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ABSTRACT

We reproduce the galaxy clustering catalogue from the SDSS-III Baryon Oscillation Spec-

troscopic Survey Final Data Release (BOSS DR11&DR12) with high fidelity on all relevant

scales in order to allow a robust analysis of baryon acoustic oscillations and redshift space

distortions. We have generated (6000) 12 288 MultiDark PATCHY BOSS (DR11) DR12 light

cones corresponding to an effective volume of ∼192 000 [h−1 Gpc]3 (the largest ever simulated

volume), including cosmic evolution in the redshift range from 0.15 to 0.75. The mocks have

been calibrated using a reference galaxy catalogue based on the halo abundance matching

modelling of the BOSS DR11&DR12 galaxy clustering data and on the data themselves. The

production follows three steps. First, we apply the PATCHY code to generate a dark matter field

and an object distribution including non-linear stochastic galaxy bias. Secondly, we run the

halo/stellar distribution reconstruction HADRON code to assign masses to the various objects.

This step uses the mass distribution as a function of local density and non-local indicators

(i.e. tidal field tensor eigenvalues and relative halo exclusion separation for massive ob-

jects) from the reference simulation applied to the corresponding patchy dark matter and

galaxy distribution. Finally, we apply the SUGAR code to build the light cones. The resulting

MultiDarkPATCHY mock light cones reproduce the number density, selection function, survey

geometry, and in general within 1σ , for arbitrary stellar mass bins, the power spectrum up

to k = 0.3 h Mpc−1, the two-point correlation functions down to a few Mpc scales, and the

three-point statistics of the BOSS DR11&DR12 galaxy samples.

Key words: methods: numerical – galaxies: haloes – galaxies: statistics – large-scale structure

of Universe.

1 IN T RO D U C T I O N

The observable Universe represents a unique realization of an

underlying physical cosmological process. Large galaxy redshift
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surveys like the Baryon Oscillation Spectroscopic Survey (BOSS;

e.g. Bolton et al. 2012; Dawson et al. 2013; Alam et al. 2015), a

branch of the ongoing Sloan Digital Sky Survey (SDSS-III; Eisen-

stein et al. 2011), scan the sky with unprecedented accuracy trying to

unveil structure formation in an expanding Universe. One important

question arises in the analysis of the data provided by such surveys:

if the Universe is comparable to a huge unique experiment, how

can we determine the uncertainties in the measurement of quanti-

ties derived from observing it? One strategy consists of dividing

the observations into subvolumes, treating each of the subsamples
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as independent measurements, and computing the errors with jack-

knife or bootstrap estimates. While this approach continues being

relevant as a way to obtain error estimates directly from the data

(see e.g. Norberg et al. 2009), it also implies several disadvantages.

First, it does not include systematic errors present in all subvolumes,

secondly it does not lead to a physical understanding of the data

by itself, and thirdly it introduces variance beyond the one already

present in the data on scales larger than the subvolumes. The last

point is especially critical when the signal sought has a large charac-

teristic scale and its detection significance crucially depends on the

volume, as is the case for baryon acoustic oscillations (BAOs; see

e.g. Seo & Eisenstein 2005; White, Song & Percival 2009). During

the past decades, there has been a huge effort to encode our physical

knowledge of structure formation in computational algorithms, and

compare the theoretical models to the actual observations. Pioneer-

ing works started with qualitative comparisons (see e.g. Klypin &

Shandarin 1983; Blumenthal et al. 1984; Davis et al. 1985). Since

then simulations have grown and such comparisons have turned in-

creasingly more quantitative (see e.g. Klypin et al. 2003; Springel

et al. 2005; Boylan-Kolchin et al. 2009; Klypin, Trujillo-Gomez &

Primack 2011). These efforts are essential to understand structure

formation and yet they suffer from a strong limitation: as simula-

tions always push the computational limits, they are not suited for

massive production. In fact, the number of current state-of-the-art

large-volume N-body simulations is of order 10 (Kim et al. 2009;

Alimi et al. 2012; Angulo et al. 2012; Prada et al. 2012; Fosalba

et al. 2015; Ishiyama et al. 2015; Klypin et al. 2014; Skillman et al.

2014; Watson et al. 2014). However, an ideal approach to deter-

mine the uncertainties from current and upcoming surveys scanning

large sky areas, and hence covering huge volumes, such as BOSS1

(White et al. 2011), DESI2/BigBOSS (Schlegel et al. 2011), DES3

(Frieman & Dark Energy Survey Collaboration 2013), LSST4

(LSST Dark Energy Science Collaboration 2012), J-PAS5 (Ben-

itez et al. 2014), 4MOST6 (de Jong et al. 2012), or Euclid7 (Cimatti

et al. 2009; Laureijs 2009), requires thousands of such simulations

if the simplest error determination methods are used (Dodelson &

Schneider 2013; Taylor, Joachimi & Kitching 2013; Percival et al.

2014). Alternative more efficient methods need to be considered

to face this challenge. A few pioneering works explored a viable

strategy more than a decade ago relying on simplified fast gravity

solvers using perturbation theory (PT): PINOCCHIO (Monaco et al.

2002, 2013) and PTHALOS (Scoccimarro & Sheth 2002). Neverthe-

less, these methods are not trivial, need calibration with N-body

simulations, and still demand high computational efforts. For this

reason, some of the first analysis of large surveys (Percival et al.

2001; Cole et al. 2005) was done based on lognormal realizations

(see also Percival, Verde & Peacock 2004; Beutler et al. 2011),

which match the two-point statistics by construction (Coles & Jones

1991), although their three-point statistics is very different from the

true one (see e.g. White, Tinker & McBride 2014; Chuang et al.

2015b). It is also not clear that their four-point statistics will be

accurate (Cooray & Hu 2001; Takada & Hu 2013).

1 http://www.sdss3.org/surveys/boss.php
2 http://desi.lbl.gov/
3 http://www.darkenergysurvey.org
4 http://www.lsst.org/lsst/
5 http://j-pas.org/
6 http://www.aip.de/en/research/research-area-ea/research-groups-and-

projects/4most
7 http://www.euclid-ec.org

The analysis of past data releases of the BOSS collaboration uti-

lized 1000 mocks, created based on an improved version of PTHALOS

(Manera et al. 2013, 2015). The use of approximate gravity solvers

in these methods came at the expense of only matching clustering

statistics on a wide range of scales to ∼10 per cent precision (and

strongly deviating towards small scales �20 h−1 Mpc).

This sets the agenda for the current BOSS data release

DR11&DR12 and the requirements for a new generation of mock

galaxy catalogues. Ideally, one would like to base these on efficient

solvers that are trained on exact solutions and deliver a comparable

precision. A new generation of methods that can meet these high re-

quirements have been developed during the past two years, in partic-

ular, PATCHY (Kitaura, Yepes & Prada 2014), QPM (White et al. 2014),

and EZMOCKS (Chuang et al. 2015a). The key concept exploited by

these methods is to rely only on the large-scale density field obtained

from approximate gravity solvers and use biasing prescriptions to

populate it with mock galaxies, in a similar way to the methods

proposed to augment the resolution of N-body simulations (de la

Torre & Peacock 2013; de la Torre et al. 2013; Angulo et al. 2014;

Ahn et al. 2015). One should however be careful, as computing an

accurate dark matter field is a necessary, but not sufficient condi-

tion to reproduce the correct halo/galaxy three-point statistics. The

bias parameters are degenerate in the two-point statistics and need

to be additionally constrained to reproduce higher order statistics

(Kitaura et al. 2015). We will rely in this work on the PATCHY method

due to its verified accuracy in the two- and three-point statistics for

different populations of objects (see application of the HADRON code

to PATCHY and EZMOCK; Zhao et al. 2015). An additional set of galaxy

mocks fitting the BOSS DR11&DR12 (CMASS and LOWZ) data

at two mean redshifts (respectively) based on QPM have been pro-

duced in an unprecedented effort. These are constructed with a dif-

ferent structure formation model based on low-resolution particle

mesh solvers, and a different galaxy bias, based on a rank-ordering

scheme assigning most massive objects to the highest density peaks

(for a comparison of both sets of catalogues, see Section 3 and

Gil-Marı́n et al. 2015a).

