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ABSTRACT

We create a sample of spectroscopically identified galaxies with z < 0.2 from the Sloan

Digital Sky Survey (SDSS) Data Release 7 (DR7), covering 6813 deg2. Galaxies are chosen

to sample the highest mass haloes, with an effective bias of 1.5, allowing us to construct

1000 mock galaxy catalogues (described in Paper II), which we use to estimate statistical

errors and test our methods. We use an estimate of the gravitational potential to ‘reconstruct’

the linear density fluctuations, enhancing the baryon acoustic oscillation (BAO) signal in

the measured correlation function and power spectrum. Fitting to these measurements, we

determine DV(zeff = 0.15) = (664 ± 25)(rd/rd, fid) Mpc; this is a better than 4 per cent distance

measurement. This ‘fills the gap’ in BAO distance ladder between previously measured local

and higher redshift measurements, and affords significant improvement in constraining the

properties of dark energy. Combining our measurement with other BAO measurements from

Baryon Oscillation Spectroscopic Survey and 6-degree Field Galaxy Redshift Survey galaxy

samples provides a 15 per cent improvement in the determination of the equation of state of

dark energy and the value of the Hubble parameter at z = 0 (H0). Our measurement is fully

consistent with the Planck results and the � cold dark matter concordance cosmology, but

increases the tension between Planck+BAO H0 determinations and direct H0 measurements.

Key words: cosmology: observations – distance scale.

1 IN T RO D U C T I O N

Robust measurements of the cosmological expansion rate are re-

quired to understand its observed acceleration at low redshift (see

Riess et al. 1998; Perlmutter et al. 1999 for early detections and

Weinberg et al. 2013 for review of observational probes). If the ac-

celeration is driven by an unknown energy–density component, then

these measurements will constrain its equation of state. If the ef-

fect is instead a manifestation of large-scale gravity that is different

from general relativity, then we can test for this by combining these

measurements with observations of cosmological structure growth.

Galaxy surveys can provide measurements of both through baryon

acoustic oscillations (BAO), which act as a fixed ruler allowing

the expansion rate to be determined, and redshift-space distortions

(RSD), which are imprints of the velocity field that allow the rate of

structure growth to be determined. Ideally, we need accurate mea-
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surements at a series of redshift bins, building a full understanding

of cosmological acceleration.

The Sloan Digital Sky Survey (SDSS; York et al. 2000) Data

Release 7 (DR7; Abazajian et al. 2009) included a flux-limited,

low-redshift sample of galaxies with measured redshifts, known as

the ‘main galaxy sample’ (MGS). BAO have previously been mea-

sured from these data, when included together with higher redshift

samples (e.g. Percival et al. 2010). However, these previous analyses

did not utilize recent analysis developments that use phase informa-

tion to ‘reconstruct’ the linear fluctuations on scales important for

BAO measurements. Such techniques can provide an ∼50 per cent

improvement on the measured BAO scale (Eisenstein et al. 2007b;

Padmanabhan & White 2009; Burden et al. 2014) and the improve-

ment is expected to be larger at lower redshifts. In this paper, we will

analyse these data using an up-to-date pipeline similar to that used

by Anderson et al. (2014) for the recent SDSS-III (Eisenstein et al.

2011) Baryon Oscillation Spectroscopic Survey (BOSS; Dawson

et al. 2013) and including the reconstruction technique, which has

proven to improve the precision of BAO measurements in multiple
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sets of galaxy redshift survey data (Xu et al. 2012; Anderson et al.

2014; Kazin et al. 2014; Ross et al. 2014; Tojeiro et al. 2014).

By performing this analysis we hope to complete the set of ac-

curate BAO distance measurements that can be made from current

data using the reconstruction technique. The SDSS data cover a

larger area than the 2-degree Field Galaxy Redshift Survey (Colless

et al. 2003), and will thus provide more accurate measurements at

similar redshifts (Percival et al. 2001; Cole et al. 2005). This anal-

ysis builds on a rich recent history of BAO measurements (Percival

et al. 2010; Blake et al. 2011; Padmanabhan et al. 2012; Kazin et al.

2014), and complements measurements at lower redshift made by

Beutler et al. (2011) using data from the 6-degree Field Galaxy

Redshift Survey (6dFGS; Jones et al. 2009), and at higher redshift

by Tojeiro et al. (2014) and Anderson et al. (2014) using BOSS

data.

BOSS measures redshifts for galaxy samples selected using two

different algorithms, a redshift z ∼ 0.57 sample known as CMASS

(which was selected to an approximately constant stellar mass

threshold) and a sample at z ∼ 0.32 known as LOWZ. While

these measurements are more precise than the ones obtainable from

MGS data, the MGS samples an independent cosmic volume and

a lower redshift range, which is important when studying proper-

ties of dark energy since its effects are more pronounced at lower

redshifts.

We apply colour, magnitude, and redshift cuts to the SDSS DR7

MGS data to produce a cosmic-variance-limited spectroscopic sam-

ple with z < 0.2, where the galaxies inhabit high-mass dark matter

haloes. This ensures that we can easily simulate the catalogue with

mock galaxy catalogues to test our methods and provide covariance

matrices. We have produced 1000 accurate mock galaxy catalogues,

based on fast numerical N-body simulations (Howlett et al., in prepa-

ration). A halo occupation distribution (HOD) model for the galaxy

distribution was applied to the results from fast numerical N-body

simulations as described in a companion paper (Howlett et al. 2014),

which also presents RSD measurements made with this sample.

In this paper, we present the sample (Section 2), BAO analysis

(Section 3), tests on the mocks (Section 4), results (Section 5), and

cosmological interpretation (Section 6). Throughout, we assume a

fiducial cosmology given by �m = 0.31, �b = 0.048, h = 0.67,

σ 8 = 0.83, ns = 0.96, and �ν = 0 which matches that used to

create the mock catalogues, and is based on the best-fitting � cold

dark matter (�CDM) model of Anderson et al. (2014), and is con-

sistent with Planck satellite (Planck Collaboration I 2014a) cosmic

microwave background (CMB) data (Planck Collaboration XVI

2014b).

2 DATA

The SDSS DR7 contains the completed data set of SDSS-I and

SDSS-II. These surveys obtained wide-field CCD photometry

(Gunn et al. 1998, 2006) in five passbands (u, g, r, i, z; Fukugita et al.

1996), internally calibrated using the ‘uber-calibration’ process de-

scribed in Padmanabhan et al. (2008), amassing a total footprint of

11 663 deg2. From this imaging data, galaxies within a footprint of

9380 deg2 (Abazajian et al. 2009) were selected for spectroscopic

follow-up as part of the MGS (Schlegel, Finkbeiner & Davis 1998;

Strauss et al. 2002), which, to good approximation, consists of all

galaxies with rpet < 17.77, where rpet is the extinction-corrected

r-band Petrosian magnitude. In this analysis, we do not consider the

luminous red galaxy extension of this programme to higher redshift

(Eisenstein et al. 2001).

Figure 1. The right ascension and declination positions (J2000) of the

63 163 SDSS DR7 main galaxy survey galaxies we include in our sample.

Their footprint occupies 6813 deg2.

We obtain the SDSS DR7 MGS data from the value-added galaxy

catalogues hosted by NYU1 (NYU-VAGC). These catalogues were

created following the methods described in Blanton et al. (2005).

They include K-corrected absolute magnitudes, determined using

the methods of Blanton et al. (2003), and detailed information on

the mask. We select our galaxy sample from the NYU-VAGC ‘safe0’

catalogue. This sample uses galaxies with 14.5 < rpet < 17.6. The

rpet > 14.5 limit ensures that only galaxies with reliable SDSS

photometry are used and the rpet < 17.6 allows a homogeneous

selection over the full footprint of 7356 deg2 (Blanton et al. 2005).

