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Abstract. At the Large Hadron Collider at CERN the proton bunches cross at a

rate of 40MHz. At the Compact Muon Solenoid experiment the original collision rate

is reduced by a factor of O (1000) using a Level-1 hardware trigger. A subsequent

factor of O(1000) data reduction is obtained by a software-implemented High Level

Trigger (HLT) selection that is executed on a multi-processor farm. In this review we

present in detail prototype CMS HLT physics selection algorithms, expected trigger

rates and trigger performance in terms of both physics efficiency and timing.
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**8:Also at Università di Pisa, Scuola Normale Superiore e Sezione dell’ INFN,

Pisa, ITALY

**9:Now at University of Florida, Gainesville, Florida, USA

**10:Now also at Institute Rudjer Boskovic, Zagreb, CROATIA
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1. Introduction

The Large Hadron Collider (LHC) [1], is a hadron-hadron collider to be installed in

the Large Electron Positron (LEP) tunnel at the CERN Laboratory (the European

Laboratory for Particle Physics outside Geneva, Switzerland). It will be a unique tool for

fundamental physics research and the highest energy accelerator in the world for many

years following its completion. The LHC will provide two proton beams, circulating in

opposite directions, at an energy of 7 TeV each (center-of-mass
√

s = 14 TeV). These

beams upon collision will produce an event rate about 1,000 times higher than that

presently achieved at the Tevatron pp̄ collider [2]. In order to support the 7 TeV proton

beams, in total 1104 8.4 Tesla superconducting dipoles and 736 quadrupoles will be

installed in the underground tunnel of 26.6 km circumference formerly used by LEP.

The physics potential of the LHC is unprecedented: it will allow to study directly

and in detail the TeV scale region. The LHC is expected to elucidate the electroweak

symmetry breaking mechanism (EWSB) and provide evidence of physics beyond the

standard model [3]. The LHC will be also a standard model precision measurements

instrument [4] mainly due to the very high event rates as shown in table 1.

Table 1. Approximate event rates of some physics processes at the LHC for a luminosity of

L = 2 × 1033 cm−2s−1. For this table, one year is equivalent to 20 fb−1.

Process Events/s Events/year

W → eν 40 4 · 108

Z → ee 4 4 · 107

tt 1.6 1.6 · 107

bb 106 1013

g̃g̃ (m = 1 TeV) 0.002 2 ·104

Higgs (m= 120 GeV) 0.08 8 ·105

Higgs (m= 800 GeV) 0.001 104

QCD jets pT > 200 GeV 102 109

The proton beams cross at interaction points along the ring where detectors that measure

the particles produced in the collisions are installed. Interaction “Point 5” hosts the

multiple purpose 4π coverage CMS detector, shown in figure 1.

The CMS detector measures roughly 22 meters in length, 15 meters in diameter, and

12,500 metric tons in weight. Its central feature is a huge, high field (4 Tesla) solenoid,

13 meters in length, and 6 meters in diameter. Its “compact” design is large enough to

contain the electromagnetic and hadron calorimetry surrounding a tracking system, and

allows a superb muon detection system. All subsystems of CMS are bound by means of

the data acquisition and trigger system.

In the CMS coordinate system the origin coincides with the nominal collision point at
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the geometrical center of the detector. The z direction is given by the beam axis. The

rest frame of the hard collision is generally boosted relative to the lab frame along the

beam direction, θ is the polar angle with respect to the z axis and φ the azimuthal angle

with respect to the LHC plane. The detector solid angle segmentation is designed to

be invariant under boosts along the z direction. The pseudorapidity η, is related to the

polar angle θ and defined as η ≡ − ln(tan(θ/2)). The transverse momentum component

z-axis is given by pT =p sin θ and similarly ET =E sin θ is the transverse energy of a

physics object.

The experiment comprises a tracker, a central calorimeter barrel part for |η| ≤ 1.5,

and endcaps on both sides, and muon detectors. The tracking system is made of

several layers of silicon pixel and silicon strip detectors and covers the region |η| < 2.5.

The electromagnetic calorimeter consists of lead tungstate (PbWO4) crystals covering

|η| < 3 (with trigger coverage |η| <2.6). Its resolution at the initial luminosity

(L = 2 × 1033 cm−2s−1) is ∆E/E = 3%/
√

E ⊕ 0.5%. The surrounding hadronic

calorimeter uses brass/scintillator tiles in the barrel and endcaps. Its resolution for

jets, when combined with the electromagnetic calorimeter, is ∆E/E = 110%/
√

E⊕5%.

The region 3 < |η| < 5 is covered by forward calorimeters with a resolution of ∆E/E =

180%/
√

E ⊕ 10%. Muons are measured in gas chambers in the iron return yoke. The

muon momentum measurement using the muon chambers and the central tracker covers

the range |η| < 2.4 with a resolution of ∆pT /pT = 5% at pT = 1 TeV and ∆pT /pT = 1%

at pT = 100 GeV. The muon trigger extends over the pseudorapidity range |η| < 2.1.

The total non-diffractive inelastic cross section at the LHC is expected to be σT =

55mb [5, 6]. The LHC will operate at a bunch crossing rate of 40MHz. Only 80% of

the bunches will be filled [1], resulting in an effective bunch crossing rate of 32 MHz.

The instantaneous luminosity in the first two years after start–up is expected to be

L = 2 × 1033 cm−2s−1 and subsequently upgraded to L = 1034 cm−2s−1 in a second

phase. In the following these two values are referred to as “low luminosity” and “high

luminosity”, respectively. The average number of inelastic non-diffractive interactions

per bunch crossing µ is µ = 17.3 at high and µ = 3.5 at low luminosity.

In total CMS has ∼ 108 data channels that are checked each bunch crossing. The design

data-size per event is about 1 MB. At start-up it is essential to allow for a larger event

size, up to 1.5 MB per event, in order to be able to thoroughly study and understand

the detector performance.

One of the most important and difficult aspects of the experiment is the design

of the trigger, the real-time selection and recording of the (judged) useful events.

Minimum deadtime and maximum physics retention are required of the data acquisition

(DAQ), trigger and data recording architecture. To achieve this, sophisticated and fast

selection algorithms are implemented that use selective information from all the detector

subsystems during real-time data taking. The rate of interesting physics processes that

need be recorded compared to the inclusive pp cross section is many orders of magnitude

smaller.

The CMS trigger is designed to perform a data reduction from 32 MHz down to O(100)
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Figure 1. Three dimensional view of the CMS detector, and it’s detector components.

Hz via different sequential trigger levels. The first trigger level of CMS,Level-1, is

hardware implemented and reduces the data rate, by using specific low level analysis

in custom trigger processors. All further levels are software filters which are executed

on (partial) event data in a processor farm. This is the upper level of real-time data

selection and is referred to as High-Level Trigger or HLT. Only data accepted by the HLT

are recorded for offline physics analysis. Additionally, small samples of the rejected data

are retained for monitoring the performance of the HLT while the bulk of it is discarded

and dropped from any further processing without compromising physics efficiency.

This paper details how CMS proposes to achieve the necessary reduction factor, while

keeping an uncompromising physics efficiency. The HLT algorithms are described in

detail, typical threshold choices are given and the physics performance for several

benchmark processes is demonstrated. The results reported here demonstrate that CMS

has developed an efficient and agile trigger structure which will select the physics signals

of interest in the harsh LHC conditions.

The report is organized as follows. Section 2 describes the CMS trigger, section 3 the

electron/photon triggers and section 4 the muon triggers. The jet and missing ET related

triggers are discussed in sections 5 and 6. Sections 7 and 8 discuss the τ and other heavy

flavour triggers respectively. In section 9 we present the initial ideas on calibration

triggers, while section 10 studies benchmark physics channels and discusses a prototype

trigger table for the HLT. The Appendix describes the Level-1 trigger algorithms.
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2. The CMS Trigger

2.1. Physics Requirements

The main physics requirements on the L1 trigger and the HLT are:

• foremost, the requirement that the selection fulfill the needs of the CMS physics

program; the efficiency for the physics objects must be as high as possible;

• the selection must be as inclusive as possible. The LHC represents a new energy

frontier, and unexpected new phenomena may appear. The selection requirements

must retain events of potential use in such exotic searches;

• all thresholds and other requirements applied by the selection should be very robust,

so that detailed knowledge of calibration constants and other run conditions do not

pose a stringent constraint in real time;

• the final selection of events should include data samples for the calculation of all

trigger and reconstruction efficiencies offline;

• the rate of events accepted by the HLT should be within limits allowed by the data

recording technology (O(100) Hz);

• all algorithms and their implementation should be monitored continuously for their

correct functioning;

• the events selected by the HLT should be tagged to indicate the reasons for their

selection, to aid the offline reconstruction;

• the HLT should include all major improvements in the offline reconstruction, and

thus it should be as close as possible to the standard offline reconstruction code.

2.2. Selection Strategy and Reconstruction on Demand

The CMS DAQ/HLT processes all events accepted by the Level-1 trigger in a single

processor farm. There is therefore no separate Level-2 or Level-3, but a single entity,

the High-Level Trigger. Nevertheless, as in a traditional multi-level trigger system, the

selection of events can be optimized by rejecting events as quickly as possible. The basic

event building strategy is to reconstruct those parts of each physics object that can be

used for selection while minimizing the overall CPU usage.

As an example, reconstruction of an electron includes the reconstruction of a cluster

in the electromagnetic calorimeter, the matching of hits in the pixel detector and the

subsequent reconstruction of a full charged particle track in the tracker. At the end

of each step a set of selection criteria results in the rejection of a significant fraction

of the events accepted by the previous step. The rate of events that need to be

processed through the remaining algorithms is decreased reducing the required CPU.

Reconstruction and selection are therefore closely intertwined in the online environment

of the filter farm. For an optimal system the HLT should reconstruct the minimum

amount of detector information needed to apply a set of selection criteria that reject

background events while keeping the desired physics events for further processing.
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It is important to note that a fraction of the bandwidth, between 10-30%, (closer to

30% at start-up) needs to be reserved for calibration triggers to ensure a complete and

accurate understanding of the detector performance.

2.3. Trigger Levels – Definitions

The reconstruction and selection in the HLT takes place in steps which correspond

roughly to what would have been distinct trigger systems, the Level-2 and Level-3

trigger systems. It is thus convenient to use the terminology, and to refer to a “Level-2

trigger” or a “Level-3 step” to describe the selection algorithms and criteria of the HLT.

As mentioned previously the CMS HLT architecture does not include a sharp division

between these trigger steps, other than the order in which they are applied.

In what follows, the convention used is that “Level-2” triggers, algorithms and

requirements refer to the first selection step in the HLT process. Typically, a Level-

2 trigger, which has the maximum rate of events input to it, uses only information

from the calorimeter and muon detectors. In contrast, “Level-3” refers to selection that

includes the reconstruction of full tracks in the tracker. Traditionally, because of the

high number of channels, the complex pattern recognition and higher combinatorics,

track reconstruction is a process that demands large amounts of CPU time. Extending

the terminology, in what follows there are references to “Level-2.5” triggers, which refer

to algorithms that use partial tracker information, e.g. pixel hits, for a fast confirmation

of the electron candidate. The numbering, “2.5”, attempts to indicate the intermediate

nature of the selection, as one that occurs between the selection that is based solely on

the calorimeter information, and the selection that is based on the full CMS detector

information.

