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ABSTRACT

We measure Redshift-Space Distortions (RSD) in the two-point correlation function of a
sample of 63, 163 spectroscopically identified galaxies with z < 0.2, an epoch where there
are currently only limited measurements, from the Sloan Digital Sky Survey (SDSS) Data
Release 7 Main Galaxy Sample. Our sample, which we denote MGS, covers 6,813 deg2 with
an effective redshift zeff = 0.15 and is described in our companion paper (Paper I), which
concentrates on BAO measurements. In order to validate the fitting methods used in both
papers, and derive errors, we create and analyse 1000 mock catalogues using a new algorithm
called PICOLA to generate accurate dark matter fields. Haloes are then selected using a friends-
of-friends algorithm, and populated with galaxies using a Halo-Occupation Distribution fitted
to the data. Using errors derived from these mocks, we fit a model to the monopole and
quadrupole moments of the MGS correlation function. If we assume no Alcock-Paczynski
(AP) effect (valid at z = 0.15 for any smooth model of the expansion history), we measure
the amplitude of the velocity field, fσ8, at z = 0.15 to be 0.49+0.15

−0.14. We also measure fσ8

including the AP effect. This latter measurement can be freely combined with recent Cosmic
Microwave Background results to constrain the growth index of fluctuations, γ. Assuming
a background ΛCDM cosmology and combining with current Baryon Acoustic Oscillation
data we find γ = 0.64 ± 0.09, which is consistent with the prediction of General Relativity
(γ ≈ 0.55), though with a slight preference for higher γ and hence models with weaker
gravitational interactions.

Key words: surveys - galaxies: statistics - cosmological parameters - cosmology: observa-
tions - large-scale structure of Universe

1 INTRODUCTION

The observed 3D clustering of galaxies provides a wealth of cosmo-

logical information: the comoving clustering pattern was encoded

in the early Universe and thus depends on the physical energy

densities (e.g. Peebles & Yu 1970; Sunyaev & Zel’dovich 1970;

Doroshkevich et al. 1978), while the bias on large-scales encodes

primordial non-Gaussianity (Dalal et al. 2008). Secondary mea-

surements can be made from the observed projection of this clus-

tering, including using Baryon Acoustic Oscillations (BAO) as a

standard ruler (Seo & Eisenstein 2003; Blake & Glazebrook 2003)

or by comparing clustering along and across the line-of-sight (Al-

⋆ Email: cullan.howlett@port.ac.uk

cock & Paczynski 1979). In this paper we focus on a third type

of measurement that can be made, called Redshift-Space Distor-

tions (RSD; Kaiser 1987). RSD arise because redshifts include both

the Hubble expansion, and the peculiar velocity of any galaxy. The

component of the peculiar velocity due to structure growth is coher-

ent with the structure itself, leading to an enhanced clustering signal

along the line-of-sight. The enhancement to the overdensity is ad-

ditive, with the extra component dependent on the amplitude of the

velocity field, which is commonly parameterised on large-scales by

fσ8, where f ≡ d lnD/d ln a is the logarithmic derivative of the

growth factor with respect to the scale factor and σ8 is the linear

matter variance in a spherical shell of radius 8h−1 Mpc. Together

these parameterise the amplitude of the velocity power spectrum.

The largest spectroscopic galaxy survey undertaken to-date is
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the Sloan Digital Sky Survey (SDSS), which has observed multi-

ple samples over its lifetime. The SDSS-I and SDSS-II (York et al.

2000) observed two samples of galaxies: the r-band selected main

galaxy sample (Strauss et al. 2002), and a sample of Luminous

Red Galaxies (LRGs; Eisenstein et al. 2001) to higher redshifts.

The Baryon Oscillation Spectroscopic Survey (BOSS; Dawson et

al. 2012), part of SDSS-III (Eisenstein et al. 2011) extended the

LRG sample to higher redshifts with a sample at z ∼ 0.57 called

CMASS, and a sample at z ∼ 0.32 called LOWZ that subsumed

the SDSS-II LRG sample. SDSS-IV will extend the LRG sample

to even higher redshifts, while simultaneously observing a sample

of quasars and Emission Line Galaxies (ELGs).

In this paper we revisit the SDSS-II main-galaxy sample,

herein denoted MGS, applying the latest analysis techniques. We

have sub-sampled this catalogue to select high-bias galaxies at

z < 0.2 (details can be found in our companion paper Ross et

al. 2014, Paper I, which also presents BAO-scale measurements

made from these data). This sampling positions the galaxies red-

shift between BOSS LOWZ, and the 6-degree Field Galaxy Survey

(6dFGS; Beutler et al. 2011), filling in a gap in the chain of mea-

surements at different redshifts. Selecting high-bias galaxies means

that we can easily simulate the sample. In this paper we present

RSD measurements made using the MGS data.

Recent analyses of BOSS have emphasised the importance of

accurate mock catalogues (Manera et al. 2013, 2014); these pro-

vide both a mechanism to test analysis pipelines and to determine

covariances for the measurements made. For the MGS data, we cre-

ate 1000 new mock catalogues using a fast N-body code based on

a new parallelisation of the COLA algorithm (Tassev et al. 2013),

designed to quickly create approximate evolved dark matter fields.

Haloes are then selected using a friends-of-friends algorithm, and a

Halo-Occupation Distribution based method is used to populate the

haloes with galaxies. The algorithms and methods behind PICOLA

can be found in Howlett et. al. (in prep.).

Our paper is outlined as follows: In Section 2 we describe the

properties of the MGS data. In Section 3 we summarise how we

create dark matter halo simulations using PICOLA. In Section 4,

we describe how we calculate clustering statistics, determine the

halo occupation distribution we apply to mock galaxies to match

the observed clustering, and test for systematic effects. In Sec-

tion 5, we describe how we model the redshift space correlation

function using the Gaussian Streaming/Convolved Lagrangian Per-

turbation Theory (CLPT) model of Wang et al. (2014). In Sec-

tion 6, we describe how we fit the MGS clustering in the range

25h−1 Mpc 6 s 6 160h−1 Mpc, test our method and validate

our choice of fitting parameters and priors using the mock cata-

logues. In Section 7 we present the results from fitting to the MGS

data and present our constraints on fσ8. In Section 8, we com-

pare our measurements to RSD measurements at other redshifts,

including results from Beutler et al. (2012); Chuang et al. (2013);

Samushia et al. (2012) and Samushia et al. (2014), and test for con-

sistency with General Relativity. We conclude in Section 9. Where

appropriate, we assume a fiducial cosmology given by Ωm = 0.31,

Ωb = 0.048, h = 0.67, σ8 = 0.83, and ns = 0.96.

2 DATA

2.1 The Completed SDSS Main Galaxy Sample

We use the same SDSS DR7 MGS data as analysed in Paper I,

which is drawn from the completed data set of SDSS-I and SDSS-

II. These surveys obtained wide-field CCD photometry (Gunn et al.

Figure 1. The blue area shows a flat, all-sky projection of the footprint of

our MGS sample, which occupies 6,813 deg2. The red area shows the same

geometry, after a 180o rotation. This illustrates how we produce two mock

galaxy samples from every full-sky dark matter halo catalog.

1998, 2006) in five passbands (u, g, r, i, z; Fukugita et al. 1996),

amassing a total footprint of 11,663 deg2, internally calibrated us-

ing the ‘uber-calibration’ process described in Padmanabhan et al.

(2008), and with a 50% completeness limit of point sources at

r = 22.5 (Abazajian et al. 2009). From these imaging data, the

main galaxy sample (MGS; Strauss et al. 2002) was selected for

spectroscopic follow-up, which to good approximation, consists

of all galaxies with rpet < 17.77, where rpet is the extinction-

corrected r-band Petrosian magnitude, within a footprint of 9,380

deg2 (Abazajian et al. 2009).

For our analysis, we start with the SDSS MGS value-added

galaxy catalog ‘safe0’ hosted by NYU1 (NYU-VAGC), which was

created following the methods described in Blanton et al. (2005).

The catalog includes K-corrected absolute magnitudes, determined

using the methods of Blanton et al. (2003), and detailed informa-

tion on the mask. We only use the contiguous area in the North

Galactic cap and only areas where the completeness is greater than

0.9, yielding a footprint of 6,813 deg2, compared to the original

7,356 deg2. We create the mask describing this footprint from the

window given by the NYU-VAGC, which provides the complete-

ness in every mask region, and the MANGLE software (Swanson

et al. 2008). We also use the MANGLE software to obtain angular

positions of unclustered random points, distributed matching the

completeness in every mask region. The angular footprint of our

sample is displayed in blue in Fig. 1. The red patch in Fig. 1 shows

the angular footprint of our galaxy sample after rotating the coor-

dinates via RA ⇒ RA + π, DEC ⇒ −DEC and once again

applying the mask. As described in Section 3, we choose to create

full-sky simulations, and in doing so, we can use the mask to create

two mock galaxy catalogues that match our footprint, reducing the

noise in our estimates of the covariance matrix at almost no extra

cost2.

We make further cuts on the NYU VAGC safe0 sample based

on colour, magnitude, and redshift. These are 0.07 < z < 0.2,

Mr < 21.2 and g−r > 0.8, where Mr is the r-band absolute mag-

nitude provided by the NYU-VAGC. These cuts produce a sample

of moderately high bias (b ∼ 1.5), with a nearly constant number

density that is independent of BOSS and 6dFGS samples. The re-

1 http://sdss.physics.nyu.edu/vagc/lss.html
2 In principle, we could fit ∼ 6 replicates of our survey footprint in each

full-sky simulation without overlap, though not, perhaps, without signifi-

cant cross-correlation between patches taken from the same realisation. In

practice we simply generate two survey patches from each simulation.
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Figure 2. The number density as a function of redshift for our galaxy sam-

ple compared to the mean of the mocks after subsampling. The error bars

come from the standard deviation of our 1000 mock realisations

sulting sample contains 63,163 galaxies. The redshift distribution is

shown in Fig. 2. The effective redshift of our sample is zeff = 0.15,

calculated as described in Paper I, where further details on the sam-

ple selection criteria can be found.

Fig. 2 also shows (solid line) the average number density of

the mock galaxy catalogues described in Section 3. We determine

the n(z) that we apply to the mocks by fitting to a model with two

linear relationships and a transition redshift. The best-fit is given by

n(z) =

{

0.0014z + 0.00041; z < 0.17

0.00286− 0.0131z; z > 0.17.
(1)

We see that the mock galaxy catalogues agree with the data very

well, with χ2 = 25 for 22 degrees of freedom (26 redshift bins and

4 independent fitting parameters). The errors come from the stan-

dard deviation in number density across the set of mock catalogues.

