The weighted galaxy overdensity field is given by (Feldman

et al. 1994)

F (x) = wFKP(x) A−1/2
[

ng(x) − αr nr(x)
]

, (A3)

where ng(r) is the number density of galaxies and nr(x) is the

number density of the set of random points (randoms) that describe

the selection function. The randoms sample the survey volume α−1
r

times more densely than the galaxies, so that statistically 〈nr(x)〉 =
αr 〈nexp(x)〉. The galaxy-to-randoms ratio αr is defined by equa-

tion (8) in a way that ensures that the FKP density contrast F (x)

has 〈F (x)〉 = 0 for the spatial average over the whole survey. Note

that Beutler et al. (2014) and other works omit the FKP weight wFKP

in αr, which does not change the result.

The power spectrum is estimated from the Fourier transform

of F (x). This quantity is extended to clustering wedges in equa-

tion (4). The normalization constant A is derived from the constraint

that the measured power spectrum P (x) = 〈|F (x)|2〉 − S, where

S is the shot-noise term discussed in Appendix A2, matches the

usual power-spectrum definition in the case where n̄ = const and

consequently wFKP = const (i.e. no effect from the survey geome-

try). This gives the following integral over the survey volume Vs,

A =
∫

Vs

n2
exp(x) w2

FKP(x) d3x , (A4)

which can be expressed as a sum over the random catalogue using

〈nr〉 ≈ 〈nexp〉/αr and
∫

Vs
d3r nr(x) f (x) →

∑Nrnd

j f (xi), which is

valid for any smooth f(x). This transformation yields the relation

already given in equation (9).

A2 Shot-noise estimate

As the galaxy, ng(x), and random fields, nr(x), correspond to Pois-

son point processes, the power-spectrum estimate is affected by shot

noise. The shot-noise contribution can be estimated using (Feldman

et al. 1994)

S =
1

A

∫

Vs

nexp(x) w2
FKP(x) (1 + αr) d3x . (A5)

As a sample with the characteristics of a BOSS LSS sample does

not need to have pure Poisson noise, a modification of this estimate

is required to take into account the presence of systematic weights

and the exclusion effect from fibre collisions (cf. Section 2.1). The

modified shot noise is calculated using the phenomenological treat-

ment described in appendix A of Gil-Marı́n et al. (2015): if all

galaxies that are combined to a fibre collision group were actually
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at the same redshift (i.e. all fibre collision pairs happen to be ‘true

pairs’) the shot noise is given by

Stp =
1

A

∫

Vs

nexp(x) w2
FKP(x)

(

wsys(x) + αr

)

d3x . (A6)

This is the relation used in Beutler et al. (2014). If, however, fibre

collision pairs are only angularly close, but separated in redshift

(i.e. ‘false pairs’), we find

Sfp =
1

A

∫

Vs

nexp(x) w2
FKP(x) (wtot(x) + αr) d3x . (A7)

As we expect to have a mixture of true and false pairs in reality, we

set the final estimate to be

S = ftp Stp + (1 − ftp) Sfp (A8)

for a given true-pair fraction ftp, which we fiducially assume to be

ftp = 1
2

(cf. Section 2.2).

Applying the same transformation to convert the integrals to sums

as in the case of the normalization constant A, we need to account

for the different noise contributions from the clustered data and the

unclustered randoms in equations (A6) and (A7). Thus, we choose to

split the calculation accordingly into two sums, one corresponding

to the systematic-weight affected part and the another one for the

αr-part of the equations above. For the former, we have to take

into account that we sum over weighted galaxies, each associated

with a varying finite volume element wtot(x) n−1
exp(x). Hence, the

conversion for the terms involving wsys(x) and wtot(x) – represented

generally by wX(x) below – is done by
∫

Vs

nexp(x) w2
FKP(x) wX(x) d3x =

∑

sample

wtot(x) w2
FKP(x) wX(x).

(A9)

This treatment of the shot noise yields the equation already given in

equation (12). This result is the shot-noise contribution to the power-

spectrum monopole. Because we measure the multipole-filtered

power-spectrum wedges, and assume no shot-noise contribution to

the multipoles higher than the monopole, we effectively compute

the wedges shot-noise contribution as S divided by the number of

wedges.