2.4. Partial Event Reconstruction

To minimize the CPU required by the HLT, a key feature of the algorithms is to

reconstruct the information in the CMS detector only partially. In many cases the

decision on whether an event should be accepted by the HLT involves the reconstruction

of quantities in only a limited region of the detector. As an example, for an event

accepted by the Level-1 trigger in the inclusive muon stream, only the parts of the

muon chambers indicated by the Level-1 trigger results, and the corresponding road in

the tracker, need be considered for the validation of the muon.

The idea of partial event reconstruction has been embedded in the CMS reconstruction

code from the very beginning. In the case of the HLT, the reconstruction of physics

objects is driven by the corresponding candidates identified by the Level-1 trigger.

All reconstruction starts from the Level-1 trigger information. This approach leads

to significant CPU savings, however it also leads to rejecting events that contain

“volunteer” objects, i.e. objects that did not pass the Level-1 trigger. This disadvantage

is mitigated by the fact that it is, in general, very difficult to understand the properties

of such objects in later offline analyses. It is clearly always feasible, albeit with an
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increased CPU cost, to look for additional objects in each event if a particular physics

analysis introduces such a requirement.

2.5. Level-1 Trigger Settings and Rates

The performance of the Level-1 trigger system is summarized in the Appendix A and

further details of the system can be found in the Level-1 Trigger Technical Design

Report (TDR) [7]. Some small changes in expected rates and efficiencies with respect

to that document have been incorporated in this report. The changes reflect the Monte

Carlo input, including an updated version of the PYTHIA Monte Carlo simulation and

increased statistics in the Monte Carlo samples generated, as well as a more detailed and

tuned detector and trigger simulation. The main thrust of the conclusions of reference [7]

remains unaltered: the overall performance of the system satisfies the requirements of

the CMS physics program. An additional change with respect to the trigger TDR is

the definition of the low luminosity run conditions: “low” luminosity in this document

refers to an instantaneous luminosity of L = 2 × 1033 cm−2s−1(twice the definition of

low luminosity at the TDR) while “high” luminosity refers to the nominal LHC design

value of L = 1034 cm−2s−1. The current plans of CMS call for a phased installation of

the Data Acquisition system so that at start-up the DAQ can handle a Level-1 accept

event rate of up to 50 kHz and at the full design luminosity it can handle a rate of 100

kHz.

The allocation of the Level-1 trigger bandwidth must be optimized in order to ensure the

widest possible physics reach for the experiment, while including all technical triggers

intended for calibration and monitoring of the detector. The procedure used for this

optimization starts with a determination of the maximum Level-1 trigger rate that can

be allocated, which is 16 kHz at low luminosity and 33 kHz at high luminosity. These

maximum rates arise from dividing the total DAQ bandwidth, i.e. 50 kHz (100kHz) at

low (high) luminosity, by a safety factor of three. This safety factor is used to account

for all uncertainties in the simulation of the basic physics processes, the CMS detector,

and the beam background conditions.

The second step is a first allocation of this Level-1 bandwidth across the different

objects. An equal allocation across the four categories of “objects” taken as (a)

electrons/photons, (b) muons, (c) tau-jets and (d) jets-combined channels, is made.

For example, at low luminosity about4 kHz is pre-allocated to each of these triggers

above.

The third step is to determine thresholds for the single and double-object triggers within

this first Level-1 rate allocation. As an example, the 8 kHz of electron and photon

triggers at high luminosity has to be divided among single and double electrons/photons.

For this purpose the iso-rate contours on the plane of the ET cut on the single objects

versus the ET cut on the double objects are examined, as shown in fig. 2 (left). An

operating point in this single-double threshold plane must be selected for a given a

Level-1 trigger allocation. To determine the optimal operating point, the efficiency for



CMS High Level Trigger 13

10

15

20

25

25 30 35 40 45 50
10

15

20

25

25 30 35 40 45 50
ET L-1(95%) single(GeV)

E
T
 L

-1
(9

5
%

) 
d
o
u
b
le

 (
G

e
V

)

1.5kHz

 2kHz

 3kHz

 4kHz

 5kHz
 8kHz

10kHz
15kHz

20kHz

Combined rate at 1034/cm
2
 /s

Figure 2. Contours of equal rate on the plane of ET thresholds for single and double-

electron/photon triggers (left), and efficiency for W and Z electronic decays as a function of

the same thresholds (right).

triggering on selected physics channels, via the single and the double-object trigger, is

considered. In the case of the electron/photon trigger the efficiency for W → eν decays

versus the efficiency for Z → ee decays can be used, as in figure 2 (right). The optimal

point can be selected as a trade-off between the two efficiencies, e.g. adopting the point

at which both efficiencies drop at the same rate, as shown in the same figure. The same

method is used for muons and τs.

There is no similar optimization of the allocation for jet triggers since there is no reason

to include a 2-jet trigger requirement. All QCD events have a second jet which, though

by definition at a lower ET than the leading jet, is always present in the event.

The last step in this procedure is to evaluate the optimal efficiencies for each of the

four object categories and to then re-iterate the entire procedure with slightly different

Level-1 trigger allocations.

Note that the Level-1 triggers only consider cross-object triggers for a limited number

of categories.

2.6. Level-1 Trigger Table

With the constraints described previously, the prototype Level-1 trigger tables that are

used in the present paper for further analysis of the HLT algorithms and performance

are listed in tables 2 and 3 for low and high luminosity respectively. The thresholds

quoted correspond to the ET or pT value at which the efficiency of the trigger is 95%

of its maximum value. There is no entry for a µ+jet trigger at low luminosity because

there is little to be gained given the low inclusive muon threshold. In both cases, a 1

kHz bandwidth is allocated to minimum-bias events which will be used for calibration



CMS High Level Trigger 14

Table 2. Level-1 trigger table at low luminosity. Thresholds correspond to values with 95% of

the maximum available efficiency (except for the muon triggers which are at 90% efficiency)

Trigger Threshold Rate Cumulative Rate

(GeV or GeV/c) (kHz) (kHz)

inclusive isolated electron/photon 29 3.3 3.3

di-electron/di-photon 17 1.3 4.3

inclusive isolated muon 14 2.7 7.0

di-muon 3 0.9 7.9

single τ -jet 86 2.2 10.1

di- τ -jet 59 1.0 10.9

1-jet, 3-jet, 4-jet 177, 86, 70 3.0 12.5

jet * Emiss
T 88 * 46 2.3 14.3

electron * τ -jet 19 * 45 0.8 15.1

minimum bias (calibration) 0.9 16.0

TOTAL 16.0

Table 3. Level-1 trigger table at high luminosity. Thresholds correspond to values with 95%

of the maximum available efficiency (except for the muon triggers which are at 90% efficiency).

Trigger Threshold Rate Cumulative Rate

(GeV or GeV/c) (kHz) (kHz)

inclusive isolated electron/photon 34 6.5 6.5

di-electron/di-photon 19 3.3 9.4

inclusive isolated muon 20 6.2 15.6

di-muons 5 1.7 17.3

single τ -jet trigger 101 5.3 22.6

di- τ -jets 67 3.6 25.0

1-jet, 3-jets, 4-jets 250, 110, 95 3.0 26.7

jet * Emiss
T 113 * 70 4.5 30.4

electron * τ -jet 25 * 52 1.3 31.7

muon * τ -jet 15 * 40 0.8 32.5

minimum bias (calibration) 1.0 33.5

TOTAL 33.5

and monitoring purposes.

2.7. Event Generation and Detector Simulation

The studies of the HLT have been performed with simulated events, by tracking

particles through a realistic simulation of the detector, adding pileup events (the

additional 3.5(17.5) interactions at low(high) luminosity conditions), and applying the
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HLT algorithms to the digitized data. Standard Monte Carlo generators, such as

PYTHIA [5] and ISAJET [8], are used to simulate the collisions between two protons

at
√

s = 14 TeV.

Event samples have been generated for the muon, electron, b and τ and jet signal samples

as well as for the pileup of minimum bias collisions. In several cases special care has

to be taken to ensure an efficient but correct sample generation. As an example the

generation of the minimum bias background for HLT studies involving muons is treated

somewhat differently than for studies without muons since every charged pion or kaon

with a momentum above a few GeV/c can potentially decay into a muon, penetrate into

the muon system, and be mismeasured as a high-pT muon because of multiple scattering

through the iron yoke. A complete simulation of this background would be CPU-wise

prohibitive, hence a weighting procedure is used. Details are given in ref. [9].

A procedure has been developed to take into account the effects of the pileup in the

muon system, as detailed in [10]. For the jet trigger sample a cross section weighting

technique is applied as well [7]. Attention has also been paid for the pileup samples, to

ensure that the limited statistics and re-use of events in these samples does not lead to

overestimated trigger rates due to a few recurring events.

For the HLT studies presented in this paper, the CMS detector simulation package,

CMSIM [11] is used. It is an application of the GEANT3 [12] detector description

and simulation tool. CMSIM is used to describe the detector geometry and materials.

It also includes and uses information about the magnetic field. CMSIM reads the

individual generated events and simulates the effects of energy loss, multiple scattering

and showering in the detector materials with GEANT3. The average storage size of a

single event for these studies is about 2 MB. The CPU time required to simulate one

event on a 1 GHz CPU ranges from 60 s for a minimum-bias event, to 500 s for a 1 TeV

di-jet event.

3. Electron and Photon Identification

The HLT selection of electrons and photons proceeds in three steps. The first step

(Level-2.0), uses the calorimeter information alone. The next step (Level-2.5) demands

hits in the pixel detectors consistent with an electron candidate. Matching of energy

in the electromagnetic calorimeter (ECAL) with hits in the pixel detector or failure

to match, splits the electromagnetic triggers into two categories: electron candidates

(single and double), and above significantly higher thresholds, photon candidates. In

the final step (Level-3) the selection of electrons uses full track reconstruction, seeded

from the pixel hits obtained at the matching step.

For the calorimeter reconstruction – clustering followed by energy and position

measurement – the emphasis is predominantly on the reconstruction of electrons,

because the transverse momentum thresholds for triggering on electrons are much lower

than those for photons. Since the amount of material traversed in the tracker volume

is almost one radiation length for certain polar angles, the first challenge for ECAL
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clustering is to include all energy radiated by electrons. Photons that have converted in

the tracker material are adequately reconstructed by the electron algorithms. For the

final higher precision reconstruction of photons it is foreseen that unconverted photons

will be reconstructed using energy sums of fixed arrays of crystals and that tracker

information will be used to assist the clustering for converted photons. Such algorithms

that improve the photon energy resolution, are not necessary for the HLT selection.

3.1. Calorimeter Reconstruction: Clustering

The first step in the reconstruction of an electron in the High-Level Trigger is the

clustering of the energy deposits in the ECAL and the estimate of the electron’s energy

and position from this information. In the barrel section this involves the energy

deposited in the lead tungstate crystals alone, in the endcap energy is also deposited in

the 3X0 thick preshower detector.