3 SIMULATIONS

Simulations of our MGS data are vital in order to accurately esti-

mate the covariance matrix of our clustering measurements and to

perform systematic tests on our BAO and RSD fitting procedures.

Of order 1000 mock galaxy catalogues (mocks) are necessary to

ensure noise in the covariance matrix does not add significant noise

to our measurements (Percival et al. 2014). For BOSS galaxies,

such mocks were created using the methods described in Manera

et al. (2013, 2014). The galaxies in our sample have lower bias

than those of BOSS, and we therefore require a method of produc-

ing dark matter halos at higher resolution than used in BOSS, yet in

such a way that we can still create a large number of realisations in a

timely fashion. For this we have created the code PICOLA, a highly-

developed, planar-parallel implementation of the COLA method of

Tassev et al. (2013); this implementation is described in Howlett

et. al. (in prep.), and a user guide that will be included with the

public release of the code. It should be noted that a similar method

has also recently been used to create mock catalogues for the Wig-

gleZ survey (Kazin et al. 2014), though the codes were developed

independently.

In this section, we describe how we use PICOLA to produce

dark matter fields and then halo catalogues, and how we apply a

Halo Occupation Distribution (HOD, Berlind & Weinberg 2002)
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Figure 3. The power spectrum of the dark matter field in a cubic box from

the PICOLA and GADGET-2 runs described in the text. We can see good

agreement between the two even into the non-linear regime.

prescription to these halo catalogues to produce mock galaxy cata-

logues. We expect that the methods we use to generate these halo

catalogues will be generally applicable to any future galaxy survey

analyses. In Section 4, we describe how we specifically fit an HOD

model to the measured clustering of the MGS to produce mocks

that simulate our MGS data. These mocks are used in the RSD

analyses we present and the BAO analysis of Paper I.

3.1 Producing Dark Matter fields

We generate 500 dark matter snapshot realisations using our fidu-

cial cosmology, which we convert into 1000 mock galaxy cata-

logues. Although our code is capable of generating lightcones ‘on

the fly’ without sacrificing speed, we stick with snapshots for sim-

plicity in later stages and because we expect the inaccuracies aris-

ing from using snapshots to be small due to the low redshift of

our sample. For each simulation we evolve 15363 particles, with

a mesh size equal to the mean particle separation, in a box of

edge length 1280h−1 Mpc. We choose this volume as it is large

enough to cover the full sky out to the maximum comoving dis-

tance of our sample at z = 0.2 (for our fiducial cosmology this

is ∼ 570h−1 Mpc). We evolve our simulation from z = 9.0 to

z = 0.15, using 10 timesteps equally spaced in a, the scale fac-

tor. This results in a mass resolution of ∼ 5 × 1010 h−1 M⊙, a

factor of 10 smaller than that used for the BOSS LOWZ mock cat-

alogues. Each simulation takes around 20 minutes (including halo-

finding) on 256 cores. In terms of the actual computing time used,

our PICOLA run took ∼ 25 CPU-hours compared to ∼ 27600 CPU-

hours for the GADGET-2 run described below. However, it should

be noted that the actual (wall)time taken for the GADGET-2 run was

not 1000 times that of the PICOLA run, rather the memory require-

ments of GADGET-2 are also larger than those of PICOLA, requiring

more processors to run (384 in this case).

Fig. 3 shows the power spectrum of the dark matter fields for

one of our PICOLA simulations and for a Tree-PM N-Body simula-

tion performed using GADGET-2 (Springel 2005). Both simulations

use the same initial conditions and the same mesh resolution. We

can see that the power spectra agree to within 2 percent across all

scales of interest to BAO measurements and the agreement contin-

ues to within 10 percent to k ∼ 0.8hMpc−1.

c© 2014 RAS, MNRAS 000, 1–20
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Figure 4. A comparison of the halo mass function from our GADGET-2 and

PICOLA simulations run from the same initial conditions. We see a lack of

halos on small scales due to the finite mesh resolution, but this is easily

compensated for with the HOD fitting described later.

3.2 From Dark matter to Halos

We generate halos for our PICOLA dark matter simulations using

the friends-of-friends algorithm (FoF; Davis et al. 1985) with link-

ing length equal to the commonly used value of b = 0.2, in units

of the mean particle separation. We average over all of the con-

stituent particles of each halo to calculate the position and velocity

of the centre-of-mass. The halo mass, M , is given by the individual

particle mass multiplied by the number of constituent particles that

make up the halo. The virial radius is then estimated as

Rvir =

(

3M

4πρc(z)∆virΩm(z)

)1/3

, (2)

where ρc ≈ 2.77× 1011 h2 M⊙ Mpc−3 is the critical density, and

we use a value ∆vir = 200 (e.g. Tinker et al. 2008).

The clustering of the dark matter particles is recovered well

by PICOLA. It is slightly under-represented on small scales, but we

do not need to modify the linking length in order to recover our

halos (unlike, for example, in Manera et al. 2013). Fig. 4 shows the

level of agreement between halo mass functions recovered from our

matched parameter PICOLA and GADGET-2 runs. The difference in

halo number density for low-mass halos is a direct consequence of

the mesh resolution of our simulations. As PICOLA does not calcu-

late additional contributions to the inter-particle forces (i.e., via a

Tree-level Particle-Particle summation) on scales smaller than the

mesh, using instead the approximate, interpolated forces from the

nearest mesh points, we do not produce the correct structure on the

order of a few mesh cells or smaller. This results in slightly ‘puffy’

halos.

This is shown in Figure 5, where for halos within a given mass

range we plot the normalised number of dark matter particles in

that halo as a function of their separation from the centre of mass,

normalised by the halo virial radius. For the halo mass range in

question we see that the constituent particles of the PICOLA halos

are located at slightly larger radii than their GADGET counterparts.

This difference is reduced as we go to higher mass halos where the

overall properties of the halo are still captured. However, it does

mean that we miss some of the outlying particles of the larger ha-

los, and some smaller halos altogether, as the dark matter particles
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Figure 5. The normalised number of constituent dark matter particles found

within a halo as a function of their separation from the halo centre of mass,

in units of the virial radius, for a given halo mass range. We see that the

halos from PICOLA are generally more dispersed than those from GADGET-

2, where the particles have not collapsed sufficiently for the FoF algorithm

to group them. This in turn leads to a slight lack of low mass halos overall,

which we are able to correct for in our HOD fitting method.

have not collapsed sufficiently to be grouped together by the FoF

algorithm.

Regardless of this, the effect is small enough over the halo

mass range of interest for the MGS that we find no correction is

necessary before we apply our HOD model. In addition, as de-

scribed in Section 4.2, we determine the HOD parameters directly

by populating mock dark matter halos. The deficit of lower mass

halos is thus compensated for by assigning more galaxies to lower

mass halos. It should also be noted that although other halo-finding

techniques may produce better results, we retain the FoF algorithm

in the interest of speed.

3.3 Assigning Galaxies to Halos

We populate our halos in a very similar way to that of Manera

et al. (2013) using the HOD model (Berlind & Weinberg 2002).

Within this framework we assign galaxies to halos based solely on

the mass of the halo, splitting the galaxies into central and satel-

lite types. We define two mass-dependent functions, 〈Ncen(M)〉
and 〈Nsat(M)〉, where 〈Ncen(M)〉 denotes the probability that a

halo of mass M contains a central galaxy and 〈Nsat(M)〉 is the

mean of the poisson distribution from which we randomly gener-

ate the number of satellite galaxies. These functions are themselves

modelled with parameters estimated from a fit to the MGS data, as

described in Section 4.2.

Central galaxies are placed at the centre of mass of the halo,

and satellites at radii r 6 Rvir with probability derived from the

NFW profile (Navarro et al. 1996)

ρ(r) =
4ρs

r
rs

(

1 + r
rs

)2
, (3)

where rs = Rvir/cvir is the characteristic radius, at which the

slope of the density profile is -2, and ρs is the density at this radius.

c is the concentration parameter, which we calculate for a halo of

mass M using the fitting formulae of Prada et al. (2012). On top of

this we add a dispersion to the mass-concentration relation using a

c© 2014 RAS, MNRAS 000, 1–20
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Figure 6. The power spectrum of our sample. Points show the data and

the solid line shows the mean of the mocks. The error bars come from the

diagonal elements of the covariance matrix constructed using the mock cat-

alogues.

lognormal distribution with mean equal to that evaluated from the

fitting functions and variance σ = 0.078. This is the same value

as that used in Manera et al. (2013) and is a typical value, as mea-

sured from fitting NFW profiles to halos recovered from simula-

tions (Giocoli et al. 2010).

Both central and satellite galaxies are given the velocity of the

centre of mass of the halo. Satellite galaxies are then assigned an

extra peculiar velocity contribution drawn from a Gaussian, with

the velocity dispersion calculated from the virial theorem

〈v2〉 =
〈

GM(r)

r

〉

. (4)

For an NFW profile, the mass inside a radius r is

M(r) = 4πρsr
3
s

[

ln

(

rs + r

rs

)

− r

rs + r

]

, (5)

and hence the velocity dispersion for a halo of mass M is

〈v2〉 = GM

rs

c(1 + c)− (1 + c)ln(1 + c)

2((1 + c)ln(1 + c)− c)2
. (6)

In order to assign the additional satellite velocities in each direction

we use a gaussian distribution with zero mean and variance 〈v2〉/3.

To simulate the effects of Redshift-Space Distortions we dis-

place each galaxy along the line-of-sight by

∆slos =
vlos

H(z)a
, (7)

Given ∆slos and a galaxy’s true position, we determine angles and

redshifts using our fiducial cosmology, placing the observer at the

centre of each simulation box.

4 CLUSTERING

4.1 Power Spectrum

Although we obtain our cosmological constraints from measuring

the correlation function and not the data power spectrum, we do

use the monopole moment of the power spectrum to determine the

HOD model used for the mocks, as it is faster to compute than

its configuration-space analogue. We estimate the monopole of the

power spectrum, which we denote P (k), using the Fourier-based

method of Feldman et al. (1994). We convert each galaxy’s redshift

space coordinates to a cartesian basis using our fiducial cosmology.

We then compute the overdensity on a grid containing 10243 cells

in a box of edge length 2000h−1 Mpc. This provides ample room

to zero pad the galaxies to improve the frequency sampling and re-

sults in a Nyquist frequency of 1.6hMpc−1, much larger than the

largest frequency of interest. We use the random catalogue to esti-

mate the expected density at each grid point. Galaxies and randoms

are weighted based on the number density as a function of redshift,

wFKP (z) =
1

1 + n(z)PFKP
(8)

where we set PFKP = 16000h−3Mpc3, which is close to the

measured amplitude at k = 0.1hMpc−1. This corresponds to

physical scales ∼ 60h−1 Mpc, which are well within our fitting

range, and, in any case, the efficiency of this weighting system has

only a very weak scale-dependence. After Fourier transforming the

overdensity grid we calculate the spherically-averaged power spec-

trum in bins of ∆k = 0.008, correcting for gridding effects and

shot-noise. The power spectrum of the MGS data is displayed as

points in Fig. 6. The smooth curve and error-bars display the mean

of the mock P (k) and their standard deviation.