Galaxies that did not obtain a redshift due to fibre collisions are

given the redshift of their nearest neighbour.

Galaxies in the NYU-VAGC safe0 catalogue occupy a total foot-

print of 7356 deg2. We use data only from the contiguous area in

the North Galactic cap and only occupying areas where the com-

pleteness, determined ignoring galaxies not observed due to fibre

collisions, is greater than 0.9. These cuts reduce the footprint to

6813 deg2. The angular positions of the galaxy sample we use are

plotted in Fig. 1. In order to obtain angular positions for random

catalogues, we use the window given by the NYU-VAGC and the

MANGLE software (Swanson et al. 2008), down-sampling based on

the completeness in each region (as provided in the window).

We make further cuts on the NYU-VAGC safe0 sample based

on colour, magnitude, and redshift to produce our catalogue, which

we refer to as MGS from here on. These cuts balance the following

motivations.

(i) Create a sample that is at a lower redshift than is probed by

BOSS. We therefore use only galaxies with z < 0.2.

(ii) Reliably simulate the clustering of the galaxies in our sample.

In order to do so, we require a reasonably constant galaxy density

as a function of redshift n(z) and that galaxies occupy dark matter

1 http://sdss.physics.nyu.edu/vagc/lss.html
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Figure 2. The number density of the sample we use plotted as function

of redshift. The error bars represent the standard deviation of n(z) for the

mock realizations. The curve is the best-fitting model assuming two linear

relationships with a transition redshift, which is a good fit to the data.

haloes with masses Mhalo > 1012 M⊙, which is the minimum halo

mass that our simulations can reliably achieve.

(iii) Minimize the fractional uncertainty expected for measure-

ments of P(k), balanced against the above two concerns. This is

achieved by maximizing the galaxy density.

Balancing these motivations, we define our sample to have

0.07 < z < 0.2, Mr < −21.2 and g − r > 0.8, where Mr is the

r-band absolute magnitude provided by the NYU-VAGC. The re-

sulting sample contains 63 163 galaxies. The luminosity and colour

cuts make the sample more homogenous as a function of redshift

and increase the clustering amplitude of the sample. The increase in

clustering amplitude implies an increase in the mass of the typical

halo hosting one of our sample galaxies. The results presented in

Zehavi et al. (2011, e.g. their fig. 10), suggest a negligible fraction of

galaxies matching our selection occupy haloes with M < 1012 M⊙
and therefore imply we will be able to reliably simulate our sample.

The z > 0.07 limit is applied as, due to the rpet > 14.5 cut, the

number density of our sample drops sharply for z < 0.07.

The n(z) of our sample is displayed in Fig. 2. We fit this n(z) to a

model with two linear relationships and a transition redshift, given

by

n(z) = 0.0014z + 0.000 41; z < 0.17 (1)

n(z) = 0.002 86 − 0.0131z; z ≥ 0.17, (2)

which provides a good representation of the data, as the χ2 is 25 for

22 degrees of freedom (26 n(z) bins and four independent model pa-

rameters). This function is used to create the mock catalogues (see

Section 4), when assigning redshift-dependent wFKP weights for

the clustering measurements (see equation 5), and when assigning

redshifts to the random catalogue we use to measure the clustering

of mock samples. We do not use the analytic fit to assign redshifts

to the angular positions in the random catalogue we use to mea-

sure the clustering of our data sample; instead we randomly select

redshifts from the galaxy catalogue, thus allowing for any further

observation-dependent fluctuations. This procedure was shown to

impart negligible bias on BOSS clustering measurements in Ross

et al. (2012), and in Paper II (Howlett et al. 2014) it is shown that it

makes a negligible difference for our MGS sample.

Our galaxy sample is approximately volume limited to z < 0.17

(due to the Mr <−21.2 restriction), above which the number density

drops due to the rpet < 17.6 magnitude limit. Speculatively, the slight

increase in number density with redshift may be due to evolution in

the stellar populations of passive galaxies; as the stellar populations

of the galaxies age, many will dim and may drop out of our sample.

We have not attempted to correct for such effects. The z > 0.17

data are important, as it represents a larger fraction of the volume

of our sample. The n(z) is large enough that the sample is cosmic-

variance-limited (n(z)P(k) > 1) over the entire redshift range for

k < 0.26 h Mpc−1. Further, the n(z) is constant to within a factor of

2, making it more constant than the BOSS ‘CMASS’ sample that

has been modelled as having a single HOD at its effective redshift

in cosmological analyses (e.g. Anderson et al. 2012, 2014). The

effective redshift of our sample is zeff = 0.15, calculated using zeff =
∫

dVeffz
∫

dVeff
, where dVeff is (Tegmark 1997) dVeff = dV[n(z)PFKPwFKP]2,

with PFKP and wFKP defined in the following section.

Because of the depth of the target sample from which galaxies

were selected for spectroscopic follow-up in the BOSS CMASS

galaxy sample, some angular fluctuations in the catalogue were

imparted by changes in observational parameters. This non-

cosmological clustering signal was corrected using ‘systematic

weights’ (Ross et al. 2012). Such a correction was not required

for the brighter BOSS LOWZ sample (Tojeiro et al. 2014). Fig. 3

displays the number density of our MGS data against stellar density,

extinction, and seeing. No significant systematic relationships are

found. The variations with seeing and stellar are consistent with the

expected level of variation. For extinction, the variation is somewhat

larger than expected (the χ2/dof = 16.4 for eight measurement bins

when the data is compared to a model with no variation), but the data

exhibits no clear trend. That we find no evidence of observational

systematics is not a surprise, as the sample we use is approximately

two magnitudes brighter than the LOWZ sample, and we therefore

do not expect systematic weights to be necessary.

3 A NA LY SIS

3.1 Calculating clustering statistics

We calculate the correlation function as a function of the redshift-

space separation s and the cosine of the angle to the line of sight,

μ, using the standard Landy & Szalay (1993) method

ξ (s, μ) =
DD(s, μ) − 2DR(s, μ) + RR(s, μ)

RR(s, μ)
, (3)

where D represents the galaxy sample and R represents the uniform

random sample that simulates the selection function of the galax-

ies. DD(s, μ) thus represent the number of pairs of galaxies with

separation s and orientation μ. We use at least 50 times the number

of galaxies in our random samples, both for the mock realizations

and the DR7 data.

We calculate ξ (s, |μ|) in evenly spaced bins2 of width 8 h−1 Mpc

in s and 0.01 in |μ|. We then determine the first two even moments

of the redshift-space correlation function via

2ξℓ(s)

2ℓ + 1
=

100
∑

i=1

0.01ξ (s, μi)Lℓ(μi), (4)

where μi = 0.01i − 0.005 and Lℓ is a Legendre polynomial of order

ℓ. We will only use ξ 0 in this paper (an analysis including aniostropic

2 The pair counts are tabulated using a bin width of 1 h−1 Mpc and then

summed into 8 h−1 Mpc bins, allowing different choices for bin centres.
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Figure 3. The number density of our galaxy sample as a function of stellar density, Galactic extinction, and seeing. The error bars denote the standard deviation

found in the mock galaxy samples and are only due to stochastic variations in the galaxy field. The variations in number density are consistent with the expected

level of fluctuation.

information is presented in Howlett et al. 2014). Defining ξ 0 as we

do ensures equal weighting in μ, which is not necessarily the case

when the calculations are not split into μ bins. Defining ξ 0 in this

fashion forces the measurement to be closer to a spherical average

and thus ensures BAO distance measurements can be expressed as

DV, defined in equation (8).

We weight both galaxies and randoms based on the number den-

sity as a function of redshift (Feldman, Kaiser & Peacock 1994),

via

wFKP(z) =
1

1 + PFKPn(z)
, (5)

where we set PFKP = 16 000 h−3 Mpc3, which is close the measured

amplitude at k = 0.1 h Mpc−1.

