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ABSTRACT

We develop a new method, which is based on the optimal redshift weighting scheme, to

extract the maximal tomographic information of baryonic acoustic oscillations (BAO) and

redshift space distortions (RSD) from the extended Baryon Oscillation Spectroscopic Survey

(eBOSS) Data Release 14 quasar (DR14Q) survey. We validate our method using the Extended

Zel’dovich mocks, and apply our pipeline to the eBOSS DR14Q sample in the redshift range

of 0.8 < z < 2.2. We report a joint measurement of fσ 8 and two-dimensional BAO parameters

DA and H at four effective redshifts of zeff = 0.98, 1.23, 1.52, and 1.94, and provide the full

data covariance matrix. Using our measurement combined with BOSS DR12, Main Galaxy

Sample (MGS), and 6 degree Field Galaxy Survey (6dFGS) BAO measurements, we find

that the existence of dark energy is supported by observations at a 7.4σ significance level.

Combining our measurement with BOSS DR12 and Planck observations, we constrain the

gravitational growth index to be γ = 0.580 ± 0.082, which is fully consistent with the

prediction of general relativity. This paper is part of a set that analyses the eBOSS DR14

quasar sample.

Key words: cosmological parameters – dark energy – distance scale – large-scale structure of

Universe.

1 IN T RO D U C T I O N

In this era of precision cosmology, large spectroscopic galaxy sur-

veys are one of the key probes of both the expansion history and

structure growth of the Universe. Probing deep into the Universe,

these surveys are able to provide rich information on the past light-

cone, which is crucial to unveil the physics of the cosmic accel-

eration (Riess et al. 1998; Perlmutter et al. 1999), through studies

of dark energy (Weinberg et al. 2013) and gravity on cosmological

scales (Koyama 2016).

⋆ E-mail: gbzhao@nao.cas.cn

Baryonic acoustic oscillations (BAO) and redshift space dis-

tortions (RSD) are distinct three-dimensional clustering patterns

probed by galaxy surveys, which are key to map the expansion his-

tory and the structure growth of the Universe respectively. Since

a first successful measurement of BAO in 2005 (Eisenstein et al.

2005) and RSD in 2001 (Peacock et al. 2001), measurements with

higher precision have been performing actively using large galaxy

surveys (Percival et al. 2010; Beutler et al. 2011, 2012; Contreras

et al. 2013; Kazin et al. 2014; Ross et al. 2015; The Dark Energy

Survey Collaboration et al. 2017; Alam et al. 2017; Bautista et al.

2018; Ata et al. 2018).

Traditional BAO and RSD measurements are usually performed

in a single, or a small number of redshifts slices, which is to guar-
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antee that there are sufficiently large number of galaxies for the

analysis to avoid large statistical or systematic uncertainties. How-

ever, this approach may give rise to information loss of the temporal

evolution of the BAO or RSD signal, which is essential for tests of

cosmological models. One solution to this problem is to perform

BAO and RSD analyses in a large number of overlapping redshift

slices to balance the level of uncertainty for the BAO/RSD analysis

and the tomographic information (Zhao et al. 2017b; Wang et al.

2018b, 2017). However, this method is computationally expensive

as it requires repetitive measurements and analysis with the com-

putational cost scaling with Nz(Nz − 1)/2, where Nz is the number

of redshift slices.

The optimal redshift weighting scheme, which was first devel-

oped for cosmological implications by Tegmark, Taylor & Heavens

(1997), is a computationally efficient alternative. By designing the

optimal redshift weights for a given set of parameters, one can in

principle extract the light-cone information by fewer than Np mea-

surements, where Np is the number of parameters to be measured.

Given that Np is usually a small number for BAO and RSD analyses,

this approach significantly reduces the computational cost.

The optimal redshift method has been applied to BAO measure-

ments in configuration space (Zhu, Padmanabhan & White 2015;

Zhu et al. 2016, 2018), and RSD measurements in Fourier space

(Ruggeri et al. 2017, 2018). In this work, we develop an alternative

approach to Ruggeri et al. (2017, 2018) for a joint measurement

of BAO and RSD in Fourier space, and apply our method to the

extended Baryon Oscillation Spectroscopic Survey (eBOSS) Data

Release 14 quasar (DR14Q) sample, followed by a cosmological

implication.

The paper is structured as follows. In Section 2, we describe the

observational and simulated data sets used in this analysis, and in

Section 3, we present the method, followed by mock tests and main

result of this work in Section 4. We compare our BAO and RSD

measurements to the DR14Q companion papers presented in Sec-

tion 5, followed by a cosmological implication of our measurement

in Section 6, before conclusion and discussion in Section 7.

2 THE DATA SETS

In this section, we briefly describe the observational and simulated

data sets used in this analysis. We refer the readers to a more detailed

description of the DR14Q data sets in a companion paper of Gil-

Marı́n et al. (2018).

2.1 The eBOSS DR14Q sample

Being part of the Sloan Digital Sky Survey-IV (SDSS-IV) project

(Blanton et al. 2017), the eBOSS quasar survey (Dawson et al. 2016;

Zhao et al. 2016) started in 2014 using a 2.5-m Sloan telescope

(Gunn et al. 2006) at the Apache Point Observatory in New Mexico

in the United States. After the eBOSS quasar target selection, which

is described in Myers et al. (2015), the spectra are taken using the

double-armed spectrographs (Smee et al. 2013), which were used

for the BOSS mission, as part of the SDSS-III project (Eisenstein

et al. 2011).

The data catalogue used in this analysis is the eBOSS quasar

sample (Pâris et al. 2017), which is a part of the SDSS-IV DR14

(Abolfathi et al. 2018). This DR14Q catalogue consists of around

150 000 quasars with secure redshifts distributed across an effective

area of 2112.9 deg2 (see fig. 3 in a companion paper Gil-Marı́n et al.

2018 for a footprint of the DR14Q sample). A histogram for the

redshift distribution for the quasar sample is shown in Fig. 1. Each
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Figure 1. The observed volume number density (binned with �z = 0.05)

of the quasars in unit of h3 Mpc−3 (multiplied by 105) as a function of

redshifts in the NGC (upper black) and SGC (lower blue). The grey shaded

region (0.8 < z < 2.2) shows the redshift range in which data are selected

for this analysis.

quasar is given a total weight of

wtot = wFKP wsys wspec

√
wz. (1)

where wFKP, wsys, and wspec denotes for the Feldman–Kaiser–

Peacock (FKP) weight (Feldman, Kaiser & Peacock 1994), system-

atics weight, and the spectrum weight. The FKP weight is used to

minimize the uncertainty of the power spectrum measurement, and

wsys corrects for the systematic effects from observing conditions in-

cluding seeing, airmass, extinction, sky background, and so on (Ata

et al. 2018). The spectrum weight accounts for the fibre collision

and redshift failures (Gil-Marı́n et al. 2018; Zarrouk et al. 2018). In

addition, we apply a redshift weight to each quasar to capture the to-

mographic information in redshift, which is detailed in Section 3.6.1

The DR14Q sample used in this analysis is publicly available on

the SDSS website https://data.sdss.org/sas/dr14/eboss/lss/catalogs/

2.2 The simulated mock samples

A large number of mock samples, each of which has the same

clustering property of the eBOSS DR14Q sample, are required to

estimate the data covariance matrix. In this analysis, we use the Ex-

tended Zel’dovich (EZ) mocks, which consist of 1000 realizations,

produced following the prescription in Chuang et al. (2015). The

cosmological parameters used for the EZ mocks are listed in equa-

tion (2), where the parameters are: the physical energy density of

cold dark matter (CDM) and baryons, the sum of neutrino masses,

the amplitude of the linear matter power spectrum within 8h−1 Mpc,

the power index of the primordial power spectrum, and the (derived)

scale of the sound horizon at recombination respectively.