Due to the phenomenological nature of this treatment, we ex-

pect that the true shot noise can deviate from the estimate given

by S. Variations from the assumption of pure Poisson shot noise

are discussed in several recent studies (Casas-Miranda et al. 2002;

Seljak, Hamaus & Desjacques 2009; Hamaus et al. 2010; Manera

& Gaztanaga 2011; Baldauf et al. 2013). An incomplete shot-noise

treatment can cause systematic biases on cosmological parameters.

Thus, we include an additional shot-noise term N (see Section 3.1)

as a free parameter to our modelling in order to capture any remain-

ing residual shot-noise contribution. This parameter is marginalized

over in the cosmological analyses.

A3 FKP optimization

An extra weight wFKP(x) is applied to the galaxies and randoms

in addition to the systematic and number weights wtot (defined in

Section 2.1) in order to minimize the statistical variance of the

estimator, balancing regions of different number densities. wFKP(x)

is given by the requirement of optimal variance, yielding (Feldman

et al. 1994)

w−1
FKP(x) = 1 + nexp(x) Pw. (A10)

This relation assumes that the expected power-spectrum amplitude

Pw is constant and αr ≪ 1.

In the shot-noise estimation discussed in Appendix A2, a sepa-

ration of true and false pairs leads to a dependency on the fraction

ftp. This separation also affects the FKP weights. Here, we derive

the optimal weighting in presence of systematic weights and fibre

collisions similar to the derivation in Beutler et al. (2014, appendix

A). The error of the power-spectrum estimation is

σ 2
P (k) ≃

1

Vk

∫

d3k |P (k)Q(k) + S|2, (A11)

where Vk is the volume of the spherical shell in k-space that is

integrated over.

Performing the same steps as in the derivation in Beutler et al.

(2014, appendix A), we find that the optimal weighting in our case

is given by

w−1
FKP(x) ∝ nexp(x) +

[

ftp wsys(x) + (1 − ftp)wtot(x) + αr

]

/P (k).

(A12)

Neglecting the last term in the square brackets because of αr ≪ 1 and

using the simplifying approximation of a constant expected power-

spectrum amplitude, P (k) = Pw = const, we find the relation that

is already given in equation (7). In the case of ftp = 1, we recover

the result presented in Beutler et al. (2014, equation A.18). Setting

wsys(x) = 1 and wtot(x) = 1 gives the standard FKP result given in

equation (A10).

A4 The Yamamoto-FFT estimator

As described in Section 2.2, we estimate the power-spectrum

wedges by transforming the results of the Yamamoto-FFT multipole

estimator (Bianchi et al. 2015; Scoccimarro 2015) using the trans-

formation matrix given in equation (17). As the signal-to-noise-ratio

decreases with each multipole order, most accessible information

in a BOSS-like sample is contained in the first three even multi-

poles (Yoo & Seljak 2015; Grieb et al. 2016). In order to verify that

the truncation of the multipole expansion of the wedges after the

hexadecapole does not give biased results compared to the direct

estimate by means of the analogy of the Yamamoto–Blake estimator

for power-spectrum multipoles given in equation (10), we compare

these two estimators on the QPM mocks described in Appendix B2

for the DR12 CMASS samples. We use a version of the mocks for

which fibre collisions have not been simulated.

In the left-hand panel of Fig. A1, we show the mean and disper-

sion of the power-spectrum wedges obtained from these mocks

using the direct Yamamoto estimator of equation (10) and the

ones inferred from the multipoles ℓ ≤ 4 using the transforma-

tion matrix of equation (17). No significant deviations between

the direct-sum (red, solid lines) and FFT estimated power-spectra

wedges (blue, dashed lines) can be identified at the scales of in-

terest (|�P3w, n(k)|/P3w, n(k) � .5 per cent for k � 0.25 h Mpc−1).