We measure the spherically-averaged power spectrum, P(k), us-

ing the standard Fourier technique of Feldman et al. (1994), as

described in Reid et al. (2010) and Anderson et al. (2012). We

calculate the spherically averaged power in k bands of width


k = 0.008 h Mpc−1 using a 10243 grid. The weights are taken

into account by using the sum of wFKP over the galaxies/randoms

at each gridpoint.

3.2 Reconstruction

Reconstruction of galaxy clustering data (Eisenstein et al. 2007b)

has now been shown to improve measurements of the BAO scale

in multiple galaxy samples, including SDSS-II LRGs at z = 0.35

(Padmanabhan et al. 2012; Xu et al. 2013), the SDSS-III BOSS

LOWZ and CMASS samples (Anderson et al. 2014; Tojeiro et al.

2014), red and blue galaxies in the CMASS sample (Ross et al.

2014), and emission line galaxies from the WiggleZ survey (Kazin

et al. 2014). Reconstruction uses the galaxy map to construct a

displacement field that is used to redistribute the galaxies into a

spatial configuration that more closely reproduces their positions

had they only undergone linear growth and removes the effect of

RSD. The process thereby (typically) sharpens the BAO feature in

clustering measurements and removes non-linear shifts in its peak

position, thus allowing significantly more precise and accurate BAO

measurements.

The algorithm used in this paper is similar to the prescription

of Eisenstein et al. (2007b) and Padmanabhan et al. (2012) and is

the same as applied in Tojeiro et al. (2014). The Lagrangian dis-

placement field � is calculated to first order using the Zel’dovich

approximation applied to the smoothed galaxy overdensity field.

The displacement field is corrected for redshift effects in the mea-

sured overdensity. Our implementation deviates from Padmanabhan

et al. (2012) slightly in that we solve for the redshift-space-corrected

displacement field in Fourier space rather than using the finite differ-

ence method in configuration space, although we find both methods

in very good agreement, as shown in Burden et al. (2014). Further

details can be found in Padmanabhan et al. (2012) and Burden et al.

(2014). We use a bias value of b = 1.5, a linear growth rate of

f = 0.6413 and a smoothing scale of 15 h−1 Mpc. The bias value is

close to the best-fitting bias found by Howlett et al. (2014). Previous

studies, e.g. Padmanabhan et al. (2012) and Anderson et al. (2012,

2014), have found results to be insensitive to the choice of bias used

in the reconstruction implementation.

We present clustering measurements and covariances using both

original and reconstructed catalogues. Following Padmanabhan

et al. (2012), the reconstructed ξ is calculated as

ξ (s, μ) =
DD(s, μ) − 2DS(s, μ) + SS(s, μ)

RR(s, μ)
, (6)

where S represents the shifted random field. The P(k) is calculated

using the shifted random field, but models are compared to the mea-

surement using the window function determined from the original

random field.

3.3 Measuring BAO positions

The methodology we use to measure isotropic BAO positions is

adapted from and nearly identical to Anderson et al. (2014) and

Tojeiro et al. (2014). We repeat the basic details here and identify

key differences but refer to Anderson et al. (2014) for more detailed

descriptions.

In order to measure BAO positions, we extract a dilation factor

α by comparing our data to a template that includes the BAO and

a smooth curve with considerable freedom in its shape that we

marginalize over. For fits to the monopole, assuming pairs at all

angles to the line of sight contribute equally, measurements of α

can be related to physical distances via

α =
DV (z)rfid

d

Dfid
V (z)rd

, (7)

where

DV (z) ≡
[

cz(1 + z)2D2
A(z)H−1(z)

]1/3
, (8)
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rd is the sound horizon at the baryon drag epoch, which can be

accurately calculated for a given cosmology using, e.g. the software

package CAMB (Lewis, Challinor & Lasenby 2000), DA(z) is the

angular diameter distance, and H(z) is the Hubble parameter. For our

fiducial cosmology, Dfid
V (z) = 638.95 Mpc and rfid

d = 148.69 Mpc.

We fit the measured, spherically averaged, correlation function

and power spectrum separately and then combine results using

the mocks to quantify the correlation coefficient between measure-

ments. Our fits rescale a model of the damped BAO in order to fit

the data. Broad-band effects, caused by, e.g. errors made in our as-

sumption of the model cosmology, scale-dependent bias, and RSD,

are marginalized over using polynomial terms.

For both P(k) and ξ (s), we use the linear theory P(k) produced by

CAMB and split it into a smooth ‘De-Wiggled’ template Psm, lin and a

BAO template Olin, following Eisenstein, Seo & White (2007a) and

using the fitting formulae of Eisenstein & Hu (1998). The damped

BAO feature is then given by

Odamp(k) = 1 + (Olin(k) − 1)e− 1
2
k2�2

nl . (9)

For the P(k) fits, the damping is treated as a free parameter,

with a Gaussian prior of width ±2 h−1 Mpc centred at the best-

fitting value recovered from the mocks. Pre-reconstruction this is

�nl = 9.0 h−1 Mpc and post-reconstruction it is �nl = 5.3 h−1 Mpc.

The full model fitted for P(k) is

P fit(k) = P sm(k)Odamp(k/α), (10)

where

P sm(k) = B2
pP (k)sm,lin + A1k + A2 +

A3

k
+

A4

k2
+

A5

k3
. (11)

These are therefore six ‘nuisance’ parameters: a multiplicative con-

stant for an unknown large-scale bias Bp, and five polynomial pa-

rameters A1, A2, A3, A4, and A5.

For the correlation function, we use a model

ξfit(s) = B2
ξ ξ

lin,damp(αs) + Aξ (s). (12)

where ξ lin, damp(s) is the Fourier transform of Psm, lin(k)Odamp(k). Bξ

is a multiplicative constant allowing for an unknown large-scale

bias, while the additive polynomial is given by

Aξ (s) =
a1

s2
+

a2

s
+ a3, (13)

where ai, 1 < i < 3 help marginalize over the broad-band signal.

Unlike for P(k), we do not allow the damping parameter to vary

when fitting ξ (s) and instead fix it at the mean best-fitting value

recovered from the mocks (we test this choice in Section 5); for

the reconstructed ξ (s) this is �nl = 4.5 h−1 Mpc. It is smaller than

the best-fitting value found for P(k) due to the fact that the BAO

feature is multiplied by the polynomial term for P(k), but not for

ξ (s). In the ξ (s) fits, it is not possible to isolate the BAO feature in

a manner analogous to the Odamp(k/α) term in the P(k) fits. Thus

the size of the BAO relative to Aξ (s) varies, while in the P(k) fits,

the size of the BAO feature is always fixed relative to Psm. Thus, the

amplitude of the BAO feature has more freedom in the ξ (s) model,

independent of the damping parameter, and this freedom has been

found to be equivalent to the damping prior we place on the P(k)

fits in previous studies (e.g. Anderson et al. 2014).

The scale dilation parameter, α, measures the relative position of

the acoustic peak in the data versus the model, thereby characteriz-

ing any observed shift. If α > 1, the acoustic peak is shifted towards

smaller scales. For fits to both the correlation function and power

spectrum, we obtain the best-fitting value of α assuming that ξ (s)

and log P(k) were drawn from multivariate Gaussian distributions,

calculating χ2 at intervals of 
α = 0.001 in the range 0.8 < α < 1.2.

3.4 Covariance

The estimated covariance C̃ between statistic X in measurement bin

i and statistic Y in measurement bin j is

C̃(Xi, Yj ) =
1

Nmocks − 1

Nmocks
∑

m=1

(Xi,m − X̄i)(Yj,m − Ȳj ), (14)

where the index m represents a different realization of our sample,

created using the methods described in Section 4. Error bars shown

in all plots show the square-root of the diagonal elements of these

covariance matrices.