� ≡
{

�ch
2, �bh

2,
∑

Mν/eV, σ8, ns, rd/Mpc
}

= {0.1189, 0.0221, 0, 0.8225, 0.96, 147.66}|EZ (2)

= {0.1190, 0.022, 0.06, 0.8, 0.97, 147.78}|f (3)

1As the redshift weights derived in Section 3.6 are for power spectrum

multipoles, each quasar should be assigned a square root of the weights.

MNRAS 482, 3497–3513 (2019)
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We list another set of parameters in equation (3), which is the

fiducial cosmology we adopt for this analysis.2

Note that the EZ mocks used in this analysis include the full

information on the light-cone, which is essential for the tomographic

analysis in this study. The light-cone mocks were constructed by

stacking simulation boxes at various redshifts. In order to match

the time evolution of the clustering signal of the DR14Q sample,

parameters used for the mocks were calibrated from the DR14Q

sample in overlapping redshift slices, which is necessary to reduce

the noise. For more details of the production of light-cone mocks,

please refer to section 5.1 of Ata et al. (2018).

3 M E T H O D O L O G Y

In this section, we present details of the method used for this anal-

ysis, including the parametrization, the derivation of the optimal

redshift weights, the template, and the likelihood analysis with de-

tails on parameter estimation.

We start by parametrizing the light-cone information of redshift

surveys using a small number of parameters, and aim to derive a set

of redshift weights to optimize the measurement of these parameters

simultaneously.

3.1 Parametrizing tomographic information in redshift

surveys

3.1.1 Parametrization of the BAO parameters

As in Zhu et al. (2015, 2016), we parametrize the redshift depen-

dence of the transverse and radial dilations of the BAO distances

α⊥ and α‖ using the following form,

α⊥(z) ≡
DA(z)

Df
A(z)

θ = α0 (1 + α1x) ,

α‖(z) ≡
Hf(z)

H (z)
θ = α0 (1 + α1 + 2α1x) ,

x ≡ χf(z)/χf(zp) − 1, θ ≡ r f
d/rd, (4)

where χ is the comoving distance, and α0 and α1 are free parame-

ters. This parametrization is essentially a Taylor expansion, and as

stated in Zhu et al. (2015), it can well approximate the background

expansion history of a wide range of cosmologies. The pivot red-

shift zp is taken to be the effective redshift of the DR14Q sample,

which is defined as follows (Samushia et al. 2014),

zp = zeff =
∑

i ziw
2
i

∑

i w2
i

. (5)

Here wi is the total weight of the ith data sample shown in equa-

tion (1). Note that in equation (4), x vanishes at z = zp, which relates

α0 and α1 to α⊥(zp) and α‖(zp) via,

α⊥(zp) = α0,

α‖(zp) = α0 (1 + α1) . (6)

Plugging equation (6) into equation (4), one obtains,

α⊥(z) = α⊥(zp) +
[

α‖(zp) − α⊥(zp)
]

x,

α‖(z) = α‖(zp) + 2
[

α‖(zp) − α⊥(zp)
]

x. (7)

2Throughout the paper, the subscript or superscript ‘f’ denotes the fiducial

value.

3.1.2 Parametrization of the RSD parameters

We assume that the logarithmic growth rate f takes the form of

(Linder 2005),

f (z) ≡
dlogδ

dloga
= [�M(z)]γ =

[

�MH 2
0 (1 + z)3

]γ

[

α‖(z)

Hf(z)θ

]2γ

(8)

where δ is the overdensity. With f (z)|z=zp
= f (zp), the above equa-

tion can be recast into,

f (z) = f (zp)

[

�M(z)

�M(zp)

]γ

(9)

where

�M(z)

�M(zp)
=

(

1 + z

1 + zp

)3 [
α‖(z)

α‖(zp)

]2 [
Hf(zp)

Hf(z)

]2

(10)

Hf(z) ∝
[

�f
M(1 + z)3 + (1 − �f

M)
]1/2

(11)

The gravitational growth index γ is treated as a free parameter.

The time evolution of the normalization σ 8 is modelled as,

σ8(z) = σ8(zp)
D(z)

D(zp)
(12)

where

D(z) = exp

[

−
∫ z

0

dz
f (z)

1 + z

]

(13)

In this framework, the entire evolution history of fσ 8 is known given

parameters f(zp), σ 8(zp), α‖(zp), α⊥(zp), and γ .

3.1.3 Parametrization of the bias parameters

The redshift evolution of the linear bias b1 for the DR14Q sample

has been found to be well approximated by a quadratic function

(Laurent et al. 2017) developed in Croom et al. (2005). In this

work, we adopt the fitting formula developed in Croom et al. (2005)

with one parameter b1(zp) to be determined, i.e.,

b1(z) = b1(zp) + 0.29
[

(1 + z)2 − (1 + zp)2
]

(14)

The time evolution of the non-local bias b2 has not been well stud-

ied in the literature. As it is expected to be much less important

compared to the linear bias on scales of interest for BAO and RSD,

we assume it to be a constant for simplicity, i.e.,

b2(z) = b2(zp). (15)

3.1.4 Parametrization of the FoG parameter

The RSD signal is affected by the so-called Finger-of-God (FoG)

radial smearing owing to virialized peculiar velocities. We assume

that the corresponding velocity dispersion, σ v , is proportional to (1

+ z)/H(z) during evolution (Seo & Eisenstein 2007), thus,

σv(z) =
Hf(zp)

Hf(z)

α‖(z)

α‖(zp)

1 + z

1 + zp

σv(zp) (16)

3.1.5 Summary of the parameters

The free parameters used with the assumed form of redshift evolu-

tion are summarized in Table 1. In addition to the eight parameters

shown in the bottom part of the table, we allocate another param-

eter Nshot to account for the stochasticity of the shot noise of the

monopole, i.e., P0(k) → P0(k) + Nshot (see Sections 3.3 and 3.4 for

the definition of P0).

MNRAS 482, 3497–3513 (2019)
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Table 1. The functional form of the redshift evolution of BAO, RSD, and

bias parameters used in this work, and their priors. A weak Gaussian prior,

which corresponds to the 3σ constraint derived from Planck 2015 observa-

tions (Planck Collaboration et al. 2016), is applied on σ 8(zp).

Quantities Redshift evolution

BAO α⊥(z) = α⊥(zp) + [α‖(zp) − α⊥(zp)]x

BAO α‖(z) = α‖(zp) + 2[α‖(zp) − α⊥(zp)]x

RSD f (z) = f (zp)
(

1+z
1+zp

)3γ [

α‖(z)

α‖(zp)

Hf (zp)

Hf (z)

]2γ

RSD σ8(z) = σ8(zp) D(z)
D(zp)

RSD σv(z) = Hf (zp)

Hf (z)

α‖(z)

α‖(zp)
1+z
1+zp

σv(zp)

Bias b1(z) = b1(zp) + 0.29[(1 + z)2 − (1 + zp)2]

Bias b2(z) = b2(zp)

Parameter Prior

α⊥(zp) [0.7,1.3]

α‖(zp) [0.7,1.3]

f(zp)σ 8(zp) [0, 2]

γ [0, 2]

b1(zp)σ 8(zp) [0,3]

b2(zp)σ 8(zp) [ − 2, 2]

σ 8(zp) N(0.367, 0.022)

σ v(zp) [0,20]

Nshot [ − 60000, 60000]

3.2 The Karhunen–Loève compression

To analyse the observational data of galaxy surveys, it is impractical

to subdivide the galaxies into a large number of redshift slices

and perform the measurement in each slice, therefore we seek a

way to compress the data sample in redshift with minimum loss of

information.

Data compression by applying optimal redshift weights was

recently developed for the BAO measurement (Zhu et al. 2015,

2016), based on the Karhunen–Loève (K-L) compression method

(Tegmark et al. 1997; Heavens, Jimenez & Lahav 2000). Here, we

extend the analysis for a joint measurement of BAO and RSD for

redshift surveys.