Electrons radiate in the material between the interaction point and the ECAL. The

bending of the electron in the 4T magnetic field results in an azimuthal spray of energy

reaching the ECAL. The electron energy can be collected by forming a group of clusters

along a φ-road. This cluster of clusters is called a “super-cluster”.

3.1.1. The Island Algorithm The island algorithm starts by a search for seeds which

are defined as crystals with an energy above a certain threshold. Starting from the seed

position, adjacent crystals are examined, scanning first in φ and then in η. Along each

scan line crystals are added until either a rise in energy or a crystal that has not been

read out is encountered. The clustering starts from the highest ET seed in the list of

seeds, and the crystals included in the cluster are marked after being used so as to be

only included in a single cluster

In much the same way as energy is clustered at the level of calorimeter cells, non-

overlapping clusters can in turn be clustered into calorimetric “super-clusters”. The

procedure is seeded by searching for the most energetic cluster and then collecting all

the nearby clusters in a very narrow η-window and much wider φ-window.

3.1.2. The Hybrid Algorithm For single showers, such as those produced by

unconverted photons, or those produced by electrons in test beam conditions, energy

sums of fixed arrays of crystals give a better energy resolution performance than

energy sums of crystals collected dynamically according to a cluster or “bump” finding

algorithm. The Hybrid algorithm uses the η−φ geometry of the barrel crystals to exploit

the knowledge of the lateral shower shape in the η direction (taking a fixed bar of three

or five crystals in η), while searching dynamically for separated (bremsstrahlung) energy

in the φ direction.

The Hybrid algorithm is used to reconstruct electrons with pT >10 GeV/c in the barrel.

By contrast, when looking for small deposits of energy in individual clusters, for example

when making a calorimetric isolation cut, the basic clusters of the Island algorithm are
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more appropriate objects to work with. Further details on the clustering algorithms can

be found in reference [13].

3.2. Endcap Reconstruction with the Preshower

Much of the endcap is covered by a preshower detector with two planes of silicon strip

readout. The energy deposited in the preshower detector (which is about 3X0 thick)

needs to be added to the crystal clusters [14]. The energy in the crystals is clustered

using the Island algorithm and the clusters are associated to form super-clusters. A

preshower cluster is constructed in each plane, in front of each crystal cluster of the

super-cluster. The search area in the preshower is centered on the point determined by

extrapolating the crystal cluster position to the preshower plane in the direction of the

nominal vertex position.

3.3. Energy and Position Measurement

3.3.1. Position Measurement Using Log-weighting Technique A simple measurement

of the shower position can be obtained by calculating the energy-weighted mean position

of the crystals in the cluster. Two features need to be addressed in more detail in order

to obtain a precise position measurement.

The first is the precise definition of the “crystal position”. The lateral position of the

crystal depends upon depth because the crystals are ”off-pointing” and the incident

particle and shower direction is not exactly parallel to the crystal axis. The lateral

position of the crystal is thus defined as the (η, φ) position of its axis at a particular

depth. The depth at which the shower maximum occurs is taken as the longitudinal

baricentre of the shower which has a logarithmic dependence on the shower energy.

This depth is roughly the longitudinal center of gravity of the shower, and its optimal

mean value varies logarithmically with the shower energy. There is also a dependence

on particle type: electron showers have a maximum about one radiation length less

deep than photon showers. In the position measurement used for both Island and

Hybrid super-clusters the depth is measured from the front face of the crystals along the

direction from the nominal vertex position to the approximate shower position calculated

using the arithmetic energy weighted mean of the shower front face centers. The energy

dependence is accounted for with a logarithmic parametrization [13].

The second feature that requires more detailed treatment is related to the lateral shower

shape. Since the energy density does not fall away linearly with distance from the shower

axis, but rather exponentially, a simple energy weighted mean of crystal energies is

distorted and the measured position is biased towards the center of the crystal containing

the largest energy deposit.

A simple algorithm, which yields adequate precision consists of using the weighted mean,

calculated using the logarithm of the crystal energy:

x =

∑

xi · Wi
∑

Wi
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with the sum over all crystals of the cluster, and where xi is the position of crystal i,

and Wi is the log weight of the crystal – the logarithm of the fraction of the cluster

energy contained in the crystal, calculated with the formula:

Wi = W0 + ln
Ei

∑

Ej

where the weight is constrained to be positive, or is otherwise set to zero. W0 then

controls the smallest fractional energy that a crystal can have and still contribute to the

position measurement[13].

So far what has been described refers to the measurement of the position of a single

cluster. The position of a super-cluster is calculated by making the energy-weighted

mean of the positions of its component clusters. For an electron that has radiated into

the material, this method allows to reconstruct its position at production.

3.3.2. Energy Measurement and Corrections The measurement of energy in the

crystals is obtained by simple addition of the deposits measured in the crystals –

although more complex estimators have been proposed [15].

Even in the areas not covered by the preshower detector the energy containment of the

clustered crystals is not complete. The reconstructed over the generator level energy

distribution, Emeas/Etrue, shows a peak at a few percent less than unity, and a long

tail on the low side due to non-recovered bremsstrahlung energy. The Gaussian part of

the distribution corresponds, roughly, to the energy that would be reconstructed from

an electron in the absence of bremsstrahlung. The amount of tracker material varies

strongly with η, as shown in figure 3, and thus so does the amount of bremsstrahlung

radiation, so a variation in the fraction of events in the tail as a function of η is expected.

This inevitably leads to a small variation in the peak position as a function of η.

The energy scale is “calibrated” using corrections designed to place the peak in

Emeas/Etrue at 1.0, see figure 4. The corrections are parametrized in terms of the

number of crystals in the cluster (f(Ncry) corrections). This helps to minimize the

residual dependence on both E and η of the energy scale. Figure 5 shows, as an

example, Emeas/Etrue as a function of the number of crystals in a reconstructed Hybrid

super-cluster, for electrons with 10 <pT < 50 GeV/c, together with a fitted polynomial

function.

3.3.3. Energy and Position Measurement Performance For these performance figures

an isolated Level-1 trigger (Appendix A.2) is requested, which results in about 8%

inefficiency mainly due to bremsstrahlung radiation in the isolation region (about 6%),

but no trigger threshold is applied.

Figure 4 shows the distribution of Emeas/Etrue for pT = 35 GeV/c electrons reconstructed

using the Hybrid algorithm in the barrel, and using the Island algorithm and the

preshower in the endcap. The energy resolution is parametrized in two ways: in

terms of the fitted width of the Gaussian part of the distribution (fitted between -

1.5σ and +2.0σ), and in terms of σeff , defined as the half-width containing 68.3% of the
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Figure 3. Material budget as a function of η for the different tracker sub-units.
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Figure 4. Distribution of Emeas/Etrue for pT = 35 GeV/c electrons, a) in the barrel ECAL

fully digitized without pileup, and reconstructed with the Hybrid super-clustering algorithm,

b) the same distribution for electrons in the endcap, reconstructed with the Island super-

clustering algorithm, and with preshower energy included. Emeas/Etrue. The variable µ is the

mean value of the Gaussian fit, shown by the curve; for σeff , see text.
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Figure 5. Emeas/Etrue as a function of the number of crystals in a Hybrid super-cluster

together with a fitted polynomial function.

distribution – if the distribution is Gaussian then σeff is just the Gaussian sigma, when

the distribution has more significant tails then σeff provides some measure of this. The

parameter σeff provides a convenient measure of performance which adequately reflects

final physics performance (e.g. in extracting signal significance).

It is worth noting, as a comparison, that unconverted photons with a flat pT spectrum in

the range 10< pT <50 GeV/c can be reconstructed, in the barrel using a fixed window in

η−φ of 5×5 crystals, and in the endcap using a 3×3 fixed window with impact position

correction, achieving in both cases a resolution of σeff/E = 0.9% at low luminosity.

Figure 6 shows the position resolution in η and φ for the same sample. Table 4 gives a

more complete list of performance results for electron reconstruction in both the barrel

and endcap. Values for pT = 35 GeV/c electrons are given, together with values for

electrons having a flat pT spectrum in the range 10 < pT < 50 GeV/c. The σeff value

is not given for the η resolution because it is, in all cases, the same as the Gaussian fit

value.

3.4. Level-2.0 Selection of Electrons and Photons

The first step of the HLT, using only calorimeter information, is to reconstruct an

ECAL super-cluster in a region specified by the Level-1 trigger. The super-cluster is

first required to fall within the precision physics fiducial region of the ECAL, which

is obtained by removing the barrel/endcap transition region from the overall coverage
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Table 4. Energy and position resolution performance for barrel and endcap ECAL using

electron samples simulated with different pileup conditions, using single particles.

electron sample Energy resolution Position resolution

σ/E σeff/E σ(η) σ(φ) σeff (φ)

Barrel reconstruction; |η| <1.4442 (Hybrid algorithm)

pT = 35 GeV/c (no pileup) 1.1% 2.2% 1.1 × 10−3 1.7 mrad 2.5 mrad

pT = 35 GeV/c (2 × 1033 cm−2s−1) 1.2% 2.3% 1.1 × 10−3 1.7 mrad 2.5 mrad

pT = 35 GeV/c (1034 cm−2s−1) 1.5% 2.7% 1.1 × 10−3 1.9 mrad 2.7 mrad

10 < pT < 50 GeV/c (1034 cm−2s−1) 1.5% 3.4% 1.2 × 10−3 2.1 mrad 3.4 mrad

Endcap reconstruction; 1.566 < |η| < 2.5 (Island algorithm, and preshower)

pT = 35 GeV/c (no pileup) 1.2% 2.1% 1.8 × 10−3 2.2 mrad 3.4 mrad

pT = 35 GeV/c (2 × 1033 cm−2s−1) 1.6% 2.4% 1.8 × 10−3 2.3 mrad 3.5 mrad

pT = 35 GeV/c (1034 cm−2s−1) 2.7% 3.4% 2.0 × 10−3 2.9 mrad 4.2 mrad

10 < pT < 50 GeV/c (1034 cm−2s−1) 2.9% 4.2% 2.2 × 10−3 2.7 mrad 5.1 mrad

0

500

1000

1500

2000

2500

3000

-0.025 -0.0125 0 0.0125 0.025

σGauss = 1.7 mrad

σeff = 2.5 mrad

φmeas - φtrue (rad)

electrons
pT = 35 GeV

Barrel

E
v
e

n
ts

0

500

1000

1500

2000

2500

3000

-0.025 -0.0125 0 0.0125 0.025

σGauss = 1.1x10
-3

σeff = 1.1x10
-3

ηmeas - ηtrue

electrons
pT = 35 GeV

Barrel

E
v
e

n
ts

Figure 6. Position resolution for pT = 35 GeV/c electrons in the barrel ECAL, fully digitized

without pileup, and reconstructed with the Hybrid super-clustering algorithm.

of |η| <2.5 [16]. This transition region is strongly shadowed by tracker cables exiting

through the gap between the barrel and endcap. This region comprises the first trigger

tower in the endcap. The last two crystals in the barrel are also removed from the

trigger. The excluded area thus covers 1.4442 < |η| < 1.5660.

