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Abstract

According to the Cosmic Microwave Background (CMB) temperature
and Wien’s displacement law, the CMB’s energy value is equivalent to
that of the measured and determined neutrino energy. The resulting
CMB/neutrino mass is used to determine a ratio by correlating the ac-
celerative work of two forces which corresponds to the cosmic particle
horizon and Planck length. Planck’s constant is shown to be propor-
tional to the cosmic particle horizon and the CMB mass/energy and the
speed of light in vacuum. Planck’s constant, the cosmic horizon, the
CMB energy and speed of light all appear to be interconnected and their
correlations provide an amending perspective on the concepts of the fun-
damental laws and theories of the cosmos. Specifically, the squared energy
of a CMB/neutrino is equal to the product of the energy of the maximum
cosmic Rindler horizon, cosmic diameter, and the Schwarzschild radius
for a Planck mass.

1 Introduction

Both Unruh and Hawking’s concepts of information horizons are associated to
radiation emission (separation of virtual particles) [5] [12] [11]. Therefore, it
can be assumed that a Rindler horizon could create particle energy fields within
accelerative information boundaries. This has been amended by McCulloch to
predict Casimir effects on a cosmic scale which assumes an allowed discrete ra-
diation spectrum with wave nodes located at an information horizon coordinate
[6]. By associating the forces of the maximum and minimum allowed wavelength
in the realm of virtual particles to the CMB/neutrino mass, a minimum quan-
tized cosmic acceleration can be derived which is equivalent to the minimum
acceleration method stipulated by McCulloch where R = c2/a and R is the
Rindler horizon [7] . Correlating the fundamental constants also yields a sim-
ple formula connecting the size of the cosmic particle horizon to the neutrino
mass and also to energy and momentum ratios that are unity. Required are
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the allowed minimum/maximum boundary Compton wavelengths using infor-
mation horizons and the associated CMB energy. Furthermore, energy ratios
are obtained which link the CMB background (photon energy squared) with
the cosmic boundary wavelengths where the lower limit is the Schwarzschild
radius for a fundamental Planck length energy. This approach is done without
adding any additional parameters and is solely performed using scientifically
defined/determined constants.

2 Method

2.1 CMB/Neutrino energy, Rindler horizon and Planck
length

Consider the current CMB temperature measured value which is T = 2.72548
K and the cosmic diameter Θ = 8.8 · 1026 m. Now use Wien’s displacement
law in order to compute the total energy from the observed temperature using
E = kT/β where k is Boltzmann’s constant and 1/β = 4.965114 is Wien’s
constant [9]. Recall the ratio of forces and its result which is equivalent to the
gravitational CMB coupling constant, αG = Fcmb

Fmp
and CMB mass is mcmb = kT

βc2

[3]. Note: Planck mass and Planck length are denoted bymp and lp, respectively.

αG =
m2
cmb

m2
p

=
lp
2R

(1)

The gravitational constant can be rewritten where the Rindler horizon is R =
2Θ
βπ2 [3].

Gcmb =
~c

m2
cmb

· βπ
2lp

4Θ
(2)

After equating Gcmb = ~c
m2

p
one can solve for the cosmic horizon diameter [3].

Θ =
βπ2~2

4m2
cmbc

2lp
(3)

Rewrite the equation in order to better identify certain terms.

Θ =
βπ2

2

~2

m2
cmbc

22lp
(4)

Now use the substitution for the Compton wavelength λ = ~c
mcmb

.

2

βπ2
Θ2lp = λ2

cmb (5)
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Momentum can be extracted from (4) defined as the following.

p2lp =
~

2lp
(6)

pR =
~

( 2
βπ2 )Θ

(7)

pcmb = mcmbc (8)

The momentum equation can be written from (4) using (6) (7) and (8).

p2
cmb = pRp2lp (9)

p2
cmb

pRp2lp

= 1 (10)

Energy can also be written using E = pc from (10). This can be interpreted
as a geometric mean. The geometric mean of the energy of the Planck scale
Schwarzschild radius and the Rindler horizon is equivalent to the squared energy
of the CMB.