Another approach uses approximate PT-based solutions to speed

up N-body solvers (see COLA method; Tassev, Zaldarriaga &

Eisenstein 2013; Howlett, Manera & Percival 2015; Koda et al.

2015). This method is very promising to generate ensembles of

reference mock catalogues; however, it has the drawback of requir-

ing large computational memory for the force calculation and large

number of particles to resolve the haloes (see Chuang et al. 2015b),

and is therefore not suitable for the massive production aimed in

this work. The speed of the method over N-body simulations comes

at the expense of not resolving the substructures required to produce

a realistic galaxy catalogue. This problem can be circumvented by,

e.g., augmenting the missing objects with the halo occupation dis-

tribution (HOD) model, hereby losing some of the advantage of

having a higher precise description of the non-linear clustering over

the above-mentioned methods which rely only on the large-scale

dark matter field, as shown in a comparison study (see Chuang et al.

2015b, and references therein). One may need an approach like

COLA, to model the large-scale structure, combined with the galaxy

bias presented in this work for future emission line galaxy-based

surveys. We will, however, demonstrate here that this is not nec-

essary to model the distribution of luminous red galaxies (LRGs)

aimed in this work.

One could argue whether mock catalogues are required at all, as

analytical models may deliver an almost direct computation of error

bars and covariance matrices (Hartlap, Simon & Schneider 2007;

Hamaus et al. 2010; Dodelson & Schneider 2013; Taylor et al. 2013;
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Kalus, Percival & Samushia 2016). It still remains to be shown that

these methods making simple assumptions, such as that the density

field is Gaussian distributed, yield the same accuracy as covariance

matrices based on large sets of mock catalogues.

Nevertheless, the purpose of mock catalogues is manifold, as

they not only serve to provide error estimates, but also to provide an

understanding of the systematics of the survey and of the method-

ology. Any analytical prediction or data analysis method should be

cross-checked with large ensembles of mock galaxy catalogues for

which the products of this work could be useful. One clear example

is the case of BAO reconstruction techniques (see e.g. Eisenstein

et al. 2007; Padmanabhan et al. 2012; Anderson et al. 2014; Ross

et al. 2015).

We exploit the efficiency and accuracy of the PATCHY code to

produce 12 288 galaxy mock catalogues8 including the light-cone

evolution of galaxy bias based on the halo abundance matching

(HAM) technique applied to the reference BigMultiDark N-body

simulation (see Rodrı́guez-Torres et al. 2015, companion paper),

and to the peculiar motions based on the observational data, match-

ing the two-, three-point statistics, in real and redshift space of the

BOSS DR11&DR12 galaxy clustering data at different redshifts and

for arbitrary stellar mass bins. Special care has been taken to in-

clude all relevant observational effects including selection functions

and masking. The MultiDark PATCHY BOSS DR11 mock catalogues

presented in this work are publicly available.9

This paper is structured as follows: in Section 2 we describe the

methodology. This section starts with the generation of the refer-

ence catalogue using N-body simulations and the HAM technique.

Subsequently, the scheme to massively generate mock catalogues

is described. Then we show in Section 3 the statistical comparison

between the mock catalogues and the BOSS DR12 data. Subse-

quently, we discuss future work (Section 4). Finally, in Section 5

we present the conclusions. The reader interested only in the results

may skip Section 2 and directly go to Section 3.

2 M E T H O D O L O G Y

To construct high-fidelity mock light cones for interpreting the

BOSS DR11&DR12 galaxy clustering, we adopt an iterative train-

ing procedure in which a reference catalogue is statistically repro-

duced with approximate gravity solvers and analytical–statistical

biasing models. The whole algorithm involves several steps and is

summarized in the flow chart in Fig. 1.

(i) The first step consists of the generation of an accurate refer-

ence catalogue. Here we rely on a large N-body simulation capable

of resolving distinct haloes and the corresponding substructures.

This permits us to apply the HAM technique to reproduce the clus-

tering of the observations with only one parameter: the scatter in

the stellar mass-to-halo mass relation (see Rodrı́guez-Torres et al.

2015, companion paper; and Section 2.1). This technique is applied

at different redshift bins to obtain a detailed galaxy bias evolution

spanning the redshift range covered by BOSS DR11&DR12 galax-

8 This corresponds to an effective volume of ∼192 000 [h−1 Gpc]3, a factor

of ∼20 times larger than the volume of the DEUS FUR simulation (Alimi

et al. 2012), and a factor of ∼375 times larger than the DarkSky ds14

simulation (Skillman et al. 2014).
9 http://data.sdss3.org/sas/dr11/boss/lss/dr11_patchy_mocks/ The BOSS

DR12 mock catalogues will be made publicly available together with the data

catalogue: http://data.sdss3.org/sas/dr12/boss/lss/dr12_patchy_mocks/.

ies. In this way, we obtain mock galaxy catalogues in full cubical

volumes of 2.5 h−1 Gpc side at different redshifts.

(ii) In the second step, we train the PATCHY code (Kitaura et al.

2014, 2015) to match the two- and three-point clustering of the full

mock galaxy catalogues for each redshift bin. Here we consider all

the mock galaxies together in a single bin irrespectively of their

stellar mass.

(iii) In the third step, we apply the HADRON code (Zhao et al. 2015)

to assign stellar masses to the individual objects.

(iv) In the fourth step, we apply the SUGAR code (see Rodrı́guez-

Torres et al. 2015, companion paper) which includes selection ef-

fects, masking, and combines different boxes at different redshifts

into a light cone.

(v) In the fifth step, the resulting MultiDark PATCHY mock cata-

logues are compared to the observations. The process is iterated until

the desired accuracy for different statistical measures is reached.

In the next sections, we will describe in detail these steps de-

scribed above for the massive generation of accurate mock galaxy

catalogues. The reader interested only in the results may directly go

to Section 3.

2.1 Reference mock catalogues

The reference catalogues are extracted from one of the BigMul-

tiDark simulations10 (Klypin et al. 2014), which was performed

using GADGET-2 (Springel et al. 2005) with 38403 particles on a

volume of (2.5 h−1 Mpc )3 assuming � cold dark matter Planck

cosmology with { �M = 0.307 115, �b = 0.048 206, σ 8 = 0.8288,

ns = 0.9611} , and a Hubble constant (H0 = 100 h km s−1 Mpc−1)

given by h = 0.6777. Haloes were defined based on the Bound

Density Maximum halo finder (Klypin & Holtzman 1997).