The super-cluster is then required to have ET above a threshold which is chosen to give

95% efficiency for electrons at the same point on the ET scale at which the Level-1 trigger

has 95% efficiency . The same threshold is required for both objects in the di-electron

trigger. At L = 2 × 1033 cm−2s−1the thresholds are 26 GeV for the single, and 14.5 GeV
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Figure 7. Fractional ET resolution, as a function of η, induced by a 1σ shift of the longitudinal

vertex position.

for the double electron trigger. The corresponding thresholds at L = 1034 cm−2s−1 are

31 GeV and 16.9 GeV. This cut on the transverse energy reconstructed in the ECAL

increases the rejection of fake electrons by about a factor of two.

Some refinements of this Level-2.0 selection can be envisaged, but have not been used

in the basic selection procedure for which results are here presented. Firstly, the Level-

3 selection uses cuts on purely calorimetric quantities – ECAL isolation and an H/E

(hadronic/electromagnetic) cut – which could be applied at an earlier stage. Secondly,

a significant contribution to the transverse energy resolution comes from the lack of

knowledge, at this stage, of the longitudinal vertex position. The contribution to the

fractional ET resolution, as a function of η, due to a 1σ shift of the vertex longitudinal

position (5.3 cm), is shown in figure 7. A small improvement in efficiency would be

obtained by making the electron threshold cuts in two stages: a looser cut at Level-2.0

followed by the full set of cuts at a later stage, after the pixel matching of Level-2.5

which gives a precise longitudinal vertex position.

3.5. Level-2.5: Matching of Super-clusters to Hits in the Pixel Detector

The matching of super-clusters reconstructed in the calorimeter to hits in the pixel

detector takes advantage of the fact that the energy-weighted average impact point

of an electron and the bremsstrahlung photons it has radiated, is precisely where a

non-radiating electron would have impacted. It is this space-point that the position

measurement of the super-cluster attempts to determine. This point can be propagated

back through the field to obtain an estimate of the direction of the electron at the

vertex, and the hit positions expected in the pixel detector. Since most of the tracker

material lies after the pixel detector, most electrons do not radiate significantly before

it, and most photon conversions take place after it. So matching hits are given by most

electrons and by few photons.

The layout of the pixel system is shown in figure 8. The continuous lines show the
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Figure 8. Full pixel detector (high luminosity) with continuous lines pointing from the

nominal vertex to the edges of the ECAL barrel and endcap, and dashed lines pointing from

z = ±15 cm. cf. Appendix A.1

maximum values of the ECAL barrel and endcaps and the dashed lines correspond to

electrons generated z = ±15 cm away from the nominal vertex. For the clusters at the

ends of the ECAL barrel, pixel disks are needed as well as barrel pixel layers. For endcap

clusters the mix of pixel barrel and pixel disk hits depends on both the pseudorapidity

and the z-vertex of the electron. With the geometry used for this simulation study there

is a loss of efficiency in the high |η| region of the ECAL endcap where, in some cases,

the electron goes through only one pixel layer.

The outer barrel layer and the outermost endcap disks of the pixel detector is staged

and may not be present at the start-up of the experiment. The simulation of the HLT

selection at low luminosity is made by discarding pixel information in these layers.The

method proceeds as follows:

(i) The electromagnetic cluster gives the energy and the position of the electron

candidate. The transverse momentum is computed from the measured energy and

position of the cluster. The expected hit position on the pixel layers is estimated

by propagating the electron inwards to the nominal vertex using the magnetic field

map. A search area is defined in the innermost pixel layer. It is unrestricted in z,

and its width in φ (typically 40 mrad) is the main parameter used to control the

tightness of the pixel matching. The errors on the calculated hit positions are due

to the spread in z of the vertex position and the precision of the φ measurement in

the calorimeter. At this stage the error on the cluster ET measurement contributes

very little to the uncertainty on the expected hit position in the pixel detector.

(ii) If a compatible hit is found within the search area on the innermost pixel layer, a

better estimate of the longitudinal (z) vertex position is obtained by interpolating

the line from the cluster through the corresponding hit to the beam line. Nominal

values (0,0) for x and y coordinates of the vertex are assumed. If no hit is found

in the search area of the innermost pixel layer, the search is repeated in the next

layer.

(iii) The track is propagated from the newly estimated vertex to the next pixel
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layer through the compatible hit in the first (or second) layer. The dominating

uncertainty, in the r − φ plane, results from the estimate of the ET of the

electromagnetic cluster, and thus the radius of curvature of the electron track.

But this is a very small uncertainty since the distance from one pixel layer to the

next is short. Indeed, assuming a hit on the r = 4 cm layer, the distance between

the hit predictions on the r = 11 cm layer for pT = 15 GeV/c and pT = 20 GeV/c

electron would be 78 µm – less than the size of a pixel. In the r−z plane, the main

uncertainty comes from the vertex z.

(iv) If another compatible hit is found, the cluster is identified as an electron, if not, it

is rejected as a jet. If there are no compatible hits in the current layer, there may

be one more pixel layer left, and the search is repeated there.

The search is made twice, once for each charge. In the first step of the search the electron

and positron search areas can overlap, but in the second step, when a compatible hit is

propagated to another pixel layer, the pT needed for the search areas of different charges

to overlap is almost 1 TeV/c.

For low luminosity both the staged and full pixel detector configurations are investigated.

Using the inner pixel layers alone results in a large inefficiency (∼ 7%) in the staged

pixel configuration, so the low luminosity staged pixel detector algorithm supplements

the pixel hits with hits found in the first silicon strip layer of the tracker, and regains

some of the lost efficiency. More details of the Level-2.5 pixel matching algorithm are

given in reference [17].

The “rejection” versus efficiency obtained from the Level-2.5 pixel matching is shown

in figure 9, at (left) low luminosity (L = 2 × 1033 cm−2s−1), and (right) high luminosity

(L = 1034 cm−2s−1). The efficiency is calculated using an electron sample passing the

Level-2.0 threshold. The “rejection” is calculated from the single electron triggers in

the jet background passing the Level-2.0 threshold and is the efficiency of the electron

algorithm in a jet sample. In practice, single and double photon streams are created

by applying an ET threshold to the events rejected by the pixel matching. For a 95%

efficiency the rejection factors are 16.5 (12.5) at low (high) luminosity.

For the low luminosity case two different curves of the efficiency versus rejection,

corresponding to the full and staged pixel detector configurations, are shown in figure 9

(left).

The performance at high luminosity, shown in figure 9 (right), is very similar to the low

luminosity performance without staging with respect to electron efficiency, but there

is a noticeable loss of rejection power which can be attributed to pileup hits. The

high luminosity figure also shows the performance in a more restricted central region

(|η| <2.1) where the efficiency is noticeably better. A similar conclusion is reached at

low luminosity (not shown).
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Figure 9. Rejection versus efficiency obtained from the Level-2.5 pixel matching. Left: at low

luminosity (L = 2 × 1033 cm−2s−1); the top curve shows the performance when the full pixel

detector is used while the lower curve shows the performance for the staged pixel scenario (see

text). Right: at high luminosity (L = 1034 cm−2s−1); the lower curve is the nominal detector

configuration; the top curve corresponds to |η| <2.1. The definition of the rejection is discussed

in the text.

3.6. Level-3 Selection of Electrons and Photons: Inclusion of Full Tracking

Information

The Level-3 selection includes all further requirements needed to reach an acceptable

rate to final offline storage. The full event information, including tracks, is available,

but some of the cuts used – hadronic/electromagnetic energy fraction and calorimetric

isolation – use only calorimetric information.

3.6.1. Electrons The Level-3 selection for electrons starts with electron track-finding,

seeded by the Level-2.5 pixel match. To maintain high efficiency track-finding is made

with very loose cut parameters. Cuts are then made on both E/P and on the distance

between the super-cluster position and the extrapolated track position in the ECAL

in the longitudinal coordinate, ∆η(track - cluster), which is only slightly distorted by

bremsstrahlung. In the endcap a cut on the energy found behind the super-cluster, in

the HCAL, expressed as a fraction of the super-cluster energy, H/E, is found to give

useful additional rejection

Figure 10 shows, as an example, the E/P distribution for barrel electrons, and for jet

background electron candidates in the barrel after selection at Level-2.5 followed by

loose track finding seeded with the Level-2.5 pixel matches. When the distributions are

broken down according to the number of hits associated in the tracks, the width and

proportion of events in the tail of the distribution for electrons is found to vary (electrons

which radiate little have tracks with more hits, and a better measured momentum).

The ratio of signal to background also varies with the number of hits. Hence increased
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Figure 10. E/P for (upper plot) electrons and (lower plot) jet background candidates in

the barrel, after Level-2.5 selection followed by track finding seeded by the Level-2.5 pixel hits

(L = 2 × 1033 cm−2s−1). The background distribution has 30% overflows.

performance can be obtained by optimizing the E/P cut as a function of the number

of hits in the track.

Specifically, for the studies discussed below the following selection cuts were applied:

E/P < 1.5 (2.45) for the barrel (end cap), H/E < 0.028 in the endcap, and in the barrel

a track/ECAL position match in η (∆η(track - cluster) < 0.028). At high luminosity the

additional rejection power of isolation cuts is used to reduce the background to single

electrons from jets. Three isolation techniques have been studied: ECAL isolation,

pixel-track isolation, and full-track isolation. Track isolation has the advantage that it

is less sensitive to pileup, which is the dominant source of signal inefficiency at high

luminosity, because only tracks associated with the primary vertex are selected for the

isolation cuts. The results presented in the tables below use no isolation for electrons

at low luminosity, and a simple pixel-track isolation cut at high luminosity.

Figure 11 shows the rejection against jet background, plotted as the efficiency of the

electron algorithm on the QCD jet sample. This is compared to the efficiency for signal

electrons from W → eν events when a pixel-track isolation cut is applied after the

Level-2.5 selection at high luminosity. In addition, only events where a track can be

made from the pixel hits of the Level-2.5 candidate are used. The different points on

the plot correspond to different cuts on the number of 3-hit pixel tracks with pT > 1
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Figure 11. Rejection against jet background versus the efficiency for electrons from Ws when

a pixel-track isolation cut is applied after the Level-2.5 selection at L = 1034 cm−2s−1. Rcone

is the cone radius. The points represent different values of the isolation (see text).

Table 5. Photon stream thresholds and rates before additional Level-3 cuts.

Threshold Rate Rate

(2 × 1033 cm−2s−1) (1034 cm−2s−1)

Single photon ET > 80 GeV (2 × 1033 cm−2s−1) 7 Hz

ET > 100 GeV (1034 cm−2s−1) 10 Hz

Double photons ET
1 > 35, ET

2 > 20 GeV 85 Hz 382 Hz

GeV/c found within cones of different sizes.

3.6.2. Photons Further ET thresholds, higher than those applied at Level-2.0, are

applied to super-clusters of single and double triggers that fail the Level-2.5 pixel

matching. The events passing these cuts form the photon stream. The di-photon

thresholds are asymmetric, chosen to be 5 GeV lower than the offline analysis cuts

envisaged for the Standard Model H → γγ search [16]. The single photon thresholds

are chosen to give an acceptable rate. Table 5 lists the thresholds and the rates before

further Level-3 selection.