To be as general as possible, let us assume that we use Np param-

eters to parametrize the galaxy power spectra multipoles in redshift

space, which can be in principle measured at Nz redshifts and at Nk

wavenumbers. We define the power spectrum vector P as,

Pℓ,z(zi) ≡
[

Pℓ(k1, zi), Pℓ(k2, zi), . . . , Pℓ(kNk
, zi)

]T
(17)

Pz(zi) ≡
[

P0,z(zi), P2,z(zi), . . . , P2Nℓ,z(zi)
]T

(18)

P ≡
[

Pz(z1), Pz(z2), . . . , Pz(zNz
)
]T

(19)

The Fisher information matrix F using observables P is then,

F = D
T
C

−1
D (20)

where C is the data covariance matrix, and the derivative matrix D

is,

D ≡
(

∂P

∂p1

,
∂P

∂p2

, . . . ,
∂P

∂pNp

)

(21)

We are seeking an optimal redshift-weighting matrix W so that the

z-weighted power spectra contain the same information for all the

parameters.

The weighted power spectrum vector (NpNkNℓNz × 1) is

Pw = W
T

P (22)

where ssW is a NzNℓNk × Np weighting matrix, namely,

W =

⎛

⎝

W0,p1
(k1, z1) ... W0,pNp

(k1, z1)

... ...

WNℓ,p1
(kNk

, zNz
) ... WNℓ,pNp

(kNk
, zNz

)

⎞

⎠ (23)

The data covariance matrix Cw for the weighted observables Pw is

a Np × Np matrix, namely,

Cw = W
T
CW (24)

The Fisher matrix is then,

Fw = D
T
wC

−1
w Dw (25)

where

Dw =
(

∂Pw

∂p1

,
∂Pw

∂p2

, . . . ,
∂Pw

∂pNp

)

= W
T
D (26)

The compression is lossless, i.e., Fw = F, which means that the

information content of a sufficiently redshift-sliced galaxy sample

can be made exactly the same as that included in a set of redshift-

weighted samples if the redshift weight W is,

W = C
−1

D. (27)

In this case, it can be proved that,

D
T
w = Cw = Dw = Fw = D

T
C

−1
D = F. (28)

This is easy to understand qualitatively: to avoid information loss

in redshift when measuring Np parameters at the same time, we

have to perform the redshift weighting Np times using the opti-

mal weight for individual parameters respectively, and use these

Np observables coherently in the likelihood analysis by includ-

ing the covariance among these observables properly. Note that

Np = 1, i.e., there is only one parameter to be determined, is a

special case where Pw, Dw, Cw, and Fw become scalars, which

is the case studied in Zhu et al. (2015, 2016) and Ruggeri et al.

(2017).

3.3 The template of power spectrum at a specific redshift

We use the extended TNS model (Taruya, Nishimichi & Saito 2010)

used in Beutler et al. (2014, 2017) and Alam et al. (2017) as a

template of the two-dimensional power spectrum at a given redshift

z,

Pg(k, μ, z) = DFoG (k, μ, z)
[

Pg,δδ(k, z)

+2f (z)μ2Pg,δθ (k, z) + f 2(z)μ4Pθθ (k, z)

+A(k, μ, z) + B (k, μ, z)
]

, (29)

where

Pg,δδ(k, z) = b2
1(z)Pδδ(k, z) + 2b1(z)b2(z)Pb2,δ(k, z)

−
8

7
b1(z)(b1(z) − 1)Pbs2,δ(k, z)

+
64

315
b1(z)(b1(z) − 1)σ 2

3 (k, z)P L
m(k, z)

+b2
2(z)Pb22(k, z) −

8

7
[b1(z) − 1]b2(z)Pb2s2(k, z)

+
16

49
[b1(z) − 1]2Pbs22(k, z), (30)

MNRAS 482, 3497–3513 (2019)
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Pg,δθ (k, z) = b1(z)Pδθ (k, z) + b2(z)Pb2,θ (k, z)

−
4

7
[b1(z) − 1]Pbs2,θ (k, z)

+
32

315
[b1(z) − 1]σ 2

3 (k, z)P L
m(k, z), (31)

Pg,θθ (k, z) = Pθθ (k, z), (32)

DFoG(k, μ, z) =
{

1 + [kμσv(z)]2 /2
}−2

, (33)

A(k, μ, z) = b3
1(z)

3
∑

m,n=1

μ2m[f (z)/b1(z)]nAmn(k, z),

B(k, μ, z) = b4
1(z)

4
∑

m=1

2
∑

a,b=1

μ2m[−f (z)/b1(z)]a+bBm
ab(k, z).

(34)

Note that subscripts δ and θ denote the overdensity and velocity

divergence fields respectively, and Pδδ , Pδθ , and Pθθ are the cor-

responding nonlinear auto- or cross-power spectrum, which are

evaluated using the regularized perturbation theory (REGPT) up to

second order (Taruya et al. 2012). The linear matter power spectrum

P L
m is calculated using CAMB (Lewis, Challinor & Lasenby 2000).

The terms b1 and b2 stand for the linear and the second-order local

biases, respectively. We have eliminated the second-order non-local

bias bs2 and the third-order non-local bias b3nl using the following

relation (Chan, Scoccimarro & Sheth 2012; Baldauf et al. 2012;

Saito et al. 2014),

bs2 = −
4

7
(b1 − 1) ,

b3nl =
32

315
(b1 − 1) . (35)

The A and B correction terms are computed using standard pertur-

bation theory following equations (A3) and (A4) in Taruya et al.

(2010).

3.4 The Alcock–Paczynski effect

The Alcock–Paczynski (AP) effect quantifies the difference in the

dilation of scales along and cross the line of sight due to the wrong

cosmology used to convert redshifts to distances (Alcock & Paczyn-

ski 1979), therefore this effect can be used to infer the true cosmol-

ogy by contrasting the clustering along different lines of sight.

Mathematically, the AP effect can be formulated as follows,

Pℓ(k, z) =
2ℓ + 1

2α2
⊥α||

∫ +1

−1

dμ Pg(k′, μ′, z)Lℓ(μ) (36)

where Pg(k
′
, μ

′
, z) is given by equation (29), Lℓ is the Legendre

polynomial of order ℓ, and,

k′ =
k(1 + ǫ)

α

{

1 + μ2
[

(1 + ǫ)−6 − 1
]}1/2

μ′ =
μ

(1 + ǫ)3

{

1 + μ2
[

(1 + ǫ)−6 − 1
]}−1/2

α = α
2/3
⊥ α

1/3
‖ ; 1 + ǫ = F

1/3
AP ; FAP =

α‖

α⊥
(37)
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Figure 2. The power spectrum monopole (upper group of curves) and

quadrupole (lower group) of the fiducial model at various redshifts. In each

group, curves from top to bottom show the fiducial models at redshifts z =
0.825–2.175, with redshift increment of �z = 0.05. The thick curves within

each group show the power spectra of the fiducial model at an effective

redshift of zeff = 1.52 of the DR14Q sample covering the redshift range of

0.8 < z < 2.2.

The power spectrum monopole and quadrupole of the fiducial model

at various redshifts from 0.8 to 2.2 are shown in Fig. 2.

3.5 The data covariance C

We model the time evolution of the data covariance matrix C using

an analytic method (Taruya et al. 2010),

Covℓℓ′ (k, z) =
4π2

k2�k�V (z)

(2ℓ + 1)(2ℓ′ + 1)

2

×
∫ +1

−1

dμLℓ(μ)Lℓ′ (μ)

[

Pg(k, μ, z) +
1

n̄g(z)

]2

(38)

In Fig. 3, we show a comparison of Cov00(k, z), the diagonal el-

ements of the data covariance matrix (the monopole–monopole

block), derived from the EZ mocks (the four data points with error

bars), with that computed using the analytical formula shown in

equation (38, the filled band). This shows that our analytic formula

can well capture the redshift evolution of Cov00, especially at k ≃
0.1 h Mpc−1. We have numerically confirmed that this also holds

for Cov22 and Cov02.3

We notice that equation (38) assumes the diago nality of the co-

variance among different k modes, which well approximates the

covariance matrices derived from the mocks, although it can be fur-

ther improved using more sophisticated methods to include the non-

Gaussian contribution (see Howlett & Percival 2017; O’Connell &

Eisenstein 2018 for recent developments and references

therein).