We rely here on the HAM technique to connect haloes to galax-

ies (Kravtsov et al. 2004; Neyrinck, Hamilton & Gnedin 2004;

Tasitsiomi et al. 2004; Vale & Ostriker 2004; Conroy, Wechsler &

Kravtsov 2006; Kim, Park & Choi 2008; Guo et al. 2010; Wetzel &

White 2010; Trujillo-Gomez et al. 2011; Nuza et al. 2013).

We note that there are alternative methods connecting haloes to

galaxies like the HOD model, which we are not going to consider

here (e.g. Berlind & Weinberg 2002; Kravtsov et al. 2004; Zehavi

et al. 2005; Zentner et al. 2005; Zheng, Coil & Zehavi 2007; Ross &

Brunner 2009; Skibba & Sheth 2009; Zheng et al. 2009; White et al.

2011). These methods are based on a statistical relation describing

the probability that a halo of virial mass M hosts N galaxies with

some specified properties. In general, theoretical HODs require the

fitting of a function with several parameters, which we want to avoid

here.

At first order HAM assumes a one-to-one correspondence be-

tween the luminosity and stellar or dynamical masses: galaxies

with more stars are assigned to more massive haloes or subhaloes.

The luminosity in a red band is sometimes used instead of stellar

mass. There should be some degree of stochasticity in the rela-

tion between stellar and dynamical masses due to deviations in the

merger history, angular momentum, halo concentration, and even

observational errors (Tasitsiomi et al. 2004; Behroozi, Conroy &

Wechsler 2010; Leauthaud et al. 2011; Trujillo-Gomez et al. 2011).

Therefore, we include a scatter in that relation necessary to accu-

rately fit the clustering of the BOSS data (see Rodrı́guez-Torres

et al. 2015, companion paper). To do this, we modify the maximum

10 http://www.multidark.org/MultiDark/
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Figure 1. Flowchart of the methodology applied in this work for the generation of high-fidelity BOSS DR11&DR12 mock galaxy catalogues: i) starting from

a reference mock catalogue calibrated with the observations, ii) followed by the reproduction of the whole catalogue, iii) with the subsequent mass assignment,

iv) and survey generation. v) The final catalogues are compared with the observations and the simulation, and the previous steps are repeated until the mock

catalogues are compatible with the observations within 1σ for the monopole and quadrupole up to k ∼ 0.3 h Mpc−1.

circular velocity (Vmax) of each object adding a Gaussian noise:

V scat
max = Vmax(1 + N (0, σ )), where N (0, σ ) is a Gaussian random

number with mean 0 and standard deviation σ . Then, we sort all

objects by V scat
max , and then we selected objects starting from the one

with larger V scat
max and we continue until we get the proper number

density at different redshifts bins.

By construction, the method reproduces the observed luminosity

function (or stellar mass function). It also reproduces the scale de-

pendence of galaxy clustering over a large range of epochs (Conroy

et al. 2006; Guo et al. 2010). When abundance matching is used for

the observed stellar mass function (Li & White 2009), it gives also

a reasonable fit to lensing results (Mandelbaum et al. 2006) and to

the relation between stellar and virial mass (Guo et al. 2010).

2.2 Generation of mock galaxy catalogues

All covariance matrix estimates based on a finite number of mock

catalogues, Ns, are affected by noise, which must be propagated

into the final constraints. The impact of the uncertainties in the

covariance matrix on the derived cosmological constraints has been

subject of several recent analyses (Dodelson & Schneider 2013;

Taylor et al. 2013; Percival et al. 2014). In particular, Dodelson

& Schneider (2013) showed that this additional uncertainty can be

described by a rescaling of the parameter covariances derived from

the distribution of measurements from a set of mocks with a factor

given by

m = 1 +
(Ns − Nb − 2)

(

Nb − Np

)

(Ns − Nb − 1)(Ns − Nb − 4)
, (1)

where Nb is the number of bins in the corresponding clustering

measurements and Np is the number of parameters measured. This

implies that a large number of mock catalogues are necessary for a

robust analysis of the galaxy clustering data.

For the anisotropic BAO measurements of Cuesta et al. (2015),

the estimation of the full covariance matrix of the monopole and

quadrupole of the two-dimensional correlation function from the

ensemble of 1000 QPM corresponds to an additional uncertainty of

2 per cent on the constraints on H(z)rd and DA(z)/rd. Using the 2048

MultiDark PATCHY mock catalogues, the effect is reduced to the order
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of 1 per cent. Large sets of catalogues are even more important

for full-shape fits of anisotropic clustering measurements, where

the inclusion of information from smaller scales can significantly

improve the constraints based on redshift space distortion (RSD;

requiring a larger number of bins). For example, in the analysis

of Sánchez et al. (in preparation), based on measurements of the

clustering wedges statistic (Kazin, Sánchez & Blanton 2012), the

use of mock catalogues corresponds to a rescaling of the parameter

covariances by m = 1.04 and 1.085 when using 1000 or 2048

catalogues, respectively. This additional uncertainty corresponds

to a degradation of the true constraining power of the clustering

measurements, which should be minimized by using a larger number

of mock catalogues. For this reason, we have made the effort in the

BOSS collaboration of producing at least 1000 mocks for each

BOSS DR11&DR12 subsample.

The strategy for the massive production of mock galaxy cata-

logues relies on generating dark matter fields with approximate

gravity solvers on a mesh. We use grids of 9603 cells with volumes

of (2.5 h−1 Gpc)3 and resolutions of 2.6 h−1 Mpc for which the

structure formation model can be considered to be accurate (see

Section 2.2.1). Then the galaxies are populated on the mesh accord-

ing to a combined non-linear deterministic (see Section 2.2.2) and

stochastic bias model (see Section 2.2.3). In a post-processing step,

we assign halo/stellar masses to each object (see Section 2.2.5).

Finally, we apply the survey geometry and selection functions (see

Section 2.2.6).

Let us start describing the PATCHY code (PerturbAtion Theory

Catalog generator of Halo and galaxY distributions).

2.2.1 Approximate fast structure formation model

We rely on augmented Lagrangian perturbation theory (ALPT) to

simulate structure formation. Let us recap the basics of this method

and refer for details to Kitaura & Heß (2013). In this approxima-

tion, the displacement field �(q, z), mapping a distribution of dark

matter particles at initial Lagrangian positions q to the final Eule-

rian positions x(z) at redshift z (x(z) = q + �(q, z)), is split into

a long-range �L(q, z) and a short-range component �S(q, z), i.e.

�(q, z) = �L(q, z) + �S(q, z).

We rely on second order LPT (2LPT) for the long-range compo-

nent �2LPT (for details on 2LPT, see Buchert 1994; Bouchet et al.

1995; Catelan 1995).

The resulting displacement field is filtered with a kernel

K: �L(q, z) = K(q, rS) ◦ �2LPT(q, z). We apply a Gaussian filter

K(q, rS) = exp (−|q|2/(2r2
S)), with rS being the smoothing radius.

We use the spherical collapse approximation to model the short-

range component �SC(q, z) (see Bernardeau 1994; Mohayaee et al.

2006; Neyrinck 2013). The combined ALPT displacement field

�ALPT(q, z) = K(q, rS) ◦ �2LPT(q, z)

+ (1 − K(q, rS)) ◦ �SC(q, z) (2)

is used to move a set of homogeneously distributed particles from

Lagrangian initial conditions to the Eulerian final ones. We then

grid the particles following a clouds-in-cell scheme to produce a

smooth density field δALPT. One may get some improvements pre-

venting voids within larger collapsing regions, which essentially

extends the collapsing region towards moderate underdensities (see

MUSCLE method in Neyrinck 2016). This approach requires about

eight additional convolutions being about twice as expensive, as

the approached used here. Moreover, we have checked that the

improvement provided by including MUSCLE is not perceptible when

using grids with cell sizes of 2.6 h−1 Mpc.