Backgrounds can be rejected using track isolation cuts and by rejecting π0’s based on the
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Table 6. Electron and photon rates output by the HLT at low and high luminosity. (1) π±/π0

overlap; (2) π0 conversions

2 × 1033 cm−2s−1 1034 cm−2s−1

Signal Background Total Signal Background Total

Single electron W → eν: 10Hz (1): 5Hz 33 Hz W → eν: 35Hz (1): 15Hz 75 Hz

(2): 10Hz (2): 19Hz

b/c → e: 8Hz b/c → e: 6Hz

Double electron Z → ee: 1Hz ∼ 0 1Hz Z → ee: 4Hz ∼ 0 4Hz

Single photon 2Hz 2Hz 4Hz 4Hz 3Hz 7Hz

Double photon ∼ 0 5Hz 5Hz ∼ 0 8Hz 8Hz

TOTAL: 43Hz 94 Hz

lateral shower shape. Defining the longitudinal coordinate of the vertex is a significant

issue for the analysis of the H → γγ signal channel. For events where one or more of

the photons has converted in the tracker, the track segment and the ECAL cluster can

be used to locate the vertex. The vertices in the remaining events can be found using

algorithms that choose the track vertex associated with the largest track activity. The

efficiency for H → γγ is 80-90% for a jet rejection factor of 30-60 in the high luminosity

environment.

3.7. Summary of Electron and Photon HLT Selection

3.7.1. Final Rates to Permanent Storage The electron and photon rates output by

the HLT at both low and high luminosity, broken down by contribution, are listed in

table 6. For the low-luminosity selection a loose calorimetric isolation has been applied

to the photon streams (ECAL ET in a cone of radius 0.45, excluding the supercluster,

less than 3.5 GeV), but no isolation beyond that of the Level-1 trigger has been applied

to the electron streams. To control the two-photon rate the thresholds have been raised

to ET
1 > 40 GeV, ET

2 > 25 GeV (equal to the final offline cuts envisaged for H → γγ).

This reduces the rate from 11 Hz to 5 Hz, and has a negligible effect on the efficiency, as is

shown in the second column in table 7. A fully optimized selection will also involve track

isolation on the photon streams (wholly or partly replacing the calorimetric isolation and

the raised threshold) and track isolation in the single electron stream. This can reduce

the total rate to about 26 Hz, of which only half is background, with the introduction of

only a small further inefficiency. For the high-luminosity selection, pixel-track isolation

has been applied to the electron stream, and full track isolation has been applied to the

photon streams (no track with pT > 2 GeV/c in a cone of ∆R=0.2).

3.7.2. Signal Efficiencies for Electron and Photon HLT The streams where most

work is required to control the background rates are the single-electron and double-

photon streams, so, the efficiencies for the decays W → eν and H → γγ are used as
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Table 7. Efficiency for H → γγ (MH=115 GeV/c2) through the complete selection chain, at

L = 2 × 1033 cm−2s−1.

Both photons in fiducial region Photons passing offline pT cuts

Level-1 90.8% 92.3%

Level-2 98.7% 99.4%

Level-2.5 93.4% 99.1%

Level-3 92% 92%

Overall (Level-1 × HLT) 77% 83.7%

Table 8. Efficiency for electrons from W decay through the complete selection chain

2 × 1033 cm−2s−1 1034 cm−2s−1

Fiducial Fiducial

All fiducial electrons with All fiducial electrons with

electrons pT > 29 GeV/c electrons pT > 34 GeV/c

Level-1 63.2% 87.2% 51.1% 83.2%

Level-2 88.8% 99.4% 82.9% 99.3%

Level-2.5 93.1% 94.6% 92.8% 94.1%

Level-3 81% 82% 77% 78%

HLT (Level-2 to Level-3) 67% 77% 59% 73%

benchmarks. Table 8 lists the efficiency for single electrons from W decay through the

complete selection chain, at L = 2 × 1033 cm−2s−1 and at L = 1034 cm−2s−1. Events are

preselected requiring the generated electrons to be within the ECAL fiducial region of

|η| < 2.5, with the region 1.4442 < |η| < 1.5660 excluded. The geometric acceptance is

approximately 60% and is not included in the efficiency. The second and fourth columns

list the efficiencies for electrons that have pT greater than the Level-1 and Level-2 95%

efficiency point.

The efficiencies at L = 1034 cm−2s−1 are only slightly lower than those at low luminosity.

The main difference comes from the loss due to the additional isolation cuts – typically

a 5% loss per object.

Table 7 lists the efficiency for H → γγ for a Higgs with mass MH = 115 GeV/c2 through

the complete selection chain, at L = 2 × 1033 cm−2s−1. As in the previous table, events

are preselected, requiring that the generated photons fall within the ECAL fiducial

region. The geometric acceptance is 65%. The second column shows the efficiency for

events where the two generated photons satisfy, in addition, the cuts currently assumed

for offline analysis in this channel – ET
1 > 40 GeV, ET

2 > 25 GeV.

3.7.3. CPU Usage for Electron and Photon HLT Table 9 shows the CPU usage of

the HLT selection, benchmarked on 1 GHz processor, for jet background events at low
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Table 9. CPU usage of the HLT electron selection for jet background events at

L = 2 × 1033 cm−2s−1, benchmarked on 1 GHz processors.

HLT level Mean CPU time (ms)

Level-2.0 154 /Level-1 event

Level-2.5 32 /Level-2 event

Level-3 100 /Level-2.5 event

Total 162 ms/Level-1 event

luminosity. At high luminosity the time taken for the unoptimized global search for

ECAL clusters at Level-2.0 is greatly increased and the overall total CPU time per

Level-1 event, at a luminosity of L = 1034 cm−2s−1 is about three times as large, as

at L = 2 × 1033 cm−2s−1. Preliminary results indicate that this clustering time can be

reduced by a factor ∼ 10 using regional reconstruction.

4. Muon Identification

The muon selection for the HLT proceeds in two steps: firstly, muons are reconstructed in

the muon chambers, which confirms the Level-1 decision and refines the pT measurement

using more precise information; secondly, the muon trajectories are extended into the

tracker, which further refines the pT measurement. After each step, isolation is applied

to the muon candidates – the calorimeter being used after the first step and the tracker

after the second.

The muon track reconstruction algorithm used by the HLT is seeded by the – up to four–

muon candidates found by the Level-1 Global Muon Trigger (see Appendix), including

those candidates that did not necessarily lead to a Level-1 trigger accept by the Global

Trigger. The algorithm uses the reconstructed hits built from the digitized signals in

the muon system, and constructs tracks according to the Kalman filter technique [18].

The resulting trajectories are used to validate the Level-1 decision as well as to refine

the muon measurement in this Level-2 muon selection. The basis of the Level-3 muon

selection is to add silicon tracker hits to the muon trajectory, thus greatly improving the

muon momentum measurement and sharpening the trigger threshold. Isolation criteria

can be applied to the muon candidates to provide additional rejection: at Level-2 using

the calorimetric energy sum in a cone around the muon, and at Level-3 using the number

of pixel tracks in a region around the projected muon trajectory. This suppresses muons

from b, c, π, and K decays.

4.1. Muon Reconstruction

4.1.1. Muon Standalone Reconstruction and Level-2 Selection Reconstructed track

segments from the muon chambers are used for muon identification and selection at



CMS High Level Trigger 31

-1 -0.5 0 0.5 1

0

200

400

600

800

1000

1200

(a)

-1 -0.5 0 0.5 1

0

50

100

150

200

250

300

350

400

(b)

-1 -0.5 0 0.5 1

0

100

200

300

400

500

600

700

800

(c)

Figure 12. Distribution of (1/pT
rec-1/pT

gen)/(1/pT
gen), where pT

gen and pT
rec are

the generated and Level-2 reconstructed transverse momenta respectively, shown in three

pseudorapidity intervals: a) |η| <0.8 b) 0.8< |η| <1.2 c) 1.2< |η| <2.1

Level-2. The state vectors (track position, momentum and direction) associated with

the segments found in the innermost chambers are propagated outwards through the

iron yoke using the GEANE package [19], which takes into account the muon energy

loss in the material, the effect of the multiple scattering, and the non-constant magnetic

field in the muon system. The estimate of the momentum from the Level-1 Global Muon

Trigger is used initially for the track propagation in the magnetic field. The predicted

state vector at the next measurement surface is compared with existing measured points

and updated accordingly using a Kalman filter technique. In the barrel chambers,

reconstructed track segments are used as measurements in the Kalman filter procedure;

in the endcap chambers, where the magnetic field is inhomogeneous, it is the individual

reconstructed hits belonging to the track segments that are used. Reconstructed hits

from RPC chambers are also included. The procedure is iterated until the outermost

measurement surface of the muon system is reached, at which point a constrained fit to

the track parameters, working from the outside in, is performed under the assumption

that the muon candidate originated from the interaction region (defined by the beam

spot size: σxy = 15µ m and σz = 5.3 cm; the beam spot can be determined from

minimum bias events at the very start of the run). In both the forward and backward

propagation just described, a hit is not added to the muon trajectory if its contribution

to the total χ2 exceeds 25. The resulting track parameters, propagated inward to the

collision vertex, are used to reject or accept the event for further Level-3 processing.

More details on this stand-alone muon reconstruction can be found in reference [20].

Figure 12 shows the resolution of the transverse momentum determined by the Level-

2 constrained fit for muons from W decays at high luminosity. The distributions are

broken up into three pseudorapidity intervals: barrel (|η| <0.8), overlap (0.8< |η| <1.2)

and endcap (1.2< |η| <2.1). In these three regions, the fitted pT resolutions are 10%,

15%, and 16%, respectively.
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4.1.2. Inclusion of Tracker Information and Level-3 Selection The Level-3 muon

reconstruction consists of extending the muon trajectories to include hits in the silicon

tracker system. Starting from a Level-2 reconstructed muon, the muon trajectory is

extrapolated from the innermost muon station to the outer tracker surface, taking into

account the muon energy loss in the material and the effect of multiple scattering.

As with Level-2, the GEANE package is currently used for the propagation through

the iron and calorimeters. Silicon layers compatible with the muon trajectory are

then determined, and a region of interest within them is defined to perform regional

track reconstruction. The determination of the region of interest is based on the track

parameters and uncertainties of the extrapolated Level-2 muon trajectory, obtained with

the assumption that the muon originates from the interaction point as described in the

previous section. This has a strong impact on the reconstruction efficiency, fake rate,

and CPU reconstruction time: well measured muons are reconstructed faster and with

higher efficiency than poorly measured ones.

Inside the region of interest, initial candidates for the muon trajectory (regional seeds)

are built from pairs of reconstructed hits. The two hits forming a seed must come from

two different tracker layers, and all combinations of compatible pixel and double-sided

silicon strip layers are used in order to achieve high efficiency. In addition, a beam spot

constraint is applied to muon candidates above a given transverse momentum threshold

to obtain initial trajectory parameters.