4.2 HOD fitting

We match the measured P (k) of the MGS and the average from

10 halo catalogues in order to determine the HOD model that we

then apply to all of the mock catalogues. In this way, we do not

need to correct our halo mass function at the low-mass end, as the

lack of low-mass halos will be compensated via the population of

lower-mass halos.

We use the five parameter functional form of Zheng et al.

(2007) for the number of central and satellite galaxies,

〈Ncen(M)〉 = 1

2

[

1 + erf

(

logM − logMmin

σlogM

)]

,

〈Nsat(M)〉 = 〈Ncen〉
(

M −Mcut

M1

)α

. (9)

For a halo of M < Mcut we set 〈Nsat〉 = 0 and in the case

where we assign satellite galaxies but no central galaxy to a halo,

we remove one of the potential satellite galaxies and replace it with

a central. We set the values of the five free parameters by iterating

over the following steps:

(i) Populate a subset of the mocks using a given set of HOD

parameters,

(ii) Mask the mock galaxies so that they match the data,

(iii) Subsample the mock galaxies to match our idealised n(z),
(iv) Calculate the average power spectrum of our populated

mocks and compare to the data.

We use 10 mocks to fit our HOD, populating and masking them

individually, but reproducing the radial selection function by sub-

sampling based on the ratio between the analytic fit to the data n(z)
and the average number density of the 10 mocks. The fit is per-

formed using a downhill simplex minimisation of the χ2 difference

between the average, 10-mock power spectrum and the data power

spectrum in the range 0.02 6 k 6 0.3. The fit is performed twice,

first using analytic errors on the power spectrum from Tegmark

(1997) (equations 4 and 5 therein), and then using the covariance

matrix from the first fit to generate our final best fit model.

c© 2014 RAS, MNRAS 000, 1–20
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Figure 7. The percentage difference between the average mock power spec-

trum and that of our data, with errors derived from the covariance matrix of

our 1000 mock catalogues. There is good agreement (∼ 5%) between these

up to k = 0.3 except on large scales (small k) where the window function

introduces additional covariance between different k-bins.

Our best fit HOD model has the parameters

log10(Mmin) = 13.18,

log10(Mcut) = 13.15,

log10(M1) = 13.94,

σlogM = 0.904,

α = 1.18,

n̄ = 7× 10−4 h3 Mpc−3,

where n̄ is dependent on the five other parameters. The best fit

HOD parameters are in good agreement with the HOD parameters

reported by Zehavi et al. (2011) for another SDSS galaxy sample

with similar number density and magnitude limit. Fig. 7 shows the

percentage difference between the average mock power spectrum

and the power spectrum of the data. The errors come from the co-

variance estimated from the full mock sample. We can see that the

amplitude of the power spectra matches well on all scales, with

∼ 5% agreement up to k = 0.3, except on the largest scales where

the window function has a large effect. The fit is good, as we find

χ2 = 33 for 32 degrees of freedom (37 k-bins and 5 free parame-

ters).

Fig. 8 shows the expected number of galaxies in our mock ha-

los for our best fit HOD model. This highlights how we are able to

recover the clustering properties of the data even though we lack the

correct number of low mass halos. All of the satellite galaxies exist

in halos with M > 1013h−1M⊙, which are recovered quite well

by our simulations. Below this mass, where our simulations lack

sufficient number density, the probability of finding any galaxies

within a halo also drops rapidly, such that even though these halos

are more abundant in general, the contribution to the total clustering

from these halos is small in comparison to the larger mass halos.

There exists significant degeneracy between the five free HOD

parameters, which cannot be broken completely by just the one-

dimensional, two-point clustering statistics. Three-point statistics

could be used to break this degeneracy (Kulkarni et al. 2007), how-

ever this would be prohibitively time-consuming and potentially

very noise dominated. Another possibility is to use the quadrupole

or hexadecapole moments of the power spectrum, as these con-

tain additional information about the position and velocity distribu-
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log10 M (M⊙h−1 )
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Figure 8. The expected number of galaxies in a halo as a function of halo

mass for our bestfit HOD parameters. The dashed line shows the probability

of the halo hosting a central galaxy, and the dot-dashed line shows the aver-

age number of satellite galaxies within such a halo. The two vertical dashed

lines denote the maximum and minimum halo masses across all 1000 mock

catalogues.

tion of the satellite galaxies within their host halos (Hikage 2014).

Again, however, in our case these statistics will almost certainly

be noise dominated, and are consequently not important for our

current implementation of the method. As such we leave these as

future improvements for our mock catalogue production process.

4.3 Correlation Function

We base our cosmological fits on configuration-space clustering

measurements, calculating the correlation function for both mocks

and data as a function of both the redshift space separation s, and

the cosine of the angle to the line of sight µ, using the same coor-

dinate transformation as for the power spectrum. We use the min-

imum variance estimator of Landy & Szalay (1993), with galaxy

and random weights as given in Eq. (8), to calculate the correla-

tion function from the normalised galaxy-galaxy, galaxy-random

and random-random pair counts for 0 < s 6 200 and 0 6 µ 6 1
in bins of ∆s = 1.0h−1 Mpc and ∆µ = 0.01.

From there we perform a multipole expansion of the two-

dimensional correlation function via the Riemann sum

2ξℓ(s)

2ℓ+ 1
=

100
∑

i=1

0.01ξ(s, µi)Pℓ(µi), (10)

where µi = 0.01i−0.005 and Pℓ(µ) are the Legendre Polynomials

of order ℓ. We generate the monopole and quadrupole for different

bin widths by re-summing the pair counts before applying Eq. (10).

Figs. 9 and 10 show the monopole and quadrupole of the cor-

relation function for the average of the mocks and for the data for

the 24 measurements in the range 8 < s < 200h−1Mpc. The

mean of the mock ξ0 and ξ2 do not match the data within the error-

bars at many scales. However, we only plot the diagonal elements

of the covariance matrix and the off-diagonal elements represent a

significant component (see Fig. 11). A more proper comparison is

the χ2 between the mean of the mocks and the data, using the full

covariance matrix. For both ξ0 and ξ2 the χ2/d.o.f is slightly less

than one, implying the anisotropic clustering in the mock samples
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Figure 11. Top: The power spectrum correlation matrix generated from our 1000 mock catalogues between k = 0.02hMpc−1 and k = 0.3hMpc−1 and

in bins of ∆k = 0.008. Bottom: The correlation matrix for the correlation function monopole (left) and quadrupole (middle) and the cross covariance between

the two (right), in bins of 8h−1 Mpc in the range 25h−1 Mpc 6 s 6 200h−1 Mpc .

Figure 9. The monopole moment of the correlation function of the MGS.

The solid line shows the mean of the mocks and the error bars come from

the diagonal elements of the covariance matrix calculated from our 1000

mock realisations.

is a good representation of the data, even at 10h−1Mpc scales (and

hence ‘χ by eye’ is a bad idea).

4.4 Covariance Matrix

We use our sample of mock galaxy catalogues to estimate the co-

variance matrix for both the power spectrum and correlation func-

tion in the standard way, and invert to give an estimate of the in-

verse matrix. We remove the bias in the inverse covariance matrix

by rescaling by a factor that depends on the number of mocks and

measurement bins (e.g. Hartlap et al. 2007).

Fig. 11 shows the correlation matrix, Cred
i,j =

Figure 10. The quadrupole moment of the correlation function of the MGS

and the mean of our mock galaxy catalogues. Though the agreement by eye

looks poor on large scales, there exists significant covariance between the

points at different scales, such that the chi-squared between the data and

mocks is small.

Ci,j/
√

Ci,iCj,j , for the power spectrum and the monopole

and quadrupole moments of the correlation function using our

fiducial binning scheme. We can see that there is significant off-

diagonal covariance in the correlation function and non-negligible

cross-covariance between the monopole and quadrupole, however

the power spectrum covariance matrix is much more diagonal.

To fit to the correlation function moments, we assume that the

binned monopole and quadrupole are drawn from a multi-variate

Gaussian distribution, and assume the standard Gaussian Likeli-

hood, L. The validity of this assumption, for both our fits and the

BAO fits to the power spectrum found in Paper I, is tested in the
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following section. There are additional factors that one must ap-

ply to uncertainties determined using a covariance matrix that is

constructed from a finite number of realisations and to standard de-

viations determined from those realisations (Dodelson & Schnei-

der 2013; Percival et al. 2014). In this work we multiply the inverse

covariance matrix estimate by a further factor given by m1 in equa-

tion 18 of Percival et al. (2014), such that the errors derived from

the shape of the likelihood are automatically corrected for this bias.

We have the number of mocks Nmocks = 1000, the number of bins

Nbins = 34 and the number of parameters fitted Np = 8, giving

only a small correction to the inverse covariance matrix of 1.02.

4.5 Systematic Tests

4.5.1 Independence of mocks

The coordinate transformation that allows us to create two distinct

mocks from each dark matter realisation puts the two patches as far

apart as possible to minimise the covariance between mocks based

on the same dark matter cube. The minimum possible distance be-

tween two objects in different patches is 170h−1 Mpc. Whilst this

is within the range of scales we are interested in, the total cross-

correlation between patches is very small. We number our mocks

such that pairs of mocks (e.g. 1 & 2, or 3 & 4) were drawn from the

same dark matter cube. Thus we expect the set of 500 even num-

bered mocks and the set of 500 odd numbered mocks to be inde-

pendent of any correlations caused by the sampling, and any cross

correlation to be due to noise. The cross correlation coefficient,

ρX,Y =
C(X,Y )

σXσY
(11)

for both the monopole and quadrupole of the correlation function,

and for the power spectrum, calculated from the 500 pairs of mocks

drawn from the same dark matter cube is shown in Fig. 12. The

dashed lines in Fig. 12 indicate the maximum and minimum cor-

relation coefficient (at any scale considered) between 500 pairs of

independent mocks (i.e. taking pairs where both mocks have even

or odd numbers). The fact that the cross correlation between pairs

drawn from the same dark matter cube is almost entirely within

these bounds indicates that there is no cross correlation above the

level of noise in our combined covariance matrix, even on scales

where the pairs of mocks could, theoretically, be covariant.