2.2.2 Deterministic bias relations

In this section, we describe the deterministic part of our bias model.

This is combined with a stochastic element, described in Sec-

tion 2.2.3, and a non-local element, described in Section 2.2.5, to

produced the full model. The deterministic bias relates the expected

number counts of haloes or galaxies ρg ≡ 〈Ng〉∂V at a given finite

volume to the underlying dark matter field ρM, with 〈[· · ·]〉∂V being

the ensemble average over the differential volume element ∂V (in

our case the cell of a regular mesh). This relation is known to be

non-linear, non-local, and stochastic (Press & Schechter 1974; Pea-

cock & Heavens 1985; Bardeen et al. 1986; Fry & Gaztanaga 1993;

Mo & White 1996, 2002; Dekel & Lahav 1999; Sheth & Lemson

1999; Seljak 2000; Berlind & Weinberg 2002; Smith, Scoccimarro

& Sheth 2007; Desjacques et al. 2010; Beltrán Jiménez & Dur-

rer 2011; Valageas & Nishimichi 2011; Baldauf et al. 2012, 2013;

Chan, Scoccimarro & Sheth 2012; Elia, Ludlow & Porciani 2012;

Ahn et al. 2015). In general, this bias relation will be arbitrarily

complex:

ρg = fg B(ρM), (3)

with B(ρM) being a general bias function, fg = 〈ρg〉V
〈B(ρM)〉V

, 〈ρg〉V being

the number density N̄g, and 〈[···]〉V being the ensemble average

over the whole considered volume V (in our case the volume of the

considered mesh).

The deterministic bias model we consider in this work has the

following form:

ρg = fg θ (ρM − ρth) exp

[

−
(

ρM

ρǫ

)ǫ]

ρα
M (ρM − ρth)τ , (4)

with

fg = N̄g/〈θ (ρM − ρth) exp

[

−
(

ρM

ρǫ

)ǫ]

ρα
M (ρM − ρth)τ 〉V , (5)

and { ρ th, α, ǫ, ρǫ , τ} the parameters of the model. We have

modelled threshold bias (Kaiser 1984; Bardeen et al. 1986; Cole &

Kaiser 1989; Sheth, Mo & Tormen 2001; Mo & White 2002) as a

combination of a step function θ (ρM − ρ th) (Kitaura et al. 2014)

and an exponential cut-off exp
[

−
(

ρM

ρǫ

)ǫ]

(Neyrinck et al. 2014).

The local bias expansion (Cen & Ostriker 1993; Fry & Gaztanaga

1993) is summarized by a power law (de la Torre & Peacock 2013;

Kitaura et al. 2014). In addition, we consider a bias (ρM − ρ th)τ

which compensates for the missing power of PT-based methods.

Non-local bias has been recently found to be relevant (McDonald

& Roy 2009; Baldauf et al. 2012; Chan, Scoccimarro & Sheth 2012;

Sheth, Chan & Scoccimarro 2013; Saito et al. 2014). A non-local

bias introduces a scatter in the local deterministic bias relations

described above. In this work, the scatter is first described by a

stochastic bias relation (see Section 2.2.3). We have investigated

second-order non-local bias with PATCHY without finding that this can

have a relevant effect on the mock catalogues considering stochastic

bias and the full (one single mass bin) catalogue (see Autefage et al.,

in preparation). In fact, once one considers different populations of

halo or stellar mass objects, then non-local bias plays an important

role. We solve this in a post-processing step when assigning the

masses to each galaxy (see Section 2.2.5 and Zhao et al. 2015).
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2.2.3 Stochastic biasing

The halo distribution is a discrete sample Ng, i of the continuous

underlying dark matter distribution ρg, i:

Ng,i � P (Ng,i | ρg,i, {pSB}), (6)

for each cell i and {pSB} being the set of stochastic bias parameters.

To account for the shot noise, one could do Poissonian realizations

of the halo density field as given by the deterministic bias and the

dark matter field (see e.g. de la Torre & Peacock 2013). However,

it is known that the excess probability of finding haloes in high-

density regions generates overdispersion (Somerville et al. 2001;

Casas-Miranda et al. 2002).

The strategy up to now has been to generate a mock catalogue

which reproduces the clustering of the whole population of galax-

ies for a given redshift. This has the advantage that by mixing

massive and low-mass galaxies we will always be dominated by

overdispersion, which is much easier to model than underdisper-

sion. In particular, we consider the negative binomial probability

distribution function (for non-Poissonian distributions, see Saslaw

& Hamilton 1984; Sheth 1995) including an additional parameter

β to model overdispersion (tends towards the Poisson probability

distribution function for β → ∞ and for low λ values).

We note that a proper treatment of the deviation from Poissonity is

also crucial to get accurate density reconstructions (see Ata, Kitaura

& Müller 2015 and Ata et al., in preparation).

We will need, however, to take care of the different statistical

nature of each population of galaxies when we assign masses to

each object (see Section 2.2.5).

2.2.4 Redshift space distortions

Let us recap here the way in which RSDs are treated in the PATCHY

code (see Kitaura et al. 2014).

The mapping between Eulerian real space x(z) and redshift

space s(z) is given by s(z) = x(z) + vr (z), with vr ≡ (v · r̂)r̂/(Ha),

where r̂ is the unit sightline vector, H the Hubble constant, a the

scale factor, and v = v(x) the 3D velocity field interpolated at the

position of each halo in Eulerian space x using the displacement

field �ALPT(q, z). We split the peculiar velocity field into a coher-

ent v
coh and a (quasi-) virialized component vσ : v = v

coh + v
σ . The

coherent peculiar velocity field is computed in Lagrangian space

from the linear Gaussian field δ(1)(q) using the ALPT formulation

consistently with the displacement field (see equation 2):

v
coh
ALPT(q, z) = K(q, rS) ◦ v2LPT(q, z)

+ (1 − K(q, rS)) ◦ vSC(q, z), (7)

with v2LPT(q, z) being the second-order and vSC(q, z) being the

spherical collapse component (for details see Kitaura et al. 2014).

We use the high correlation between the local density field and the

velocity dispersion to model the displacement due to (quasi-) virial-

ized motions. Effectively, we sample a Gaussian distribution func-

tion (G) with a dispersion given by σv ∝
(

1 + bALPTδALPT (x)
)γ

.

Consequently,

v
σ
r ≡ (vσ · r̂)r̂/(Ha) = G

(

g ×
(

1 + δALPT (x)
)γ )

r̂. (8)

For the Gaussian streaming model see Reid & White (2011), and for

non-Gaussian models see e.g. Tinker (2007). In closely virialized

systems, the kinetic energy approximately equals the gravitational

energy and a Keplerian law predicts γ close to 0.5, leaving only

the proportionality constant g as a free parameter in the model

(see also Heß, Kitaura & Gottlöber 2013). We assign larger dis-

persion velocities to low-mass objects considered to be satellites.

The parameters g and γ have been adjusted to fit the damping

effect in the monopole and quadrupole as found in the BigMul-

tiDark N-body simulation first and later further constrained with

the BOSS DR12 data for different redshift bins (see discussion in

Section 3).