Starting from the regional seeds, a track reconstruction algorithm based on the

Kalman filter technique, is used to reconstruct tracks inside the selected region of

interest. The track reconstruction algorithm consists of the following steps: trajectory

building (seeded pattern recognition), trajectory cleaning (resolution of ambiguities)

and trajectory smoothing (final fit). In the first step, the trajectory builder transforms

each seed into a set of trajectories. Starting from the innermost layer, the trajectory

is propagated to the next tracker layer that is reachable, and updated with compatible

measurements found on that layer. In the second step, the trajectory cleaner resolves

ambiguities between multiple trajectories that may result from a single seed on the basis

of the number of hits and the χ2 of the track fit. In the final step, all reconstructed

tracks are fit once again with reconstructed hits in the muon chambers included from

the original Level-2 reconstructed muon, and selected on the basis of a χ2 cut.

Figure 13 shows the resolution of the transverse momentum determined by the Level-

3 constrained fit as expressed by the distribution of the quantity (1/prec
T -1/pgen

T ) /

(1/pgen
T ), where pgen

T and prec
T are the generated and reconstructed transverse momenta,

respectively. Muons from W decays at high luminosity are used. The distributions are

broken up into three pseudorapidity intervals: barrel (|η| <0.8), overlap (0.8< |η| <1.3)

and endcap (1.3< |η| <2.1). In these three regions, the fitted pT resolutions are 1.0%,

1.4%, and 1.7%, respectively. The improvement in resolution over the stand-alone muon

measurement from Level-2 is substantial.

The efficiency of the Level-3 tracking algorithm relative to the Level-2 selection is shown

in figure 14 as a function of η for single muons with pT >10 GeV/c and no pileup.
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Figure 13. Distribution of (1/prec
T -1/pgen

T ) / (1/pgen
T ) where pgen

T and prec
T are the generated

and Level-3 reconstructed transverse momenta, respectively, shown in three pseudorapidity

intervals: a) |η| < 0.8, b) 0.8 < |η| < 1.2, and c) 1.2 < |η| < 2.1.
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Figure 14. Algorithmic efficiency of the Level-3 tracking algorithm as a function of η for

single muons generated flat over 10 < pT < 100 GeV/c. No pileup was included.

The muons were generated flat in pT up to 100 GeV/c. The algorithmic efficiency is

typically 99%, except in the pseudorapidity interval 0.8< |η| <1.2, where the DT and

CSC systems have to be combined to reconstruct muons and the efficiency is about 97%.

4.1.3. Muon Isolation The integrated rate of muons at LHC is dominated by muons

from b, c, K, and π decays, as shown in figure 15. These muons are generally accompanied

by other nearby particles, so they can be suppressed by isolation cuts.

Three isolation techniques have been studied. The first (calorimeter isolation) is based

on the standard technique of summing the calorimeter energy in a cone around the
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Figure 15. Integrated rate of single muons from pythia as a function of the muon

pT threshold and for luminosity L = 1034 cm−2s−1. The breakdown of the muon sources is

also shown.

muon, and can be used with the stand-alone muon reconstruction at Level-2. However,

as it is based on the calorimeter, this technique becomes less effective at high luminosity

as more pileup is included in the sum. The second technique (pixel isolation) is based

on the partial reconstruction of tracks in the silicon pixel detector; in this case, isolation

is determined on the basis of the sum of the transverse momenta of the tracks in a

cone around the muon. This method, which can be applied when tracker information

is included at Level-3, is less sensitive to pileup, as only tracks originating from the

same collision vertex are considered. However, it requires the reconstruction of three

pixel hits out of the three layers in the pixel detector for every track; for this reason,

it is sensitive to inefficiencies and may not be useful in staging scenarios where only

two pixel layers are installed. The third technique, tracker isolation, uses full tracks

reconstructed regionally. This method is more robust than pixel isolation, but is more

time consuming especially at high luminosity.

For all three techniques, cones are defined by the condition ∆R ≤ ∆Rmax, where,

∆R =
√

(∆η)2 + (∆φ)2 with ∆η and ∆φ the distances from the muon direction in

pseudorapidity and azimuthal angle, respectively. The
∑

ET deposited in the cone in

the case of calorimeter isolation or the
∑

pT of tracks in the cone in the case of pixel and

tracker isolation are computed after subtracting the muon contribution (the so called

veto value) and compared with a predefined threshold. For each algorithm, both the

cone size and the thresholds are chosen by maximizing the rejection for a reference

background sample while keeping the efficiency for a reference signal sample above a

given nominal value (nominal efficiency). The threshold is determined independently in

52 bins in η, in order to guarantee a flat signal efficiency as a function of η.

The rejection power of muon isolation algorithms depends on the pT of the muon,
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since low-pT muons are usually accompanied by low energy jets that may be below the

isolation energy or momentum threshold. This is particularly relevant at Level-2, where

the feed-through of low-pT muons, i.e. muons of low pT that are wrongly reconstructed

as high pT muons, contaminates the pT spectrum even for high thresholds. To exclude

these muons, the reference background sample is defined as a sample of minimum-

bias events containing only muons with pT above 22 GeV/c (16 GeV/c) for high (low)

luminosity. The direct W → µν decay is used as reference signal since it contains well

isolated muons with adequate pT spectrum.

The result of the optimization procedure is that for any predefined nominal efficiency

value a cone size is chosen, with thresholds defined in bins of pseudorapidity. For all

three isolation techniques, typical values of the optimal cone size ∆Rmax vary from 0.2

to 0.3.

The main features of the three isolation algorithms are briefly described in the following

sections. A detailed description can be found in reference [21].

4.1.4. Calorimeter Isolation The calorimeter isolation algorithm uses the muon

direction at the impact point for the definition of the cone axis. The extraction of the

energy deposits is done independently in the ECAL and the HCAL. The total energy is

obtained as a weighted sum, ET = αET
ECAL + ET

HCAL, where α ≈ 1.5 is found to be an

optimum value for the isolation technique. Thresholds on E and ET in individual ECAL

crystals and HCAL towers are applied in order to reject noise and pileup deposits. The

energy deposit in a small cone around the extrapolated position of the muon on the

ECAL/HCAL boundary is used as veto value and subtracted from the measurement in

the cone. For ECAL, the transverse energy of crystals within ∆R < 0.07 is subtracted.

For HCAL, where the segmentation is much coarser, the transverse energy of a single

tower is subtracted, chosen as the tower with highest deposit among those whose center

lies at ∆R < 0.1 from the muon extrapolated point. Thresholds on the summed ET vary

from 6.5 to 9 GeV for typical cone sizes of 0.2.

4.1.5. Pixel Isolation A pixel reconstruction algorithm looks for pixel hits compatible

with tracks with transverse momenta as low as 1 GeV/c. The track candidates are used

to fit primary vertices; track candidates with no association to reconstructed vertices

are rejected. The algorithm returns a list of vertices with the corresponding tracks and

their momenta. All pixel tracks contributing to the
∑

pT in the cone are required to

come from the same primary vertex as the Level-3 muon, thus reducing the effect of

pileup. The veto value is defined as the pT of the muon candidate, i.e. of the pixel

track closest in direction to the muon, within ∆R <0.015. Thresholds on the summed

pT vary from 1.8 to 3.8 GeV/c for typical cone sizes of 0.2. The pixel isolation algorithm

can also be applied to Level-2 muon candidates, but because the muon trajectory is less

well determined than Level-3 muon candidates, the primary vertex requirement must

be dropped and the cone size increased. The performance of the isolation algorithm is

therefore different at Level-2 than at Level-3.
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4.1.6. Tracker Isolation The tracker isolation algorithm is based on the
∑

pT of

tracks reconstructed in a cone around the direction of the Level-3 muon, neglecting the

contribution from the muon itself. Tracks are reconstructed using regional tracking, i.e.

track seeds are created using pairs of pixel hits in a region of interest. The region is

defined by a vertex constraint, the minimum transverse momentum for the tracks to be

reconstructed as well as a constrain on the track direction at the vertex. Thresholds on

the summed pT varied from 2.0 to 3.0 GeV/c for typical cone sizes of 0.2.

4.1.7. Performance A general investigation of the isolation efficiency for signal

muons and rejection of background is reported here, whereas the performance with

respect to specific Level-1 and Level-2 triggers is included in sections 4.2 and 4.3. The

isolation optimization procedure guarantees by construction that the efficiency for the

reference signal (W → µν events) is flat as a function of the pseudorapidity and equal

to (or greater than) the chosen nominal efficiency. The efficiency for the background

depends on the pT of the muon, as shown in figure 16a for the high luminosity case

when the efficiency for the reference signal is set to 97%. To show the performance of

isolation algorithms, it is necessary to specify the background sample and the minimum

generated muon pT to be taken into account. This is particularly relevant for the Level-2

calorimeter isolation algorithm. In this case, the rate is dominated, for any pT threshold,

by the feed-through of very low-pT muons, which cannot be rejected by the isolation

algorithms but should be rejected by the refined pT threshold at Level-3. Figure 16b

shows the rejection power of the isolation algorithms, expressed as the efficiency for

background muons in minimum-bias events with pgen
T >22 GeV/c at high luminosity, as

a function of the pseudorapidity of the muon.

The efficiency for reference background muons versus the efficiency for reference signal

muons is shown in figure 17 at low luminosity with pgen
T >16 GeV/c and at high

luminosity with pgen
T >22 GeV/c. The background rejection can be adjusted by choosing

different efficiencies for the reference signal.

4.2. Muon HLT Selection

Here we describe a prototype inclusive muon trigger based on the reconstruction and

isolation tools discussed in the previous sections to demonstrate the performance in the

muon HLT.

4.2.1. Single-muon HLT Selection A single muon inclusive trigger is formed from the

following requirements. At Level-1, low quality CSC tracks must be matched with RPC

tracks by the Global Muon Trigger in order to ensure a well-measured pT . Low quality

here means that there are no strong requirements on the number of muon chambers used,

or on which of chambers in the region crossed by the muon are used, to identify the

muon. At Level-2, a muon must be reconstructed in the muon system and have a valid

extrapolation to the collision vertex. In the barrel region, at least one DT (Drift Tube)
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Figure 16. Efficiency for background muons to pass the three isolation algorithms as a

function of (a) the muon pT and (b) the muon pseudorapidity, at high luminosity, for a

nominal efficiency of 97% to select muons from W decays.
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Figure 17. Efficiency of the three isolation algorithms on the reference background muons as

a function of efficiency for the reference signal muons at (a) low and (b) high luminosity.

track segment reconstructed is required, and the sum of the number of DT segments

and RPC hits must exceed three. At Level-3, a muon must have more than 5 silicon

hits in total from the pixels and silicon strips.

The overall efficiency for muons to pass the Level-1 through Level-3 single muon trigger

criteria cumulatively as a function of the generated η is shown in figure 18. Muons were

generated flat in the intervals 5<pT <100 GeV/c and |η| < 2.1 without any pileup. The

average combined Level-1 through Level-3 efficiency without any requirements on the
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Figure 18. Cumulative efficiency for single muons to pass the Level-1 (solid), Level-2

(dashed), and Level-3 (dotted) triggers as a function of the generated muon pseudo-rapidity.