To obtain an unbiased estimate of the inverse covariance matrix

C−1, we rescale the inverse of our covariance matrix by a factor that

depends on the number of mocks and measurement bins (see e.g.

Hartlap, Simon & Schneider 2007)

C
−1 =

Nmocks − Nbins − 2

Nmocks − 1
C̃

−1. (15)

Nmocks is 1000 in all cases, but Nbins will change depending on the

specific test we perform. We determine χ2 statistics in the standard

manner, i.e.

χ2 = (X − Xmod)C−1
X (X − Xmod)T , (16)

where the data/model vector X can contain any combination of clus-

tering measurements. Likelihood distributions, L, are determined

by assuming L(X) ∝ e−χ2(X)/2.

Percival et al. (2014) derived factors that correct uncertainties de-

termined using a covariance matrix that is constructed from mock

realizations and standard deviations determined from those real-

izations so that they account for biases that result from the finite

number of realizations employed. Defining

A =
1

(Nmocks − Nbins − 1)(Nmocks − Nbins − 4)
, (17)

and

B = A (Nmocks − Nbins − 2) , (18)

the variance estimated from the likelihood distribution should be

multiplied by

mσ =
1 + B(Nbins − Np)

1 + 2A + B(Np + 1)
, (19)

and the sample variance should be multiplied by

mv = mσ

Nmocks − 1

Nmocks − Nbins − 2
. (20)

We apply these factors, where appropriate, to all values we quote.

The corrections are rather small, because we use 1000 mock realiza-

tions. This makes the corrective factors to the recovered uncertainty

and standard deviations
√

mσ < 1.01 and
√

mv < 1.03.

4 M O C K SA M P L E S

4.1 Creating mock samples

In order to estimate the covariance matrix for our measured cor-

relation function and power spectrum, we have generated a sam-

ple of 1000 mock catalogues. In order to produce the number of
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mocks required to recover accurate covariance matrices, some re-

alism must be sacrificed. Our mocks are based on a single redshift

output (z = 0.15) and are based on dark matter simulations, from

which halo catalogues are generated and populated with galax-

ies. We summarize the process below, full details can be found in

Howlett et al. (in preparation) and Howlett et al. (2014).

We begin by generating 500 independent dark matter fields at a

redshift of z= 0.15, based on our fiducial cosmology (see Section 1).

These were created using a newly-developed code PICOLA, a highly

developed, planar-parallelized implementation of the COLA method

of Tassev, Zaldarriaga & Eisenstein (2013). The method combines

second-order lagrangian perturbation theory (2LPT) and a Particle-

Mesh N-Body algorithm to produce simulations accurate to much

smaller scales than 2LPT can reach alone, but several times faster

than the Particle-Mesh algorithm to reach the same level of accuracy,

and is described in Howlett et al. (in preparation). A similar method

has also recently been used to successfully create mock catalogues

for the WiggleZ survey (Kazin et al. 2014), though the code was

developed independently.

Simulations were constructed in a box of side length

1280 h−1 Mpc, which is large enough to cover the full sky out to

the maximum redshift of our sample, with 15363 particles, giving a

mass resolution of 4.98 × 1010 M⊙ h−1. Halos were identified from

the evolved dark matter field using a Friends-of-Friends algorithm

(Davis et al. 1985) with linking length b = 0.2l where l is the mean

particle separation and a halo was defined as containing at least 10

bound particles. The halos were populated using a HOD (Peacock &

Smith 2000) with the same five parameter functional form as that in

Zheng, Coil & Zehavi (2007) and Manera et al. (2013). We find the

best-fitting HOD parameters by minimizing the χ2 difference be-

tween the observed galaxy power spectrum and the power spectrum

recovered when we directly apply the HOD to 10 of our mock halo

catalogues. For this process, we used theoretical errors on the power

spectrum derived from Tegmark (1997). Further details, including

the HOD parameters, can be found in Paper II.

The survey mask is applied to the 500 independent full-sky galaxy

fields to select volumes matching our sample. We are able to fit the

survey in the full-sky simulation twice without overlap, using the

transformation RA → RA + 180.0 and Dec. → −Dec. to go from

one projection to the other. This allows us to double the number

of mock catalogues at the expense of some large-scale covariance

between mocks generated from the same dark matter field. The

nearest distance between any pair of mock galaxies drawn from

different mock realizations but within the same full-sky field is

170 h−1 Mpc. This is within the range of scales we fit, but we have

tested and found that the correlations between the P(k) calculated

for different mock realizations drawn from the same full-sky field

are consistent with zero for 0.02 < k < 0.3 h Mpc−1 (the range of

scales we fit for BAO measurements) and we can therefore treat

them as independent.

The final step is to subsample the number density of the mock

galaxy catalogues to mimic the idealized redshift-dependent number

density derived from the galaxy sample. This ensures that we capture

survey effects such as the magnitude limit of our sample, which

artificially changes the number density compared to that predicted

by our HOD model, which is a constant 7 × 10−4 h3 Mpc−3 over our

redshift range. We subsample by defining the probability to keep a

galaxy at a given redshift as the ratio of the average number density

at that redshift, over all 1000 mocks, to the fitted number density

given by equations (1) and (2).

Paper II shows that the clustering of the mock samples is an excel-

lent match to the observed clustering of our MGS sample, as the χ2

Table 1. The statistics of BAO scale measurements recovered from the

reconstructed mock samples, excluding 4σ outliers and realizations with

low BAO detection significance. Sα is the standard deviation of α values

between the mocks, the 〈σ 〉 is the mean difference in α with 
χ2 = 1,

〈2σ 〉 is the mean difference in α with 
χ2 = 4 and N is number of mocks

after excluding outliers and low BAO detection cases.

Case 〈α〉 Sα 〈σ 〉 〈2σ 〉 〈χ2〉/dof N

P(k) + ξ (s) 0.996 0.047 0.042 0.092 – 895

Combined P(k) 0.996 0.046 0.042 0.093 – 894

Combined ξ (s) 0.997 0.046 0.042 0.092 – 879

P(k) 0.997 0.045 0.042 0.091 26.3/27 879

ξ (s) 0.997 0.047 0.041 0.091 15.9/16 867

when comparing the mean clustering of the mock samples to the ob-

served is close to 1 per degree of freedom for 0 < k < 0.3 h Mpc−1

(χ2/dof = 33/32) and 0 < s < 200 h−1 Mpc (χ2/dof = 18/24).

This implies that these mock galaxy samples are appropriate for

determining our covariance matrices and testing our methodology.

4.2 Testing BAO measurements on mocks

We test our methodology and characterize our expected results by

measuring the BAO scale of the mock galaxy samples. We quote

results as the best-fitting value with 1σ and 2σ uncertainty defined

as half of the width of the 
χ2 = 1 and 4 regions. First, we fit the

mean of the mock samples, using the covariance matrix expected

for one realization. Pre-reconstruction, we find α = 0.998 ± 0.080

for P(k) (no lower 2σ bound, upper at 1.19) and α = 1.005 ± 0.095

for ξ (s) (no upper 2σ bound, lower at 0.81). Accurate BAO mea-

surements are therefore not expected to be achievable with the pre-

reconstruction data. Post-reconstruction, substantial improvement

is observed. For ξ (s), we find α = 0.998 ± 0.048(± 0.116) for the

1(2)σ uncertainty and for P(k) we find α = 0.998 ± 0.044(± 0.103).

A decrease in the recovered BAO scale post-reconstruction is ex-

pected, as reconstruction removes a small shift in the BAO scale due

to mode coupling (see e.g. Crocce & Scoccimarro 2006; Eisenstein

et al. 2007b; Padmanabhan & White 2009; Mehta et al. 2011). We

focus solely on the results found using the post-reconstruction data

in what follows.