2.2.5 Halo/stellar mass distribution reconstruction

Once we have a spatial distribution of objects {rg} which accu-

rately reproduce the clustering of the whole galaxy sample at a

given redshift, we assign the halo/stellar masses M l
g to each object l

according to the statistical information extracted from the BigMulti-

Dark simulation using the Halo mAss Distribution ReconstructiON

(HADRON) code (for technical details see Zhao et al. 2015). In partic-

ular, we sample the following conditional probability distribution

function

M l
g � P (M l

g|{rg}, ρM, T ,�rM
min, {pc}, z), (9)

where ρM is the local density, T the tidal field tensor (in particular the

eigenvalues), �rM
min a minimum separation between massive objects

due to exclusion effects, {pc} a set of cosmological parameters, and

z the redshift at which we want to apply the mass reconstruction.

We note that at this stage we consider non-local biasing through the

tidal field tensor and the minimum separation of objects. Using all

this information, it has been proven that one can recover compatible

clustering for arbitrary halo mass cuts with the N-body simulation

up to scales of about k = 0.3 h−1 Mpc (Zhao et al. 2015). We extend

the algorithm to stellar masses including the rank-ordering relation

and scatter described in Section 2.1.

2.2.6 Survey generator

The SUrvey GenerAtoR (SUGAR) code is an openMP code which

constructs light cones from mock galaxy catalogues (see Rodrı́guez-

Torres et al. 2015, companion paper). This code applies geometrical

features of the survey, including the geometry (using the publicly

available MANGLE mask; Swanson et al. 2008), sector completeness,

veto masks, and radial selection functions.

The SUGAR code can construct light cones using a single box

or multiples boxes at different redshifts, in order to include the

redshift evolution in the final catalogue. The first step in the con-

struction of the light cone is to locate the observer (z = 0) and to

transform from comoving Cartesian coordinates to equatorial coor-

dinates (RA,Dec.) and redshift. To compute the observed redshift

(redshift space) of an object, first we compute the comoving distance

from the observer to the object, and then we transform it to red-

shift space following s = rc + (v · r̂)/aH (zreal) (see Section 2.2.4),

where rc(z) is computed from rc(z) =
zreal
∫

0

cdz′

H0

√
�M(1+z′)3+��

.

Once we compute the redshift of each galaxy, we consider two

options to select objects in the radial direction:

(i) downsampling: this option preserves the clustering of the in-

put box selecting objects randomly to have the desired number

density.

(ii) selecting by halo property: this consists of rank ordering

objects by a halo property and selecting them sequentially until the

correct number density is obtained.
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Figure 2. Pie plot of the BOSS DR12 observations (upper-left region) and one MultiDark PATCHY mock realization (lower-right region).

3 R ESU LTS: STATISTICAL COMPARISON

B E T W E E N T H E M U LT I DA R K PAT C H Y M O C K S

A N D T H E B O S S D R 1 2 DATA

Following the method described in Section 2, we generate 12 288

mock light-cone galaxy catalogues for BOSS DR1211 (2048 for

each LOWZ, CMASS, combined, southern, and northern galactic

cap). We call these catalogues MultiDark PATCHY mocks, MD PATCHY

mocks in short. The corresponding computations required about

500 000 CPU hours (30–50 min for each box on 16 cores and a

total of 40 960 boxes). Since each PATCHY+HADRON run requires

less than 24 Gb shared memory for a grid with 9603 cells, we

were able to make use of 128 nodes with 32 Gb each in parallel

from the BSC Marenostrum facilities, taking about one week wall

clock time for all 40 960 catalogues. The light-cone generation with

SUGAR required an additional ∼1000 CPU hours. The equivalent

11 We have produced half the amount of mock catalogues for DR11, i.e.

1024 for each LOWZ, CMASS, combined, southern, and northern galactic

cap.

computations based on N-body simulations would have required

about 9000 million CPU hours (∼2.3 million CPU hours for each

light cone). The effective number of particles is ∼(61 440)3 (given

that the reference catalogue required 38403 particles to resolve the

objects we reproduce in the MD PATCHY catalogues).

We used 10 redshift bins to construct the light cones. This permits

us to obtain the galaxy bias, the growth, and the peculiar motion

evolution as a function of redshift. A visualization of the BOSS

DR12 and one MD PATCHY mock realization is shown in Fig. 2. We

can clearly see from this plot that both the data and the mocks follow

the same selection criteria including the survey mask (the colour

code stands for the stellar mass), and there are no obvious visual

differences beyond cosmic variance. The empty regions seem to be

similarly distributed for both cases, indicating that the three-point

statistics should be close, and the statistical comparison between the

MD PATCHY mock galaxy catalogues and the observations of BOSS

DR12 yields good agreement. The number densities for LOWZ and

CMASS galaxy samples are recovered by construction (see Fig. 3).

We investigate the performance of the mock galaxy catalogues in

detail in the following subsections.
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Figure 3. Number density for the LOWZ (left) and CMASS (right) samples. The observations are given by the blue solid lines. The shaded contours represent

the 1σ regions according to the MD PATCHY mocks.

Figure 4. Monopole for different stellar mass bins as indicated in the legend with the corresponding colour code. The error bars represent the BOSS DR12

data. The shaded contours represent the 1σ regions according to the MD PATCHY mocks.

To avoid redundancy, we show only the results for BOSS DR12,

as the only difference with respect to the BOSS DR11 mocks is the

applied mask and selection function.

3.1 Two-point and three-point correlation functions

We perform first an analysis in configuration space computing the

two- and three-point correlation functions. To compute the clus-

tering signal in the correlation function for the MD PATCHY mock

light cones and the observed data, we rely on the Landy & Szalay

(1993) estimator. We will follow their notation referring to the data

sample (either simulation or observed data) as D and to the random

catalogue as R.

The correlation function is then constructed in the following

way:

ξ (s) =
DD − 2DR + RR

RR
, (10)

as a function of separation between pairs of galaxies in redshift

space s.

The three-point correlation function gives a description of the

probability of finding three objects in three different volumes, and

can be computed following Szapudi & Szalay (1998),

ζ (s12, s23, s13) =
DDD − 3DDR + 3DRR − RRR

RRR
, (11)

as a function of separation between the vertices of triangles spanned

by triplets of galaxies in redshift space s12, s23, s13.

Fig. 4 shows that we accurately recover the clustering (monopole)

for arbitrary stellar mass bins showing almost perfect agreement

with observations. Only for the two largest stellar mass bin, we

find deviations larger than 1σ . This is mainly due to the ‘halo ex-

clusion effect’, which is only approximately modelled, assuming

a minimum separation for massive galaxies, and not the full sepa-

ration distribution function (Zhao et al. 2015). We find, however,

that these differences are not critical, as they are restricted to small

scales (�20 h−1 Mpc) and only a low number of objects are affected.

We further compute the monopole and quadrupole for LOWZ and

CMASS (see Fig. 5 and Section 3.3). The monopole agrees towards

small scales down to a few Mpc within 1σ .

There is a deviation of the monopole around the BAO peak and

towards larger scales. While the galaxy mock catalogues cross zero

right after the BAO peak, the observations do not. In this study,

we have applied all of the systematic weights, such as the stellar

density contamination, detailed in Reid et al. (2016) and Ross et al.

(in preparation). The correlation function measurements are quite

covariant between s bins at these scales, making the deviations

less significant than one would expect by the visual impression.