Note that the amplitude of the estimated Cov is irrelevant, as

long as the normalization is kept the same for all redshifts. This is

because the normalization of the weights to be derived from Cov

can be arbitrary.

3We have checked and confirmed that the redshift evolution of Covℓℓ′ where

ℓ, ℓ
′ = 0, 2 shows a similarity to a large extent for different k modes for k ∈

[0.05, 0.15] h Mpc−1.
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D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

-a
b
s
tra

c
t/4

8
2
/3

/3
4
9
7
/5

1
4
5
5
8
5
 b

y
 U

n
iv

e
rs

ity
 o

f P
o
rts

m
o
u
th

 L
ib

ra
ry

 u
s
e
r o

n
 1

1
 O

c
to

b
e
r 2

0
1
9



3502 G-B. Zhao et al.

10
4

10
5

10
6

10
7

0.8 1.0 1.5 2.0 2.2

C
o
v
0
0
(k
,z
)

redshift z

Figure 3. A comparison of Cov00(k, z), which are the diagonal elements of

the covariance matrix (the monopole–monopole block), derived from the EZ

mocks (data points with error bars), with that computed using the analytical

formula shown in equation (38, the filled band). Both the band and the error

bars show Cov00(k, z) for k modes in the range of k ∈ [0.05, 0.15] h Mpc−1.

For the analytic covariance shown in the band, k is sampled logarithmically

from 0.05 to 0.15 h Mpc−1 from top to bottom, and the white curve in the

middle corresponds to k = 0.1 h Mpc−1. For the covariance derived from

mocks at four effective redshifts, the k bins are made uniform linearly in the

same range, and the central value and the error bars denote values for k =
0.1 h Mpc−1, and the standard deviation, respectively.

3.6 The optimal redshift weights

Now we attempt to derive the optimal redshift weights for each

parameters shown in Table 1. Specifically, we evaluate the derivative

matrix D shown in equation (21) numerically, and compute the data

covariance matrix C using equation (38). We have numerically

verified that the k-dependence of all the weights is very weak in the

k range of 0.05� k� 0.25h Mpc−1 where data are most informative,

thus we compute the redshift weights at k = 0.1h Mpc−1 without

loss of generality.

The optimal redshift weights for the relevant parameters using

the monopole and quadrupole of the galaxy power spectrum are

calculated using equation (27), and are shown in Fig. 4 . As illus-

trated, the shapes of these weights show a high level of similarity,

which means that there would be significant redundancy in weighted

power spectra, if these weights were applied. This will not only

cause unnecessary computations, but also yield a largely singular

data covariance matrix, which is difficult to invert accurately for

likelihood analysis.

To remove the redundancy in the redshift weights, we perform a

singular-value decomposition (SVD) of the original redshift weights

for all the parameters shown in Fig. 4, i.e.,

X = U�V T (39)

where X is the data matrix of the weights, and � is a diagonal matrix

storing the variances. The new orthogonal weights can be found by

projecting the original ones on to the new basis V, whose variances

are ordered in �. Keeping a first few principal components can

largely reduce the redundancy with negligible information loss .4

This procedure yields two orthogonal weights for monopole and

quadrupole each, which represents over 90 per cent of the variance

in the data, as shown in the left-hand panels of Fig. 5. Note that these

new redshift weights are not generically positive definite, making

4We provide a MATLAB code in the Appendix for the SVD analysis.
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Figure 4. The optimal redshift weights for the monopole (black) and

quadrupole (red) each free parameters as shown in the figure legend. For

illustration, the weights are normalized so that the sum of each weight in

the entire redshift range (0.8 < z < 2.2) is unity, although the normalization

can be arbitrary.

it difficult to apply to the galaxy catalogues .5 In some occasions,

all the weights can be made positive by a linear transformation

without loss of information. However, as this is not always feasible,

we add a third weight, which is a constant in z, to guarantee that

the weights can be always turned positive by a linear transforma-

5This is because these weights are supposed to be applied to power spectra,

not to individual galaxies. The weights for galaxies are square root of the

redshift weights, thus they must be positive definite.
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Figure 5. Left: the first two principal redshift weights, denoted as V1 and V2, for the monopole (upper panel) and quadrupole (lower) respectively derived from

an SVD analysis. Right: the positive-definite redshift weights, W1, W2A(B), W3, derived from linear combinations of V1, V2, and a constant. The W weights are

normalized in the same way as in Fig. 4.

tion. As the added constant weight spoils the orthogonality of the

weights, we tune the constant to minimize the correlation between

the weights, which removes the redundancy as much as possible.

We include a detailed procedure of obtaining the weights in Ap-

pendix B. The resultant weights are shown in the right-hand panel of

Fig. 5.

Care must be taken when analysing these redshift-weighted sam-

ples using a template at a single effective redshift, as in the tradi-

tional method. As the redshift weights can be generally arbitrary in

shape, it can make the redshift distribution of the weighted sample

multimodal, making it inaccurate to be modelled using a template

at a single effective redshift. To be explicit, we revisit the calcula-

tion of the effective redshift. Observationally, the measured power

spectra are actually a redshift-weighted average across the redshift

range of the catalogue, i.e.,

P =
∑

P (zi)w
2
i

∑

w2
i

(40)

Expanding the power spectra at an arbitrary redshift z around an

effective redshift zeff yields,

P (z) = P (zeff) + P ′(z − zeff) +
1

2
P ′′(z − zeff)

2 + O(P ′′′) (41)

Combining equations (40) and (41), we have,

P = P (zeff) + P ′�1 +
1

2
P ′′�2 + O(P ′′′) (42)

where,

�1 =
(∑

ziw
2
i

∑

w2
i

− zeff

)

�2 =
(∑

z2
i w

2
i

∑

w2
i

− 2zeff

∑

ziw
2
i

∑

w2
i

+ z2
eff

)

(43)

The first-order term �1 vanishes if zeff =
∑

ziw
2
i∑

w2
i

, but this does not

necessarily diminish �2 and higher order terms. Actually, when

�1 = 0,

�2 =

[

∑

z2
i w

2
i

∑

w2
i

−
(∑

ziw
2
i

∑

w2
i

)2
]

(44)

The catalogue can only be analysed using a template at the effective

redshift if �2 ≪ 1, which is not always the case generally. We have

numerically checked that �2(W1) and �2(W3) are sufficiently small

to be ignored. However, this term for W2 (W2A + W2B in the right-

hand panel of Fig. 5) is non-negligible due to its double-peaked

feature. Therefore, we split this weight into two pieces W2A and

W2B so that each one can be well modelled by its own effective

redshift. The explicit values for �2 for these four weighted samples

are listed in the bottom of Table 2.

4 R ESULTS

In this section, we perform tests on the mocks before the joint mea-

surement on BAO and RSD parameters using the eBOSS DR14Q

sample at four effective redshifts. We also present a measurement

of linear bias.

4.1 Joint BAO and RSD measurements

We first apply the square root of redshift weights W1, W2A, W2B,

and W3 shown in Fig. 5 to both the EZ mocks and the DR14Q

sample, and measure the corresponding power spectra monopole

and quadrupole using the Fast Fourier Transform (FFT) method

presented in Bianchi et al. (2015), as shown in Fig. 6. As the power

spectra derived from the z-weighted samples are essentially linear

combinations of power spectra at multiple redshifts, we compute

MNRAS 482, 3497–3513 (2019)
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3504 G-B. Zhao et al.

Table 2. The measurement of BAO, RSD, and other relevant parameters from the DR14 QSO sample at four effective

redshifts. The unit of DM and DV is Mpc, and that of H is km s−1 Mpc−1.