4.5.2 Random catalogue redshift assignment

We also test the effect of assigning redshifts to our random data

points from randomly chosen galaxies as opposed to simply gen-

erating them by sampling a smooth fit to the number density. In

Fig. 13 we present the differences in the measured correlation func-

tion monopole and quadrupole moments of the MGS data, when

they are calculated either using random data points that are assigned

redshifts from the corresponding galaxy catalogue (‘shuffled’), or

when they are given redshifts sampled from the fitted number den-

sity described in Section 2. We may expect ‘shuffling’ to reduce

the clustering, especially on scales below 100h−1 Mpc, because

spherically averaged features in the galaxy field are removed in

the shuffled approach. The power removed is predominantly along

the line of sight, and hence the quadrupole is affected more than

the monopole. From Fig. 13 we see that for both monopole and

quadrupole, the difference in clustering between the two methods

is well below the level of the noise. We adopt the shuffling approach

as we do not know the true radial distribution for the data, and this
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Figure 12. The cross-correlation coefficient between pairs of mocks gener-

ated from the same dark matter field, for both the power spectrum and the

monopole and quadrupole of the correlation function. The horizontal lines

indicate the maximum and minimum (across all scales) cross-correlation

measured from an equivalent number of pairs of mocks that are drawn from

different dark matter realisations.
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Figure 13. The difference in the monopole and quadrupole of the correla-

tion function measured from the data when we use the fitted and shuffled

methods of generating redshifts for our random data points. The shaded ar-

eas denote the one-sigma error regions. We see that the difference between

the two methods is well within the one-sigma region on all scales.

approach allows for all features caused by the galaxy selection, at

the expense of a small reduction in the monopole and quadrupole

moments. Further, Ross et al. (2012) found that the shuffling ap-

proach is less biased than fitting to a smooth n(z) when both meth-

ods were tested on BOSS mocks (with a known n(z)), and the dif-

ferences we find are consistent with those of Ross et al. (2012).

Such differences are so small that we do not need to account for

this in our model fitting.

4.5.3 Gaussianity of data

Our final test is on the assumption that the measured correlation

function and power spectrum are drawn from an underlying mul-

tivariate Gaussian distribution. This assumption is the basis of the
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Figure 14. The Kolmogorov-Smirnov p-value for both the log of the power

spectrum and the monopole and quadrupole of the correlation function. For

both statistics the probability that they are drawn from a multivariate Gaus-

sian is high, allowing us the compute the likelihoods for theoretical models

from the chi-squared difference between the model and data.

likelihood calculations made in both the BAO fits of Paper I and the

RSD fits presented in this paper.

We perform a Kolmogorov-Smirnov test on the log of the

power spectrum (which is used in the BAO fits of Paper I) and

monopole and quadrupole of our mock catalogues, using the cu-

mulative distribution function (CDF) of the normalised differences

between the two-point statistics measured from each mock realisa-

tion and the average over all the mock catalogues. Following the

standard method of the Kolmogorov-Smirnov test we define the

parameter D as the maximum difference between our CDF and the

CDF of the distribution we wish to test against, in this case a Gaus-

sian. The p-value for this test, which indicates the probability that

the observed value of D would be a large as it is if our underlying

distribution were Gaussian, is then given by a simple rescaling of

the parameter D,

D∗ = D

(√
N +

0.11√
N

+ 0.12

)

, (12)

and the the approximate expression

P (D > Dobs) ≈ 2
∞
∑

k=1

(−1)k−1e−2k2D∗

. (13)

Here, N is the number of bins in our measured CDF. As elsewhere,

we use bins of width ∆k = 0.008 for the power spectrum and

∆s = 8h−1 Mpc for the correlation function.

Fig. 14 shows the Kolmogorov-Smirnov test p-value for the

two-point statistics as a function of scale. We can see that there

is no trend with scale and across all scales of interest the p-value

indicates a high probability that both the power spectrum and cor-

relation function are drawn from a Gaussian distribution. The log

of the power spectrum has a particularly high probability of being

drawn from a Gaussian distribution, which is why we use this rather

than the power spectrum itself when fitting the BAO feature in Pa-

per I. Based on the p-values we obtain, we find that even for those

bins in the correlation function where the difference between our

measured CDF and a Gaussian CDF is largest, we could expect a

greater difference at least 20% of the time if our measured cluster-

ing statistics were drawn from an underlying Gaussian distribution.

5 MODELLING THE REDSHIFT SPACE MONOPOLE

AND QUADRUPOLE

5.1 Modelling the Effect of Galaxy Velocities

To model our redshift space monopole and quadrupole we use the

combined Gaussian Streaming/Convolved Lagrangian Perturbation

Theory (CLPT) model of Wang et al. (2014). The clustering of

galaxies in redshift space can be written as a function of their real

space correlation and their full pairwise velocity dispersion (Fisher

1995; Scoccimarro 2004). In the Gaussian Streaming model, in-

troduced by Reid & White (2011), the pairwise velocity disper-

sion is approximated as a Gaussian, which allows one to write the

two-dimensional redshift space correlation function, ξ(s⊥, s||), as

a function of the real-space correlation function, ξ(r), and the mean

infall velocity and velocity dispersions betweens pairs of galaxies,

v12(r) and σ2
12(r, µ) respectively,

1 + ξ(s⊥, s||) =

∫ ∞

−∞

dr||
[2πσ2

12(r, µ)]
1/2

[1 + ξ(r)]

× exp

{

− [s|| − r|| − µv12(r)]
2

2σ2
12(r, µ)

}

.

(14)

Here s⊥ = r⊥ and s|| denote redshift space separations transverse

and parallel to the line of sight, r|| denotes the real space separation

parallel to the line of sight, such that r2 = r2⊥ + r2||, and µ = r||/r
is as defined previously.

Reid & White (2011) evaluate v12(r) and σ2
12(r, µ) using a

standard perturbation theory expansion of a linearly biased tracer

density field, however this does not accurately replicate the veloc-

ity statistics of the tracer field on small scales, nor the smoothing

of the BAO feature. This was improved upon by Reid et al. (2012)

in their analysis of the BOSS CMASS galaxy sample by using La-

grangian Perturbation Theory to generate the real-space correlation

function above scales of 70h−1 Mpc. This proved effective for the

BOSS CMASS sample, although Reid et al. (2012) note that the

BOSS CMASS galaxy sample has a second order bias close to zero,

the point at which the accuracy of the standard perturbation theory

evaluation of v12(r) and its derivative is greatest.

Carlson et al. (2013) and Wang et al. (2014) further improve

the modelling of the correlation function by computing the real-

space correlation function using Convolved Lagrangian Perturba-

tion Theory and evaluating v12(r) and σ2
12(r, µ) in the same frame-

work. This formulation relies on a perturbative expansion of the

Lagrangian overdensity and displacement which in turn allows us

to write the correlation function and velocity statistics as a series of

integrals over powers of the linear power spectrum. For biased trac-

ers the model assumes a local real-space Lagrangian bias function,

F , and solutions up to O(P 2
L) reveal a dependence on both the first

and second derivatives of the bias function, 〈F ′〉 and 〈F ′′〉, and

combinations thereof. Furthermore, as would be expected, the ve-

locity statistics have a dependency on the growth rate of structure,

f , via the multiplicative factor, f2. From Matsubara (2008) we can

easily relate the linear galaxy bias, b, to the first derivative of the

Lagrangian bias function by 〈F ′〉 = b− 1.

The model is calculated as follows. For a vec-

tor r in real space and vector q in Langrangian space,

we can define three functions that depend on the La-

grangian bias, growth rate and linear power spectrum:

M0(r, q, 〈F ′〉, 〈F ′′〉, f, PL), M1,n(r, q, 〈F ′〉, 〈F ′′〉, f, PL)
and M2,nm(r, q, 〈F ′〉, 〈F ′′〉, f, PL). M0 is a scalar function,

whilst M1,n and M2,nm are vector and tensor functions along

cartesian directions n and m. The exact form of the functions M0,

M1,n, and M2,nm are given in Wang et al. (2014)
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We can then calculate ξ(r) and v12(r) by projecting the scalar

and vector functions along the pair separation vector and integrat-

ing with respect to the Lagrangian separation,

1 + ξ(r) =

∫

d3qM0(r, q), (15)

v12(r) = [1 + ξ(r)]−1

∫

d3qM1,n(r, q)r̂n. (16)

We split the velocity dispersion σ2
12(r, µ) into components perpen-

dicular and parallel to the pair separation vector and evaluate these

separately by projecting and integrating the tensor function,

σ2
12(r, µ) = µ2σ2

||(r) + (1− µ2)σ2
⊥(r), (17)

where

σ2
||(r) = [1 + ξ(r)]−1

∫

d3qM2,nm(r, q)r̂nr̂m, (18)

σ2
⊥(r) =

[1 + ξ(r)]−1

2

∫

d3qM2,nm(r, q)δKnm −
σ2
||

2
(19)

and δKnm is the Kronecker delta.

Hence, for a given cosmological model parameterised by

PL, b, 〈F ′′〉 and f , we can calculate, for any scale of interest, a

unique set of ξ(r), v12(r) and σ2
12(r, µ). Entering these into Eq.

(14) allows us to generate our two-dimensional redshift space cor-

relation function and from there we can generate a model monopole

and quadrupole. These models are fitted to the measurements from

data and mocks as described later to constrain a given set of cos-

mological parameters.

5.2 Alcock-Paczynski Effect

In calculating the correlation function of our data we have to as-

sume a (fiducial) cosmological model to calculate the physical sep-

arations between galaxies parallel and transverse to the line of

sight. Specifically, to calculate the separation along the line of sight

we require the Hubble parameter, H(z), and the galaxy redshifts,

whilst the transverse separation requires knowledge of the angu-

lar diameter distance, DA(z), and the angular separation of the

galaxy pair. Any difference between the relative values of these

parameters in the fiducial cosmology and the true cosmology will

manifest as anisotropic clustering, that is, a difference in the clus-

tering of galaxies parallel and perpendicular to the line of sight. If

an observable such as the BAO feature is expected to be statisti-

cally isotropic, then any measured anisotropy can also be used to

constrain the true cosmology of our universe. This is the Alcock-

Paczynski (AP) test (Alcock & Paczynski 1979).

Anisotropy is also being added by Redshift Space Distortions.

As such, the AP effect and RSD are degenerate and we need a way

to disentangle these effects.

Following Xu et al. (2013), we introduce two scale parame-

ters, α and ǫ. α denotes the stretching of all scales and hence en-

capsulates the isotropic shift whilst ǫ parameterises the AP effect.

Measuring these two parameters allows us to constrain the angular

diameter distance and Hubble expansion independently,

α =

(

D2
A(z)

D2
A,fid(z)

Hfid(z)

H(z)

)1/3
rs,fid
rs

, (20)

1 + ǫ =
F (z)

Ffid(z)
=

(

DA,fid(z)

DA(z)

Hfid(z)

H(z)

)1/3

. (21)

where a subscript ‘fid’ denotes our fiducial model and rs is the

measured BAO peak position. Values α = 1.0 and ǫ = 0.0 would

indicate that our fiducial cosmology is the true cosmology of the

measured correlation function.

