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Summary. A mixture of analytic and numerical techniques is used to study the
clustering properties of local maxima of random noise. Technical complexities
restrict us to the case of 1D noise, but the results obtained should give a
reasonably accurate picture of the behaviour of cosmological density peaks in
noise defined on a 3D domain. We give estimates of &, _,(7), the two-point
correlation function of local maxima, for both Gaussian and non-Gaussian
noise and show that previous approximations are not accurate. Furthermore,
we show that the strong dependence of &,,_,(7) on the shape of the underlying
correlation function, &(r), ensures that no simple approximations to &_(7)
are obtainable for general &(r). We find that zero-crossings of &,_(7) do not,
in general, coincide with those of &(r). This poses a problem for the CDM
model, in that the cluster—cluster correlation function is clearly positive at
distances where we expect it to be negative if clusters are identified with peaks
of a Gaussian random field. Using a log-normal field to model the density
distribution obtained after non-linear evolution from Gaussian initial
conditions, we find that a moderate amount of non-linear evolution, as
expected on cluster scales, does not have a drastic effect on the bias achieved.
We also study the distribution of nearest-neighbour distances for local maxima
and find that, for high maxima, this distribution is very flat, leading to a scaling
of the mean nearest-neighbour distance with sample size, similar to that
observed by Einasto & Einasto.

1 Introduction

It has been known for some time that the two-point correlations of rich clusters are much
larger than those of galaxies. The two-point correlation function for bright galaxies has the
form

£ (1)~ (i) ',

r(),g

*As usual, & =H,/100 km s~ ! Mpc~".
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where r,, =5 h~! Mpc (Groth & Peebles 1977; Davis & Peebles 1983). The first attempts to
determine the two-point correlation function for rich clusters gave the same shape but a
different amplitude:

r -1.8 .
gcc(r)z(———) > (1)
¥ 0,¢

where ry =25 h~! Mpc (Bahcall & Soneira 1983; Klypin & Kopylov 1983; Postman, Geller
& Huchra 1986). This result is less well established than £,(r) for two reasons. Firstly, the
Bahcall & Soneira (1983) sample is very small (only 104 clusters) and the statistical
uncertainties are correspondingly large; a realistic analysis of the errors in determinations of
E.(r) has shown that a 95 per cent confidence interval for the value of r,. is (12.8,
39.2) h~! Mpc (Ling, Frenk & Barrow 1986). Secondly, there are considerable doubts as to
the reliability of Abell’s catalogue (Abell 1958); the visual method used to obtain the richness
class of clusters can lead to large systematic errors (Lucey 1983). The second of these points
has recently received much attention. Bahcall & Soneira (1983) and Bahcall, Soneira &
Burgett (1986) noted that &_(r) seems to be very elongated in the line-of-sight direction. Their
explanation for this was the (inferred) existence of large cluster peculiar velocities ( ~ 2000 km
s 1). A careful analysis of a larger 3D cluster catalogue (Struble & Rood 1987) has revealed
clear evidence for projection effects in the Abell catalogue (Sutherland 1988). When allowance
is made for these effects, the ‘best’ cluster—cluster correlation function is

r -1.8
Er)= (m) , (2)

and there is no evidence for large cluster velocities or for significantly non-zero correlations at
r greater than ~ 30 A~! Mpc. Other workers have claimed that these effects are small in the
sample of R=1, D<4 clusters that is the source of most current estimates of &.(r) and,
therefore, stick to the form (1) (Dekel, Blumenthal & Primack 1988).

This enhancement of & (r) compared to &,,(r), together with the observed tendency of the
correlation length to increase with cluster richness (Bahcall & Soneira 1983; Bahcall et al.
1986), led Kaiser (1984) to suggest that rich clusters might be biased tracers of the
mass distribution on cluster scales. In Kaiser’s model the enhanced clustering of clusters is
primarily a statistical effect that occurs because clusters form only at the high peaks of a
smoothed random field of density perturbations. This idea was later discussed by Peacock &
Heavens (1985) and Bardeen ez al. (1986), who suggested its relevance to theories of biased
galaxy formation (see also Davis ef al. 1985; Couchman 1987a,b).

Unfortunately, calculations of the correlation properties of peaks (i.e. local maxima) of the
density are rather difficult to perform rigorously. To avoid messy mathematics, Kaiser (1984)
calculated the correlation function of points lying above a threshold rather than local maxima,
an approach also used by Politzer & Wise (1984) and Jensen & Szalay (1986). One can think
of this approximation as being equivalent to taking the correlation function of clusters of
galaxies to be equal to the correlation function of those galaxies which lie in clusters. There are
two problems with this approach. Firstly, as pointed out by Coles (1986), this approximation
systematically overestimates & (r) for distances up to r=20 Ak~ Mpc (see also Peacock &

- Heavens 1985; Bardeen ez al. 1986). Secondly, all calculations based on the high-level region
approximation predict that & (r)=0 whenever the underlying matter correlation function is
zero. Monte-Carlo simulations of 3D noise by Otto, Politzer & Wise (1986a) reveal that
maxima do not possess this property. Unfortunately, their analytic expressions for the correla-

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System

220z ¥snBny 0z uo 1sonb AQ 1L.8/€ L1 L/61E/Z/8EZ/RI0IE/SEIUW/ WO dNO DIWSpPEoE//:SARY WO} POPEOJUMOQ


http://adsabs.harvard.edu/abs/1989MNRAS.238..319C

FT9BIVNRAS. Z38C ~319C!
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tions of peaks are incorrect (Otto, Politzer & Wise 1986b) and they give no explanation for this
effect. This point is particularly relevant to the cold-dark-matter (CDM) model, in which
context biasing is usually discussed; the CDM correlation function goes to zero at r~ 18 4?2
Mpc if Q=1 (Otto ez al. 1986a) and both forms of £_(r), (1) and (2) are clearly non-zero at this
distance.

These two problems motivate a study of the correlations of local maxima of random noise.
Bardeen et al. (1986) obtained asymptotic expressions for the correlation function of peaks of
Gaussian random noise, &,._(r), as 7=, but these cannot be accurate for all possible
correlation functions. Further progress with peaks of 3D fields is horrendously difficult - see
Cline et al. (1987). All is not lost, however. The reason for studying peaks rather than high
regions is that peaks define a spatial point process. It is likely therefore that we could get at
least a good qualitative understanding of the behaviour of peaks of random noise in 3D by
studying 1D noise. In fact, Appendix A shows that this approximate method should be a
quantitative, as well as qualitative, improvement on previous estimates.

As mentioned above, the form of &, .(r) is important for theories of biased galaxy
formation as well as for theories of the origin of rich clusters. In hierarchical models, clusters
are relatively late-forming and therefore undergo little non-linear evolution. Studies of
biased galaxy formation, however, must take into account the substantial amount of non-linear
evolution which must have occurred on galaxy scales. Since the only analytic studies of biasing
that are possible are predominantly linear, it would be unwise to use these analytic methods to
study the galaxy distribution. Studies of bias in the galaxy distribution can only be performed
using N-body experiments (Davis et al. 1985; Bardeen, Bond & Efstathiou 1987; Batuski,
Melott & Burns 1987; White ef al. 1987a,b). Furthermore, in the CDM model both galaxies
and clusters are biased tracers of the mass distribution and one would have to handle biasing
on two different scales simultaneously in order to study the model in detail. To avoid
unnecessary complications, therefore, we shall look only at rich clusters for a concrete
cosmological application for our results and we will not worry about how individual galaxies fit
into the picture. Of course, some non-linear evolution must have occurred on cluster scales -
we discuss the possible effects of this later in the paper.

The layout of this paper is as follows: in Section 2 we give some technical background
concerning Gaussian random fields and previous estimates of & (r); in Section 3 we study
&ok-pl7) for 1D Gaussian noise; in Section 4 we perform a similar analysis of non-Gaussian
noise in an attempt to allow for non-linear effects; in Section 5 we look at nearest-neighbour
distributions for peaks as an independent test of the biasing hypothesis. Finally, in Section 6,
we present and discuss the conclusions.

2 Technical background
2.1 GAUSSIAN RANDOM FIELDS

The density fields usually considered are Gaussian random fields, as predicted by most
inflationary models. A Gaussian random field can be represented as a superposition of
sinusoidal components with random phases:

o(x)=Y. c(k)cos[k-x + ¢(k)], (3)

where

o(x)=[o{x) = (L) o),
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where k =|k|, the ¢(k) are independent and uniformly random on [0,2] and P(k), the power-
spectrum of the random field, is proportional to (| c(k)|?).