DR14 QSO sample

zeff = 0.978 zeff = 1.230 zeff = 1.526 zeff = 1.944

α⊥ 0.939 ± 0.169 1.003 ± 0.091 0.986 ± 0.054 1.017 ± 0.082

α‖ 1.061 ± 0.130 1.053 ± 0.100 1.095 ± 0.094 1.155 ± 0.093

α 0.971 ± 0.108 1.017 ± 0.056 1.020 ± 0.037 1.059 ± 0.056

ε 0.048 ± 0.087 0.018 ± 0.054 0.036 ± 0.041 0.044 ± 0.044

DA ×
(

rfid
d /rd

)

1586.18 ± 284.93 1769.08 ± 159.67 1768.77 ± 96.59 1807.98 ± 146.46

H ×
(

rd/r
fid
d

)

113.72 ± 14.63 131.44 ± 12.42 148.11 ± 12.75 172.63 ± 14.79

DV ×
(

rfid
d /rd

)

2933.59 ± 327.71 3522.04 ± 192.74 3954.31 ± 141.71 4575.17 ± 241.61

FAP 1.200 ± 0.310 1.736 ± 0.272 2.212 ± 0.265 3.071 ± 0.416

fσ 8 0.379 ± 0.176 0.385 ± 0.099 0.342 ± 0.070 0.364 ± 0.106

b1σ 8 0.826 ± 0.080 0.894 ± 0.051 0.953 ± 0.044 1.080 ± 0.057

b2σ 8 0.460 ± 0.684 0.605 ± 0.533 0.704 ± 0.507 0.929 ± 0.681

σ v 3.784 ± 1.087 4.732 ± 0.761 5.822 ± 0.796 7.591 ± 1.127

χ2/dof 56/(58 − 8) 53/(58 − 8) 44/(58 − 8) 40/(58 − 8)

�2 0.001 0.007 0.141 0.004
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z
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Figure 6. The measured galaxy power spectra monopole (upper band or data points) and quadrupole (lower) from the EZ mocks (filled bands) and DR14Q

catalogues (data points with error bars) with redshift weights by W1, W2A, W2B, and W3 respectively. All spectra are multiplied by the wavenumber k for

illustration.

the effective redshifts for each of the weighted sample using equa-

tion (5), and find,

zeff(W1) = 1.23,

zeff(W2A) = 0.98,

zeff(W2B) = 1.94,

zeff(W3) = 1.52. (45)

Using a modified version of COSMOMC (Lewis & Bridle 2002), we

then fit for parameters shown in Section 3.1.5 at each effective red-

shift to the power spectra using the template detailed in Section 3.3.

The theoretical power spectra multipoles are convolved with the

survey window functions, which are shown in Appendix D, mea-

sured using the method developed in Wilson et al. (2017). The joint

measurement of α⊥, α‖, and fσ 8 is shown in Fig. 7.

Each of the cyan dots represents the best-fitting model derived

from one specific EZ mock, and the black contours show the

MNRAS 482, 3497–3513 (2019)
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Figure 7. The result of mock tests and actual measurement of BAO and RSD parameters from the DR14Q sample. Results for four redshift-weighted samples

are shown in four panels, as illustrated in the legend. In each panel, the best-fitting values of parameters for each of the 1000 EZ mocks are shown in cyan

dots, and the black crosses and the red stars mark the expected values of EZ mocks, and the actual measurement from the DR14Q sample, respectively. The

68 per cent and 95 per cent CL contours and one-dimensional posterior distribution of parameters are shown in black curves.

68 per centand 95 per cent CL constraint using the mean of the

1000 EZ mocks. As shown, the measurement of BAO and RSD pa-

rameters (with other parameters marginalized over) at four effective

redshifts are all largely consistent with the expected values denoted

by black crosses with the maximal deviation less than 0.3σ , which

validates our pipeline.

We then apply our pipeline to the DR14Q catalogue, and show

the measurement in Table 2 and in Figs 7–8.

In Fig. 7, we see that the best-fitting model to the DR14Q sample

(red stars) is within the 68 per cent CL contours of the EZ mocks

at all effective redshifts, which means that the fiducial cosmology

used to produce the EZ mocks can reasonably approximate the true

cosmology probed by the quasar sample within 68 per cent CL.

Fig. 9 shows our BAO and RSD measurements in comparison

with other published ones from galaxy surveys, as well as with

the Planck constraint in a �CDM model derived in Zhao et al.

(2017a). Our measurements of DM ≡ (1 + z)DA and fσ 8 are in

excellent agreement with the Planck constraint at all redshifts, but

our measurement on DH(z) ≡ c/H(z) shows a deviation at z =
1.526 and 1.944 at � 1σ significance. Interestingly, Gil-Marı́n et al.

(2018) find a similar deviation at z = 1.50 using the same data

sample. Moreover, the DH measurement at z = 2.4 using Lyman-α

forest shows a deviation in the same direction. We will reinvestigate

this issue when the eBOSS quasar survey is completed.

As shown in the right-hand panel of Fig. 9, our fσ 8 measure-

ment at z = 1.52 is largely consistent with that presented in com-

panion papers of Gil-Marı́n et al. (2018) and Hou et al. (2018),

which are studies on the same data sample using different meth-

ods. Interestingly, the compilation of fσ 8 measurements shown in

the right-hand panel of Fig. 9 seems to favour lower values of fσ 8

than that in the �CDM model across a wide redshift range. Li &

Zhao (2018) performed a constraint on modified gravity models

using a combined observational data including the BAO and RSD

measurements derived in this work, and it is found that a model

in which the effective Newton’s constant is parametrized as Geff =
1 + μsa

s (where μs and s are free parameters, and μs = 0 in

�CDM) is able to fit the data better (see our overplot of their best-

fitting model predictions with data points in the right-hand panel of

Fig. 9).

We show contour plots between fσ 8, DV, and FAP ≡ DMH/c in

Fig. 8, and as shown, our measurements are consistent with the

Planck observations.

As the weights are not orthogonal to each other, the measurements

at four effective redshifts are generally correlated. We quantify the

correlation by fitting to each of the 1000 EZ mocks, and compute

the correlation matrix using the fitted parameters. The correlation

matrix is shown in Fig. 10, with the numeric values of the correlation

matrix and the precision matrix shown in Table 3.6 As expected,

MNRAS 482, 3497–3513 (2019)
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3506 G-B. Zhao et al.

Figure 8. The 68 per cent and 95 per cent CL contour plots between fσ 8 and FAP (left-hand panel), and between fσ 8 and DV (right). In each panel, the contours

from left to right are for measurements at four effective redshifts, as illustrated in the legend. As in the right-hand panel of Fig. 9, the filled bands show the

mean, and 68 per cent CL constraint on fσ 8, derived from Planck 2015 observations, combined with external data sets in a �CDM Universe (Zhao et al. 2017a).
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Figure 9. Left: the BAO distance measurements derived from this work presented in Tables 2 and 3 (large filled circles) in comparison with other recent BAO

measurements (shown in the legend), including Gil-Marı́n et al. (2018), eBOSS DR14 LRG (Bautista et al. 2018), BOSS DR12 LyαF BAO (Gontcho et al.

2018), BOSS DR12 consensus (Alam et al. 2017), BOSS DR12 tomographic BAO measurements at nine effective redshifts (DR12 9-z; Zhao et al. 2017b),

DES year 1 BAO (The Dark Energy Survey Collaboration et al. 2017), MGS (Ross et al. 2015), 6dFGS (Beutler et al. 2011), WiggleZ BAO (Kazin et al. 2014),

and BOSS DR7 (Percival et al. 2010). The three filled bands from top to bottom show the 95 per cent CL constraints of DM(z)/
(

rd
√

z
)

, DV(z)/
(

rd
√

z
)

, and

zDH(z)/
(

rd
√

z
)

, respectively. The band are derived from Planck 2015 observations, combined with external data sets including supernovae, galaxy clustering

and weak gravitational lensing in a �CDM Universe (Zhao et al. 2017a). The top and bottom bands and data points are vertically displaced by 2 for illustration.