In terms of our model correlation function the α and ǫ param-

eters modify the scales at which we measure a given value for the

correlation function,

s′|| = α(1 + ǫ)2s||,

s′⊥ = α(1 + ǫ)−1s⊥. (22)

During our fits we apply the values of α and ǫ directly to al-

ter the scales at which we calculate the two-dimensional redshift

space correlation function (given by Eq. (14)), calculating the nec-

essary correction to the parallel and perpendicular separations, s||
and s⊥, before using these to calculate the corresponding values

of r, r|| and µ required by the integrand. We subsequently integrate

the 2D model for the correlation function to estimate monopole and

quadrupole moments.

5.3 Correction for binning effects

Finally, we must account for the way we bin our data when calcu-

lating our model. Rather than evaluating our model at the centre of

those bins, we take into account variations in the model correlation

function across each bin, and instead take the weighted average of

our model within each bin. For a bin from s1 to s2 centred at s, our

model is

ξ0,mod(s) =
1

V

∫ s2

s1

ξ0(s
′)s′2ds′,

ξ2,mod(s) =
1

V

∫ s2

s1

ξ2(s
′)s′2ds′. (23)

Where V is the normalisation for the weighted mean,

V =

∫ s2

s1

s′2ds′. (24)

For all the fits detailed in this paper we calculate our model

in bins of width ∆s = 1h−1 Mpc between 0h−1 Mpc < s 6

200h−1 Mpc, before calculating Eq. (23), using a cubic spline in-

terpolation method to interpolate the value of the monopole and

quadrupole at any point required for the integration.

6 ANALYSIS

6.1 Cosmological Parameters

For our analysis, we consider the shape of the linear power spec-

trum to be parameterised by the cold dark matter and baryonic mat-

ter densities, Ωch
2 and Ωbh

2, and the scalar index, ns, whilst the

amplitude of the power spectrum is quantified using σ8. On top

of this we add the growth rate of structure, f , which we wish to

measure via the RSD signal, galaxy bias parameters b and 〈F ′′〉,
and BAO dilation parameters α and ǫ, which we measure indepen-

dently of the power spectrum shape.

In theory, the dependence of the CLPT model on PL, b, f ,

〈F ′′〉 and σ8 is such that, combined with the other dependencies,

all of the above parameters can be independently measured if the

data has no noise. In practice however, the parameters f , b and

σ8 are strongly degenerate at the linear level and we are unable to

constrain these independently. In addition, we can provide no con-

straints on the shape of the linear power spectrum beyond those,
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already tight, constraints given by the Planck Collaboration’s anal-

ysis of the Cosmic Microwave Background radiation. In lieu of this

we fix Ωch
2, Ωbh

2 and ns to the fiducial values used to create our

mock catalogues, which correspond closely to the Planck best-fit

values, and assume that any variation in these parameters can be

captured by departures from α = 1.00 and ǫ = 0.00.

Overall, then, we explore a combination of cosmological pa-

rameters ~p = {bσ8, 〈F ′′〉, fσ8, σ8,nl, α, ǫ}. Here we treat σ8 as

containing two separate contributions, linear and non-linear. The

former of these is contained in the bσ8 and fσ8 parameters which

are our parameters of interest and are responsible for the overall

amplitude of the monopole and quadrupole of the correlation func-

tion. The latter, σ8,nl, is only effective at the smallest scales we fit

against and as such is largely unconstrained and degenerate with

the second order bias parameter 〈F ′′〉.
In all fits we do not allow fσ8 to vary in such way that we

choose unphysical values of fσ8 < 0 or σ8,nl < 0h3 Mpc−3, and

we apply uniform priors of 0.8 < α < 1.2 and −0.2 < ǫ < 0.2,

as for the BAO fits of Paper I. We include priors on α and σ8,nl as

described and tested in Section ??.

6.2 Nuisance Parameters

We marginalise over two nuisance parameters while fitting the cor-

relation function, which we denote σoffset and IC. The first of

these corresponds to an additive correction to σ12 in the Gaus-

sian Streaming model. This compensates for two different effects

that both manifest at the same point in the model. The first is the

CLPT model’s inability to fully recover the large scale halo ve-

locity dispersion. Whilst the scale-dependence of both the σ|| and

σ⊥ parts of σ12 is well recovered by the CLPT, there is a mass-

dependent, constant amplitude shift across all scales. This system-

atic offset in the halo velocity dispersion offset is identified in Reid

& White (2011) and further explored in Wang et al. (2014), who

go on to suggest that it stems from gravitational evolution on the

smallest scales, which cannot be accurately predicted by perturba-

tion theory and hence cannot be separated from the overall scale-

dependence of σ12. Rather than calibrate the corrective factor re-

quired to shift the amplitude of the velocity dispersion using, for

example, N-Body simulations we simply treat this as a free pa-

rameter, and part of the σoffset nuisance parameter. The second

component of σoffset is the additional velocity dispersion along

the line of sight due to the so called, ‘Fingers-of-God’, resulting

from peculiar motions of the galaxies within their host halos. This

effect is expected to be small on our scales of interest and in the

monopole and quadrupole of the correlation function.

We apply a very broad, flat prior of −40Mpc2 < σoffset <
40Mpc2. This range is similar to that used in Reid et al. (2012),

where they allow the Fingers-of-God intra-halo velocity dispersion

to vary from 0Mpc2 to 40Mpc2, providing a detailed set of tests

to validate this prior. We additionally allow this term to go nega-

tive over the same range to account for the fact that, as mentioned

in Reid & White (2011), the perturbation theory calculation of σ12

overestimates the amplitude of the positive offset required to bring

linear theory in line with the measurements from N-Body simula-

tions, hence resulting in a σ12 which is larger than would be mea-

sured.

Our second nuisance term is the integral constraint, which

takes the form of an additional constant added to the correlation

function monopole. This accounts for incorrect clustering on the

largest scales due to the finite volume of our survey. Whilst, given

a model, this can be calculated analytically from the properties of

Table 1. The mean values and one-sigma errors on fσ8 and bσ8 from the

average of the mocks, recovered from the marginalised probability distribu-

tion when different priors are applied and certain parameters are fixed. We

expect to recover values fσ8 = 0.466 and 1.15 6 bσ8 6 1.22.

Average of Mocks:

No. Case fσ8 bσ8

1 Full fit 0.43+0.47
−0.32 1.04+0.19

−0.18

2 Prior on α 0.49+0.28
−0.29 1.09+0.14

−0.19

3 Prior on σ8,nl 0.45+0.19
−0.23 1.19+0.12

−0.13

4 35 6 s 6 140h−1 Mpc 0.50+0.23
−0.24 1.16+0.16

−0.18

5 ∆s = 5h−1 Mpc 0.45+0.18
−0.22 1.20+0.11

−0.13

6 ∆s = 10h−1 Mpc 0.42+0.17
−0.20 1.20+0.10

−0.11

7 ǫ = 0.00 0.50+0.13
−0.12 1.18+0.10

−0.10

8 α = 1.00, ǫ = 0.00 0.50+0.13
−0.12 1.18+0.08

−0.08

9 α = 1.04, ǫ = 0.00 0.52+0.13
−0.12 1.24+0.08

−0.09

10 Linear Fit 0.42+0.11
−0.11 1.14+0.08

−0.08

our survey, we include it as a free parameter to also account for

additional uncertainties in the modelling of the monopole and po-

tential observational systematic effects, which tend to add nearly

scale-independent clustering (Ross et al. 2012). Under the assump-

tion that the integral constraint is independent of the angle to the

LOS, this vanishes for the quadrupole and so we only apply a nui-

sance parameter of this form to the monopole.

6.3 Testing RSD measurements on mocks

We test the model and our fitting methodology by fitting the aver-

age monopole and quadrupole of the correlation function recovered

from the 1000 mocks. We use the joint covariance matrix appropri-

ate for a single realisation, including the cross-covariance between

the monopole and quadrupole: thus the errors recovered should

match those from a single realisation. To perform the fit, we per-

form a MCMC sampling over models using the publicly available

EMCEE python routine (Foreman-Mackey et al. 2013). For each

parameter we quote the best-fit value of the marginalised likeli-

hood, with 1σ errors defined by the ∆χ2 = 1 regions around this

point. Our fiducial fitting choices are as follows: we use ∆s =
8h−1 Mpc as our fiducial bin width, and keep only those bins with

centres 25h−1 Mpc 6 s 6 160h−1 Mpc. We apply a prior on

α based on the results of Paper I, and we apply priors on ǫ and

σ8,nl based on results using data from the Planck satellite (Planck

Collaboration et al. 2013). Our fiducial range of scales is chosen

based on the facts that including larger scales adds little extra in-

formation and the accuracy of the CLPT model starts to decrease

below s = 25h−1 Mpc for the range of halo masses where galax-

ies in our sample are found (Wang et al. 2014). We will motivate

our other choices and demonstrate that our fσ8 measurements are

largely independent of these choices in the following sections .

The best fit values for all of our fitting cases are collated in

Table 1. Fig. 15 shows the best-fit values for the cases listed in

the table along with the ΛCDM prediction of fσ8, which closely

matches that used in the production of the mock catalogues, and

the expected galaxy bias assuming linear theory (Hamilton 1992).

For our fiducial ΛCDM cosmology, and assuming GR, we have
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Figure 15. The marginalised fσ8 and bσ8 values and one-sigma errors

from fitting to the mean of the mocks for the 10 cases listed in Table 1.

The dashed line indicates the expected growth rate assuming our fiducial

ΛCDM cosmology. The shaded band indicates the expected linear galaxy

bias as measured from our HOD fits to the MGS sample, we use a band

rather than a line to account for the fact that the calculated value depends

slightly on the range of scales used.
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Figure 16. The average monopole and quadrupole of our 1000 mock cat-

alogues (points) shown alongside the best-fit model for our fiducial fitting

case (solid) which includes both priors on α and σ8,nl. The errors are de-

rived from the covariance matrix and are the errors on a single realisation.

The CLPT model does a fantastic job of reproducing the measured cluster-

ing on all scales of interest.

f(zeff ) = Ωm(zeff )
0.55 = 0.609 and σ8(zeff ) = 0.766, and

from our HOD fits to the MGS we have 1.5 6 b 6 1.6 depending

on the exact scales used to estimate the linear galaxy bias.

In Fig. 16 we plot the best-fitting model monopole and

quadrupole for our fiducial fit alongside that measured from the

average of mocks. We can see that the CLPT model does remark-

ably well in modelling the monopole and quadrupole across all the

scales we fit against, with only small inaccuracies at the smallest

scales and around s = 100h−1 Mpc. The inaccuracies are clearly

well below the expected level of noise in our measurements.