E2
cmb = ERE2lp (11)

Finally establish the CMB energy equivalence principle.

E2
cmb

ERE2lp

= 1 (12)

It was determined by measurements and by Sheppeard’s approach that the
equivalence of the CMB energy can be correlated to neutrino properties. The
experimental neutrino energy computed was EN = 0.00117 eV [10] [4] [1]. This
principle can be considered an alternative perspective. Therefore, replace Ecmb
with EN and the same equation holds true.

E2
N

ERE2lp

= 1 (13)

2.2 CMB/Neutrino energy, Theta and Planck length

The subtle step here is to replace Wien’s constant beta with the equivalent
quantized cosmic acceleration scenario where β is substituted using the Rindler
horizon coordinate by the using the present size of the cosmic particle horizon.
The ratio of 2

βπ2 goes to unity therefore R = Θ from (1). Also this makes
physical sense since the maximum wavelength needs a node to be present at
the CMB emitter. This is done to show the physical nature of the CMB energy
equivalence principle.

αG =
m2
cmb

m2
p

=
lp
2Θ

(14)
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The gravitational constant and cosmic diameter equations will be the following.

Gcmb =
~c

m2
cmb

· lp
2Θ

(15)

Θ =
~2

2c2lpm2
cmb

(16)

Rewrite the equation using the Compton wavelength.

2Θlp = λ2
cmb (17)

Rewrite (16).

m2
cmbc

2 =
~2

2Θlp
(18)

Momentum can be extracted from (18) and defined as the following.

p2lp =
~

2lp
(19)

pΘ =
~
Θ

(20)

pcmb = mcmbc (21)

Substitute to write the equation in terms of the momentum relations.

p2
cmb = pΘp2lp (22)

p2
cmb

pΘp2lp

= 1 (23)

Next the energy can be written using E = pc from (22).

E2
cmb = EΘE2lp (24)

Finally the CMB energy equivalence principle is obtained.

E2
cmb

EΘE2lp

= 1 (25)

Now replace Ecmb with EN and the same equation holds true.

E2
N

EΘE2lp

= 1 (26)

The following table shows the convergence using the neutrino energy and the
CMB energy.
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Table 1: Error Table

Equation Energy Type Error
Number %

12 Ecmb 0.311
13 EN 0.00163
25 Ecmb 0.00486
26 EN 0.308

2.3 Forces over CMB

Additionally, the CMB energy equivalence principle can also be extended to a
general accelerative force. A minimum cosmic acceleration can be established
by computing the radiation forces over the cosmic particle horizon. The forces
can be computed using F = E/d where d = R,Θ.

F 2
cmb,N

FR,ΘF2lp

= 1 (27)

Additionally, the minimum acceleration can also be defined by the following.

amin =

√
FR,ΘF2lp

mcmb,N
=
Fcmb,N
mcmb,N

(28)

3 Discussions

This equivalence principle may be considered a dot product of eigenvectors, by
action principles of Quantum Mechanics, and may correspond to a pre-Hilbert
space scenario. For further research it is suggested to apply the Dirac notation
of 〈EΘ|E2lp〉 to the denominator of this formula and investigate the cosmic
superposition relation of energy field eigenstates. Additionally, the numerator
also suggests the application of a Dirac notation considering the square power
of the neutrino/CMB energy relation. Finally, it could interpreted that this
principle is a type of UV/IR mixing [8].

4 Conclusion

It was demonstrated that the numerical convergence for the (vacuum) speed
of light and the cosmic particle horizon can be computed by using composite
parameters inherently linked to the CMB. Taking this into account, the various
fundamental constants become computationally interchangeable. The cosmic
particle horizon, the Planck length, the Planck constant and the CMB (corre-
sponding Neutrino energy/mass) formally interact with each other and a novel
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equivalence principle has been established. This formalism is an algebraic ap-
proach that considers the composite associated equations which can also replace
the electric and magnetic constants [2].
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