An important consequence of the form (3) is that by the central limit theorem 6 is normally
distributed. Furthermore, the joint distributions of the values of & at different points are
multivariate Gaussians (as are the joint pdf’s of ¢ and its spatial derivatives). This allows
substantial progress to be made in determining the statistical properties of such fields.

The Fourier transform of P(k) is called the correlation function:

E(r)“JwP(k)kz[M} dk.
0 kr

We shall be dealing mainly with 1D random noise in this paper. It is therefore convenient to
define a 1D power-spectrum Q(k)

O(k) =2 Jwé(r) cos(kr) dr. (4)

T o

The moments of this power-spectrum are defined thus:

ag=rQ(k)k2fdk. (5)

0

Note that 02 = 02 = £(0) is the variance of the field and o2 = — £"(0) is the mean-square spatial
derivative of the field. It is possible to define a coherence length, r,, as follows:

_ [ &0
V=€) (©)

It is worth remarking that it is necessary to smooth the random field with some sort of filter
(usually a Gaussian) to select structures on the scale of interest (in this case, a cluster scale).
The smoothing radius must be chosen to produce the correct number-density of objects (Coles
1986).

There are many sources for further technical details concerning Gaussian random fields
(Rice 1945, reprinted in Wax 1954; Adler 1981; Vanmarcke 1983; Peacock & Heavens 1985;
Bardeen ez al. 1986;Couchman 1987a,b).

2.2 THE HIGH-LEVEL REGION APPROXIMATION

Kaiser (1984) sought to explain the enhanced correlations of Abell clusters as a primarily
statistical effect that does not depend on the existence of substantial spectral power on cluster
scales. He argued that, if clusters form at the high peaks above a sharp threshold uo of an
initially Gaussian density field (smoothed on an appropriate scale: Section 2.1), then they
exhibit enhanced two-point correlations over those of the underlying matter distribution.

Here we outline the statistical details. We calculate the two-point correlation function for
regions of a Gaussian random field lying above the level uo where ¢? is the variance of the field
(which is assumed to have mean value zero). In dealing with finite regions exceeding a given
threshold instead of the true peaks (i.e. local maxima) of the field one can avoid the complica-
tion of having to consider derivatives of the field. Let the field possess a covariance function
&(r). In the simplest version of this model the galaxies trace the mass so that &(r) =&, (r). It is
possible to calculate the correlations of such regions as follows:
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if we choose a point at random, the probability that the field at that point takes a value
exceeding the level uo is just

P1=J P(y)dy, (7)

uog

where, for a Gaussian field,

2

P(y)=— exp(—yz). (8)

2w 20

If we choose another point at a distance r from the first, the probability that both points lie
above the threshold is

Pﬁ{ J P(y,,y,)dy,dy,. 9)

uogj uc

From the Gaussian nature of the field it follows that (Section 2.1)

1 1 §(O)yf+§(0)y§—2§(r)y1y2}
P —— e exp| — . 10
DR E NPT 280 - £ 1ol
Hence, the two-point correlation function for the regions, §,(r), is

P,
1 =—. 11
+Er) = (1)

The exact evaluation of the integrals involved in (11) is difficult. The original approximation by
Kaiser (1984) for large © and small £ (r) was

su<r>=§z E(r). (12)

Judicious choice of u can therefore explain the enhanced two-point correlations of rich
clusters (1) or (2). The model can also explain, at least qualitatively, the trend of increasing r,
with cluster richness, if we identify richer and richer clusters with higher and higher thresholds.

Other workers have examined this model in even more detail. Politzer & Wise (1984)
obtained the following expression [where &, (r) is not necessarily small but u> 1]

1+&,(r)=exp[ué(r)/o®]. (13)

They also computed higher-order correlations in this approximation. Jensen & Szalay (1986)
found an expression that gives &,(7) to arbitrary accuracy* for any u:

n= 3 L o) (14)

*This result appears to be a rediscovery of Pearson’s (1901) tetrachoric expansion of the bivariate normal
integral. It has been known by statisticians for many years that it converges so slowly to the result as to be almost
useless (Gupta 1963).
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where

_ 2xH,, _,(x)2~™"?
" [nxexp(x®)erfc(x)’

A (15)

where x =u/J2; w(r) =&(r)/E(0); H,(x)is a Hermite polynomial (Abramowitz & Stegun 1965).

Note that all these forms for the correlation function of regions above the level uo predict
that £,(r) =0 whenever &(r)=0 so that rich clusters are anticorrelated whenever the mass is
anticorrelated.

3 Peaks in 1D Gaussian noise
3.1 ANALYTIC STUDIES OF LOCAL MAXIMA IN 1D NOISE

The calculation of &,,_(r) is rather similar to that of &,(7) (Section 2.2) except that we need to
compute probabilities that points are local maxima above the level uo. We denote the two
relevant probabilities by P¥ and P3 to replace the P, and P,in (11).

First consider P, the probability that a point chosen at random is a local maximum of the
random field above the level uo. This problem has been studied previously by Cartwright &
Longuet-Higgins (1956). Without loss of generality, consider a Gaussian random process
which has zero mean and unit variance. Denote this process &(x).

If &(x) has a local maximum in the interval (x, x +dx) then in this interval £'(x) must take a
value in a range of width =|&"(x)| dx about zero. The probability of this occurrence, and of
&(x) simultaneously lying in the range (¢, £ + d¢) is

0
U P(e,0,¢")| " | de" | dx,

where P(e,¢',¢") is the joint pdf of [e(x),&'(x),e"(x)]. For a Gaussian process this will be a
multivariate Gaussian. The covariance matrix is

1 0 -o

M 0 0
11 " 01 ) (16)

- 0] 0 o,

which has determinant A = 0?03 — 0% and the spectral moments, 0?, are defined by (5). Now if
e=(¢,0,¢') then

1 1 )
P(£)=(—2Wexp(—§ £'M“'€). (17)
The probability per unit length that the point is a maximum above the level u is therefore

o« [0
P’{‘=J J P(e)|"| de" de. (18)

uJ—

This expression can be integrated analytically in terms of special functions. First define
Uy =A/0?02 and ii = u,/V1 — uz. Using the functions
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P(x)=%tﬁwexp(— 12[2)dt (19)
and
QO(x) =EECXP( —22)dt, (20)
we find that

P’{‘=(J1—mi)eXP<—u2/2)P(g) +Q(ui) (21)
%k
(see also Cartwright & Longuet-Higgins 1956).

We now need P%, the probability that two points separated by a distance r are both maxima
above the level u. Assuming that the random process is stationary, this is equivalent to the
probability that a point at x=0 and a point at x =r are both local maxima above u. We need
the joint pdf of €=[g(0),£'(0),£"(0), &(r), £'(r), €"(r)]. Again, the Gaussian nature of the process
will ensure that this is a multivariate normal distribution. The 6 X 6 covariance matrix M is
composed as follows:

Ml] MIZ)
M= , (22)
(MZI M22

where M;, =M,,, which contains the correlations of field values and derivatives at one point, is
given by (16). The off-diagonal components are rather more difficult to calculate. The general
method is given by Rice (1945) (see Wax 1954). We illustrate it with a couple of elements. First
consider (£(0) &'(#)). This is defined to be

T—'aoT 0

=&'(r). (23)

(e(0)e'(r))=lim 1 JTS'(x +r)e(x)dx.