6.3.1 Effects of α Prior

We include a prior on α, motivated by the expected improvement

in the BAO peak position after reconstruction, in our fiducial fσ8

measurements, and we test the effect of including this for mock

results in this section. Much of the information on α comes from

the BAO feature, however in our data, as may be inferred from

Fig. 9, the BAO feature in the monopole is very noisy. Reconstruc-

tion provides a means for us to recover more of the information

within the BAO feature and hence can improve our constraints on

α, as was done in Paper I. During reconstruction we assume a linear

RSD model to convert the galaxy overdensity in redshift space to

a Lagrangian displacement for each galaxy. It is common, but not

necessary, to also scale the displacements to remove the linear RSD

and simplify the BAO constraints by making the amplitude of the

signal isotropic when analysed in the true cosmology. The effect

of this process on the quadrupole of the correlation function is not

well understood and so post-reconstruction measurements cannot

currently be used for RSD constraints.

However, as a result of the BAO fits in Paper I, we still have

a greater knowledge of α than is apparent in the pre-reconstruction

monopole. We encapsulate this using a Gaussian prior on α, centred

on the recovered post-reconstruction best-fit values from Paper I,

and with a variance calculated from the difference between pre- and

post-reconstruction fits to the BAO feature (the pre-reconstruction

uncertainty is a factor 2.5 times greater than the post-reconstruction

result). In other words, we expect the inclusion of the α prior to

recover the same uncertainty on α as found in Paper I. Reconstruc-

tion also shifts the position of the BAO peak due to the removal of

coupling between different k-modes on the scale of the BAO fea-

ture. Paper I fits the post-reconstruction (hence no mode-coupling)

correlation function with a model that does not include mode-

coupling, whereas we fit the pre-reconstruction correlation func-

tion with a non-linear model that does include mode-coupling and

hence the expected values of α returned by both methods should be

the same.

We find that including such a prior has only a small effect

on the recovered values and errors for fσ8 and bσ8, slightly de-

creasing the error range for both. The recovered best-fit values only

change by a small amount compared to the statistical error on the

measurements. This indicates that such a process introduces no bias

into our results, which is not surprising, as the α prior comes from

the comparison of the data itself before and after reconstruction,

and we expect systematic effects entering during the reconstruction

process to be very small. The reduction in the error range comes

from the improvement in the Alcock-Paczynski measurement when

the BAO position is known, and not from double counting as we

have carefully only included the extra information recovered post-

reconstruction.

6.3.2 Effects of σ8,nl Prior

The CLPT model’s dependency on σ8,nl in the non-linear regime

is weak enough that our data provides no constraints on this except

through the first order measurements of bσ8 and fσ8. The remain-

ing non-linear contribution is largely unconstrained. We therefore

consider a Planck+WP+highL prior on σ8,nl (Planck Collabora-

tion et al. 2013), which takes the form of a Gaussian with mean

σ8,nl(zeff ) = 0.766 and variance 0.012, so that the second order

corrections to the model do not stray into unphysical regions of pa-

rameter space, where the model itself is not expected to be accurate.

For our baseline fits, we adopt this prior, which we consider not to

c© 2014 RAS, MNRAS 000, 1–20



Mock catalogues & growth rate measurement at z = 0.15 13

be introducing any additional information to our measurements, but

simply forcing us to only consider physical solutions for the CLPT

model.

When we include this prior there is a small change in the re-

covered mean values of fσ8 and bσ8. For the average of the mocks

we can see that the value of fσ8 decreases slightly from 0.49 to

0.45. This shift actually brings the values of fσ8 closer to that ex-

pected based on the cosmology used to generate the mocks and is

well within the expected statistical deviation of the measurement.

Additionally, adding in the σ8,nl prior increases the value of bσ8

and tightens our constraints, bringing them closer to the expected

value. This is because the prior allows us place constraints on the

second order contribution to the galaxy bias, which, in the CLPT

model, enters as additional small scale clustering proportional to

〈F ′′〉2. When this contribution is completely unconstrained, large

values force the linear galaxy bias to be lower than it should be to fit

the smallest scales. Due to the strong degeneracy between bσ8 and

fσ8 it is actually this stronger constraint on bσ8 that has a knock-on

effect of reducing the value of fσ8 we obtain.

6.3.3 Testing bin width and fitting range

We perform several robustness tests using the α and Planck prior

measurement, looking at the effects of changing both the bin width

of our measurements and the fitting range. When we change the

fitting range to 35 6 s 6 140 we see a slight increase in fσ8, and

corresponding decrease in bσ8, though these shifts are well within

the statistical uncertainty. The reason for this shift stems from the

higher order Lagrangian bias contributions: when we remove the

small scale data, our constraints on 〈F ′′〉 become much weaker

and it is harder to decouple from 〈F ′〉. We can also see that the

errors on fσ8 and bσ8 increase when we reduce our fitting range,

consistent with the loss of information, particularly at small scales.

The results in Table 1 and Figure 15 also show that our choice

of bin width has negligible effect on the results we obtain. In Cases

5 and 6 we perform fits using our fiducial fitting range and pri-

ors but using a correlation function and covariance matrix that has

been binned using ∆s = 5h−1 Mpc and ∆s = 10h−1 Mpc re-

spectively. We find that the results are fully consistent with each

other and our fiducial bin width case, with only small, statistically

driven deviations in the mean and 1σ marginalised values of fσ8

and bσ8.

6.3.4 Effects of Fixing α and ǫ

We also look at models where we do not vary the values of α and

ǫ, as in several previous studies (Blake et al. 2011a; Beutler et al.

2012; Samushia et al. 2012). This carries the implicit assumption

that our fiducial cosmology is the true cosmology. Figure 17 shows

the expected deviation of these parameters, assuming ΛCDM, at

our effective redshift based on the cosmological results from Planck

(Planck Collaboration et al. 2013)3, which is the basis for our fidu-

cial cosmology.

We see that ǫ, which is related to the AP parameter F as in Eq.

(21), is very well defined at the effective redshift of our sample,

with only a 1% deviation from ǫ = 0.0 allowed to within 5σ. Even

3 We used the Planck ΛCDM base-planck-lowl-lowLike-

highL chains which, at the time of writing, are publicly

available for download from the Planck Legacy Archive at

http://pla.esac.esa.int/pla/aio/planckProducts.html.
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Figure 17. The 2D and 1D marginalised constraints on α and ǫ at z = 0.15

based on Planck ΛCDM cosmological constraints. Ellipses show the 1, 2

and 3σ regions, whilst dashed lines show the mean and 1σ errors of the

marginalised distributions.

relatively large deviations from our fiducial cosmology manifest

as only small changes in ǫ away from zero. As a majority of the

information on ǫ comes from the quadrupole, which is also where

we obtain most of the information on fσ8, we can conclude that

the actual AP signal we expect to measure as part of our fitting is

also small.

However, from Figure 17 we can also see that fixing alpha to

our fiducial value is not supported by the Planck data, where even

large deviations from α = 1.0 can be found to within 5σ. It is

mainly the monopole of the correlation function that constrains α,

but the large degeneracies between α and bσ8, and bσ8 and fσ8

means that fixing this value could have a knock-on effect on our

fσ8 constraints. As such we hypothesise that though the expected

degeneracy between the AP and RSD signals is small, not allowing

α to vary could bias our constraints on bσ8 and fσ8.

Finally, it also important to note that Figure 17 is only true

when we assume a ΛCDM cosmology. Allowing for w0 6= 1.0,

a time-dependent equation of state for dark energy, or other non-

standard cosmological models could allow for a much greater vari-

ation in α and ǫ from their fiducial values. As these phenomena are

only emergent at late times they would be largely unconstrained by

Planck, rendering any apparent Planck priors on α and ǫ moot.

To test this we perform additional fits to the average of the

mocks: first fixing ǫ = 0.0 and allowing alpha to vary, then fixing

ǫ and α. We fix α to two different values: α = 1.00, which is what

we expect for the mean of the mocks, and α = 1.04 which is the

value recovered from the BAO-only fits to the MGS data in Paper

I.

From Table 1 and Figure 15 we can see the recovered values

of fσ8 and bσ8 when fixing ǫ do shift slightly, but are still in very

good agreement with the expected values for the mocks. This in-

dicates that we are not introducing any bias into our results. The

uncertainty on fσ8 is also reduced substantially, with the lower

bound especially reduced by a factor of 2. This is because confin-
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ing our model to only those regions of parameter space that are in

agreement with the Planck-ΛCDM predictions greatly reduces the

degeneracy between fσ8 and ǫ, improving our constraints.

It should be noted however that this result would also be recov-

ered if we were to take the case where we vary α and ǫ and simply

combined with Planck data at a later stage, as the constraints from

Planck are tight enough to effectively fix ǫ. The benefit to allowing

ǫ to vary is that the subsequent fσ8 results are more general and

can be combined with any additional models, not just those that

agree with the Planck-ΛCDM constraints.

When fixing α to different values we do see a small change in

the recovered best fit values of bσ8 and fσ8, whilst the uncertainties

therein remain unchanged. However this is not much beyond that

seen when fixing ǫ to the value expected from the mocks. We will

reiterate, however, that fixing α is not supported by the Planck-

ΛCDM predictions and so this should be allowed to vary.

6.3.5 Using a Linear Model

Lastly, we investigate the case where we perform a simple linear

model fit as per Hamilton (1992). In Table 1 and Figure 15 we show

the results when fitting using a linear model. Here we still keep

our reconstruction-motivated prior on α, and vary fσ8, bσ8, α, ǫ
and IC. In this case we find that the error budget for both fσ8

and bσ8 is significantly reduced in comparison to our fiducial fit,

and to a greater extent than when we use our perturbation theory

model but fix α and ǫ. A simple linear model neglects the contribu-

tions from higher order bias corrections which for our sample are

non-negligible and have been shown to affect our estimation of bσ8

and, by way of the strong degeneracy therein, fσ8. However, we

find that there is no significant bias in the recovered best-fit val-

ues themselves when using a linear model and that any differences

between the observed RSD signal and the prediction from linear

theory are largely hidden by noise.

7 RESULTS

In this section we present our constraints on fσ8 and bσ8 from fit-

ting to the MGS data using the method detailed and tested in the

previous section. We have shown that our fitting method is inde-

pendent of our choice of priors, fitting range and bin size, but in the

interest of completeness we perform a range of fits equal to those

performed on the average of the mocks. For equivalent fits to both

data and mocks we use the same covariance matrix, so any differ-

ences stem from noise in the data or, of course, differences between

our fiducial cosmology and the true cosmology. The marginalised

mean values and 1σ constraints on fσ8 and bσ8 for all of our fits

are given in Table 2 with the minimum χ2 values, and shown in the

corresponding Fig. 18.