The significance and potential causes of the large-scale excess are

studied in Ross et al. (in preparation), where it is also shown that

it has no significant impact on BAO measurements. This is even

more so, as the overall shape of ξ (s) in BAO measurements is
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Figure 5. Monopole (on the left) and quadrupole (on the right) for LOWZ and CMASS in the first and second rows, respectively. The shaded contours

represent the 1σ regions according to the MD PATCHY mocks, correlation function in red, quadrupole in blue.

Figure 6. Left-hand and central panels: three-point statistics comparing the MD PATCHY mocks (blue shaded region) with the BigMultiDark mocks of the

N-body simulation (red shaded region) and the observations (black error bars) for LOWZ (left) and CMASS galaxies (central). Right-hand panel: three-point

statistics comparing the QPM mocks (LOWZ: blue shaded region, CMASS: red shaded region) to the observations (LOWZ: black error bars, CMASS: green

error bars). Corresponding ratios are shown in the bottom panels. Shaded area shows 1σ uncertainties, r1 = 10 and r2 = 20 h−1 Mpc and θ is the angle between

r1 and r2 h−1 Mpc.

marginalized over with a polynomial (see e.g. Anderson et al. 2014).

See also Ross et al. (2012) and Chuang et al. (2013) for similar

studies on an earlier BOSS data set and Huterer et al. (2013) for

potential photometric calibration systematics, which have not been

accounted for in this analysis.

In the case of RSD measurements, one has to make sure that the

analysis is performed on scales which are not affected by system-

atics (Gil-Marı́n et al. 2015a, companion paper). The quadrupole

is in very good agreement on all scales, further supporting that

RSD analysis should be safe, even in case there are some remnant

systematics in the data.

An investigation of the three-point function demonstrates that

the MD PATCHY mocks have a quality very similar to those based on

N-body simulations after calibration (see the left-hand and central

panels in Fig. 6). We have constrained the galaxy bias parame-

ters (see Sections 2.2.2, 2.2.3, and 2.2.5) based on the reference
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catalogues from the BigMultiDark simulation on cubical full vol-

umes at each of the 10 redshift bins, matching the two- and the

three-point statistics. To fit the latter, we focused on matching the

higher order correlation functions through the probability distri-

bution function of galaxies in the reference catalogues following

the approach presented in Kitaura et al. (2015). Using the obser-

vations to constrain the three-point statistics is not trivial, due to

incompleteness effects. This explains why the MD PATCHY mock

catalogues better fit the reference catalogue than the data, espe-

cially for the CMASS galaxies. The three-point statistics performs

worse for the QPM mocks, possibly because they do not include

an iterative validation step fitting higher order statistics (beyond the

two-point correlation function). The non-linear RSD parameter (see

Section 2.2.4) was iteratively constrained based on the observations,

as we explain in the next section.

3.2 Monopole and quadrupole in Fourier space

The galaxy power spectrum P and the galaxy bispectrum B are

the two- and three-point correlation functions in Fourier space.

Given the Fourier transform of the galaxy overdensity, δg(x) ≡
ρg(x)/ρ̄g − 1,

δg(k) =
∫

d3x δg(x) exp(−ik · x), (12)

where ρg(x) is the number density of objects and ρ̄g its mean value,

and the galaxy power spectrum and galaxy bispectrum are defined

as

〈δg(k)δg(k′)〉 ≡ (2π)3P (k)δD(k + k′), (13)

〈δg(k1)δg(k2)δg(k3)〉 ≡ (2π)3B(k1, k2)δD(k1 + k2 + k3), (14)

with δD being the Dirac delta function. Note that the bispectrum is

only well defined when the set of k-vectors, k1, k2, and k3, close

to form a triangle, k1 + k2 + k3 = 0. It is common to define the

reduced bispectrum Q as

Q(α12|k1, k2) ≡
B(k1, k2)

P (k1)P (k2) + P (k2)P (k3) + P (k1)P (k3)
, (15)

where α12 is the angle between k1 and k2. This quantity is inde-

pendent of the overall scale k and redshift at large scales and for a

power spectrum that follows a power law. Moreover, it presents a

characteristic ‘U-shape’ predicted by gravitational instability. Mode

coupling and power-law deviations in the actual power spectrum

induce a slight scale and time dependence in this quantity. How-

ever, in practice it has been observed that at scales of the order of

k ∼ 0.1 h Mpc−1 the reduced bispectrum does not present a high

variation in its amplitude.

The measurement of the bispectrum is performed in the same way

as the approach described in Gil-Marı́n et al. (2015c). This method

consists of generating k-triangles and randomly orientating them in

k-space. When the number of random triangles is sufficiently large,

the mean value of their bispectra tends to the fiducial bispectrum

(for details see Gil-Marı́n et al. 2015c).

Discreteness adds a shot noise contribution to the measured power

spectrum and bispectrum. In this paper, we assume that these con-

tributions are of Poisson type and therefore are given by

Psn(k) =
1

n̄
(16)

Bsn(k1, k2) =
1

n̄
[P (k1) + P (k2) + P (k3)] +

1

n̄2
, (17)

where k3 = |k1 + k2| and n̄ is the number density of haloes.

For both power spectrum and bispectrum, we present the BOSS

DR12 data error bars computed from the dispersion among 2048

and 100 realizations of MD PATCHY mock catalogues, respectively.

The Fourier space analysis has been used to improve the mod-

elling of the RSDs in the galaxy mock catalogues. We have assigned

higher peculiar random motions to about 10 per cent of the galaxies

to fit the quadrupole of the data with a specific value for each of the

10 redshift bins. The resulting monopoles and the quadrupoles show

good agreement with the observations over the range relevant to

BAOs and RSDs up to at least k ≃ 0.3 h−1 Mpc for both LOWZ and

CMASS (see Fig. 7). This agreement is further supported after BAO

reconstruction, as can be seen in Fig. 8. Only towards the very large

scales (k � 0.02 h−1 Mpc), we can find that the observed monopole

tends to be larger than the mock catalogues (both MD PATCHY and

QPM). This hints towards the discrepancy in the monopole found in

configuration space (see the previous section). Although the PATCHY

method can potentially yield accurate two-point statistics up to

k ∼ 1 h−1 Mpc (see Kitaura et al. 2014; Chuang et al. 2015b), we

have restricted the study to lower ks, as the analysis of BAOs and

Figure 7. Monopole (red) and quadrupole (blue) in Fourier space for the LOWZ (left) and CMASS galaxies (right) for the mean over 2048 MD PATCHY mocks

for both southern and northern galactic caps, the average and 1σ uncertainties are shown. The results for QPM (1000 mocks for each LOWZ/CMASS, and

north/south) are shown with dashed magenta lines. The error bars assigned to the data points have been computed based on 2048 MD PATCHY mocks. The ratio

plots in the bottom panels have been only done for the MD PATCHY mocks.
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Figure 8. Monopole (on the left) and quadrupole (on the right) before and after BAO reconstruction (see Vargas-Magana et al., in preparation). The error bars

represent the BOSS DR12 data. The solid lines correspond to the mean, and the shaded contours represent the 1σ regions, according to the MD PATCHY mocks

(red pre-, and blue post-reconstruction).

RSDs will not be done beyond k = 0.3 h−1 Mpc, and the compu-

tation of power spectra for thousands of mocks with large grids

becomes very expensive.

This fitting procedure had, however, as a consequence that the

three-point correlation function is slightly less precise at angles

close to θ ∼ 0 and θ ∼ π, as can be seen in Fig. 6, which prior to this

operation was fully compatible with the reference catalogue. In fact,

the reference BigMultiDark catalogue used in this study showed

a highly discrepant quadrupole, as compared to the observations.