Similarly we find that

(e(r)€'(0))= lim 1 JTe’(x) e(x+r)dx

T-»ooTO

= lim 1 Jrs’(x +r)e(x)dx

==&(r) (24)

Each component of M,, can be calculated in this way. The result is that

&(r) E(r)  E'(r)
M,= —El(r) _Eﬂ(r) _5,”(’)~

E”(r) Slll(r) gllll(r) (25)
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By symmetry, it is clear that M, =MYT,. Note also that if r—0, &(r)—1, &'(r)-E"(r)-0,
E"(r)~ —o? and £"'(r)~ o3 so that M;,~M,;. The probability (per unit length?) that two
points separated by a distance r are both maxima above the level u is

1 0 [ [0 0 1 B
Pt )| ) e - e e e 20

where € ={¢,}=[¢(0),0,£"(0),&(r),0,¢"(r)] and || M| is the determinant of matrix (22) which will
be a function of r.
The task now is to evaluate the integral (26) and hence evaluate &, using the fact that

Py
(PhY

1+ Epk—pk(r)= (27)

similarly to (11). It is difficult to perform such integrals analytically and, in any case, the result
would be a series expansion similar to the form (15) which converges very slowly, especially for
the large values of &(r) that occur near r=0 (see Gupta 1963). Such a series expansion would
tell us nothing that cannot be obtained from a direct numerical integration of (26).
Unfortunately also, a numerical integration of (26) is rather CPU intensive because of the large
number of integrand evaluations required when 7 is near zero.* When r is close to zero, all the
off-diagonal terms in the matrix M are comparable and the matrix tends to become singular
and is consequently difficult to invert. Rather than use numerical integration to obtain the
behaviour of &, _,(7) at all separations 7, we therefore use a quicker method (Section 3.2) to
determine a rough estimate of &, _,(r) at all separations and use the numerical integration to
check the significance of the results [especially with regard to zero crossings of &, (7)].
Integrations were carried out using standard NAG routines. The great advantage of using
Monte-Carlo methods here is that we can extract very much more information from each
simulation than just £, _(r) (see Section 5).

However, before going on to show how to obtain rough estimates of £, (which are, in
fact, rather accurate), it is worth pointing out a few details of the behaviour of & ok-pk that can be
deduced just from the form of the integral (26). Firstly, two essentially separate effects give rise
to the difference between &, and &. One is the ‘thresholding’ effect which occurs in the same
way as detailed in Section 2.2 and the other is the fact that spatial derivatives of the process are
themselves correlated which causes an enhancement in the probability of getting a local
maximum near to a given local maximum. Secondly, it is relatively straightforward to expand
the quadratic form in (26) to lowest order in 7 to see what the joint probability looks like at
small distances. When this is done we find that P%—exp(— C/r?) as r—0 (C is a constant) so
that &, (r=0)= —1, as expected. Thirdly, note that the integral depends on the derivatives
up to fourth order of & and is therefore very dependent not just on the value of & but also on
the detailed shape of £(r). When r is close to zero, all the derivative terms in M may be the
same order of magnitude. There is no hope of obtaining a simple fit of a single function of &(r)
to the behaviour at these distances. This has been born out by 2D numerical studies of the
clustering of peaks (L. Appel, private communication) where the form of £ _, is found to have
a very complicated dependence on the underlying power spectrum. Furthermore, note that to
compute &, for cosmologically interesting fluctuation spectra, we would need to know all
derivatives of &(r) up to and including fourth order to the same accuracy. We do not even know

*See Lumsden, Heavens & Peacock (1989) - they reduce the CPU time required by performing one of the four
integrals in (26) analytically.
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the form of &(r) analytically in the CDM model and therefore the task of evaluating the other
terms is made even more difficult. Couple this with the problem that we cannot really allow for
non-linear effects and the problem seems rather intractable.

We can get a good qualitative understanding of what is going on, however, by using a couple
of model functions for &(r). Firstly, note that Kaiser (1984) chose a simple model which has
&(r)ec1/r? at large r. This cannot be the form of &(r) at all separations because of the divergent
variance £(0) but if we choose the form

2\
§<r)=(1+2_ri) , (28)

we should get a good idea of how closely &, resembles the predictions of Section 2.2.

We are also interested in zero-crossings of &(r) and &, ,(r) and the above form of &(r)
never crosses zero. Bearing in mind that we want to compute derivatives of &(r) as simply as
possible, a good model to use is a Bessel function (Abramowitz & Stegun 1965) which has the
advantage that one can calculate the derivatives from simple recursion relations (Appendix B).

E(r)=Jo(4r). (29)

3.2 MONTE-CARLO SIMULATIONS OF 1D NOISE

Although one can evaluate (26) numerically to reasonable accuracy using standard techniques,
the CPU time taken to do this is rather large. It is much easier to evaluate an estimate of
& k-pk(7) using Monte-Carlo simulations and use the numerical integration to check the results.

A simple method exists for generating simulations of stationary 1D Gaussian noise with a
specified covariance function &(r). Note that the 1D power spectrum of such noise is just the
Fourier cosine transform of the covariance function (4). A stationary Gaussian random process
can therefore be constructed as a sum of waves with random phases, using

e(x) =2 cycos(kx +¢,). (30)

Such a construction is easily performed by generating amplitudes from a Gaussian distribution
with variance* « Q(k) and with phases drawn from a uniform distribution on (0,27) using
standard numerical techniques. A Fast Fourier Transform (FFT) of this random phase
realization then produces é(x;), a discrete-step realization of &(x) with the desired covariance
function.

We have performed simulations of Gaussian processes with &() given by both (28) and (29).
For the first form the required power spectrum is

Q(k)’*J‘Qo (1 +§xiz)—lcos(kx)dx

0 c

~exp( — kral2). (31)

The coherence length of this process is just 7.

*The constant of proportionality just alters the variances of ¢ which we scale out of the problem by considering
uo peaks. Without loss of generality, we can assume that o*(¢)= 1.
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For the form (29) we get

el

Q(k) ~J Jo(Ax)cos(kx)dx

0

2 2y-1/2,
N[u —K) k<i (32)
0 ; k=21
The coherence length of this process is J2/A. Both of these transformations can be found in
Gradshteyn & Ryshik (1965).

For each of the realizations £(x,), we also evaluate £(r), the covariance function of the
simulation to check for goodness-of-fit to the required form (28) or (29). Relatively few waves
(~50) are needed for the form of £(r) to match the required form with acceptable accuracy
and also for the distribution of (x;) to be acceptably close to a Gaussian.

As mentioned above, this technique generates a discrete realization of £(x). All the
simulations consist of 65 536 points. For each é(x;) we locate all maxima above various levels
uo [ie. those points x; such that &(x;_,) <&(x;)>é(x;,,) and &(x;)>uo]. The two-point
correlation function of peaks at a separation r; is defined in terms of the excess number of pairs
of peaks (above that which would be expected in a random distribution) at a separation r;. We
calculate this by binning the number of pairs of peaks with a given separation to obtain N,(r,).
Then we use

N— ()

(33)
where N,,(r;) is the number of pairs of peaks with separation r; we would expect if the maxima
were scattered at random along the length of the simulation. Clearly uncertainties in N,,(7;) can
have a big effect on Epk _pkl7:) 80, to evaluate this accurately and also to remove any possible
systematic effects due to the peak-flndmg algorithm, for each simulation we count the number
of peaks above uo and generate a random distribution of that number of peaks. A large
number of simulations { ~ 150) of each process are generated and the resultant pair distribu-
tions N, and N,, combined to give one aggregate distribution. This method should give a
good estimate of the errors in the final estimate of &, _(7,).

Note that the prescription above for generating £(x;) produces a periodic realization of the
process — the two ends of the simulation are identified. This allows the peak finding algorithm
to ‘wrap around’ the edges of the simulations and therefore dispense with the need to consider
edge effects which often occur in correlation analyses (Peebles 1980).

The final forms of &, _,(7;) thus obtained are shown in Fig. 1 for §(r) given by (28) and Fig.
2 for &(r) given by (29). Distances are given in computer units (cu) where 1 cu is the distance
step x; —x;_,. The coherence lengths chosen for the two figures were 5 cu for the first and
7.07 cu for the second. The first graph (a) of each pair shows £,,_,(r,) for all maxima (i.e. the
threshold u— — ) and the second has u = 2. The wiggliness of the graphs should give a good
indication of the likely statistical error in the estimates of &, . In addition to Epk (7:) the
second graph of each pair shows the Politzer-Wise approximation (13).

Let us consider Fig. 1. We can see the ‘repulsive core’ predicted in Coles (1986) quite clearly
for small separations in both (a) and (b). Note that in (a) the maxima are basically uncorrelated
after we emerge from this core. In (b) however the threshold causes an amplification which the
Politzer-Wise form clearly overestimates at small distances (due to the tail of the region-size
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Figure 1. Estimates of the peak-peak correlation function for (a) all maxima and (b) maxima above 2¢ for
Gaussian noise with covariance function (28). The dashed line shows the underlying £(r) and the dashed line [in
(b) only] shows the Politzer-Wise approximation, & (r).
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(Y]
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(a) (b)
Figure 2. Estimates of the peak-peak correlation function for (a) all maxima and (b) maxima above 2o for

Gaussian noise with covariance function (29). The dashed line shows the underlying &(r) and the dashed line [in
(b) only] shows the Politzer-Wise approximation, & (r).
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distribution). At large distances, the Politzer-Wise form seems quite accurate. This shows that
Kaiser’s thresholding amplification is a real effect for maxima and that the whole phenomenon
cannot be due to the overcounting effect described in Coles (1986). Results for different values
of u show that higher thresholds produce a higher amplification.