The measurements on the underlying cubic boxes (for which the

Yamamoto-framework is not needed) are shown as well as a refer-

ence (black, dotted lines). These measurements agree except for the

expected deviations due to the window function effect (cf. see Sec-

tion 2.5). Using the ratio of the measurements (right-hand panel),

we test whether the simplification proposed in Scoccimarro (2015)

(green, dash–dotted lines), reducing the number of FFTs per re-

alization from 1+6+15 to 7, has a comparable performance than

the full version (blue, dashed lines). Especially, the accuracy of the

estimators with respect to the mean and dispersion across the cat-

alogues is relevant. Our comparison shows that the mean wedges
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Figure A1. Left-hand panel: the mean power-spectrum wedges estimated from 1000 QPM DR12 CMASS mocks with the Yamamoto–Blake direct-sum

estimator (red, solid lines) given in equation (10) compared against the Yamamoto-FFT estimated wedges (blue, dashed lines). The shaded region is the

dispersion of the estimated power spectra for an individual mocks. Right-hand panel: the ratio of these power spectra to highlight the insignificance of the

deviations. Here, we compare the direct-sum (red, solid lines) measurements with those obtained using the estimators of Bianchi et al. (2015, blue, dashed

lines) and of Scoccimarro (2015, green, dash–dotted lines).

are almost exactly the same, but the intermediate wedge estimated

using the approach of Scoccimarro (2015) has a slightly smaller

dispersion than the one derived using the approach of Bianchi et al.

(2015). We use the approach of Bianchi et al. (2015) in this work.

APP ENDIX B: INTERNA L C ONSISTENCY

C H E C K S F O R T H E C L U S T E R I N G A NA LY S I S

In this appendix, we test the BOSS DR12 BAO+RSD measure-

ments presented in Section 5 for robustness against various po-

tential sources of systematics, such as the set of mocks used to

obtain the covariance matrix, the galaxy population discrepancies

between the NGC and SGC subsamples and effects indicated by the

scale-dependency of the results.

B1 Robustness with respect to the number

of clustering wedges

In Fig. B1, we compare the regions of 68 and 95 per cent CL from the

geometric and growth measurements obtained from our BAO+RSD

fits to two (grey contours) and three (green contours) power-

spectrum wedges using the same wavenumber range 0.02 h Mpc−1

≤ k ≤ 0.2 h Mpc−1 and the corresponding reference covariance ma-

trix obtained from MD-PATCHY mocks. As already seen in the tests

performed on the MINERVA catalogues discussed in Section 3.3.1, the

fits using three wedges result in tighter confidence intervals, espe-

cially for the Hubble parameter. We find good consistency between

the two measurement configurations, justifying the choice of using

three wedges as standard case for this work and to use them for

the combination with other cosmological probes. Due to our mea-

surement scheme given by equation (17), this choice corresponds

directly to the inclusion of the hexadecapole in the analysis of the

power-spectrum multipoles as done in Beutler et al. (2017a). For

the two-wedges case, only the monopole and quadrupole are used

in order to ensure to be able to compare to the traditional fitting of

P0(k) and P2(k) only.

In Fig. B1, only the two- and three-wedge confidence regions for

the intermediate-redshift bin are compared. The relative differences

for the other two bins are very similar.

B2 Robustness with respect to the covariance matrix estimate

An alternative set of mock catalogues are based on the QPM tech-

nique. This method uses a low-resolution particle mesh code to

generate the large-scale DM density field from initial conditions

that have been created using the cosmological parameters given as

‘QPM’ in Table 2. In a second step, a post-processing of the proto-

haloes in that density field makes use of HOD modelling to ensure

Figure B1. The 2D posteriors of the comoving transverse distance and the sound horizon ratio, DM(zeff) [rfid
s (zd)/rs(zd)], the Hubble parameter and the sound

horizon ratio, H (zeff ) [rs(zd)/rfid
s (zd)], and the growth parameter fσ 8(zeff) from BAO+RSD fits to the DR12 combined sample for the intermediate-redshift bin.

For this fit, two (grey contours) and three (green contours) power-spectrum wedges have been fitted in the wavenumber range 0.02 h Mpc−1 ≤ k ≤ 0.2 h Mpc−1

using the reference covariance matrix obtained from MD-PATCHY mocks (corresponding to the chosen number of wedges).
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that the small-scale clustering of the BOSS DR12 data is matched

by that of the mocks. The combined-sample QPM mocks vary the

HOD parameters over the redshift in order to create a more realistic

survey sample from the fixed simulation output at z = 0.55. Three

sets of 1000 realizations each were constructed for the DR12

LOWZ, CMASS and combined samples. We use an alternative

covariance matrix obtained from the combined-sample mocks as a

cross-check of the cosmological constraints.