This has been deeply analysed and better agreement has been found

based on an improved HAM procedure applied to the BigMultiDark

simulation (see Rodrı́guez-Torres et al. 2015, companion paper),

which however was not available at the moment of the generation

of the MD PATCHY mocks. The HOD model adopted in the QPM mock

catalogues assumed about 10 per cent satellite galaxies. This yields

a compatible quadrupole for the CMASS galaxies. However, as

these catalogues were not iteratively calibrated for different redshift

slices, their agreement with the LOWZ galaxies is less accurate.

A detailed analysis of the bispectra is presented in Figs 9 and 10

demonstrating reasonable agreement between the mocks and the

observations for different configurations of triangles across a wide

range of scales, given the high uncertainties introduced by the mask,

selection function, and cosmic variance.

3.3 Cosmic evolution

The cosmic evolution modelled in the MD PATCHY mocks was

achieved by fitting the clustering of 10 redshift bins for the full

redshift range spanning about 5 Gyr. This implied running structure

formation with ALPT for each redshift, i.e. modelling the growth

of structures and the growth rate, and additionally fitting the galaxy

bias evolution and the non-linear RSDs. The evolution of clustering

for both sets of mocks in the full redshift range is shown in Fig. 11.

While the correlation function for CMASS galaxies does not show

strong differences along the CMASS redshift range, this evolution

is very apparent for the LOWZ sample. Fig. 12 shows the compar-

ison between the mocks and the observations for different LOWZ

in more detail. The QPM mocks do not include a detailed cosmic

evolution within LOWZ or CMASS being based on mean redshifts

for each case. This explains why these mocks lose accuracy in the

two-point statistics towards low redshifts.

We investigate now the cosmic evolution of the covariance matri-

ces derived from the MD PATCHY mocks12 computed as in Anderson

et al. (2014):

cov[i, j ] =
∑

l(ξ
l
i − 〈ξ l

i 〉)(ξ l
j − 〈ξ l

j 〉)
Ns − 1

, (18)

with bins i and j, mock sample l, and Ns being the number of

simulations.

The correlation matrices for different redshift bins shown in

Fig. 13 were constructed upon the covariance matrices following

C[i, j ] =
cov[i, j ]

√
cov[i, i]

√
cov[j, j ]

. (19)

We find that the correlation matrices vary in subsequent redshift

bins. First, the correlation matrices are increasingly correlated close

to the diagonal for both the monopole and the quadrupole towards

lower redshifts, as expected from gravitational evolution coupling

different scales. This is seen in Fig. 13 as the diagonal red band

becomes broader especially comparing the highest redshift bin with

the lower ones. Secondly, we find that moderate off-diagonal corre-

lations present at higher redshifts disappear towards lower redshifts.

And thirdly, we can see that the correlation between the monopole

and the quadrupole at large scales becomes maximal in the redshift

bin 0.43 < z < 0.55, as can be seen in the white region in the lower-

right and upper-left blocks. This ‘triangular’ correlation is expected

from linear theory (see equations 7 and 9 in Chuang & Wang 2013).

Further calculations of the correlation functions including QPM

mocks are shown in companion publications (Gil-Marı́n et al.

2015a,b, companion papers).

Additionally, we show in Fig. 14 the angular correlation function

and in Fig. 15 the multipole moments (including the hexadecapole)

for different redshift bins based on the combined sample showing

good agreement between the MD PATCHY mocks and the data.

4 FU T U R E WO R K

We have taken advantage in this survey of the characteristic bias

of LRGs, being massive objects residing in high-density regions.

12 Covariance matrices for the different catalogues (LOWZ, CMASS, and

combined sample) will be made publicly available with the publication of

the galaxy catalogue.
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Figure 9. Bispectra and reduced bispectra for LOWZ mocks and observed galaxies for different configurations indicated above each panel. The red solid line

corresponds to the mean and the red shaded region to the 1σ contour of 100 MD PATCHY mocks. The black dots correspond to the BOSS DR12 data with the

error bars taken from the MD PATCHY mocks.

This work confirms that threshold bias is an essential ingredient to

explain the clustering of LRGs. This facilitates our analysis, since

the low-density filamentary network did not need to be accurately

described, and it has permitted us to rely on low-resolution (aug-

mented Lagrangian) PT-based methods. This will no longer apply

for upcoming surveys based on emission line galaxies residing in

the whole cosmic web. One could improve the methodology pre-

sented in this work by substituting the structure formation model

based on PT with a more accurate one (e.g. COLA). Whether this

is necessary, or whether more efficient alternative approaches are

sufficient (e.g. ALPT with MUSCLE corrections), will be investigated

in future works.

Non-local bias was only considered in the mass assignment step,

but neglected in the generation of the full galaxy population. This

may become important to model for emission line galaxies, and

needs a deeper analysis.

The approximate ‘halo exclusion’ modelling is mainly responsi-

ble for the deviation in the clustering of the most massive objects,

and could be improved by taking their full distribution of relative

distances, instead of taking a sharp minimum separation for each

mass bin, as is done here.

Another aspect which still needs to be improved in the catalogues

is the clustering on sub-Mpc scales. We have randomly assigned

positions of dark matter particles to the mock galaxies without con-

sidering that some of them are satellites of central galaxies. This

implies that these mocks are not appropriate for fibre-collision anal-

ysis. For the time being, we will leave the mock catalogues as they

are, since most of the studies are not affected by this. Neverthe-

less, we would like to stress that this aspect can easily be corrected

by assigning to a fraction of the mock galaxies close positions to

the major most massive ones in the neighbourhood, without the

need of redoing the catalogues. The QPM mocks better model fibre
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Figure 10. Bispectra and reduced bispectra for CMASS mocks and observed galaxies for different configurations. The red solid line corresponds to the mean

and the red shaded region to the 1σ contour of 100 MD PATCHY mocks. The black dots correspond to the BOSS DR12 data with the error bars taken from the

MD PATCHY mocks.

collisions, as the HOD adopted in this work successfully reproduced

the fraction of close satellites and central galaxies (Gil-Marı́n et al.

2015a, companion paper).

Also the photometric calibration systematics, presumably respon-

sible for the excess of power in the data towards large scales, require

further investigation.

We have considered one fiducial cosmology. It would be, how-

ever, interesting to provide sets of mock catalogues running over

different combinations of cosmological parameters.

Let us finally mention that we have ignored in this study super-

survey modes, which may be especially relevant for the analysis of

the power spectrum at very large scales (Takada & Hu 2013; Li, Hu

& Takada 2014a,b; Carron & Szapudi 2015).

We aim at addressing all these issues in future works.

5 SU M M A RY A N D C O N C L U S I O N S

We have presented 12 288 mock galaxy catalogues for the BOSS

DR12, including all relevant physical and observational effects, to

enable a robust analysis of BAOs and RSDs.

The main features of these mock catalogues are as follows:

(i) large number of catalogues: 2048 for each LOWZ, CMASS,

and combined LOWZ+CMASS and northern and southern galactic

cap,

(ii) accurate structure formation model on scales of a few Mpc,

(iii) accurate galaxy bias model including non-linear, stochastic,

threshold bias, and a non-local bias dependence on the tidal field

tensor and the exclusion effect separation of massive objects,

(iv) modelling redshift evolution of galaxy bias, growth of struc-

tures, growth rate, and non-linear RSDs,

(v) and additional survey features, such as geometry, sector com-

pleteness, veto masks, and radial selection functions.