Statistics describing the BAO measurements determined from

reconstructed mock realizations are presented in Table 1. The BAO

detection is conventionally quoted as a χ2 difference between the

best-fitting model and the model with no BAO peak. Some of our

mocks result in a very low detection of the BAO. A small number of

our mocks have a reasonable BAO detection but result in α values

that are far from the mean. These extreme cases tend to correspond

to low values of α and artificially skew the recovered distribution.

To avoid this problem, we only quote the numbers for mocks that

have a 2σ bound and exclude >4σ outliers. The values of the

mean recovered α, the recovered uncertainties, and the standard

deviations are all consistent to within 5 per cent for the fiducial P(k)

and ξ (s) measurements, suggesting our method of determining the

BAO scale works equally well in configuration and Fourier space.

As in Anderson et al. (2014), we combine results across bin cen-

tres. We consider four bin centres for ξ (s) (separated by 2 h−1 Mpc)

and 5 for P(k) (separated by 0.0016h Mpc−1). For ξ (s), the cor-

relation between the results is between 0.91 and 0.95. For P(k),

very little variation is expected with bin centre, as the correlations

are between 0.98 and 0.99. To combine the results across the bins

centres, for both P(k) and ξ (s) we take the mean of the 
χ2 dis-

tributions to obtain an averaged 
χ2 distribution. These results are
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denoted in Table 1 as ‘combined’. Due to the large correlation be-

tween these measurements, there is no significant improvement in

the standard deviation, for either P(k) or ξ (s). However, the number

of outliers and non-detections decreases, by 15 for P(k) and 12 for

ξ (s). Finally, the correlation between the combined P(k) and ξ (s)

BAO measurements recovered from the 1000 mocks is 0.97. Given

such a large correlation, we take the mean of the combined ξ (s) and

P(k) 
χ2 to obtain our P(k) + ξ (s) results.

After combining measurements to obtain the P(k) + ξ (s) results,

we still have 105 cases that either have no 2σ bound or are >4σ

outliers. This suggests the results we quote in Table 1 are slightly

optimistic. Considering the full set of 1000 combined mock results,

we find that the 68 percentile bounds of the maximum-likelihood

α distribution are (0.948,1.040) and that the mean 1σ uncertainty

is 0.045. The half-width of the 68 percentile region and the mean

1σ uncertainty for the full set are thus both close to the standard

deviation of α values we report in Table 1, suggesting the quoted

results are a fair representation of the typical-likelihood distribution

we expect to recover.

As expected based on the fits to the mean ξ (s) and P(k), far

more results are found at the tails of the distribution than would be

expected if they followed a Gaussian distribution. The individual-

likelihood distributions are thus not well represented by a Gaussian

either; the mean 2σ interval (
χ2 = 4) is greater than twice the

mean 1σ interval (
χ2 = 1). Further, the standard deviation of

the best-fitting α is closer to half of the mean 2σ width than the

1σ . Thus, in order to use these BAO measurements to constrain

cosmological parameters, the full-likelihood distribution should be

used, rather than a Gaussian approximation.

The mean α we recover from our mock samples for P(k) + ξ (s)

is more than 2σ away (1σ calculated via 0.047/
√

895) from 1. This

result is partially driven by outliers as, if we exclude fifteen addi-

tional >3σ outliers, the mean increases to 0.997 (and the standard

deviation decreases to 0.044). However, the small bias remains. The

magnitude of this bias is less than 0.1 of the 1σ expected uncer-

tainty in the measurement from the data, and thus not significant in

any application of our measurements. Given that we use the same

methodology as Anderson et al. (2014) who found no detectable

bias in isotropic BAO measurements, we do not believe this bias is

suggestive of a systematic bias in the BAO fitting methodology.

5 R ESULTS

5.1 Distance scale measurement

The clustering of our galaxy sample, pre-(grey diamonds) and post-

reconstruction (open circles), is displayed in Fig. 4 for the corre-

lation function and in Fig. 5 for the power spectrum. One can see,

most easily by studying the P(k) measurements, that reconstruc-

tion induces a decrease in the clustering amplitude that is nearly

fractionally constant (at scales less than the BAO scale for ξ [s]).

This is due to the removal of large-scale RSD. One can further see,

most easily by studying the ξ (s) measurements, that reconstruc-

tion sharpens the BAO feature. Throughout the rest of the section,

we focus our attention on BAO measurements obtained from the

post-reconstruction measurements.

We obtain detections of the BAO signal for our reconstructed

data using both P(k) and ξ (s) and we combine these data to obtain

our consensus measurement of α = 1.040 ± 0.037. The best-fitting

model found for the fiducial ξ (s) binning is displayed against the

measurement in Fig. 6. We find α = 1.058 ± 0.036. The χ2/dof

is slightly greater than one (20.3/16) and represents a good fit

Figure 4. The measured correlation function, ξ (s) (points with error bars),

pre- (grey diamonds) and post- (open circles) reconstruction. The error bars

are determined from the variance of the 1000 mock galaxy samples. One

can see that reconstruction reduces the clustering amplitude, due to removal

of large-scale RSD, and sharpens the BAO peak.

Figure 5. The measured power spectrum, P(k) (points with error bars),

pre- (grey diamonds), and post- (black circles) reconstruction. The error

bars are determined from the variance of the 1000 mock galaxy samples.

The clustering amplitude of the post-reconstruction data is decreased across

all k due to the removal of large-scale RSD.

Figure 6. The measured post-reconstruction correlation function, ξ (s),

(points with error bars) and best-fitting BAO model (solid curve).
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Figure 7. The measured post-reconstruction power spectrum, P(k), (points

with error bars), and best-fitting model (solid curve) divided by the smooth

(no BAO) component of the best-fitting model.

Table 2. Isotropic BAO scale measurements. The ‘Consensus’ results

are the mean of the combined P(k) and ξ (s) results. The uncertainties

quoted are the 1σ (2σ ) intervals determined via 
χ2 = 1(4). The

P(k) measurements are numbered based on the shift in the bin centre,

which are integer multiples of 0.0016 h Mpc−1. For ξ (s), the results are

numbered based on the bin centre shift in h−1 Mpc. The measurements

using each bin centre are averaged, as described in the text, in order

to obtain the ‘Combined’ measurements.

Estimator α χ2/dof

Consensus 1.040 ± 0.037(0.084)

Combined P(k) 1.031 ± 0.034(0.077)

Combined ξ (s) 1.050 ± 0.040(0.092)

Post-recon 0 P(k) 1.034 ± 0.034 32.6/27

Post-recon 1 P(k) 1.030 ± 0.034 26.6/27

Post-recon 2 P(k) 1.027 ± 0.034 23.9/27

Post-recon 3 P(k) 1.030 ± 0.034 27.4/27

Post-recon 4 P(k) 1.033 ± 0.034 30.9/27

Post-recon 0 ξ (s) 1.058 ± 0.036 20.3/16

Post-recon 2 ξ (s) 1.045 ± 0.037 21.0/17

Post-recon 4 ξ (s) 1.040 ± 0.044 25.3/16

Post-recon 6 ξ (s) 1.056 ± 0.043 21.1/16

Pre-recon P(k) 1.033 ± 0.093 19.1/27

Pre-recon ξ (s) 1.013 ± 0.094 12.2/17

(a greater χ2 would be expected in 21 per cent of cases). The

best-fitting P(k) BAO model (divided by the smooth component of

the best-fitting P(k) model), using our fiducial binning, is displayed

in Fig. 7. We find α = 1.034 ± 0.034 for P(k). Similar to P(k),

the best-fitting model is a good fit (χ2/dof = 32.6/27, a greater χ2

would be expected in 21 per cent of cases). The measured BAO po-

sitions are consistent with those observed in the pre-reconstruction

clustering measurements, listed in Table 2, but reconstruction im-

proves the uncertainty by greater than a factor of 2 (2.4 for ξ (s) and

2.7 for P(k)). The improvement is due to the sharpening of the BAO

feature post-reconstruction as can be observed in Fig. 4: in turn we

fit this with a template with a lower value of �nl (matching the

best-fitting value found for the mock samples). The improvement

is greater than the mean factor of ∼2 expected based on the mean

of the mock samples, but not unprecedented; many realizations are

Figure 8. The solid curves show 
χ2 as a function of the BAO scale α

for the combined P(k) and ξ (s) measurements. The dashed lines show the


χ2 between the best-fitting BAO model and the model without any BAO,

using the fiducial bin choice. The ξ (s) and P(k) measurements are consistent

with each other, and both prefer the BAO model at close to 2σ (
χ2 = 4)

significance.

found to improve by greater than a factor of 3 in Anderson et al.