As for the results fitting the average of the mocks, we can see

that adding a prior on α introduces no noticeable bias to our best fit

fσ8 and bσ8 values and only a slight reduction in the errors. When

fitting to the data, the best fit χ2 increases slightly from 26.0 to 26.2
for 26 degrees of freedom (34 bins and 8 free parameters) when we

introduce our prior on α. Such an increase is to be expected as

the prior forces our best-fit model away from the overall maximum

likelihood model, however the difference is very small indicating

no strong preference for models outside our prior range.

When we add in the Planck prior on σ8,nl we find a larger dif-

ference in the fσ8 and bσ8 constraints than for the mocks, though

the value of fσ8 does not shift by more than we would expect based

Table 2. The mean values and one-sigma errors on fσ8 and bσ8 from fitting

to the data monopole and quadrupole, when different priors are applied and

certain parameter combinations are fixed. From ΛCDM and GR we expect

fσ8 = 0.466 and from our HOD fits to the MGS data we expect 1.15 6

bσ8 6 1.22.

Data:

No. Case fσ8 bσ8 χ2/dof

1 Full fit 0.63+0.24
−0.27 1.00+0.21

−0.19 26.0/26

2 prior on α 0.64+0.23
−0.22 0.98+0.16

−0.20 26.2/26

3 prior on σ8,nl 0.53+0.19
−0.19 1.17+0.14

−0.18 28.6/26

4 35 6 s 6 140h−1 Mpc 0.56+0.25
−0.24 1.08+0.14

−0.22 25.8/20

5 ∆s = 5h−1 Mpc 0.52+0.19
−0.19 1.16+0.13

−0.16 40.1/46

6 ∆s = 10h−1 Mpc 0.49+0.17
−0.22 1.19+0.12

−0.15 18.8/20

7 ǫ = 0.00 0.49+0.15
−0.14 1.20+0.15

−0.15 31.0/27

8 α = 1.00, ǫ = 0.00 0.44+0.16
−0.12 1.12+0.09

−0.14 30.3/28

9 α = 1.04, ǫ = 0.00 0.49+0.16
−0.13 1.17+0.10

−0.12 31.0/28

10 Linear Fit 0.47+0.13
−0.13 1.15+0.08

−0.08 31.1/29
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Figure 18. The marginalised fσ8 and bσ8 values and one-sigma errors

from fitting to the data for the 10 cases listed in Table 2. As for Fig. 15,

the dashed line indicates the expected growth rate assuming our fiducial

ΛCDM cosmology. The shaded band indicates the expected linear galaxy

bias as measured from our HOD fits to the MGS sample, we use a band

rather than a line to account for the fact that the calculated value depends

slightly on the range of scales used.

on the statistical errors, and as we do not believe this prior to be

adding in any bias to our results from our tests on the mocks, this

change is purely statistically driven. Before adding in the σ8,n prior

the measured values of bσ8 are lower than we would expect, but

this value increases by ∼ 1σ when this prior is included. It is this

change in the mean recovered value of bσ8 which causes the slight

change in fσ8. The reason for the underestimation of bσ8 is as

mentioned previously; without this prior helping to constrain σ8,nl

we overestimate 〈F ′′〉 and hence underestimate bσ8. For this prior

we find χ2 = 28.6, which is again a slight increase compared to the

fits with only the α prior, however for all three cases with different

priors the recovered χ2 values for our model are very reasonable.
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Figure 19. The 2D redshift space correlation function of the MGS along and perpendicular to the line of sight in bins of ∆s = 1h−1 Mpc. The solid black

contours show the best-fit CLPT model at ξ = {0.001, 0.01, 0.04, 0.3, 2.0, 15.0} for our fiducial fitting procedure.
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Figure 20. The 1, 2 and 3σ bσ8 and fσ8 likelihood contours and respective

1D marginalised likelihoods for the MGS galaxy sample using our fits to the

monopole and quadrupole in the range 25h−1 Mpc 6 s 6 160h−1 Mpc

with bins of width ∆s = 8h−1 Mpc and priors on α and σ8,nl.

Our fiducial fitting case including both α and σ8,nl priors is

shown in Fig. 19, where we plot the 2-D redshift space correlation

function of our data along with the maximum likelihood model. In

Fig. 20, we also plot the recovered bσ8-fσ8 contour for our fiducial

fitting case, alongside the marginalised 1D histograms for these pa-

rameters. Here we can see the strong degeneracy between fσ8 and

bσ8 that drives the small variations we see in our mean values when

fitting to both the data and the average of the mocks.

When we change the fitting range or the bin size, we see sim-

ilar results as for our fiducial case, and as with the average of the

mocks there is no indication that our fitting choices are creating bi-

ased results. As for the average of the mocks removing the smallest

scales from our fits reduces our recovered bσ8 value and increases

the error, but the mean fσ8 remains almost unchanged. For all of

our tests of bin width and fitting range, we find χ2 values that are

in agreement with our fiducial case and which indicate that all of

our fits are good. The largest χ2/dof belongs to the case where we

modify our fitting range, where we find χ2 = 25.8 for 20 degrees

of freedom. However, this value is still very good and we would

expect a worse χ2 ≈ 17% of the time.

For all our fits to the data it is worth noting that we do seem

to fit a slightly lower value for bσ8 than we would expect based

on our HOD fits to the MGS data. Looking back to Fig. 9 we can
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see why. The amplitude of the monopole on the scales 25 6 s 6

60, where most of our information on the linear bias comes from,

seems to be slightly lower for the data than for our HOD fit applied

to mocks, though when we include scales above and below this

range the mock amplitude is well matched. In our fitting we are

not including scales below s = 25h−1 Mpc, where the mocks and

data are in better agreement, and so it is not surprising the data

prefers slightly smaller values of bσ8.

The final set of fits we perform, fixing α and ǫ and using a

simpler linear model, corroborate our results when fitting to the

average of the mocks. We see that making use of the reasonable

assumption that ǫ = 0.0 tightens our constraints on bσ8 and fσ8

without adding any notable change in the best fit results. The upper

and lower bounds on fσ8 reduce from 0.19 and 0.19 to 0.15 to

0.14 respectively. Fixing α to different values does change the best

fit results slightly too, as was seen in the fits to the mean of the

mocks, whilst keeping the errors almost unchanged compared to

the fixed ǫ case. This is not a substantial change, though as we

do not have strong Planck constraints on α, as we do for ǫ, we

conclude that fixing α could lead to biased results.

Overall, the χ2 values we find when fixing α and ǫ or using

a linear model are similar in comparison to using the CLPT model

and allowing α and ǫ to vary. The data is not powerful enough to

discriminate between these different models, however from Wang

et al. (2014) we do know that we cannot expect that a linear model

to fully reproduce the RSD signal on the smallest scales that we fit

against, where non-linear effects start to dominate, and that when

fitting the RSD signal on these small scales the CLPT model is a

more reliable choice.

7.1 Comparison of different MGS results

We have performed several fits to the MGS data assuming different

values for α and ǫ. Here we provide an overview of those that we

quote, those that should be used for further cosmological studies

and those that should not.

By fitting the full-shape of the correlation function monopole

and quadrupole, and varying α and ǫ, we find best-fit values of

fσ8 = 0.53+0.19
−0.19 and bσ8 = 1.17+0.14

−0.18. These values make no

assumption on the underlying, late-time, cosmology and so we rec-

ommend the usage of these for future cosmological constraints.

In the following section we will use these results to constrain the

growth index, γ, and compare this to the prediction from General

Relativity. As the 1-D fσ8 and 3-D fσ8, α and ǫ likelihoods can-

not be well approximated by a Gaussian we use the likelihoods

themselves to achieve this, rather than just the quoted numbers. For

future analyses making use of our results the prepared MCMC sam-

ples for this fit will be made publicly available upon acceptance.

If we assume a ΛCDM cosmology, we are able to improve our

constraints by fixing ǫ = 0.0 yet still allowing α to vary. Here we

find fσ8 = 0.49+0.15
−0.14 and bσ8 = 1.20+0.15

−0.15. This is well moti-

vated by the Planck data, where we find that, unless we have a late

time dark energy model quite different from those commonly as-

sumed, we would expect to detect no deviation from ǫ = 0.0. As

such this measurement is presented as our quoted, fiducial results

and should be used for comparison with other fσ8 results under

the ΛCDM framework. However, this result should not be com-

bined with Planck data as that would result in effectively double

counting the Planck constraints. Rather, from Figure 17, we can

see that combining our publicly available chains with Planck data

will effectively fix ǫ and recover the fiducial results. From the same

figure though we would we not recommend the usage of our results

where α is not allowed to vary. In fact, as α dilates the whole cor-

relation function, not just the BAO peak, and captures the late-time

cosmological dependence of the shape of the correlation even on

small scales, we would recommend that α be allowed to vary for

any measurements of the growth of structure.

8 COSMOLOGICAL INTERPRETATION AND

COMPARISON TO PREVIOUS STUDIES

In this section we compare our measurements of fσ8 to those from

a range of different galaxy surveys and perform a simple consis-

tency test against the prediction of the growth rate from General

Relativity (GR) using the commonly used γ parameterisation of

the growth rate, where f(z) is approximated as

f(z) = Ωm(z)γ . (25)

For GR we have γ ≈ 0.55 (Linder & Cahn 2007).

Measurements of fσ8 have been made up to z = 0.8 using

data from the 2-degree Field Galaxy Redshift (2dFGRS; Percival

et al. 2004), 6-degree Field Galaxy (6dFGS; Beutler et al. 2012),

SDSS-II Luminous Red Galaxy (Samushia et al. 2012; Oka et al.

2014), BOSS (Chuang et al. 2013; Samushia et al. 2014; Sánchez et

al. 2014; Beutler et al. 2013), VVDS (Guzzo et al. 2008) and Wig-

gleZ (Blake et al. 2011a,b) surveys among others. Although these

measurements were all made using different models of varying

complexity and different fitting methods to either the correlation

function or power spectrum, they can be roughly grouped into two

distinct categories: those that were made assuming a fixed fiducial

cosmological model and those that fit the full shape of the galaxy

clustering statistics. The latter simultaneously measures both the

RSD and BAO signals and as such includes the degeneracy between

fσ8, bσ8 and α highlighted in Section 6.3.4

We plot these two sets of measurements separately in Fig. 21.

The z = 0.57 BOSS and four WiggleZ measurements were calcu-

lated with and without the inclusion of the AP effect and we can see

that they too find a large difference in the constraints when incor-

porating this degeneracy into their measurements. Alongside these

measurements we also plot the Planck-ΛCDM predictions for fσ8

assuming different values for the γ parameter. We can see that the

majority of the measurements, including our MGS measurements,

are in good agreement with the GR prediction.