When the QPM covariance matrix is used for clustering mea-

surements on the NGC and SGC subsamples separately, we use the

correction factor (1 − D) given in Table 3 for Nm = 1000. The

rescaling factors for the uncertainties of the obtained parameters

are given in Table 4.

Due to their larger matter density parameter �M, the power-

spectrum dispersion obtained from the MD-PATCHY mocks is slightly

larger than the one derived from the alternative QPM mocks, espe-

cially in the low-redshift bin shown in the figure. Thus, the choice

to use the MD-PATCHY mocks for the reference covariance matrix

represents the more ‘conservative’ option, besides the good argu-

ments that the number of realizations is larger, the agreement of the

measured two-point clustering between the MD-PATCHY mocks and

the data is better, and the more advanced modelling of the redshift

evolution.

As a test of the robustness of the full-shape results, we per-

form cross-checks by repeating the RSD-type full shape using the

covariance matrices inferred from the QPM mocks. Due to the

larger fiducial volume of the MD-PATCHY mocks (corresponding to

the larger density parameter �M), the volume of the MD-PATCHY

mocks is smaller than for the QPM mocks. As the variance of the

power spectrum is inversely proportional to the volume, we expect

slightly tighter constraints for using the QPM matrix.

As shown in Fig. B2, the contours of 68 and 95 per cent

CL for combinations of the parameters DM(zeff) [rfid
s (zd)/rs(zd)],

H (zeff) [rs(zd)/rfid
s (zd)] and fσ 8(zeff) obtained from BAO+RSD fits

using the same data and the two different covariance matrices are in

good agreement with each other (plotted is the intermediate-redshift

bin for illustration, the results of the other bins are similar). How-

ever, the confidence regions are slightly smaller in the QPM case

for the low-redshift bin.

We check for potential inconsistencies between the statistical

errors for the distance and growth measurements obtained from

the set of MD-PATCHY mocks and the errors measured on the data.

Fig. B3 shows the distribution of errors on α‖, α⊥ and fσ 8(zeff)

obtained from the BAO+RSD fits using the 2045 individual MD-

PATCHY measurements of the power-spectrum wedges in the low-

redshift bin (the results in the other two redshift bins are similar).

The error of the fit to the mean measurement of the power-spectrum

wedges is indicated by a dashed vertical line. For comparison, the

size of the marginalized constraints of the DR12 combined-sample

fits are indicated by a dotted red line. In most cases, the errors

obtained from the data are close to the peak of the distribution,

except for the error on the low-redshift α⊥, which is in the lower tail

of the error distribution on MD-PATCHY mocks. Thus, we conclude that

the errors from the data are largely consistent with the distribution

of errors measured from MD-PATCHY.

B3 Consistency between the NGC and SGC of the boss survey

The DR12 combined sample comprises of the NGC and SGC. Only

for a perfect photometric calibration, these two subsamples would

correspond to the same galaxy population. Thus, each subsample is

described with its own selection function n(z) and the consistency

Figure B2. The 2D posteriors of the comoving transverse distance and the sound horizon ratio, DM(zeff )(r
fid
s (zd)/rs(zd)), the Hubble parameter and the sound

horizon ratio, H (zeff )(rs(zd)/rfid
s (zd)), and the growth parameter fσ 8(zeff) from BAO+RSD fits to the DR12 combined sample in the intermediate-redshift bin.

For this fit, three power spectrum have been fitted in the wavenumber range 0.02 h Mpc−1 ≤ k ≤ 0.2 h Mpc−1 using the reference MD-PATCHY (green) and the

alternative QPM (orange) covariance matrix.