(2012), though the mean improvement is by a factor of 1.5.

Post-reconstruction BAO measurements for each of the bin cen-

tres we consider are listed in Table 2. More variation is observed for

ξ (s) than for P(k), which is expected, as the measurements using

different ξ (s) bin centres were found to be less correlated in the

mock samples than the P(k) measurements. The differences we find

in the ξ (s) BAO measurements are as large as 0.018. This is consis-

tent with the correlation factors that we find in the mock samples

(between 0.91 and 0.95), which suggest the 1σ scatter between bin

centre results varies between 0.013 and 0.017 for a 0.04 statistical

uncertainty.

For both P(k) and ξ (s), the post-reconstruction measurements are

combined by taking the mean of the 
χ2 across the bin centres

listed in Table 2. These averaged results are listed as ‘Combined’ in

Table 2. We display the 
χ2 for each in Fig. 8, using solid curves.

One can see that the two likelihoods are consistent and that the P(k)

measurement is slightly more precise. The dashed lines display the


χ2 between the best-fitting BAO model and the model without

any BAO, using the fiducial bin choice. Both ξ (s) and P(k) prefer

the BAO model at close to 2σ . The preference is less significant for

P(k). This is due to the fact that the smooth component of the P(k)

has five free terms, while for ξ (s), there are only three terms. For

the same reason, similar differences were found in Anderson et al.

(2014). Further, the smooth ξ (s) model depends on α, while the

smooth P(k) model does not (see equations 10 and 11), explaining

the shape of each dashed curve.

The ξ (s) (1.050 ± 0.040) measurement is less precise than

its P(k) counterpart (1.031 ± 0.034). The difference in the

uncertainties is typical of what we find in the mocks sam-

ples, as we find 28 per cent of the mock realizations have

σ ξ/σ P or σ P/σ ξ that is larger than the σ ξ/σ P we find for

the data. The difference in the α values of 0.019 is more un-

usual. The standard deviation between the combined P(k) and

ξ (s) found in the mocks is 0.011, implying the difference is

∼2σ . Counting the number of mocks that have a larger value

of (αξ − αP )2/(σ 2
ξ + σ 2

P ), we find 3 per cent of the realizations
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Table 3. The first five rows (the complete version

is available as a supplementary file in the online

publication) of a table containing our consensus


χ2 at each α, defined by equation (7), gridded

with a spacing 0.001. For our fiducial cosmology,

Dfid
V (z) = 638.95 Mpc and rfid

d = 148.69 Mpc. Given

that our consensus likelihood is not well represented

as a Gaussian, this table should be used to test any

cosmological model.

α 
χ2

0.8015 7.8036

0.8025 7.7078

0.8035 7.7406

0.8045 7.7816

0.8055 7.8259

have a larger difference. The difference between the P(k) and

ξ (s) is of similar significance as was found in Anderson et al.

(2014).

The differences between P(k) and ξ (s) BAO measurements are

unusually large for both our data and those of Anderson et al.

(2014) compared to the differences found in the mocks due to the

large correlations (0.97 for our mocks and 0.95 for the Anderson

et al. 2014 mocks) achieved in the mock samples. The precision

of our measurements is a factor of 4 less than that of Anderson

et al. (2014), suggesting that a common explanation requires greater

scatter between the results obtained from mock samples (rather

than a bias in one particular measurement technique). For our MGS

data, the difference we find would be 1σ if the correlation were

reduced to 0.88. It is conceivable that including more realism (e.g.

light-cones) in mock samples would reduce the correlation between

the P(k) and ξ (s) BAO measurements recovered from such mocks,

which would explain both our findings and those of Anderson et al.

(2014). The robustness checks we describe in the following section

reveal no potential systematic effect that would bias either the ξ (s)

and P(k) measurements. We therefore obtain our consensus result

of α = 1.041 ± 0.037 by taking the mean of the combined P(k) and

ξ (s) 
χ2.

The consensus likelihood we obtain is non-Gaussian. Therefore,

one should use the full likelihood (and not a Gaussian approxima-

tion) when testing any cosmological model. A table containing α, as

defined by equation (7) and gridded with spacing 0.001, is provided

as a supplementary file in the online publication. The first five rows

of this table are shown in Table 3.

5.2 Robustness tests

We perform a series of robustness tests on BAO scale measured

using the post-reconstruction ξ (s) and P(k). We test the range of

scales used in the fit, the number of terms used in the broad-band

polynomial, and the damping assumed in the BAO template. The

results are shown in Table 4. The α measurements are insensitive

to changes in the range of scales that is fit, as we have tested

fit ranges of 50 < s < 150 h−1 and 0.05 < k < 0.28 h Mpc−1

and have found negligible changes in the best-fitting α and its

uncertainty.

The measurements of α are robust to the form of the polynomial.

For P(k), the data prefer a five-term polynomial to a three term one,

as the χ2 increases by 7 while adding only 2 degrees of freedom.

These results agree with Anderson et al. (2014), who found that the

five-term polynomial was required to achieve a good fit both for

Table 4. Robustness tests performed on the P(k) and ξ (s) BAO mea-

surements recovered from the post-reconstruction data. The fiducial P(k)

results are fit in the range 0.02 < k < 0.3 h Mpc−1 using a five-term

polynomial and �nl = 5.3 ± 2 h−1 Mpc. The fiducial ξ (s) results are

fit in the range 30 < s < 200 h−1 Mpc using a three-term polynomial,

�nl = 4.5 h−1 Mpc, and log(B) = 1 ± 0.4. (All ± represent Gaussian

priors.)

Estimator α χ2/dof

P(k):

Fiducial 1.034 ± 0.034 32.6/27

0.05 < k < 0.28h Mpc−1 1.033 ± 0.032 27.6/21

A1, A2 = 0 1.038 ± 0.036 39.7/29

�nl = 4.3 ± 2 h−1 Mpc 1.030 ± 0.031 32.3/27

�nl = 6.3 ± 2 h−1 Mpc 1.038 ± 0.038 32.9/27

�nl = 5.3 ± 0 h−1 Mpc 1.035 ± 0.035 32.7/28

�nl free 1.025 ± 0.026 31.9/27

ξ0(s):

Fiducial 1.058 ± 0.036 20.3/16

50 < s < 150 h−1 Mpc 1.057 ± 0.037 13.1/8

a1, a2, a3 = 0 1.059 ± 0.037 20.7/19

+a4, a5 1.059 ± 0.039 15.1/14

B free 1.058 ± 0.029 19.2/16

�nl = 3.5 h−1 Mpc 1.056 ± 0.035 20.2/16

�nl = 5.5 h−1 Mpc 1.060 ± 0.041 20.7/16

�nl = 0 h−1 Mpc 1.055 ± 0.029 19.2/16

the mock and data P(k). The best-fitting α shifts by 0.1σ and the

uncertainty increases by 6 per cent when the three-term polynomial

is used, suggesting that while the data prefer the five-term polyno-

mial, the BAO scale measurements are insensitive to the exact form

of the polynomial applied to the P(k) fits.