As a more quantitative consistency test of GR we use the

likelihood recovered from our full-fit MCMC analysis to put con-

straints on γ itself. We use our data in combination with the pub-

licly available Planck likelihood chains, subsampling these to en-

force a prior on Ωm. We importance-sample the Planck chain by

randomly choosing a value 0 6 γ 6 1.5 for each point in the chain

and evaluating the likelihood for that parameter combination. One

caveat, however, is that we have to correct the value of σ8 to ac-

count for the fact that this also depends on γ. For each point in the

Planck chains we have Ωm,0 and σ8,0, where the later is derived

from the CMB power spectrum amplitude assuming GR. The cor-

rect value of fσ8 is then evaluated by scaling back σ8 to a suitably

high redshift (for simplicity we use the redshift of recombination,

z∗) and then scaling both σ8 and Ωm to our effective redshift using

the correct value of γ. i.e., for scale factor a = 1/(1 + z),

f(a)σ8(a) = Ωm(a)γσ8,0
Dgr(a∗)
Dgr,0

Dγ(a)

Dγ(a∗)
(26)

where,

Ωm(a) =
Ωm,0

a3E(a)2
(27)

c© 2014 RAS, MNRAS 000, 1–20



Mock catalogues & growth rate measurement at z = 0.15 17

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

z

0.2

0.3

0.4

0.5

0.6

0.7

0.8
fσ

8

Varying α and ǫ

γ=0.42

γ=0.55

γ=0.68

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

z

0.2

0.3

0.4

0.5

0.6

0.7

0.8

fσ
8

Fixed α and ǫ

γ=0.42

γ=0.55

γ=0.68

Figure 21. Comparison of measurements of the growth rate using the two-point clustering statistics from a variety of galaxy surveys below z = 0.8. We split

the results into two groups: those that perform a full shape fit, varying α and ǫ; and those that just fit the growth rate for a fixed cosmology, neglecting the

degeneracy between α, bσ8 and fσ8. Our measurement is shown as a filled red star, with other data points representing the 6dFGS (filled diamond; Beutler et

al. 2012), 2dFGRS (empty diamond; Percival et al. 2004), SDSS-II LRG (filled triangle; Samushia et al. 2012 (no AP), Oka et al. 2014 (AP)), BOSS (filled

circle; Chuang et al. 2013 (z=0.32), Samushia et al. 2014 (z=0.57)), WiggleZ (open square; Blake et al. 2011a,b), VVDS (open circle; Guzzo et al. 2008) and

VIPERS (filled square; de la Torre et al. 2013) surveys. We have also included Planck predictions for the growth rate for values of γ = 0.42, 0.55 and 0.68

as hatcheds bands (top, middle and bottom respectively).
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Figure 22. Constraints on γ and Ωm from the combination of our

marginalised fσ8 and Planck likelihoods. Contours correspond to the 1σ

and 2σ confidence intervals of the recovered posterior distribution. We ad-

ditionally look at the case where we include the BOSS-DR11 CMASS mea-

surement of the growth rate (Samushia et al. 2014). In both cases we find

good agreement with the prediction from GR (dotted line).

Dgr(a) =
H(a)

H0

∫ a

0

da′

a′3H(a′)3
(28)

Dγ(a)

Dγ(a∗)
= exp

[
∫ a

a∗

Ωm(a′)γdlna′

]

(29)

and

H(a) = H0E(a) = H0

√

Ωm,0

a3
+

(1− Ωm,0 − ΩΛ,0)

a2
+ΩΛ,0

(30)

Even though our fiducial fσ8 measurements use a prior to bet-

ter constraint σ8,nl and stop the non-linear aspects of the CLPT

model from straying into non-physical regions of our cosmologi-

cal parameter space, all of the information on fσ8, α and ǫ comes

solely from the amplitude and BAO features of the monopole and

quadrupole. As such we are able to combine our results with Planck

data for this consistency test without the risk of double counting the

Planck measurements.

Our subsequent constraints on γ and Ωm are shown in

Fig. 22. Here we also show the joint constraints when including

the measurements of fσ8 from the BOSS-DR11 CMASS sample

(Samushia et al. 2014). For our simple consistency check we only

include the CMASS measurement as the method used to make this

measurement is very similar to that used in this work. On top of

this, the BOSS-DR11 LOWZ and WiggleZ measurements do over-

lap partially in terms of area and redshift distribution with both our

measurement and the CMASS measurement, so to properly include

these would require an accurate computation of the cross correla-

tion between these measurements which is beyond the scope of this

work. When combining the MGS result with our Planck prior we

recover γ = 0.58+0.50
−0.30, consistent with GR. With the addition of

the CMASS measurement we recover γ = 0.67+0.18
−0.15, which is also

consistent with GR to within 1σ. However it should be noted that

in both cases we do find a slight preference for higher values of γ
than would be expected from GR.

We take this one step further and include BAO information

from our measurement and from the BOSS-DR11 CMASS results

as the inclusion of anisotropic distance information helps to bet-

ter constrain Ωm and hence can reduce the uncertainty on our γ
constraints. We use the 3D fσ8, α and ǫ likelihood from our fidu-

cial fits as well as the equivalent constraints from the CMASS

sample. The results of this are shown in Fig. 23 where we find

γ = 0.64 ± 0.09 with, and γ = 0.54+0.25
−0.24 without, the inclu-

sion of the CMASS measurement. Both of these measurements are

consistent with GR to within 1σ. The addition of our MGS fσ8, α
and ǫ measurements improves the constraints on γ by ∼ 10% com-
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Figure 23. Constraints on γ and Ωm from the combination of our 3-

dimensional, marginalised fσ8, α and ǫ likelihood with the Planck like-

lihood. Contours correspond to the 1σ and 2σ confidence intervals of the

recovered posterior distribution. In both cases we find good agreement with

the prediction from GR (dotted line) and a reduction in the uncertainty on

γ, compared to Fig. 22, when we include the anisotropic BAO information

from the CMASS and MGS measurements.
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Figure 24. A comparison of γ constraints from several independent mea-

surements of the growth rate using combinations of BOSS CMASS (and in

the case of Sánchez et al. 2014, BOSS LOWZ) and Planck data. For consis-

tency we plot our MGS+Planck only measurement alongside. We can see

good agreement between all independent probes and a somewhat consistent

favour for higher values of γ than would be predicted by GR (dashed line).

pared to the constraints we get on γ using the CMASS measure-

ment alone.

The growth index has also been measured by Beutler et al.

(2013), Sánchez et al. (2014) and Samushia et al. (2014) from

the combination of BOSS CMASS and Planck data. Additionally

Sánchez et al. (2014) use BOSS LOWZ data to produce their con-

straints. In Fig. 24 we plot our MGS+Planck constraint on γ along-

side these other measurements. We see good consistency between

all measurements, even though the methods used to measure the

growth rate and anisotropic BAO information are very different.

In all cases we also see a slight preference for higher values of γ,

which corresponds to models where gravitational interactions are

weaker.

There exists significant tension (∼ 2.3σ) between the Beutler

et al. (2013) BOSS CMASS measurement of the growth index and

the prediction from GR. An interesting question to ask is whether

the addition of our measurements at low redshift helps to alleviate

this tension and how this combination of measurements compares

to the result presented previously when we combine the MGS and

Samushia et al. (2014) BOSS CMASS measurements. The results

from these two combinations are also presented in Fig. 24, where

we find that our measurement brings both combinations towards

better agreement with the GR prediction, however there is still a

2σ tension between this prediction and the value of γ recovered

when combining our measurements with the Beutler et al. (2013)

CMASS results.

9 CONCLUSIONS

In this paper we have presented measurements of the growth rate

of structure at an effective redshift of z = 0.15 from fits to the

monopole and quadrupole of the correlation function of the SDSS

Data Release 7 Main Galaxy Sample (MGS). We have also de-

scribed the creation of a large ensemble of 1000 simulated galaxy

catalogues which enabled both this measurement and the isotropic

BAO measurements made in Paper I, where the sample itself is de-

tailed. Our main results can be summarised as follows:

• We have used a newly developed code PICOLA to generate

500 unique dark matter realisations. We use the Friends-of-Friends

algorithm to create halos and populate these halos using a HOD

model fitted to the power spectrum of the MGS. We find that the

resultant 1000 galaxy catalogues are highly accurate, reproducing

the observed clustering down to scales less than 10h−1 Mpc. Full

details of our code PICOLA can be found in Howlett et. al. (in prep.)

• Using these mock catalogues we construct covariance matri-

ces for our two-point clustering measurements and test some of the

assumptions made in the BAO fits presented in Paper I. We find:

negligible cross-correlation between mock galaxy catalogues gen-

erated from the same dark matter field; that the method used to gen-

erate our random data points introduces no significant systematic

effects; and that we can assume our errors on the power spectrum

and correlation function are drawn from an underlying multivariate

Gaussian distribution.

• We use the CLPT model (Wang et al. 2014) to fit the monopole

and quadrupole of the correlation function. We use our mock cat-

alogues to test the model for systematic effects and find excel-

lent agreement between the model and the average monopole and

quadrupole of the correlation function. We also perform a series

of robustness tests of our method, looking at our choice of priors,

fitting range and binsize. In all cases we see no evidence that our

results are biased in any way, with all methods recovering the ex-

pected value of fσ8 for our mock catalogues.

• Fitting to the MGS data we measure fσ8 = 0.53+0.19
−0.19 when

fitting to the full shape of the correlation function and fσ8 =
0.49+0.15

−0.14 when assuming no AP effect and fixing ǫ = 0. This

assumption is validated by the fact that we expect to detect ǫ = 0
for any commonly assumed model of the expansion history based

on the Planck-ΛCDM results. However, we have also shown that

even at the low effective redshift of our measurement, and assuming

ΛCDM, α can be expected to vary substantially from that expected

for our fiducial cosmology. As such, fixing this to a specific value

is not recomended for measurements of the growth of structure.

• Using our fiducial results to fit the growth index, γ, we find

γ = 0.58+0.50
−0.30 when including Planck data and γ = 0.67+0.18

−0.15
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when also including BOSS-DR11 CMASS measurements of the

growth rate. When we include the additional anisotropic BAO from

the full fits to the shape of the correlation function our constraints

tighten to γ = 0.54+0.25
−0.24 and γ = 0.64 ± 0.09 respectively,

the latter of which is a ≈ 10% improvements on the constraints

from the CMASS and Planck measurements alone. All of our re-

sults are fully consistent with the predictions of General Relativity,

γ ≈ 0.55, and the constraints from other measurements at different

redshifts. The MCMC chains used for this analysis will be made

publicly available upon acceptance.
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