No thresholds on pT are applied. Note the suppressed zero on the y-axis. The dips at |η| ∼

0.3 and 0.8 are due to gaps in the muon chamber coverage.
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Figure 19. Cumulative efficiency for single muons to pass the Level-1 (solid), Level-2

(dashed), and Level-3 (dotted) triggers as a function of the generated pT for several trigger

thresholds: a) pT > 10 GeV/c, and b) pT > 20 GeV/c.

reconstructed pT is 97%, but is lower in some particular regions because of gaps in the

geometrical coverage of the chambers.

The efficiency turn-on curves as a function of the generated pT for two different

pT thresholds are shown in figure 19. The efficiency shown is the cumulative Level-1

through Level-3 efficiency. The threshold at each trigger level is defined at 90% efficiency

(relative to the plateau efficiency), and it can be seen that the improved pT resolution

at each successive level sharpens the turn-on curve. The efficiency at Level-3 for high

pT muons is around 95% for the pT values shown.

Additionally, for the HLT trigger, Level-2 muon candidates must satisfy the calorimeter

isolation criteria at the 97% efficiency point for the reference signal. At Level-3,

candidates must satisfy the tracker and pixel isolation criteria (hereafter collectively

referred to as “tracker isolation” in the figures that follow) both at the 97% efficiency

point for the reference signal.

The single muon trigger rates as a function of the pT threshold are shown in figure 20 for

both low luminosity (L = 2 × 1033 cm−2s−1) and high luminosity (L = 1034 cm−2s−1).
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Figure 20. The HLT single-muon trigger rates as a function of the pT threshold for (a)

low luminosity and (b) high luminosity. The rates are shown separately for Level-1, Level-2,

and Level-3, with and without isolation applied at Levels 2 and 3. The rate generated in the

simulation is also shown.

The rates are shown separately for Level-1, Level-2, and Level-3, with and without

isolation applied at Levels 2 and 3. Also shown is the single muon rate that was generated

in the simulation. The inclusive muon sample consists of QCD background events (e.g.

pion and kaons decaying into muons), and genuine prompt muon production processes

such as W,Z and heavy flavor production. The details are given in [9]. Due to the

pT resolution of the trigger the trigger rates can be higher than the generated rates. At

low luminosity, the Level-3 inclusive single-muon trigger rate can be reduced to 30 Hz

with a pT threshold of 18 GeV/c when the isolation criteria are applied. The rate is

about 100 Hz without isolation at Level-3 for the same threshold. At high luminosity,

a threshold of 38 GeV/c reduces the single-muon Level-3 rate to 30 Hz with isolation

(50 Hz without isolation), and a threshold of 31 GeV/c yields a rate of 50 Hz (100 Hz

without isolation). The reason why isolation achieves less rejection at higher thresholds

can be understood from figure 21, which shows the contributions to the Level-3 trigger

rate at high luminosity from all sources of muons before and after all isolation criteria

have been applied. The isolation criteria strongly suppress the contributions from b, c,

K, and π decays. This reduces the HLT rate less at high thresholds, however, where

the single-muon rate is dominated by W → µν decays. After the isolation criteria, W

decays account for 50% (80%) of the inclusive single-muon rate for a threshold of 18

GeV/c (31 GeV/c) for low (high) luminosity.

The efficiency of the HLT single-muon trigger to select W → µν and tt̄→ µ+X events,

where one of the top quarks is required to decay in W → µν, is shown in figure 22

as a function of the pT threshold at low luminosity. Thresholds are defined as the

pT value for which the efficiency for muons is 90% of the maximum attainable efficiency.

Approximately 70% of both the W and top quark decays that have a muon in the fiducial

region |η| <2.1 are recorded by the isolated single-muon trigger for a pT threshold of
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Figure 21. Contributions to the Level-3 trigger rate at high luminosity from all sources of

muons (a) before and (b) after all isolation criteria have been applied.
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Figure 22. Efficiency to select (a) W → µν events and (b) tt̄µ + X events (where one

W → µν decay is required) as a function of the HLT single-muon pT threshold. Thresholds

are defined at 90% efficiency with respect to the plateau value, and efficiencies shown are for

low luminosity.

18 GeV/c. The efficiencies are 42% (53%) for W (top) decays for a pT threshold of 31

GeV/c.

4.2.2. Di-muon HLT Selection The selection criteria for each muon in an inclusive

di-muon trigger are the same as those for the single muon trigger, except that the

isolation criteria need only be satisfied by one of the two muons. In addition, at Level-

3, both muons are required to have originated from the same vertex in z to within 5

mm (to reduce triggers from muons in separate pp collisions), whereas di-muons that

have ∆φ <0.05, |∆η| <0.01, and ∆ pT <0.1 GeV/c are rejected in order to remove fake

tracks [10].

The inclusive di-muon trigger rates are studied using an inclusive di-muon sample

consisting of QCD background events (e.g. pion and kaons decaying into muons), and
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Figure 23. Combined single and di-muon trigger rates as a function of both the symmetric

di-muon pT threshold and the single muon pT threshold for (a) low and (b) high luminosity.

genuine prompt muon production processes such as W,Z and heavy flavor production.

More details are given in [9]. The combined single and di-muon HLT rates are shown

in figure 23 as a function of both the symmetric di-muon pT threshold and the single

muon pT threshold for both low and high luminosity. Candidate working points at low

luminosity for a target rate of 30 Hz is a single muon pT threshold of 19 GeV/c and a

symmetric di-muon threshold of 7 GeV/c. Similarly, working points at high luminosity

are a single muon pT threshold of 38 GeV/c and a symmetric di-muon threshold of 12

GeV/c for a combined rate of 33 Hz, or a single muon pT threshold of 31 GeV/c and a

symmetric di-muon threshold of 10 GeV/c for a combined rate of about 55 Hz.

4.3. Muon HLT Performance and Timing

4.3.1. Efficiencies on Higgs Signals The single muon and di-muon efficiencies of

the HLT selection have been studied as a function of the Higgs mass in the channel

H → WW (∗) → µµνν. The efficiency versus the single muon and symmetric di-muon

thresholds, is shown in figure 24a and 24b, respectively, for Higgs masses of 120, 160 and

200 GeV/c2. At low luminosity, for a single muon threshold of 19 GeV/c and a symmetric

di-muon threshold of 7 GeV/c, the combined HLT efficiency is 92% for a Higgs mass of

160 GeV/c2. For the channel H → ZZ(∗) → µµµµ, the combined efficiency of the HLT

is 98% (99%) for a Higgs mass of 150 GeV/c2 (200 GeV/c2) for the same thresholds at

low luminosity. The efficiency becomes 97% (99%) for the thresholds at high luminosity.

These efficiencies are relative to those events with at least one muon inside the geometric

acceptance of the trigger, |η| <2.1, and all final-state muons (two or four, depending on

the channel) inside the full acceptance of the muon system: |η| <2.4.

4.3.2. Final Rates Written to Permanent Storage The overall muon HLT rates

and efficiencies are summarized in table 10 for low luminosity and table 11 for high

luminosity. The Level-1 thresholds used are a single muon pT threshold of 14 GeV/c



CMS High Level Trigger 42

 thresholdT

µ

P

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
 = 200

Higgs
M

 = 160
Higgs

M

 = 120
Higgs

M

 after IsoµL3 Single

 thresholdT

µ

P

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9  = 200
Higgs

M

 = 160
Higgs

M

 = 120
Higgs

M

 µL3 isolated Di

(a) (b)

E
ff

ic
ie

n
cy

E
ff

ic
ie

n
cy

Figure 24. Efficiency to select H → WW → 2µ2ν decays after Level-3 and isolation cuts

are applied as a function of (a) the single muon pT threshold and (b) the symmetric di-muon

pT threshold. Efficiencies for Higgs masses of 120, 160, and 200 GeV/c2 are shown.

Table 10. Muon rates and efficiencies for the low luminosity selection. Both absolute

and relative efficiencies are shown, where the relative efficiency is given with respect to the

preceding level (except for Level-3, which is respect to Level-2).

Efficiency for Efficiency for Efficiency for

Rate (Hz) W → µν tt̄→ µ + X Z → µµ

Level Single Double Rel. Abs. Rel. Abs. Rel. Abs.

Level-1 2700 900 0.90 0.94 0.99

Level-2 335 25 0.89 0.80 0.93 0.88 0.99 0.98

Calo isolation 220 20 0.97 0.77 0.90 0.79 0.98 0.95

Level-3 100 10 0.93 0.74 0.95 0.84 0.99 0.97

Level-3+calo 25 4 0.94 0.69 0.86 0.72 0.95 0.92

+tracker

isolation

Total 29 0.69 0.72 0.92

and a symmetric di-muon threshold of 3 GeV/c at low luminosity, and a single muon

pT threshold of 20 GeV/c and a symmetric di-muon threshold of 5 GeV/c at high

luminosity. The HLT operating point at low luminosity is a single muon pT threshold

of 19 GeV/c and a symmetric di-muon threshold of 7 GeV/c, and at high luminosity

the operating point is a single muon pT threshold of 31 GeV/c and a symmetric di-

muon threshold of 10 GeV/c. The efficiencies for selecting W,Z, and top-quark decays

to muons are also listed. The geometric acceptance is factored out and is 50% for W

decays, 71% for Z decays, and 86% for top decays with at least one muon satisfying

|η| <2.1.
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Table 11. Muon rates and efficiencies for the high luminosity selection. Both absolute

and relative efficiencies are shown, where the relative efficiency is given with respect to the

preceding level (except for Level-3, which is respect to Level-2).

Efficiency for Efficiency for Efficiency for

Rate (Hz) W → µν tt̄→ µ + X Z → µµ

Level Single Double Rel. Abs. Rel. Abs. Rel. Abs.

Level-1 6200 1700 0.82 0.90 0.97

Level-2 700 35 0.70 0.58 0.83 0.74 0.96 0.94

Calo isolation 590 25 0.97 0.56 0.91 0.68 0.97 0.91

Level-3 100 10 0.78 0.45 0.89 0.66 0.97 0.91

Level-3+calo 50 5 0.94 0.42 0.88 0.58 0.94 0.86

+tracker

isolation

Total 55 0.42 0.58 0.86

4.3.3. CPU Usage The CPU usage of the muon HLT algorithms has been benchmarked

on an Intel 1 GHz Pentium-III CPU using a sample of properly weighted minimum-bias

events and W decays, which give the dominant contribution to the rate. The results

are given in table 12 for low and high luminosity. Each line represents the average time

to process an event passing the previous level. For Level-2, this represents the time

to process an event passing a Level-1 single muon trigger with a threshold of pT >10

GeV/c (pT >18 GeV/c) at low (high) luminosity. This value, which is lower than that

proposed in the previous section, leads to a conservative CPU estimate because lower

pT muons take more time to reconstruct. The same pT thresholds are applied at Level-2

and Level-3.