The α measurements obtained from ξ (s) are insensitive to

whether any smooth polynomial is included in the fit or not. The

χ2/dof is smaller for ξ (s) when no polynomial is used compared to

the fiducial three-term polynomial. Adding two additional terms to

the polynomial reduces the χ2 such that the χ2/dof is the same with

and without any polynomial. The best-fitting α values change by

0.001 and the uncertainty by only 8 per cent when the form of the

polynomial is altered for ξ (s), implying its exact form has negligible

influence on our results.

The choices we adopt for the BAO damping parameters have a

larger impact on our measurements, especially for the uncertainty.

The data have a small preference for a low value of �nl. When

allowed to vary freely, the best fit for both P(k) and ξ (s) is found

when �nl = 0. The BAO feature is enhanced in the BAO template

when �nl is lower and thus the uncertainty drops by a factor of

30 per cent. Allowing B to vary freely in the ξ (s) fit has the same

effect, as the best fit increases B, compensating with the polynomial,

and thereby increases the size of the BAO feature. However, this

lower value of �nl (or greater value of B) is preferred only weakly:

the χ2 decreases by only 1.1 for ξ (s) and 0.7 for P(k). While the

uncertainty changes significantly, the best-fitting values of α shift

by only 0.26σ for P(k) and 0.08σ for ξ (s) when �nl is allowed to be

free. The damping of the BAO feature is predicted by perturbation

theory (see e.g. Crocce & Scoccimarro 2006; Eisenstein et al. 2007a;

Padmanabhan & White 2009) and is expected based on both our

mock samples and more detailed simulations (e.g. Angulo et al.

2008; Mehta et al. 2011). We therefore use the best-fitting �nl

recovered from the mean of our mock samples, which we believe is

more physically appropriate. Our tests show that the BAO distance

scale we measure is robust to this choice, but that allowing no

damping would cause us to underestimate our uncertainty.
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Figure 9. The BAO distance ladder, expressed as DV/rd, including our

measurement and relative to the Planck prediction given their best-fitting flat

�CDM model. The grey region represents the 1σ uncertainty given Planck

data and assuming a flat �CDM model. Our measurement, using the SDSS

DR7 MGS, is displayed with a red diamond. Measurements made using

6dFGS data (Beutler et al. 2011) and BOSS data (Anderson et al. 2014;

Tojeiro et al. 2014) are denoted with black circles. These measurements

are nearly independent with ours, allowing them to be combined to obtain

cosmological constraints. The white squares display measurements using

SDSS DR7 data (Percival et al. 2010; Xu et al. 2012) and the grey squares

display measurements made using WiggleZ data (Kazin et al. 2014).

6 C O S M O L O G I C A L I N T E R P R E TAT I O N

6.1 BAO distance ladder

Our measurement provides a new rung for the BAO distance ladder.

Fig. 9 shows current BAO scale measurements compared with our

MGS measurement, displayed using a red diamond. The measure-

ments in Fig. 9 are divided by the prediction for the best-fitting flat

�CDM model, as determined from Planck satellite (Planck Col-

laboration I 2014a; Planck Collaboration XVI 2014b) observations

of the CMB. The grey contour represents the 1σ allowed region,

determined by sampling the Planck likelihood chains.3 The points

displayed using black circles form a set of independent measure-

ments; these include the 6dFGS measurement made by Beutler

et al. (2011) and BOSS measurements made by Tojeiro et al. (2014)

and Anderson et al. (2014). We combine these data with our own

to obtain cosmological constraints in the following section. The

white squares represent measurements made using SDSS DR7 data

(Percival et al. 2010; Xu et al. 2012) and the grey squares are mea-

surements made by Kazin et al. (2014) using WiggleZ data. These

data overlap significantly in volume with the BOSS data and we do

not use them to obtain cosmological constraints. The BAO distance

measurements are broadly consistent with each other and the Planck

best-fitting �CDM prediction.

The volume of our MGS sample overlaps slightly with 6dFGS.

The 6dFGS footprint occupies most of the southern sky, i.e. it has

δ < 0. Less than 3 per cent of our sample has δ < 0. This, combined

with the fact that the redshift distributions of the 6dFGS data and our

MGS data are significantly different, suggests that any covariance in

3 We used Planck �CDM chains base–planck–lowl–lowLike–highL which

are publicly available for download from Plank Legacy Archive at

http://pla.esac.esa.int/pla/aio/planckProducts.html at the moment of writing

this paper.

our BAO measurement with the Beutler et al. (2011) measurement

is negligible.

The footprint of our sample has a large overlap with the footprint

of the BOSS LOWZ sample used in Tojeiro et al. (2014). It also

overlaps in redshift in the range 0.15 < z < 0.2. The effective

redshift of the LOWZ measurement is zeff = 0.32 and the data with

0.15 < z < 0.2 is only a small fraction of the total volume covered

by LOWZ. Calculating the effective volume of LOWZ sample using

(Tegmark 1997)

veff =
∫

[

n(r)P0

1 + n(r)P0

]2

d3r, (21)

and P0 = 20 000 h3 Mpc−3, we find 8 per cent of the LOWZ vol-

ume is at 0.15 < z < 0.2. Accounting for the fact that more than

one quarter of the BOSS LOWZ data is in the SGC and that our

footprint does not perfectly overlap with the BOSS LOWZ NGC

footprint, the volume of the BOSS LOWZ sample at 0.15 < z < 0.2

and overlapping with our footprint is less than 5 per cent. Using

P0 = 16 000 h3 Mpc−3, 58 per cent of the volume of our sample is

at 0.15 < z < 0.2. This implies the total volume overlap between our

sample and the BOSS LOWZ sample used in Tojeiro et al. (2014) is

3 per cent and thus the correlation between the respective BAO mea-

surements is less than 0.03 (it will be smaller than the volume over-

lap due to the difference in the galaxy samples used). This is small

enough to be negligible when determining cosmological constraints.

6.2 Cosmological constraints with BAO

We identify four independent galaxy BAO measurements that can be

combined to obtain cosmological constraints. These include three

spherically averaged measurements; our own MGS measurement at

z = 0.15, Beutler et al. (2011) at z = 0.11, Tojeiro et al. (2014) at

z = 0.32, and the anisotropic measurement of Anderson et al. (2014)

at z = 0.57. We combine these data with the CMB results released

by Planck Collaboration XVI (2014b) that are based on the com-

bination of data from the Planck Satellite, Wilkinson Microwave

Anisotropy Probe (WMAP) satellite (Bennett et al. 2003; Spergel

et al. 2003) polarization measurements (Bennett et al. 2013), and

high-ℓ power spectra data from ACT (Das et al. 2014) and SPT

(Story et al. 2013) and denoted ‘Planck+WP+highL’ in Planck

Collaboration XVI (2014b). We refer to this combination of CMB

data simply as ‘Planck’. We determine likelihoods for cosmolog-

ical parameters for the BAO+ Planck data set using the COSMOMC

software package (Lewis et al. 2002; Lewis 2013). A study by the

Aubourg et al. (2014) explores the constraints that are achieved

when also including BOSS Lyman α forest BAO measurements

(Font-Ribera et al. 2014; Delubac et al. 2015) and when considering

many extensions to the basic �CDM model. Here, we consider only

simple extensions of the �CDM cosmological model and use only

the combination of galaxy BAO and CMB measurements, allowing

us to focus on the improvement our new measurement provides in

determining basic dark energy properties.