Right: The RSD measurement parametrized by fσ 8 derived from this work (large filled circles) in comparison with other recent RSD measurements (shown in

the legend), including Gil-Marı́n et al. (2018), Hou et al. (2018), BOSS DR12 consensus (Alam et al. 2017), BOSS DR12 tomographic RSD measurements

at nine effective redshifts (DR12 9-z; Wang et al. 2018b), WiggleZ (Contreras et al. 2013), 6dFGS (Beutler et al. 2012), and 2dFGRS (Peacock et al. 2001).

The filled band shows the mean, and 68 per cent CL constraint on fσ 8, derived from Planck 2015 observations, combined with external data sets in a �CDM

Universe (Zhao et al. 2017a) (as in the left-hand panel), and the black solid and green dashed curves show the best-fitting modified gravity models denoted by

two different values of s, which was derived in Li & Zhao (2018). See the texts for more details.

the same parameters at different effective redshifts are positively

correlated except for those at z = 0.978 and 1.944, as the quasar

distributions for these two weighted samples do not overlap.

Tables 2 and 3 present the main result of this work, which can be

directly used to constrain cosmological models. To compare with

measurements at zeff = 1.52 presented in companion papers, we

linearly combine our measurements at four redshifts. We adjust

6The correlation and the precision matrices are the rescaled covariance and

inverse covariance matrices, respectively, with all the diagonal elements

being unity.

the coefficients for the combination so that the effective redshift

calculated using equation (5) is exactly 1.52. Given that the set of

coefficients to yield zeff = 1.52 is not unique, we choose a set of

coefficients to maximize the figure of merit (FoM) of DA, H, and

fσ 8, with a constraint of �2 ≪ 1 for the linearly combined sample.

The procedure is explicitly shown in Appendix A.

We have numerically checked that as long as �2 ≪ 1 and the FoM

saturates to its maximal value, different choices of the coefficients

have negligible impact on the resultant parameter constraints. With

these constraints, the coefficients are found to be {0.02, 0.17, 0.57,

0.24} for the weighted samples with zeff = 0.978, 1.230, 1.526,

and1.944, respectively. Note that due to the correlation among the

MNRAS 482, 3497–3513 (2019)
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Figure 10. The correlation matrix for parameters measured from observ-

ables weighted by redshift weights shown in the legend. For each 3 × 3

parameter block, the order of parameters is DA, H, and fσ 8.

four catalogues, the trivial solution of {0, 0, 1, 0} does not maximize

the FoM (see Fig. A1 in the Appendix).

The final measurement at zeff = 1.52 is shown in Table 4 and

Fig. 11. To distinguish this measurement from the raw measure-

ment at zeff = 1.52, we denote this and the raw measurement

as ‘z-weighted’ and ‘unweighted’ respectively. As shown, the ‘z-

weighted’ constraint is slightly tighter, namely, the FoM of DA, H,

and fσ 8 is improved by 15 per cent. However, we strongly recom-

mend users to use the tomographic measurement shown in Tables 2

and 3 for model constraints as those are more informative with

light-cone information.

4.2 A measurement of the linear bias

As a by-product of our BAO and RSD measurements, we measure

the linear bias b1 at four effective redshifts, and present the result

in Table 2 and Fig. 12. In Fig. 12, we overplot our measurement

with published results using clustering quasars including Ross et al.

(2009) and Laurent et al. (2017, 2016), as well as with the fitting

formula developed in Croom et al. (2005). We find an excellent

agreement between our measurement and the Croom et al. (2005)

fitting formula.7

5 TH E C O N S E N S U S R E S U LT

The joint BAO and RSD analyses presented in this work is based

on a power spectrum analysis using monopole and quadrupole (in

the k range of 0.02 ≤ k [hMpc−1] ≤ 0.30) derived from the eBOSS

DR14 quasar sample covering the redshift range of 0.8 ≤ z ≤ 2.2.

The power spectrum template used in this work is primarily based on

the RegPT up to second order. With the optimal redshift weights, we

constrain DA, H, and fσ 8 at four effective redshifts, namely, zeff =
0.978, 1.230, 1.562, and 1.944.

This work is released along with other complementary RSD anal-

yses based on the exact same sample, including the same weighting

schemes described in (Gil-Marı́n et al. 2018, except for the redshift

weights used in this work). The fiducial cosmology in which the

7We also measured the bias evolution from the EZ mocks, and find an

excellent agreement with the Croom et al. (2005) fitting formula as well.

sample has been analysed is also the same across papers. We briefly

describe them below.

(i) The RSD analysis in Gil-Marı́n et al. (2018) is based on the

eBOSS DR14 quasar sample in the redshift range 0.8 ≤ z ≤ 2.2,

using the power spectrum monopole, quadrupole, and hexadecapole

measurements on the k range, 0.02 ≤ k [hMpc−1] ≤ 0.30, shifting

the centres of k bins by fractions of 1/4 of the bin size and aver-

aging the four derived likelihoods. Applying the TNS model along

with the two-loop resumed perturbation theory, we are able to ef-

fectively constrain the cosmological parameters fσ 8(z), H(z)rs(zd),

and DA(z)/rs(zd) at the effective redshift zeff = 1.52, along with the

remaining ‘nuisance’ parameters, b1σ 8(z), b2σ 8(z), Anoise(z), and

σ P(z), in all cases with wide flat priors.

(ii) Hou et al. (2018) analyse the eBOSS DR14 quasar sample

in the redshift range 0.8 ≤ z ≤ 2.2 using Legendre polynomial

with order ℓ = 0, 2, 4, and clustering wedges. They use ‘gRPT’ to

model the non-linear matter clustering. As for the RSD, they use

a streaming model extended to one-loop contribution developed

by Scoccimarro (2004) and Taruya et al. (2010) and a non-linear

corrected FoG term. They adopt the bias modelling as described in

Chan & Scoccimarro (2012), which includes both local and non-

local contribution. Additionally, they also include the modelling for

spectroscopic redshift error. Finally, they arrive at constraints on

fσ 8(zeff) DV(z)/rd and FAP(z) at the effective redshift zeff = 1.52.

(iii) The clustering analysis presented in Zarrouk et al. (2018) is

based on the eBOSS DR14 quasar sample in the redshift range 0.8

≤ z ≤ 2.2, using Legendre multipoles with ℓ = 0, 2, 4, and three

wedges of the correlation function on the s range from 16 h−1Mpc

to 138 h−1Mpc. They use the Convolution Lagrangian Perturbation

Theory with a Gaussian Streaming model and they demonstrate

its applicability for dark matter haloes of masses of the order of

1012.5M⊙ hosting eBOSS quasar tracers at mean redshift z ≃ 1.5

using the OuterRim simulation. They find consistent results between

the two methods and it yields to constraints on the cosmological

parameters fσ 8(zeff), H(zeff), and DA(zeff) at the effective redshift

zeff = 1.52.

(iv) Ruggeri et al. (2018) measure the growth rate and its evolu-

tion using the anisotropic clustering of the extended eBOSS DR14

quasar sample. To optimize the measurements, we deploy a redshift-

dependent weighting scheme, which avoids binning, and perform

the data analysis consistently including the redshift evolution across

the sample. They perform the analysis in Fourier space, and use

the redshift evolving power spectrum multipoles to measure the

RSD parameter fσ 8 alongside nuisance parameters, and parameters

controlling the anisotropic projection of the cosmological pertur-

bations. They make use of two different sets of weights, described

in Ruggeri et al. (2017). This model ties together growth and ge-

ometry, but can also be used after fixing the expansion rate to

match the prediction of the �CDM model. The second parametrizes

the fσ 8 parameter combination measured by RSD, allowing for a

more standard test of deviations from �CDM. They compare all re-

sults with the standard analysis performed at one single redshift of

z = 1.52.