Figure B3. Histograms of the marginalized error on α‖, α⊥ and fσ 8(zeff) from gRPT+RSD model fits to the individual measurement of three Fourier-space

wedges of 2045 MD-PATCHY mocks in the low-redshift bin fitting wavenumbers in the range 0.02 h Mpc−1 ≤ ki ≤ 0.2 h Mpc−1. The error of the fits to the mean

measurement is shown by vertical line. For comparison, the error from the BAO+RSD fits to the DR12 combined sample is included by a red dashed line. The

error on these parameters from the data are in excellent agreement with the distribution seen on the MD-PATCHY mocks (also for the other redshift bins); only the

low-redshift error on α⊥ is in the tail of the distribution.
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Figure B4. The 2D posteriors of the comoving transverse distance and the sound horizon ratio, DM(zeff )(r
fid
s (zd)/rs(zd)), the Hubble parameter and the

sound horizon ratio, H (zeff )(rs(zd)/rfid
s (zd)), and the growth parameter fσ 8(zeff) from BAO+RSD fits to the DR12 combined sample (green) and the colour-

corrected version (orange, see discussions in Section B3) in the low-redshift bin. For this fit, three power spectrum have been fitted in the wavenumber range

0.02 h Mpc−1 ≤ k ≤ 0.2 h Mpc−1 using the MD-PATCHY covariance.

of the galaxy-clustering properties have to be analysed carefully.

The results described in Alam et al. (2016, appendix A) give good

evidence that the NGC and SGC subsamples probe slightly dif-

ferent galaxy populations for the low-redshift part of the sample.

This is due to minor colour mismatches that have been found be-

tween the SDSS photometry in the Northern and Southern galactic

hemispheres (Schlafly & Finkbeiner 2011), so that the selection

criteria based on the colour cuts for c‖ and c⊥ (Reid et al. 2016)

are shifted. The high-redshift part does not seem to be affected at

a significant level. As a consequence, we describe the two galactic

caps of the low-redshift sample with two different bias, RSD and

shot-noise parameters when modelling the power-spectrum wedges.

Using gRPT+RSD fits of the MD-PATCHY mocks as those described

in Section 3.3.2, we find that this treatment does not lower the con-

straining power for AP and growth parameters in BAO+RSD fits.

As differences in the photometric calibration in the two galac-

tic hemispheres of the BOSS surveys might have led to slightly

different galaxy populations probed by the NGC and SGC sub-

samples, we perform a cross check of our analysis to exclude any

influence on the cosmological constraints. Here, we present the ro-

bustness of our main results with respect to these discrepancies by

repeating the RSD+BAO fits with the SGC subsample replaced by

the colour-corrected one. In Fig. B4, we show the constraints on

DM(zeff) [rfid
s (zd)/rs(zd)], H (zeff) [rs(zd)/rfid

s (zd)] and fσ 8(zeff) from

BAO+RSD fits to the DR12 combined sample (green) and the

colour-corrected version (orange) in the intermediate-redshift bin

(the results in the low- and high-z bins are similar). The difference

in the 2D posteriors are negligible, as the differences in the galaxy

populations are correctly absorbed into the nuisance parameters of

the bias model.

B4 Robustness of the BAO+RSD fits with respect to k ranges

In the same way as for the model tests on the MD-PATCHY mocks, we

tested the robustness of the BAO+RSD fits to the BOSS P3w of the

NGC and SGC with respect to variations of the wavenumber limits

of the fitting range. By varying kmin, we exclude scales that could be

affected by an inaccurate treatment of the window function and/or

other large-angle systematics of the survey, such as residuals from

the stellar-density or seeing correction (cf. Section 2.1). By varying

kmin from 0.02 to 0.06 h Mpc−1 to exclude the largest scales where

these effects have the biggest impact. Due to sample variance, the

inclusion of more almost uncorrelated large-scale Fourier modes is

expected to change the results smoothly and would lead to small

changes of the results with respect to kmin. Taking this into account,

no trends of parameter constraints with kmin can be identified with

worrying systematic effects. The variations we see can be expected

from sample variance and no trends can be found in the obtained

constraints.

In addition, we vary kmax to check whether our model fails to

correctly describe the non-linearity of the data at some point in the

quasi-linear regime (which could be exceptionally large compared

to the non-linear evolution of the MINERVA simulations, on which

the model was validated, see Section 3.3.1). In the range from

kmax = 0.16–0.22 h Mpc−1, we again see shifts as expected, as

more information is included in the analysis. No clear signalling of

a failure of the model is found up to the fiducial kmax = 0.2 h Mpc−1.

Thus, we are confident that our model can accurately describe the

non-linear clustering seen in the data.
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