Now consider Fig. 2. Again, the repulsive core is evident here but it seems to be much larger
than the previous case. It is clear from (a) that, in this case, there are substantial enhancements
of &, over & even without a threshold. This effect is explained below. Note also that the
zero-crossings of épk_pk are not the same as those of & although the effect appears quite small
even for this strongly oscillatory covariance function. The significance of this difference has
been established by accurate numerical integration of (26) in the vicinity of the zero crossing
predicted by the simulations and is quite clearly a genuine artifact that cannot be explained by
statistical errors in the simulations. This confirms that the Otto et al. (1986a) effect is real.
Note also that, although some enhancement is obtained without thresholding, inclusion of a
threshold also causes an increase in the amplification, The Politzer—-Wise form does not seem
to be a very good fit at any distance in this model.

3.3 DISCUSSION

All of these results can be explained quite simply when one recalls the argument given above
that the difference between &,,_,(7) and &(r) is due to two essentially separate effects, the
thresholding effect (which is accounted for in the Kaiser model: Section 2.2) and an additional
effect which is due to the correlations of the derivatives of the process. The thresholding effect
relies upon the underlying &(7) being non-zero (Section 2.2) whereas the derivative correla-
tions depend on derivatives of £(r) and are therefore not necessarily zero when & itself is zero.

Now consider the results for & given by (28). Because £(7) is falling monotonically, the
spatial derivatives of &(r) are also falling and they fall more quickly than § itself. In (a), when
we emerge from the repulsive core all of the derivative correlations have essentially
disappeared. There is, therefore, no contribution to &, _ from such correlations. But there is
no thresholding amplification either so the net &,_(7) is close to zero. When the threshold is
applied (b), an enhancement is achieved. This is reasonably well fitted by the Politzer—Wise
formula because only the thresholding is playing a role in the enhancement.

On the other hand (29) is qualitatively different. When we emerge from the repulsive core in
this case, the derivative correlations are of the same order as £ itself (because & oscillates in 7).
These correlations can therefore produce an enhancement even when no threshold is applied.
When the threshold is applied, the amplification is increased by the same mechanism as above.
Note also that when a zero-crossing of § occurs, the derivative correlations are not necessarily
zero and so can produce an enhancement of &,_(r) even when the thresholding enhancement
is zero (as it must be whenever § itself is zero). This therefore explains the Otto et al. (1986a)
result and also the results above (Section 3.2). '

Incidentally, some authors (e.g. Peacock & Heavens 1985) have suggested that by
considering all maxima (without the additional thresholding effect) one might achieve
substantial biasing. The reason behind this is that p,,,.(d), the distribution of maxima of the
overdensity field, can be very different from p(3d), which is the underlying Gaussian distribution
of unconditioned field values. Clearly, if the mass correlations have the form (28) then this idea
cannot work as no enhancement of peak-peak correlations is observed. In fact, the peaks are
less clustered than the mass in this case. To make a viable biased model with (28) for the
underlying correlation function, one clearly needs an additional threshold.

Note also that the ‘repulsive core’ seems much larger for the simulations in Fig. 2. We saw in
Coles (1986) that the size of excursion regions was of order the coherence length which is
slightly larger ( ~ 40 per cent) than in Fig. 1. This is not enough to explain the much larger
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domain of anti-correlation, however. The real cause of this effect can be deduced by looking at
the form of &(r) and noting that it is negative at values of r greater than the coherence length.
When we emerge from the repulsive core, &, _(7) is amplified by the factors discussed above
but the underlying &(r) is negative and so &, _ () becomes even more negative. Clearly,
& -pk(7) cannot be < —1 so it ‘saturates’ until the underlying &(r) starts to increase again. This
effect makes the core look bigger than it actually is.

As a further point it is worth remarking that the ‘repulsive core’ which shows up so clearly in
these simulations (and also in Peacock & Heavens 1985; Lumsden ez al. 1989) seems to pose
rather drastic problems for the Kaiser model as it is clearly not observed in the cluster-cluster
correlation function, &.(r) (1). This is not really much of a problem, however, because we
expect non-linear effects at small separations to produce rather many close pairs of clusters
quite rapidly and thus eradicate this core. This occurs because the size of the core is roughly
the size of a cluster before it collapses and after it has collapsed it is very much smaller. Nearby
clusters can thus approach to within the original repulsive core.

The biasing model for rich clusters is usually discussed in the framework of the CDM
cosmogony so it is interesting to make a few comments about this specific scenario. We have
not used the correct &(r) for CDM so anything we say will be approximate, but the results of
this section do seem to pose serious problems for this model. The smoothed CDM covariance
function looks like ~ r~2 until we reach the scale set by the horizon size at matter-radiation
equivalence ~ 18 A~ 2 Mpc (for Q,= 1), so we should get a reasonable fit to the behaviour of
biased CDM if we take the form (28) for intermediate distances with a sudden switch to a
‘steep’ form like (29) at a distance of order the zero-crossing. The first obvious problem is with
the zero-crossing of &, _,(r) which moves inwards by —5 & ~?2 (estimated) Mpc compared to
&(r), our rough estimate agreeing with the result of Otto et al. (1986a). As discussed in Section
1, the cluster—cluster correlation function seems to be positive out to at least 30 2~ ! Mpc. The
zero crossing therefore suggests that 4~ 0.4-0.5 or that Q,<1 (or both). There is also a
problem with the amplitude before we get to this point. The normalization of the CDM
spectrum is uncertain: Bardeen ez al. (1986) choose a value roughly twice that of White et al.
(1987a,b). By scaling our numerical estimates according to these normalizations we find that
neither normalization can reproduce the form (1), although the Bardeen er al (1986)
normalization can reproduce (2) (within the errors of our simulations). This is the preferred
choice in any case because it is the only one that guarantees that one has the correct number
density of clusters, although there may be better physical arguments for other normalizations,
based on collapse time considerations. According to these approximate arguments it would
seem that, for CDM to reproduce the observed cluster—cluster correlations, we require at least
one (preferably more) of the following to be true:

(i) The Bardeen et al. (1986) normalization of the CDM spectrum is the correct one.

(i1) The Hubble parameter is rather small (2 ~ 0.4-0.5).

(i) Q4 < 1.

(iv) The cluster—cluster correlation length is ~ 14 A ~! Mpc rather than 25 A ~! Mpc.
Although these conclusions are based on approximate arguments, they are in agreement with
those obtained by detailed 3D simulations of CDM fluctuations performed independently by
Lumsden et al. (1989).

4 Clustering of maxima of non-Gaussian fields

4.1 INTRODUCTION

In the previous section, we assumed that clusters form at peaks of a Gaussian random field. If
the initial perturbations were Gaussian, then this is equivalent to assuming that little non-linear
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evolution has occurred on cluster scales. The standard practice is to assume that fluctuations
can be described by the linear equations whenever the covariance function of the matter
distribution &(r)<1, or that the rms perturbation is less than, or of order, unity. However, it is
clear that whenever £(0)~ 1, some non-linear evolution must have occurred. This is obvious
because the Gaussian distribution is defined on the interval (— -, + ) and if the variance is
of order the mean, a Gaussian distribution of overdensities would imply the existence of
regions of negative density. The distribution must therefore develop a positive skew as the
fluctuations become non-linear (Peebles 1980; Fry 1986; Grinstein & Wise 1986; Goroff et al.
1987). In biasing calculations we are interested in the extreme positive ‘tail’ of the overdensity
distribution and it seems at first sight that a skewed distribution might manifest very different
biased correlations. Unfortunately, it is very difficult to treat non-linear evolution of pertuba-
tions analytically but N-body experiments seem to suggest that a biased non-linear distribution
seems to have roughly the same properties that one would expect from linear theory. These
results seem rather counter-intuitive, given the discussion above, so it is important to attempt
some analytical study to see if we can understand the results of the simulations. Fry’s (1986)
study of non-linear biasing indeed suggests that biasing is a ‘robust’ phenomenon (i.e. small
perturbations away from the Gaussian have little effect on the qualitative behaviour of the
biased distribution). In this section, we shall investigate this in a different way to see if Fry’s
conclusions stand up to more detailed study.