Table 5 presents the maximum likelihood and 68 per cent con-

fidence regions we determine for cosmological parameters, using

different combinations of the Planck, BOSS, 6dFGS, and our MGS

measurement. The MGS measurement of DV /rd is greater than pre-

dicted by the Planck best-fitting �CDM measurement. In the con-

text of �CDM, this implies a greater value of �m and a lower value

of H0 (both with and without curvature), as we find for the cases

where we combine Planck+MGS data. However, for any �CDM

model, our measurement provides only minor (at best) improvement

in the constraints over what Planck+BOSS achieves. Essentially,
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Table 5. Constraints for cosmological parameters using different combinations of BAO and Planck+WP+highL CMB (denoted Planck)

data, for models that assume cold dark matter (CDM) and allow various degrees of freedom in curvature and the dark energy equation

of state. �CDM assumes a flat geometry (�K = 0) and a cosmological constant (w = −1). Models denoted with an ‘o’ allow free

�K. Models with ‘w’ allow freedom the equation of state of dark energy. ‘BOSS’ denotes that we use the Tojeiro et al. (2014) and

Anderson et al. (2014) anisotropic BAO measurements. ‘6dF’ denotes that we use the 6dFGS BAO measurement (Beutler et al. 2011).

Our measurement made using the SDSS DR7 MGS is denoted MGS.

Cosmological Data sets �m h2 �m H0 �K w0

model (km s−1 Mpc−1)

�CDM Planck 0.1427 (26) 0.316 (16) 67.3 (12) – –

�CDM Planck + BOSS 0.1414 (14) 0.308 (9) 67.7 (6) – –

�CDM Planck + MGS 0.1435 (23) 0.323 (15) 66.7 (11) – –

�CDM Planck + BOSS + MGS 0.1418 (14) 0.311 (8) 67.6 (6) – –

�CDM Planck + BOSS + 6dF + MGS 0.1418 (13) 0.311 (8) 67.6 (6) – –

o�CDM Planck + BOSS 0.1419 (25) 0.309 (9) 67.8 (8) +0.0005 (30) –

o�CDM Planck + MGS 0.1418 (25) 0.351 (24) 63.7 (21) −0.0095 (58) –

o�CDM Planck + BOSS + MGS 0.1420 (26) 0.311 (9) 67.6 (8) +0.0002 (31) –

o�CDM Planck + BOSS + 6dF + MGS 0.1421 (26) 0.311 (8) 67.6 (7) +0.0002 (30) –

wCDM Planck + BOSS 0.1425 (22) 0.300 (17) 69.1 (22) – −1.064 (101)

wCDM Planck + MGS 0.1433 (24) 0.324 (48) 67.2 (60) – −1.006 (195)

wCDM Planck + BOSS + MGS 0.1420 (22) 0.309 (15) 67.8 (19) – −1.013 (86)

wCDM Planck + BOSS + 6dF + MGS 0.1420 (21) 0.310 (14) 67.7 (17) – −1.010 (81)

owCDM Planck + BOSS 0.1419 (25) 0.296 (24) 69.3 (28) −0.001 (4) −1.08 (15)

owCDM Planck + BOSS + MGS 0.1420 (25) 0.312 (20) 67.5 (22) +0.001 (5) −1.00 (13)

owCDM Planck + BOSS + 6dF + MGS 0.1421 (25) 0.313 (21) 67.6 (23) +0.001 (5) −0.99 (13)

Figure 10. The 1σ and 2σ confidence levels for the dark energy equation of

state, w0, and the value of the Hubble constant, H0, constraints combining

BAO distance measurements with Planck data. We show the results when

including Planck and BOSS data (red) and then when also including our

measurement made using SDSS DR7 MGS data (green). The inclusion of

our measurement decreases the area enclosed by the 1σ contour by 20 per

cent.

the Planck+BOSS measurements fix �m and this allows very lit-

tle freedom in the distance–redshift relationship (compared to the

precision of our measurement) when the equation of state of dark

energy is fixed at −1.

When we allow the equation of state of dark energy to vary, our

BAO measurement provides significant improvement in the preci-

sion of �m, H0, and w0. Adding our measurement to either the

Planck+BOSS or Planck+BOSS+6dF data sets results in a 15 per

cent improvement in the precision the H0 and w0 measurements.

This is illustrated in Fig. 10, where the 1σ and 2σ allowed re-

gions for w0 and H0 are displayed for Planck+BOSS (red) and

Planck+BOSS+ MGS (green).

In all of the cases we compare, H0 decreases when we include

our MGS measurement. For example, in the owCDM case, we find

H0 = 67.5 ± 2.2 for the combination of Planck+BOSS+MGS data,

while excluding the MGS measurement yields H0 = 69.3 ± 2.8.

The MGS BAO measurement therefore increases the tension be-

tween Planck+BAO measurements of H0, and those obtained using

direct detection, e.g. the measurements by Efstathiou (2014) of

H0 = 72.5 ± 2.5, Riess et al. (2011) of H0 = 73.8 ± 2.4, and

Freedman et al. (2012) of H0 = 74.3 ± 2.1. The constraint on H0

obtained using BAO measurements (including our own) is explored

in much greater detail in a study by the Aubourg et al. (2014).

Using the full data set, we find w0 =−1.010 ± 0.081 and the best-

fitting cosmological parameters differ from the Planck �CDM best

fit by less than 0.4σ (where σ is the uncertainty on the Planck best-

fitting measurements). Our measurement thus affords significant

improvement in measurements of the properties of dark energy and,

in combination with other BAO data, is in excellent agreement with a

flat �CDM model. See Aubourg et al. (2014) for further exploration

of the cosmological implications of BAO measurements, including

our MGS measurement.

7 C O N C L U S I O N

We have reanalysed the clustering of galaxies from the SDSS DR7

MGS using state of the art techniques to reconstruct the density

field and determine errors using a suite of 1000 mock realizations

of our data. Applying these techniques allows a robust, 4 per cent

measurement of the BAO scale at z = 0.15. Our results can be

summarized as follows.

(i) We use the NYU-VAGC ‘safe0’ sample to select a sample

of galaxies, with g − r > 0.8, Mr < −21.2, and 0.07 < z < 0.2,

that occupy a volume not probed by BOSS and have a large enough
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number density to ensure clustering measurements using the sample

are cosmic-variance limited. We denote our sample ‘MGS’.

(ii) We use 1000 mock realizations of our data, created and val-

idated as described in Howlett et al. (in preparation) and Howlett

et al. (2014), in order to produce covariance matrices and test our

methodology. Testing the mean clustering of these mock realiza-

tions, we expect reconstruction to improve the precision of our

BAO measurement by a factor of 2. Testing the reconstructed re-

sults for individual mocks, we find 90 per cent of the realizations

provide robust BAO detection and that measurements determined

using Fourier- and configuration-space clustering are highly con-

sistent (0.97 correlation factor).

(iii) We find that reconstruction applied to our data improves

the precision of our BAO measurement by greater than a factor

of 2 for both our Fourier- and configuration-space measurements,

which we show to be robust against choices in the fitting method-

ology. These BAO measurements are consistent with each other

and we combine them to obtain our consensus measurement of

DV(zeff = 0.15) = (664 ± 25)(rd/rd, fid) Mpc. The likelihood for our

measurement is not well approximated as a Gaussian. Instead, one

should use the full likelihood, available in the online publication as

detailed in Table 3.

(iv) Our distance scale measurement can be combined with

Planck CMB data and other BAO distance scale measurements

to improve the precision of cosmological constraints. Our distance

measurement is larger than that predicted by Planck data and a

�CDM model, and therefore decreases the derived value of H0 when

combining CMB and BAO data. Thus, our measurement increases

the tension between direct H0 measurements and CMB+BAO de-

rived constraints on H0. For dark energy constraints, including our

measurement in addition to BOSS and 6dFGS measurements im-

proves the precision on the equation of state of dark energy by 15 per

cent, to w0 = −1.010 ± −0.081.
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Additional Supporting Information may be found in the online ver-

sion of this article:

Table 3. The first five rows of a table containing our consensus


χ2 at each α, defined by equation (7), gridded with a spac-

ing 0.001. For our fiducial cosmology, Dfid
V (z) = 638.95 Mpc and

rfid
d = 148.69 Mpc. Given that our consensus likelihood is not well

represented as a Gaussian, this table should be used to test any

cosmological model.
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