In Figs 13 and 14, we make a direct comparison to two of the

companion works, which are RSD analysis in Fourier space. Results

shown in Fig. 13 are without redshift weights, while results in Fig. 14

are those with redshift weights. As shown, the results are consistent

with each other in both cases within the uncertainty.

In addition, two BAO papers using the same sample are released

as companion papers: Wang et al. (2018a) and Zhu et al. (2018),

which are complementary to the isotropic analysis recently pre-

MNRAS 482, 3497–3513 (2019)
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Table 3. The upper triangular part of the table: the correlation matrix shown in Fig. 10; and the lower triangular part: the precision matrix. Both the correlation

and precision matrices are multiplied by 104 for illustration. The 1/si column shows the square root of the reciprocal of the diagonal of the inverse covariance

matrix. The dashed lines separate the entries for different effective redshifts for illustration.

Parameters 104 fij (lower triangular) and 104 cij (upper) 1/si

DA(0.978) 10000 3106 8142 4656 1535 3957 2662 920 2328 248 −194 12 115.6

H(0.978) 3399 10000 5066 1543 5341 2699 265 2934 1165 −786 23 −377 9.57

fσ 8(0.978) −8711 −5542 10000 3740 2564 5118 1718 1313 2667 24 −192 −113 0.060

DA(1.230) −5983 −2613 6051 10000 3993 8621 6130 2421 5460 954 313 845 32.16

H(1.230) −3509 −5157 4773 5721 10000 5994 1711 6056 3409 −566 −40 −300 5.09

fσ 8(1.230) 5657 3282 −6400 −9462 −7165 10000 4831 3584 6288 510 226 722 0.016

DA(1.526) 2862 1198 −3048 −8204 −4824 8032 10000 3888 8574 4257 1941 3919 20.13

H(1.526) 1946 1226 −2276 −5180 −7167 6212 6111 10000 6015 1150 3897 2156 5.21

fσ 8(1.526) −3002 −1304 3253 7898 5798 −8422 −9419 −7516 10000 3519 2623 4721 0.011

DA(1.944) −1454 −18 1360 5098 3331 −5176 −6910 −4718 6758 10000 3306 8127 58.0

H(1.944) −1041 −690 1255 3434 4368 −4012 −4382 −6340 5166 4855 10000 5687 8.99

fσ 8(1.944) 1790 363 −1758 −5487 −4130 5933 7069 5987 −7707 −8799 −6752 10000 0.032

Table 4. The measurement of BAO and RSD parameters at the effective redshift 1.526 with the redshift weights. The

notations are the same as those in Table 3.

Parameters Mean Uncertainty 104 fij (lower triangular) and 104 cij (upper) 1/si

DA(1.526) 1774.59 9483 10000 3619 8356 50.33

H(1.526) 150.32 1050 2572 10000 5718 8.32

fσ 8 (1.526) 0.356 0067 −8220 −5261 10000 0.031

100

150

200

1500 2000

0.2

0.4

150 200

unweighted

H
fσ

8

D
A

H

z-weighted

Figure 11. A comparison of the constraint on DA, H, and fσ 8 with (blue,

filled) and without (black, unfilled) the redshift weights. The inner and

outer contours show the 68 per cent and 95 per cent CL two-dimensional

marginalized constraints, and the one-dimensional curves show the posterior

likelihood distribution for the corresponding parameters.

sented by Ata et al. (2018). These works measure the isotropic

and anisotropic BAO in the Fourier and configuration spaces, re-

spectively, with the optimal redshift weights, and their results are

consistent and complementary to each other.

6 A C O S M O L O G I C A L I M P L I C AT I O N

This subsection is devoted to a cosmological implication of our joint

BAO and RSD measurements at four effective redshifts presented

in Tables 2 and 3.

We first apply our BAO measurement to calibrate the geometry

of the Universe, parametrized by �M, ��, and H0rd, using three

0.0 0.5 1.0 1.5 2.0 2.5 3.0

1

2

3

4

5

6

Croom et al, (2005)

This work

Laurent et al., (2017)

Laurent et al., (2016)

Ross et al., (2009)

b
1
(z
)

redshift z

Figure 12. The measurement of the linear bias b1 from this work (red cir-

cles), in comparison with other recent measurements denoted in the legend,

including Laurent et al. (2017, 2016) and Ross et al. (2009). The black solid

curve shows the model prediction of Croom et al. (2005).

different BAO data combinations, and present the result in Fig. 15

and Table 5.

As shown, our DR14Q BAO measurement combined with DR12

galaxies (BOSS gal. + this work) suggests that dark energy exists

at a significance level of 3.67σ , compared to 2.95σ using BOSS

galaxies alone. The FoM, which is defined as the square root of the

inverse covariance matrix of the {�M, ��} block, is improved by a

factor of 3.5 by our tomographic DR14Q measurement. Compared

to the quasar BAO measurement at a single effective redshift of 1.52

presented in Ata et al. (2018), our measurement is more informative

to constrain the geometry of the Universe, namely, the Ata et al.

(2018) measurement improves the BOSS DR12 FoM by a factor

of 2.

We also note that the preferred values of both �M and �� de-

rived from this data combination are lower than that favoured by

MNRAS 482, 3497–3513 (2019)
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Figure 13. Constraints on fσ 8, DA, and H, in comparison with another two

analysis in Fourier space, Gil-Marı́n et al. (2018, green) and Ruggeri et al.

(2018, orange). No redshift weights are applied in all the analysis shown in

this plot.

Figure 14. Constraints on fσ 8, DA, and H, in comparison with another

analysis in Fourier space, Ruggeri et al. (2018, orange). Redshift weights

are applied in the analysis shown in this plot.

the Planck 2015 measurement by ∼1σ , which is confirmed by an

independent study in Fourier space in Gil-Marı́n et al. (2018) using

the same galaxy catalogue. Gil-Marı́n et al. (2018) found that,

{�M, ��} =
{

0.226+0.084
−0.093, 0.55 ± 0.14

}

(46)

using BAO measurements in three redshift slices (with effective

redshifts of 1.19, 1.50, and1.83) of the DR14Q sample. Given the

level of uncertainty, we argue that this data combination is still

consistent with the Planck observations, and the curvature of the

Universe is consistent with zero. However, we will re-investigate

the consistency between quasar BAO and cosmic microwave back-

ground measurements when the final eBOSS quasar survey is

completed.

Combining additional data sets, including the BOSS DR12

Lyman-α auto- and cross-correlation BAO measurements (Gontcho

et al. 2018) and the isotropic BAO measurements using MGS (Ross

et al. 2015) and 6dFGS (Beutler et al. 2011) samples, significantly

improves the constraint, namely, a Universe without dark energy is

excluded at 7.37σ by these BAO measurements, and the {�M, ��}
constraint using this full BAO data set is in excellent agreement

with the Planck 2015 observations.

We then apply our joint BAO and RSD measurements to con-

strain the gravitational growth index γ together with �M, and show

the result in Fig. 16. Our measurement combined with BOSS DR12

consensus measurement yields γ = 0.469 ± 0.148, which is con-

sistent with the �CDM prediction of γ ∼ 0.545. As shown in

Table 5, this data combination prefers a low �M, although the

Planck measurement is still within the 68 per cent CL contour in

Fig. 16.

Adding the Planck data tightens the constraint to γ =
0.580 ± 0.082, which is consistent with the �CDM prediction.

We overplot the 68 per cent CL uncertainty on γ and �M derived

from Gil-Marı́n et al. (2018) (the ‘3z’ result) in Fig. 16 for a direct

comparison. As shown, our constraint is in general agreement with

that in Gil-Marı́n et al. (2018), although our constraint on γ is more

stringent, probably due to the fact that our RSD measurement is

tomographically more informative.

7 C ONCLUSI ON AND DI SCUSSI ONS

We present a new and efficient method to extract the light-cone

information for both RSD and BAO from galaxy redshift surveys,

especially for those covering a wide redshift range.