4.2 SECOND-ORDER PERTURBATION THEORY

One approach to the non-linear evolution of perturbations is via second order perturbation
theory, as outlined in Peebles (1980). This approach is very approximate and it is important to
acknowledge the limitations of the technique at the outset and admit that little quantitative
accuracy is expected in the forthcoming calculations. The main problem with the perturbative
approach is that, when evolution develops to the stage where second-order corrections are
important, we also expect third-, fourth- and even higher-order terms to appear very quickly.
The range of validity of a second-order expansion is therefore very small. Another problem is
that the shape of the correlation function is not preserved in higher order perturbation theory,
thus introducing further uncertainty into the calculations (Juszkiewicz, Sonoda & Barrow 1983).
Here we shall ignore this and compare Gaussian and non-Gaussian distributions possessing
the same covariance function.

Peebles (1980) discusses the second-order evolution of initially Gaussian perturbations. Let
the overdensity field be denoted 6(x), where (6)= 0. To second order he shows that

(9= E(0F, Y

where £(0)=(62), the variance of the field and (63) would be zero for a Gaussian distribution
(or any other symmetrical distribution) with zero mean. We can define a coefficient of skewness
for a random variable x:

2\ 172
ﬂ) (35)

V=3
M2

(Kendall & Stuart 1977). The u, are the n-th order central moments. This coefficient
measures the departure from symmetry: y, =0 for a distribution symmetrical about its mean.
According to (35), the skewness of the second-order perturbations is
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¥ =§;5 J&(0). (36)

Now, as mentioned above, it is common practice to assume that the linear calculations are
valid up until the time when £(0)~ 1, or when by (36), y, ~ 5. Unfortunately, we do not know
what the full distribution of overdensities is at this stage but we do know that the distribution of
densities must be bounded on the left at zero and it must be positively skewed with a coef-
ficient of order 5. The approach we shall use here is to model the non-linear perturbations with
a non-Gaussian distribution possessing these two properties in order to see what the effect is
on the amount and nature of bias produced.

The log-normal is an obvious distribution to use as a model because of its simple relation to
a Gaussian random field (Coles & Barrow 1987) and the fact that observations seem to imply
that the large-scale galaxy distribution has a similar form (Hubble 1934 was the first to notice
this). Using a distribution obtained via a transformation of a Gaussian seems to make sense,
because high peaks in the underlying Gaussian field will then map to high peaks in the
transformed field. Intuitively, we would expect clusters to form approximately where peaks are
in the primordial field but the detailed statistics of the overdensity field must be perturbed
away from the Gaussian by the time the clusters collapse. The log-normal random field should
model this situation quite well. For the log-normal field, derived from a Gaussian with zero
mean and unit variance, we find that u, = e(e — 1); u; = e3/*(e —1)%(e +2) so that y, = 6. Bearing
in mind all the uncertainties in this analysis, this is close enough to the value above for our use.
One bad point about this distribution is that it is not uniquely determined by any finite number
of moments (Kendall & Stuart 1977) so that we cannot claim that our results are in any sense
unique. This entire analysis is not going to be quantitatively accurate in any case so we will not
worry about these complications.

Another distribution we shall look at is x2. Unfortunately, the only distribution we can make
any progress with is the simplest one which has n=1. This does, however, have the largest
skewness of any x?2 distribution* (y, ~ 3) which is of the right order of magnitude. Note that
this distribution does not have the attractive feature of the log-normal mentioned above. Both
high and low regions of the Gaussian field x map to high regions of the field y =x2. Another
unrealistic feature of this model is that the pdf is infinite at y=0 and therefore the model
contains a large number of ‘void’ regions. It seems more likely, bearing in mind Fry’s (1986)
analysis, that the pdf should —0 as y— 0, meaning that there are no totally ‘void’ regions. It is
clear that, although y, is less for this model, the %? case displays a much greater departure from
Gaussian behaviour then the log-normal. For these reasons we shall not place too much
emphasis on the results for this field, although if the assumption that cluster sites are near the
primordial Gaussian matter peaks is not true, the results become more interesting.

We now consider biasing of these two non-Gaussian distributions, firstly in the Politzer &
Wise (1984) high level region approximation (as discussed in Section 2.2) and secondly by
deriving &_(r) for the log-normal case as we did in Section 3 for the Gaussian.

4.3 THE POLITZER-WISE APPROXIMATION
4.3.1 Log-normal fluctuations

If X(r)is a standard Gaussian random field (i.e. if it has zero mean and unit variance) then
Y(r)=exp[X(r)] is log-normally distributed (Coles & Barrow 1987). To use Y as a model for
the matter distribution, we must first ensure that Y(r) possesses the correct covariance

*The skewness of x2 distributions is 2%2/{n.
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function. If X(r) has a correlation function w,(r) (assumed isotropic) then the correlation
function of Y is

w,(7) _explwi(r)]

, 37
v 1 (37)
so that in order to obtain a correlation function w(r) we need

w(r)=log[1+(e—1)wyr). (38)

For simplicity, we shall use the form (28) for our matter correlation function, although we
note that non-linear evolution will not preserve the shape of the correlation function. To
compare the results with the Gaussian case we need to use

19

1+&,(r)= (39)
Q1

(cf. equation 11). This involves the integral

Q2=J J O(y1,y2) dy dy,, (40)

where Q(y,,y,) is the joint pdf of y, =y(r,) and y, =y(r,). This can be obtained from P(x,,x,),
the joint pdf of the underlying Gaussian variables x; =x(r,) and x, =x(r,) via

O(y1,y2) = PLyi{x1), o)1 1l (41)

where || /| is the Jacobian of the transformation (x,,x,)~(y;,y,). The distribution P(x,,x,) is
just a bivariate Gaussian (10). The integral for Q, can be transformed back into an integral
over x; and x, by putting y,=log(x;); ({=1,2), the only differences are that the limits of
integration change and that w, must be given by (38) and is not equal to the correlation
function of the mass. The resulting integral is

Q2=J~00 r) P(x,,x5;w,)dx, dx,. (42)

loguJ logu

A similar manipulation gives Q, =[p,,P(x)dx. Now the expression can be approximated by
the original Politzer & Wise (1984) expression (13):

§(r)=exp((log u)*w,(r)]- 1. (43)

Now we need to choose the level u in an appropriate way. It makes sense to compare the
Gaussian case which has a vo threshold level with a similarly defined threshold for the non-
Gaussian model. So we choose

=u, +vo, (44)

where Uy and a are the mean and variance, respectively, of the non-Gaussian distribution. For
the log—normal we have u,= Je and o,=Je(e—1) so that the resulting Politzer-Wise
expression is :

&,(r) = exp{log[{e+ vVe(e—1)]log[1 +(e— 1) w(r)]} — 1, (45)

where we have substituted the correct form for the correlation function of the non-Gaussian
field.
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4.3.2 %2 of order unity

To check that the results for the log-normal case are reasonably consistent with those obtained
from another non-Gaussian distribution, we use the field

Y(r)= X(r). (46)

This produces a field which has the y%? distribution of order unity. Again, the analysis is

considerably simplified by the fact that Y is a function of a single Gaussian field. In this case we
have u,=1 and 02 =2 so we define

u=1+{2. (47)

We also need the fact that w,(r) =wZ(r) which defines the correlation function of Y in terms of
that of X. The situation in this case is rather more complicated than (4.3.1) because both high
and low regions of X map to high regions of Y. Since Y is above the level u if X is either below
—Juorabove + \/Z, the joint pdf Q, must be constructed as follows:

Q,=A+B+C,

where

Azjj P(xl"xZ;Wx)dxlde
JuJ Ju

- ) -0

—Jul-Ju
B=J J P(xy, x55 w,) dx, dx,

~Ju
C=2J JP(xl,xz;wx)dxldxz. (48)

~) fu

The symmetry of the Gaussian about zero means that the first two terms above are equal,
A =B, but the final term is different. Now the only term in P(x,,x,;w,) that depends on the
sign of x is the term involving w,x,x, so that if we make the substitution X, — X, We can
change the sign of w, and the integral becomes

C=2 Jj P(xlix2; —wx)dxldXZ ’
Ju Ju

using this and the fact that Q, =2/ JuP(x) dx we find that the Politzer-Wise approximation (13)
for the expression for Q,/Q? is

L+ &,(r) =Hexpl(1+v/2) wy(r)] +expl ~ (1 + v2) w,(r)]} = cosh{(1 + 2) Jwy(7)], (49)

where we have defined v by (47) and incorporated w, = f;v—y Notice how the second part of the
expression (49) is small for large v and large w, (i.e. small r). This is what we would expect,
because if the field X is above a high threshold at some point it becomes extremely unlikely
that, at a point less than a coherence length away, the field will be below a very low (negative)
threshold.