The same degree of accuracy is achieved for the BOSS DR11 MD

PATCHY mocks, for which only 6000 light-cone mock catalogues

were produced (1000 for each LOWZ, CMASS, and combined

LOWZ+CMASS and northern and southern galactic cap).

The MD PATCHY mocks have shown a better match to the data

than the QPM mocks in terms of two- and three-point statistics.

Investigating the origin for these differences can be interesting as
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Figure 11. Monopole and the quadrupole for different redshift bins over the redshift range 0.15 < z < 0.7. The black error bars stand for the BOSS DR12

data. The shaded contours represent the 1σ regions according to the MD PATCHY mocks in blue and according to the QPM mocks in red. These measurements

are used in the BAO and RSD analysis in Chuang et al. (in preparation).

Figure 12. Monopole showing the evolution for LOWZ. The corresponding

redshift bins for the PATCHY mocks are represented by shaded regions, and

the observations by the error bars.

the physical models, and in particular the galaxy bias, adopted in

each method are quite different.

We note that neglecting the stochastic bias considered in the MD

PATCHY mocks, modelling the deviation from Poisson shot noise

(predominantly overdispersion), could underestimate the clustering

uncertainties.

The mock catalogues have enabled a robust analysis of the BOSS

data yielding the necessary error estimates and the validation of the

analysis methods. In particular, the studies include the following:

(i) a full clustering analysis (Grieb et al., in preparation; Sánchez

et al., in preparation: see Fig. 15),

(ii) a tomographic analysis of the large-scale angular galaxy clus-

tering, where full light-cone effects (e.g. growth, bias, and velocity

field evolution) are essential (Salazar-Albornoz et al., in prepara-

tion: see Fig. 14),

(iii) a study of the BAO reconstructions (see Vargas-Magana

et al., in preparation, and Fig. 8 showing the performance on the

MD PATCHY mocks),

(iv) and an RSD analysis (Gil-Marı́n et al. 2015a, companion

paper; Beutler et al., in preparation).

We have demonstrated that the MD PATCHY BOSS DR12 mock

galaxies match, in general within 1σ , the clustering properties of the

BOSS LRGs for the monopole, quadrupole, and hexadecapole of

the two-point correlation function both in configuration and Fourier

space. In particular, we achieve a high accuracy in the modelling of

the monopole up to k ∼ 0.3 h Mpc−1. We have furthermore shown

that we also obtain three-point statistics with the same level of
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Figure 13. Cosmic evolution of the correlation matrices for different redshift bins indicated in the legend in bins of 5 h−1 Mpc. Lower-left block for the

monopole, upper-right block for the quadrupole, and upper-left and lower-right blocks for the correlations between the monopole and the quadrupole. See

Section 3.3 for details of the calculation. These correlation matrices are used in the BAO and RSD analysis in Chuang et al. (in preparation).

accuracy as N-body-based catalogues at scales larger than a few

Mpc, which are close to the observations.

The good agreement between the models and the observations

demonstrates the level of accuracy reached in cosmology, our un-

derstanding of structure formation, galaxy bias, and observational

systematics.

All the mock galaxy catalogues and the corresponding covariance

matrices will be made publicly available together with the release

of the BOSS DR12 galaxy catalogue.
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on the DR12 combined sample. Central panel: angular cross-correlation function on small scales between different tomographic bins, following the same key
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Norberg P., Baugh C. M., Gaztañaga E., Croton D. J., 2009, MNRAS, 396,

19

Nuza S. E. et al., 2013, MNRAS, 432, 743

Padmanabhan N., Xu X., Eisenstein D. J., Scalzo R., Cuesta A. J., Mehta

K. T., Kazin E., 2012, MNRAS, 427, 2132

Peacock J. A., Heavens A. F., 1985, MNRAS, 217, 805

Percival W. J. et al., 2001, MNRAS, 327, 1297

Percival W. J., Verde L., Peacock J. A., 2004, MNRAS, 347, 645

Percival W. J. et al., 2014, MNRAS, 439, 2531

Prada F., Klypin A. A., Cuesta A. J., Betancort-Rijo J. E., Primack J., 2012,

MNRAS, 423, 3018

Press W. H., Schechter P., 1974, ApJ, 187, 425

Reid B. A., White M., 2011, MNRAS, 417, 1913

Reid B. et al., 2016, MNRAS, 455, 1553

MNRAS 456, 4156–4173 (2016)
Downloaded from https://academic.oup.com/mnras/article-abstract/456/4/4156/2892161
by Universitat de Barcelona. CRAI user
on 23 January 2018

http://arxiv.org/abs/1206.2838
http://arxiv.org/abs/1403.5237
http://arxiv.org/abs/1312.4889
http://arxiv.org/abs/1509.06386
http://arxiv.org/abs/1509.06373
http://arxiv.org/abs/e-prints
http://arxiv.org/abs/1411.4001
http://arxiv.org/abs/1507.05329
http://arxiv.org/abs/0912.0914
http://arxiv.org/abs/1211.0310


BOSS MultiDark PATCHY mocks 4173

Rodrı́guez-Torres S. A. et al., 2015, preprint (arXiv:1509.06404)

Ross A. J., Brunner R. J., 2009, MNRAS, 399, 878

Ross A. J. et al., 2012, MNRAS, 424, 564

Ross A. J., Samushia L., Howlett C., Percival W. J., Burden A., Manera M.,

2015, MNRAS, 449, 835

Saito S., Baldauf T., Vlah Z., Seljak U., Okumura T., McDonald P., 2014,

Phys. Rev. D, 90, 123522

Saslaw W. C., Hamilton A. J. S., 1984, ApJ, 276, 13

Schlegel D., Abdalla F., Abraham T., Ahn C., Allende Prieto C., Annis J.,

Aubourg E. et al., 2011, preprint (arXiv:1106.1706)

Scoccimarro R., Sheth R. K., 2002, MNRAS, 329, 629

Seljak U., 2000, MNRAS, 318, 203

Seo H.-J., Eisenstein D. J., 2005, ApJ, 633, 575

Sheth R. K., 1995, MNRAS, 274, 213

Sheth R. K., Lemson G., 1999, MNRAS, 304, 767

Sheth R. K., Mo H. J., Tormen G., 2001, MNRAS, 323, 1

Sheth R. K., Chan K. C., Scoccimarro R., 2013, Phys. Rev. D, 87, 083002

Skibba R. A., Sheth R. K., 2009, MNRAS, 392, 1080

Skillman S. W., Warren M. S., Turk M. J., Wechsler R. H., Holz D. E., Sutter

P. M., 2014, preprint (arXiv:1407.2600)

Smith R. E., Scoccimarro R., Sheth R. K., 2007, Phys. Rev. D, 75, 063512

Somerville R. S., Lemson G., Sigad Y., Dekel A., Kauffmann G., White S.

D. M., 2001, MNRAS, 320, 289

Springel V. et al., 2005, Nature, 435, 629

Swanson M. E. C., Tegmark M., Hamilton A. J. S., Hill J. C., 2008, MNRAS,

387, 1391

Szapudi I., Szalay A. S., 1998, ApJ, 494, L41

Takada M., Hu W., 2013, Phys. Rev. D, 87, 123504

Tasitsiomi A., Kravtsov A. V., Gottlöber S., Klypin A. A., 2004, ApJ, 607,
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