Based on the optimal redshift weighting scheme, we measure

the key parameters for BAO and RSD, namely, DA, H, and fσ 8 for

the eBOSS DR14Q sample at four effective redshifts of z = 0.978,

1.230, 1.526, and1.944, and provide a full data covariance matrix

(the key result of this work is presented in Tables 2 and 3). We

find an excellent consistency between our measurement and those

presented in companion papers, which analyse the same data set

using different methods.

We apply our measurement to constrain the geometry of the

Universe, and find that combining our BAO measurement with

those from BOSS DR12, MGS, and 6dFGS, a Universe without

dark energy is excluded at 7.4σ . Our RSD measurement combined

with BOSS DR12 and Planck observations yield a constraint of the

gravitational growth index, namely, γ = 0.580 ± 0.082, which is

fully consistent with the GR prediction.

The method developed in this work can be used to extract the

light-cone information from forthcoming deep redshift surveys in-

cluding DESI,8 PFS, 9 and Euclid,10 which is crucial for cosmolog-

ical studies of dark energy (Zhao et al. 2012, 2017a), neutrino mass,

and modified gravity theories (Zhao et al. 2009a,b).

8http://desi.lbl.gov/
9http://pfs.ipmu.jp/
10https://www.euclid-ec.org/
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Figure 15. Left: the 68 per cent and 95 per cent CL contours between �M and �� derived from different BAO data sets: BOSS gal. (the consensus BAO

measurement in Alam et al. (2017); BOSS gal. + this work (the BOSS measurement combined with that in this work; Full BAO: BOSS gal. combined with

this work and several additional BAO data sets including BOSS DR12 Lyman-α auto- and cross-correlation BAO measurements (Gontcho et al. 2018), and the

isotropic BAO measurements using MGS (Ross et al. 2015) and 6dFGS (Beutler et al. 2011) samples; and right: the corresponding one-dimensional posterior

distribution.

Table 5. The constraints on �M,��, and H0rd (in unit of km s−1) derived

from three BAO data combinations. The signal-to-noise ratio of �� > 0

(S/N) and the FoM are also shown (the FoM of BOSS gal. is normalized to

be unity for the ease of comparison).

BOSS gal.

BOSS gal. + this

work Full BAO

�M 0.443 ± 0.204 0.213 ± 0.070 0.289 ± 0.028

�� 0.706 ± 0.239 0.540 ± 0.147 0.722 ± 0.098

H0rd 9.820 ± 0.271 9.960 ± 0.253 10.166 ± 0.206

S/N 2.95 3.67 7.37

FoM 1 3.5 12.1

0.20 0.25 0.30 0.35
0.0

0.3

0.6

0.9

1.2

γ

Ω
M

this work + BOSS DR12

+Planck 2015

Gil-Marin et al., (2018)

ΛCDM

Figure 16. The 68 per cent and 95 per cent CL contour plots between �M

and γ derived from this work (presented in Tables 2 and 3) combined with

the BOSS DR12 consensus result (blue), and with Planck 2015 combined

(green). The data point with error bars shows the measurement from Gil-

Marı́n et al. (2018). The horizontal dashed line shows the �CDM prediction,

namely, γ = 6/11.
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A P P E N D I X A : TH E P RO C E D U R E O F

L I N E A R LY C O M B I N I N G TH E C ATA L O G U E S

In this section, we provide the procedure of linearly combining

the redshift-weighted samples to yield one joint BAO and RSD

measurement at a single effective redshift zeff = 1.526, in order to

compare with the measurement using the unweighted sample at the

same effective redshift.
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Figure A1. A contour plot of the c’s for the redshift-weighted catalogues

‘2A’ (with zeff = 0.98) and ‘2B’ (with zeff = 1.94), and the colour shows the

FoM defined in equation (A5). The contour lines from inside out illustrate

the FoM from maximal to minimal values on linearly uniform intervals,

and the black dot in the centre denotes the position where the FoM gets

maximized.

(i) Suppose each of the four catalogues is assigned a coefficient

ci (i runs from 1 to 4), then the required effective redshift, which is

1.526 in our case, of the linearly combined sample is,

zeff =

(

4
∑

i=1

ciXi

)

/

(

4
∑

i=1

ciYi

)

, (A1)

and �2 defined in equation (44) of the combined sample can be

calculated as,

�2 =

(

4
∑

i=1

ciZi

)

/

(

4
∑

i=1

ciYi

)

− z2
eff (A2)

where

Xi =
∑

j

zi,jw
2
i,j ; Yi =

∑

j

w2
i,j ; Zi =

∑

j

z2
i,jw

2
i,j , (A3)

here the index j runs over all the galaxies in the ith catalogue. Eval-

uate X, Y, andZ for each of the four catalogues using equation (A3);

(ii) Apply the constraint of
∑

i

ci = 1, (A4)

to properly normalize the linearly combined sample;

(iii) Compute the FoM of {DA, H, fσ 8} of the combined sample

as,

FoM ≡ [det (C3)]−1/2 (A5)

where C3 is the 3 × 3 covariance matrix for {DA, H, fσ 8} for the

combined sample, which can be derived by linearly combine the

sixteen 3 × 3 submatrices, denoted as S, of C12, the full 12 × 12

covariance matrix of the four samples, whose correlation matrix is

shown in Fig. 10. Mathematically,

C3 =
∑

i,j

cicjSi,j . (A6)

(iv) Equations (A1) and (A4) provide two constraints on the four

γ ’s that we are after, then a maximization of the FoM defined in

equation (A5) while keeping �2 in equation (A2) negligible can in

principle determine the c’s.

This procedure finds that c = {0.02, 0.17, 0.57, 0.24} for the

weighted samples with zeff = 0.978, 1.230, 1.526, and1.944 respec-

tively, and Fig. A1 shows a contour plot of the FoM as a function

of the two coefficients.11 Due to the correlation among the four cat-

alogues, the trivial solution of c = {0, 0, 1, 0} does not maximize

the FoM.

A P P E N D I X B: TH E P RO C E D U R E O F

OBTA I NI NG THE POSI TI VE R EDSHI FT

W E I G H T S

In practice, we take the following procedures to find the positive-

definite redshift weights, shown in the right-hand panels of Fig. 5,

from the original weights, illustrated in the left-hand panels of Fig. 5.

(i) Take the SVD weights V1 and V2 for the monopole;

(ii) Rotate the V vectors by a linear transformation to obtain new

weights W , namely,

W1 = V1 cos θ − V2 sin θ + λ,

W2 = V1 sin θ + V2 cos θ + λ,

W3 = λ. (B1)

where θ and λ are free parameters to ensure that,

(a) Wi > 0;

(b) The sum of dot products among the normalized Wi’s gets

minimized.

(iii) Repeat this process for the SVD weights for the quadrupole.

Note that we use the two-dimensional rotation matrix to transform

the V vectors, which conserves the orthogonality of V . It is true

that the additional shift by λ spoils the orthogonality, but this is kept

to a minimal level because of the minimization procedure (ii).

A P P E N D I X C : TH E MATLAB C O D E F O R TH E

SVD A NA LY SIS

We perform the SVD analysis using the following MATLAB code to

find the orthogonal redshift weights shown in left-hand panels of

Fig. 5, from the raw redshift weights shown in Fig. 3.

[m,n] = size(w);

percent Subtract off the mean of data

mn = mean(w,2);

w = w-repmat(mn,1,n);

percent Construct the data matrix X

x = w’/sqrt(n-1);

percent SVD

[u,s,pc] = svd(x);

percent Perform a projection

v = pc’∗w;

v = v’;

APPENDI X D : THE SURV EY WI NDOW

F U N C T I O N S

The survey window functions for the four redshift-weighted samples

are shown in Fig. D1. These window functions are derived following

the method developed in Wilson et al. (2017).

11Note that only two of the coefficients are independent given the constraints

equations (A1) and (A4).
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Figure D1. The window functions for four redshift-weighted samples, as

shown in the legend.
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