The behaviour of these two functional forms is shown in F ig. 3 for the cases v=2,3. The
Gaussian case is plotted for comparison. The forms are clearly rather similar although both
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Figure 3. Behaviour of the Politzer-Wise approximation, &,(r), for log-normal (L), ¥? (X) and Gaussian (G)
random fields. The underlying correlation function (W) is shown for comparison. Plots are shown for u =2 and
u=3.

non-Gaussian cases show a larger &,(r) than the Gaussian case. Remember, however, that
Section 3 showed how we can only trust the Politzer-Wise approximation at very large
distances so we must also look at the true peak—peak correlations to see whether this effect is
real or merely an artifact of the systematic errors inherent in the Politzer-Wise approach. Note
finally that both of these cases will have & (r)=0 whenever &(r)=0. The correlation function
chosen for the graphs has the form (28).

4.4 PEAK~PEAK CORRELATIONS FOR THE LOG-NORMAL MODEL

We saw in Section 3 that it is rather difficult to deal with the peak-peak correlations analy-
tically, even for Gaussian models (which are the simplest conceivable case). We had to resort to
approximate 1D methods to investigate the qualitative behaviour analytically. In the Gaussian
case the integrals involved had to be evaluated numerically. The non-Gaussian calculations are
even more cumbersome but not qualitatively different so most of the details are omitted from
this section. The easiest way to study the behaviour of peaks on log-normal noise is via Monte-
Carlo simulations so, as we did in the Gaussian case, we use the direct evaluation of the inte-
grals merely to check the consistency of the simulations. Throughout this section we shall work
in 1D, for the same reason as we gave in Section 3.

The analytic expression for &, _,(r) is extremely messy, so here we just outline the
derivation. The integrals we require can be obtained by transformations of equations (18) and
(26) to similar integrals over different variables, using the fact that the log-normal process is
generated by an underlying Gaussian process. If the Gaussian process is &(x) then our log-
normal process is y(x) =exp[e(x)]. The basic function we need is the joint pdf of the variables
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[¥(0),¥(0),y"(0), y(r),y'(r), y"(r)]. This set of variables is denoted y ={ y;}. If the pdf of these six -
variables is U(y) then

Usly)=P(e)|l /1, (50)

where P(€)is a six-variate Gaussian, as described in Section 3. The quantity || J | is the Jacobian
of the transformation of variables

y(x)=exple(x)]
y'(x)=¢(x)exp[e(x)]
y"(x)=¢"(x) exp[e(x)] +[e'(x)?exp[e(x)] (51)

(and a similar set of three equations relates y(0) to £(0), etc.). Note also that the covariance
matrix involved in P(€) must be constructed using the covariance function of the underlying
Gaussian process, £(¢). We shall use the form (28) henceforth and this means that

£(r) =log[1 +(e—1)(1 +r?/2r)] (52)

if y(x) is to possess the correct covariance function. The resulting expression for Uy is
horrendous so we shall omit the details. The probability of obtaining two maxima above
threshold separated by a distance 7, denoted U? is given by an integral similar to (26):

w (o0 [0
ngj JJ J Uq(y)| y3l s |dysdysdy, dy, (53)

u u -0 J — 0

and we specify that y, =y;=0 to select points with zero gradient and thus pick out maxima.
This expression must be evaluated numerically. It is straightforward to evaluate U} as an
integral similar to (18) which can be evaluated numerically without much difficulty. The
peak-peak correlation function is then given by

U,
(Uy)*

1+ & pdr)= (54)

As we did in the Gaussian case, we use numerical evaluations of these integrals to check the
accuracy of the results obtained from Monte-Carlo simulations, which give a reasonably
precise picture of the behaviour at a small cost in terms of CPU. The procedure used is to
generate a Gaussian process as described in Section 3 which possesses the covariance function
(28). This requires a power spectrum.

0

Q(k)~J {log[1+(e—1)(1+x2/2r2)" T} cos(kx) dx

0

- fexp(— krf2) = exp(— krde 1) (55)

As in Section 3, a random phase realization of this power-spectrum is generated and an FFT
used to produce a discrete realization of the Gaussian process, &(x;). Each element of this
process is then mapped using y(x,) =exp[é(x,)] to form a log-normal process possessing the
required covariance function (28). The form of &, _,(r) is extracted from these simulations in
the same way as in the Gaussian case (Section 3). The results obtained from an ensemble of
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such simulations are shown in Fig. 4. Results are given for v=2 and v = 3, using (44) to define
the threshold levels.

4.5 DISCUSSION AND CONCLUSIONS

We can see immediately that the form of Fig. 4 is very similar to its Gaussian counterpart, Fig.
1. This confirms in a qualitative way that Fry’s (1986) conclusion is correct. Note that if we
choose v=2 for the log-normal model, the Politzer-Wise approximation is larger than the
corresponding Gaussian case. However, the peak-peak covariance function is virtually
identical in the two cases (it has slightly lower amplitude at smaller distances and slightly
greater amplitude at large distances). This confirms that there should be very little difference in
the form of &, _,(r) when non-linear effects are taken into account. This also confirms the
comments made on this subject by Bardeen e al. (1986) and Lumsden ez al. (1989).

One might object to our choice of threshold for the non-Gaussian case. The choice we have
made seems to be the most logical bearing in mind Kaiser’s original reasoning. An alternative
choice would be to pick v in such a way that the same fraction of field points lie above the
threshold for both the Gaussian and non-Gaussian models. The threshold required for the log-
normal model to obtain this sort of equivalence with a threshold of v =2 for the Gaussian case
would be v=2.7. A glance at Fig. 4(b) shows, that even in the case when v= 3, the difference
between the Gaussian and log-normal models is small. The value of & ,_ , for the log-normal
model is greater than that in the Gaussian case by only 10-20 per cent.

Note that the Politzer-Wise expression is again not well obeyed by the true peak-peak
correlations, although it does become accurate for very large r. In fact, the discrepancy

pk-pl

Eupt(7) Erprl(r) 1.3

0.7 207 a0 [{2 of 10 0.0

Figure 4. Estimates of the peak-peak correlation function for peaks above (a) v=2 (b) v=3 for log-normal
noise with covariance function (28). The underlying &(r) and the Politzer-Wise approximation, &£,(r) are also
shown.
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between the high-level region approximation and the true peak—peak correlation is greater for
the non-Gaussian models than for the Gaussian case. This suggests that one should treat with
great caution attempts to study highly non-Gaussian fields using the Politzer-Wise approach
(e.g. Matarrese, Lucchin & Bonometto 1986).

Our basic conclusion, therefore, is that if we use a plausible non-Gaussian model to mimic
the degree of non-linear evolution we expect the matter distribution to have undergone on
cluster scales, the resulting peak-peak correlations are roughly the same as one would predict
using strictly linear theory. If one chooses a model which departs drastically from Gaussian
statistics (such as x?: Section 4.3.2), however, one can obtain rather greater peak-peak
correlations. Indeed it is important to point out that the non-Gaussian cases studied here by no
means demonstrate the full variety of biasing behaviour one could expect to find in arbitrarily
non-Gaussian fields. One could easily imagine highly non-Gaussian fields which exhibit
markedly different biased statistics to those shown here. As a final point, it would be
interesting to conjecture that the stability of high peak correlations to small perturbations away
from the Gaussian is somehow related to the asymptotic theory of statistical extremes; a similar
conjecture is made in Coles & Barrow (1987) concerning the areas of hotspots on the
microwave sky (see also Catelan, Lucchin & Matarrese 1988).

5 Nearest-neighbour distributions and void sizes

So far in this study of the clustering of density maxima, we have concentrated on the two-point
correlation function of peaks, &, _,(r). This function contains only very limited information
about the spatial distribution, however, and it is therefore interesting to look at other statistical
characteristics in the hope of providing as many independent tests of the biasing hypothesis as
possible.

The most obvious next step would be to look at the higher order correlations of peaks.
Unfortunately, however, the n-point correlation functions for peaks are rather difficult to
obtain for n> 2, even by Monte-Carlo methods and even for 1D noise. Politzer & Wise (1984)
and Jensen & Szalay (1986) have discussed higher order correlation functions using the high-
level region approximation discussed in Section 2.2. We have already seen, however, that this
approximation is inaccurate in the cosmologically interesting part of the parameter space (Sec-
tion 3) and one should therefore be rather wary of placing too much reliance on these results.
In addition to these theoretical difficulties, it is also true that higher order correlations are very
difficult to determine with any accuracy from limited samples, such as those rich cluster sam-
ples available at the present time.

What we need is a statistic we can extract easily from a sample and which can also be

- studied in a theoretical context. One of the most simple such statistics is the nearest-neighbour
distribution, N,(r), which is just the distribution of distances from each cluster to its nearest
neighbour. The mean nearest-neighbour distance will be denoted D,

D, =2 rN.(r)>. N,.(r).

Nearest-neighbour distributions have been discussed extensively in the past (Bogart &
Wagoner 1973; Turner & Gott 1975; Fall e al. 1976; White 1979; Bahcall & Soneira 1981)
and the distribution of nearest-neighbour angles was given for the projected cluster positions
by Bahcall & Soneira (1983), although the small size of the latter sample makes the distribu-
tions rather noisy.

It is difficult to obtain an analytic expression for N,(r) except for very simple clustering
models, but it is much easier to extract N,, from a Monte-Carlo simulation than it is to extract
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higher order correlation functions. In the discussion here, as previously, we shall not attempt to
derive the quantitative 3D behaviour of N, (r) but we use 1D simulations to see what the
qualitative behaviour of this distribution is for peaks of a Gaussian field. Note that N(!P) will
not be even approximately the same shape as NP even if the 1D maximum constraint were to
select 3D peaks; the difference can be illustrated by the Peebles (1980) Poisson cluster model.
In this model, galaxies are distributed at random in space, with a number density given by some
continuous density function p(r). Not all spatial distributions can be represented in this way-
among those that cannot would be hard spheres or ‘peaks’ as described above (Peebles 1980, p.
148). In 3D, the nearest-neighbour distribution will be given by

r

NEr) ~p(r)rze_Xp[ - 4nJ’ p(r)rzdr}, _ (56)

0

assuming the distribution is symmetric and using r=|r|. The corresponding nearest-neigh-
bour-along-a-line distribution is

X

NGP(x)~ p(x) eXp[ —J

p(x)dx]. (57)
0

Notwithstanding these important reservations, we can use the 1D nearest-neighbour
distribution to see whether this statistic seems to contain any useful information about the
clustering of maxima. In addition, this approach is relevant to the ‘void diameter’ distribution
discussed below (Einasto & Einasto 1988).

Fig. 5 shows the distribution of nearest-neighbour distances for peaks above levels
v=0,1,2,3 (a,b,c,d, respectively). These were obtained from the simulations of 1D Gaussian
noise possessing the covariance function (28) discussed in Section 3. The striking fact to notice
is that, as we increase the threshold v, a long ‘tail’ in N,,(r) develops, extending to many times
the coherence length (five computer distance units in Fig. 5). This long tail indicates that,
despite being highly clustered, many of the high peaks are still rather isolated, reflecting the
fact that they are very rare. This tail is also longer than one would expect to see in the 3D
nearest-neighbour distribution, as one can see from (60) and (61); the exponential term falls
much more quickly in the 3D case. The tails resemble the unclustered (Poisson) case very closely
[Npn(x) ~ exp( —({n)x), where {(n)=g,exp(—u?/2)/2x from Coles & Barrow 1987], so that
these tails are not due to any correlation properties, just to the scarcity of points. Note also
that, although the graphs are rather noisy for v> 2, the distributions are much better deter-
mined than &, (r); Fig. 1. This suggests that the 3D nearest-neighbour distributions might
provide very useful statistical discriminants and that these should be studied further, especially
because information is contained in N, (r) about both the mean number density and &(r). One
requires (n) to estimate &(r) which makes it difficult to assign realistic errors to determinations
of &(r) when (n) and &(r) are both estimated from the same galaxy sample.

Fig. 6 shows what happens when we calculate the mean nearest-neighbour distance D,,
from subsets of each simulation of length L (in computer units). Notice that, for small », the
mean is well-defined at relatively small L and does not increase with subset size but when v=3
the flat tail of the distribution ensures that D, < L out to more than 100 coherence lengths.*

This scaling phenomenon is interesting in its similarity to the scaling law obeyed by the void
statistic studied by Finasto & Einasto (1988). Various statistics have been suggested to

*Note that if 7 is uniformly random on (0, L ) then {r)= L /2 so that r increases linearly with L.
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Figure 5. Distribution of nearest-neighbour distances for peaks above thresholds v=0,1,2,3 (a,b,c,d).
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Figure 6. The scaling of D, with L for peaks above thresholds v = 1,2, 3 for fixed coherence length.

characterize the tendency of the galaxy distribution to contain large void volumes having no (or
very few) galaxies. One of the problems with these statistics is that it is very difficult to define
the shape of voids in a systematic way. Einasto & Einasto dispense with this difficulty by
advocating a 1D void size statistic. They take a cubic galaxy sample of side L, divide it into
small ‘cells’ of side / and count the number of galaxies in each cell. Note that this is equivalent
to smoothing the galaxy distribution on a scale ~ . Next, they move along each ‘row’ of cells
(each row containing L// cells), isolate local maxima in the galaxy counts and calculate the
distance between each number-count peak and the next such peak along the row. The mean of
these distances is termed the mean void diameter.t If k = L/I then 3k2 rows are sampled.

This statistic is slightly different to our mean nearest-neighbour statistic because the ‘next
peak along the row’ might not be the ‘nearest-neighbour’ (which might be ‘the previous peak
along the row’). To see what effect this slightly different algorithm has, it is helpful to consider

the Poisson Cluster Model again. The nearest-neighbour distribution in this case is easily seen
to be

X

OC,o(x)exp{—-ZJ' p(x)dx], (58)

0

TNote the similarity between this approach and that used in Coles (1986) and Coles & Barrow (1987) to
estimate the mean sizes of regions above a threshold level.
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if p(x) is symmetric and the Einasto & Einasto void size distribution is just given by (57) so
that for this simple model

D,y =7 (Xgp)- (59)

This simple relation does not hold for arbitrary spatial distributions of points but, for sensible
models, the mean nearest-neighbour distance and the mean ‘void diameter’ should behave in a
qualitatively similar way. We have extracted this statistic from the simulations in a similar way
to the nearest-neighbour statistics and confirmed that the shape of the distributions are very
similar. The mean values of x,, and xz; are compared in Table 1 for the case where L =1000;
they roughly obey (59) for smallish thresholds but the mean values are comparable for v=3,
again indicating that there are a sizeable number of isolated peaks in the latter case.

Einasto & Einasto take various galaxy samples with different scale lengths L and, keeping k
fixed (i.e. altering / in proportion to L ), they find that Dgg ={(xgg)< L for L upto ~250 h~!
Mpc. This is clearly not the same situation as that for which we obtained the scaling of L in Fig. 6
because the Einasto method involves smoothing the galaxy samples on different scales, thus
each smoothed sample has a different coherence length. If we consider an underlying pattern
that is roughly self-similar such as Gaussian fluctuations with &(r)~ r~?, however, we expect
the nearest-neighbour distribution to have the same shape on all scales. The form (28) used for
these simulations is roughly self-similar on scales r> r, so if we identify the peaks in galaxy
number-counts with peaks above a reasonably high level in an underlying density distribution
possessing the covariance function (28) then there would seem to be no problem in reproducing,
at least qualitatively, the observed scaling with L of the mean ‘void diameter’.

This scaling with L does seem to imply that the galaxy distribution is self-similar to rather
large scales. Einasto & Einasto argue that, if the observed self-similarity of Dy is to be
reproduced, the pattern must be either random or a fractal. The distribution Ngg(x) looks
sufficiently non-Poissonian for them to exclude the former possibility. The continuation of self-
similarity to these large distances has interesting implications for the CDM model. The
(unsmoothed) covariance function of the CDM fluctuations is approximately self-similar until
we reach the zero crossing which is picked out by the scale of the horizon at matter-radiation
equivalence ~ 13 272 Mpc if Q,=1 (Sahni & Starobinsky 1984). We expect Dy, to scale with
L until the appropriate [ reaches this value. At 250 4~ ! Mpc, the value of [/ they use is

~16 h~! Mpc which suggests that a small A could just about reconcile the observed scaling
with the flat CDM model. However, it is by no means clear that the scaling they observe
actually does imply a self-similar underlying distribution. We found a scaling of D, with L that
was basically caused by the fact that high peaks are very rare and one therefore has to sample a
very large volume in order to determine D, accurately. In the Einasto & Einasto analysis, this
effect would also play a part if the catalogues they use contain a sufficiently small number of
points that any self-similarity (or lack of it) would be hidden in the sampling uncertainties. For
a small catalogue the scaling Einasto & Einasto observe might well all be due to the ‘Poisson
Tail’ described above, so the argument that their scaling implies that the pattern must either be
random or a fractal is not correct-it could be effectively a mixture of the two, with apparent

Table 1. Mean nearest-neighbour
distances and ‘void diameters’ for
L=1000.

v 0 1 2 3
Dn, 119 21.7 101.4 363.1
Dgr 18.6 43.0 204.6 400.3
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randomness caused by the limited catalogue size. Before drawing any definite conclusions
about the implications of this analysis for the CDM model it is therefore necessary to model
these effects in detail, using 3D simulations of the galaxy samples studied by Einasto & Einasto
(including the effects of noise) to investigate exactly where the break in scale-invariance should
be observed.

6. Conclusions
The main conclusions of this work are as follows:

(i) The zero-crossings of &, () do not, in general, coincide with those of &(r); for
cosmologically interesting correlation functions the first zero-crossing of &, _,(r) should
occur at smaller r than the first zero-crossing of &(r).

(ii) The amplitude of the biased correlation function &, _(r) is smaller than previous
estimates suggested (Kaiser 1984; Politzer & Wise 1984; Bardeen et al. 1986; Jensen & Szalay
1986) and these estimates only become accurate at very large », when &(r) is very small.

(iii) Non-linear evolution should have little effect on the form of bias achieved.

pk-pk

The first two effects cast some doubt on the ability of the CDM model to reproduce the
observed cluster—cluster correlation function. Unfortunately this issue is clouded by
uncertainties in both the observed & (r) and the theoretically favoured normalization of the
CDM spectrum, neither of which are known to better than a factor of 2, even ignoring the
usual uncertainties in Q and A. It does seem, however, that one requires a high normalization
and low r, . to reconcile CDM with observations. This conclusion is based on approximate
arguments and it is not possible categorically to rule out CDM on the basis of this work,
although our results agree with those obtained by other methods (Otto et al. 1986a; White et
al. 1987a,b; Lumsden et al. 1989). More accurate determinations of & .(r) and N-body
simulations with sufficient dynamical range to incorporate both galaxies and clusters would be
required to suppy an unequivocal test of the CDM model. In the meantime, before these
requirements can be achieved, it is worth looking at independent measures of the clustering
behaviour of peaks. In Section 5, we looked briefly at one such measure, the nearest-neighbour
distribution which might well provide a good test of the biasing hypothesis. We also mentioned
that previous estimates of the properties of the higher-order-n-point correlation functions of
biased distributions might also be inaccurate (Politzer & Wise 1984; Jensen & Szalay 1986)
and this is certainly worth checking. In future work, we intend to look at the three-point
correlation function of local maxima to see how closely it resembles the above predictions.
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Appendix A: §("), (x) as an approximation to §37),(r)

In Section 1 we argued that the study of peaks of stochastic processes in 1D should give us a
good qualitative guide to the behaviour of peaks of 3D random fields. In this Appendix we
show that, at least for large thresholds, the results should also be in reasonable quantitative
agreement.

To see this, consider a 3D random field ¢(x) where x={x,}, (i=1,3) and suppose that our
1D process in Section 3 is a slice taken through this field [i.c. that &(x)=¢(x,), say]. To study
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the peaks of the 3D field we need to consider the joint distributions of £(x), de(x)/
ox;=¢efi=1, 3) and d%¢(x)/0x;0x;=¢; (i,j=1,3). We denote first derivatives as ¢, and sec-
ond derivatives by ¢;.

An important property of multivariate Gaussian distributions is that the conditional pdf of
the first m of the variables [expressed as the vector x, =(x,,...,x,,)] given the values of the
remaining variables x,=(x,, . ,...,%,) is also a multivariate Gaussian with mean vector

ﬂ1|2=ﬂ1+V12V2_21(X2‘1u2)T (A1)
and covariance matrix
V=V =V V'V, (A2)

where we have used the notation (g, #,)=[(% 1, , M)s(Bpm+15---» 4,)] and

V= (vll VIZ).
Va Vi

Choosing, as we did in Section 3, that £, =0 and ¢, <0 specifies a peak of the 1D ‘slice’ but
is not enough to specify a peak of the 3D field. To specify the latter, we would have to place
similar conditions on all the other first and second derivatives. But consider, for example, the
joint pdf of ¢, ¢,,, £,,. Conditioning on some value of ¢ and some value of ¢, has an effect on
the distribution of &,, because these variates are not independent.* The joint pdf of
y=(¢, &,,,&,,) is a Gaussian with covariance matrix

2 2
1 _01 —01

2 2
V=|—-o0] o0; 03/3

2 2 2
—-o07 053 03

See, e.g. Peacock & Heavens (1985), Bardeen ez al. (1986) and Couchman (1987a,b).

Using the above prescription for conditional distributions of Gaussian variates we can find
the conditional pdf of ¢,, for specified values of € and ¢,,. These conditional distributions are
all Gaussian with some mean u and variance o? which we denote as N(u; 0?).

Firstly, the distribution of &,, given that € = ¢* is found to be

Pley|e=¢*)=N(= o}e* 03 of).

Now the unconditional pdf of ¢,, is N(0; 63) so that picking a positive value of £* decreases both
the mean value and the variance of ¢,,. Large values of &* will mean that the second deriative
components are much more likely to be negative and therefore the point is more likely to be a
local maximum then any typical point.

Next consider the conditional distribution of ¢,, given that &,; has some value, say ¢¥,;. By
the same method as above we find that

P(ey,| e, =¢%)=N(¢,,/3;803/9),

so we can see that conditioning on a negative value of ¢f; moves the mean downwards and
also decreases the variance (although only by a small amount in this case ~ about 11 per cent).
When these two effects are added together, it is clear that thresholding ¢ and simultaneously
selecting 1D maxima (&,, <0) will also tend to select 3D maxima because large positive values
of ¢ and large negative values of &;, shift the distribution of the other second derivative
components downwards and reduce its dispersion. This combination of effects should be

* All these variables are independent of ¢, so that conditioning on &, =0 has no effect on the distribution of &,,.
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enough to ensure that the 1D calculations should be in reasonable quantitative agreement with
the 3D calculations, at least for very high thresholds; in particular the calculation should
converge to the exact result much more quickly with increasing threshold than any calculations
based on high-level regions.

Appendix B: Recursion relations and derivatives for Bessel functions
We start with the form (29) for &£(r) which is
E(r)=Jo(kr),

where J,(x) is a Bessel function of the first kind (Abramowitz & Stegun 1965). To avoid writing
too many k’s we set k=1 (it is easy to put the k’s back at the end). We need to consider J§"(x),
the nth derivative with respect to x, for all n<4. We find that it is possible to express all these
functions in terms of x, J, and J; and the latter two functions are easy to compute numerically
using standard NAG routines.

First note the standard results (Abramowitz & Stegun 1965) that

§'(x)=Jo(x)=—Ji(x)

and

Ty) =) = )

and also

(l fx) [ (x)] = X7k, (x).

x
So that
Jo(x)= —J(x)

= =3 [Jo(x) = J,(x)]

and

2
Sox) == Ji(x) = Jo(x) (B1)
together lead to

E'x)=I4lx) = Jy(x) =),

Similarly, we find that
Jo(x) =3 Ji(x) =% J5(x)

and

Ix) =2 F J(x) —%(x)} —I(x),

XX
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so that

§"(x)=J5(x)= (1 *-2—2) I+ Jolx).
X X

Finally, we find
T§(x) =8 o) =4 Jofx) +4 I (x).

Using the fact that

48 8 24
Jx)={—=—- -—
A(x) (x3 x)']l(x)+(1 xz)

and using (B1) for J,(x), we get

E(x) =T (x) = ( 1- %)Jo(x) + (%— g)Jl(x).

X X
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