Also shown in the table, is the time to complete the HLT algorithm excluding the

GEANE routine for propagation through iron, which is significantly less that the total

time. Clearly there are substantial gains to be made by replacing GEANE with a faster

method. For calorimeter isolation GEANE is used for propagation to the ECAL/HCAL

boundary. The total time listed in the last row represents the average time spent per

Level-1 event by the muon HLT algorithms, factoring in the rejection power at each

level that reduces the rate to the next level. This time amounts to approximately 700

ms per Level-1 accept, including the time spent in GEANE.

5. Jet Identification

5.1. High Level Trigger Jet Selection

To identify and select a jet object at HLT, a simple and fast iterative seed cone algorithm

is used. The algorithm uses all the calorimeter towers and has two parameters: (i) the
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Table 12. CPU usage of the muon HLT algorithms at low and high luminosity on 1

GHz processors. The values given represent the average time to process an event passing

the previous trigger level. Also listed is the time without the contribution of the GEANE

propagation routine

Mean CPU Time (ms/event) Mean CPU Time (ms/event)

L = 2 × 1033 cm−2s−1 L = 1034 cm−2s−1

pT > 10GeV/c pT > 18GeV/c

HLT Algorithm Total Excluding GEANE Total Excluding GEANE

Level-2 640 100 580 100

Calorimeter isolation 100 25 90 40

Level-3 420 200 590 420

Pixel isolation 65 65 320 320

Tracker isolation 190 190 370 370

Total/L1 event 710 125 660 150

size of the cone R=
√

∆η2 + ∆φ2 in η-φ space and (ii) the seed threshold. Partons

after hadronization are “clustered” at particle level into generator-jets and matched in

η − φ with the reconstructed jets. At the parton level, the jet energy is contained in

a reasonably narrow cone in η − φ space. Taking into account soft gluon emission the

jet energy resolution is optimized for a larger cone size. However when the jets are

reconstructed from calorimeter towers, the larger the cone used, the greater the noise

contribution, both due to the electronics and due to the pileup plus underlying event

energy depositions.

The jet energy resolution is defined as the R.M.S. of the difference between the generator-

level jet ET and the reconstructed jet ET divided by the generator-level jet ET (s/ET ).

A comparison at high luminosity conditions of the jet energy resolution is shown in figure

25 for 0.5 and 0.7 cone jets and for two rapidity regions, |η| <1, and 3.5< |η| <4.5. For

low jet ET and across both rapidity regions a cone size of 0.5 results in better jet

energy resolution. The performance of the algorithm at the trigger level for the two

different cone sizes is also tested with respect to the di-jet invariant mass resolution.

A comparison of the reconstructed di-jet invariant mass, for the jets that most closely

match the W decay partons in tt̄ events and for two different cone sizes, is shown in

figure 26. The di-jet mass resolution, 18 GeV/c2, (s from the Gaussian fit of the core of

the distribution) is improved for 0.5 cone jets compared to 22.5 GeV/c2 for 0.7 cone jets.

The seed threshold causes an inefficiency for low ET jets that depends on the details

of jet fragmentation. The requirement of a seed at the trigger level helps reducing the

number of low ET jets (typically less than 50 GeV) resulting from noise and pileup,

and speeds up the time for jet finding. Figure 27 shows the jet reconstruction efficiency

as a function of the jet ET for different values of the seed threshold. Since none of the
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Figure 25. Jet ET resolution as a function of generator jet ET , for two cone sizes (0.5 and

0.7) for jets with |η| <1 (left) and 3.5< |η| <4.5 (right).

Figure 26. The reconstructed di-jet mass for the jets that most closely match the W decay

partons in tt̄ events for the two different cone sizes as indicated (L = 1034 cm−2s−1).

current trigger selections use jet thresholds below 40 GeV, a 2 GeV seed is chosen. At

high luminosity, low ET jets from the hard scattering can be promoted to high ET jets.

This can occur when either particles or a low ET jet from a pileup interaction impact

the calorimeter close to one of the low ET jets of the hard interaction. The resulting

higher ET jet is referred to as a “fake jet”. Fake jets can also be found when particles

from different interactions impact in the proximity of each other in the calorimeter.

In addition, the magnetic field sweeps charged particles with transverse momentum
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Figure 27. Efficiency to find an offline jet that matches a generator-level jet, as a function

of the generator-level jet ET at high luminosity for different seed thresholds.

below 0.77 GeV/c out of the barrel and into the endcap region of the calorimeter. This

sweeping effect prevents more than half of the charged particles pointed toward the

barrel from actually striking the calorimeter, severely altering the transverse energy

distribution in the underlying and pileup events. Above 40 GeV, the number of fake

jets is found to be small.

There is no unambiguous way to classify a jet as “fake” or “real”. Most jets found by

the jet finder contain some particles from the hard interaction and some particles from

the pileup events. The degree of “fakeness” that is acceptable will vary according to the

particular trigger and physics channel. In general, fake jets tend to (i) have low ET , (ii)

be near the HE/HF boundary and (iii) have a broader transverse profile.

As an example of fake jet rejection, figure 28 shows it is possible to keep real jets with

ET > 20GeV with a reasonable efficiency while suppressing fake jets. For this study

the discriminating variable used is the fraction of the jet ET contained in a 0.25 cone.

For an 80% efficiency of selecting real jets (matched in η-φ with the generator level jet),

about half of the fake jets are rejected.

5.2. Jet Energy Scale Corrections

The CMS calorimeter system is optimized for the precision measurement of electrons

and photons. It has a non-linear response to pions. Since the energy of a typical pion in

a jet is roughly proportional to 1/sin θ, the response of the calorimeter to jets of a given

transverse energy varies with η requiring jet energy-scale corrections. The jet energy

has to also be corrected for noise in the electronics and for pileup energy.
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Figure 28. Signal efficiency versus background efficiency for removing fake jets. The fraction

of the jet ET in a 0.25 cone is used as a discriminating variable.

The Monte Carlo jets are calibrated on average to the generator jet energy. This

technique is expected to yield results that are virtually identical to those that would

be obtained from a full calibration using photon-jet balancing in photon plus jet data.

Figure 29 shows the size of the typical correction for HLT jets obtained from simulation,

for low and high luminosity running conditions. The correction can be as large as 20%

for low-ET (40 GeV) jets. The main effect of the corrections is the removal of the η

dependence from the trigger efficiency, while the jet energy resolution is improved only

slightly. The resolution of the ET measurement for jets before and after corrections, at

both low and high luminosity, is shown in figure 30 for cone 0.5 jets. The resolution for

high ET jets (ET >300 GeV) is similar at low and high luminosity, while the resolution

at lower ET values is significantly worse at high luminosity.

5.3. Jet Rates

The jet rates should be insensitive to the details of the simulation and robust against

plausible changes in jet algorithms. Figure 31 shows the single jet trigger rates (at low

and high luminosity) for jets reconstructed at the generator level using particles from

only the hard scattering (labeled “Signal GenJet”) and using generator-level particles

from all interactions (labeled “in-time GenJet”). The figure also shows the HLT jet rates

both before and after jet energy scale corrections. At fixed ET , the high luminosity rates

are about five times larger than the rates at low luminosity, as expected.

Figure 32 shows the HLT rates of single, 3- and 4-jet triggers at low and high luminosity

as a function of the calibrated jet ET threshold.
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Figure 29. Ratio of reconstructed over generated jet ET for HLT jets versus generated

ET and η, before and after jet energy scale corrections for (left) low and (right) high

luminosity.

Figure 30. Resolution for HLT jets before (triangles) and after (circles) jet energy scale

calibration. Low (left) and high (right) luminosity.
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Figure 31. Generated single-jet rates as a function of the jet ET threshold clustering only

particles from the hard scattering (GenJet) and all particles– including those from the pileup

interactions (in-time GenJet). Also shown the HLT single-jet trigger rates before and after jet

energy scale corrections. The open (filled) symbols correspond to the low (high) luminosity.

Figure 32. HLT rates for single, 3, and 4-jet triggers as a function of the calibrated jet ET on

the x axis (blue/darker curves). The same plot shows also the rate for the threshold that gives

95 % efficiency for the generator-ET on the x axis (red/lighter curves). Results are for low

(left) and high (right) luminosity.
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Table 13. Jet rate summary table. The table gives the generator-level jet ET where the

threshold (in GeV) on the reconstructed jet ET gives 95% efficiency. The actual value of the

threshold on ET that corresponds to the 95% efficiency points is given in parenthesis. The

threshold is chosen to give a rate of 1 kHz (Level-1) and 1 Hz (HLT).

1-jet trigger 2-jet trigger 3-jet trigger 4-jet trigger

GeV GeV GeV GeV

low luminosity Level-1 177 (135) 140 (104) 85 (57) 70 (45)

high luminosity Level-1 248 (195) 199 (153) 112 (79) 95 (64)

low luminosity HLT 657 (571) 564 (489) 247 (209) 149 (122)

high luminosity HLT 860 (752) 748 (652) 326 (275) 199 (162)

The generator-level ET of jets with 95% trigger efficiency (HLT or L1) that corresponds

to a given threshold on calibrated and reconstructed jets is shown in figure 32 and

table 13. The relationship between the value of the threshold and the generator-level

jet ET is linear.

Note that the democratic 1 kHz at L1 and 1 Hz at HLT per jet trigger rate is a working

example. The ET thresholds for exclusive jet triggers are very high. Most HLT physics

triggers require reasonably low jet ET thresholds and additional physics objects (e.g.

leptons, photons) resulting in acceptable rates.

6. Missing Energy Identification

The calorimeter information is used to measure the missing transverse energy (E/T ,

MET or Emiss
T ) and identify neutrinos or other weakly interacting particles that escape

detection. A simple algorithm calculates the E/T as the negative vector sum of the ET of

all towers (above a threshold of ET (tower) > 500 MeV). The polar angle of each tower

center is calculated with respect to z=0. Algorithms that incorporate jet energy scale

corrections in the E/T reconstruction have been studied.

In the refered to as “Type-I” E/T corrections uncorrected jets with ET >30 are vectorially

subtracted from the E/T and corrected jets are vectorially added, while no correction is

applied for the unclustered energy. In “Type-II” E/T corrections the jet energy scale

corrections for jets with ET >30 GeV are used and in addition the unclustered towers

are corrected. Figure 33 shows the mean difference between the generator-level E/T and

the reconstructed E/T for three different E/T algorithms as a function of the generator-level

E/T . The study uses a SUSY sample generated with squark and gluino masses of ∼500

GeV/c2 where the final state is multijets and large missing energy from the neutralinos.

The same figure also shows the RMS of this difference. The jet energy scale corrections

reset the E/T energy scale, but do not improve the E/T resolution.
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Figure 33. (Left) Mean difference between the generator-level E/T and the reconstructed

E/T for three different E/T algorithms as a function of generator-level E/T . (Right) R.M.S

of the difference as a function of the generator-level E/T . The analysis is done for

L = 2 × 1033 cm−2s−1.

6.1. E/T Rates

A large source of background for E/T triggers is inclusive di-jet production. Large

mismeasurements are expected when one jet impacts in a low response part of the

calorimeter in which case the E/T will tend to be along the direction of the under-

measured jet. At large E/T efficient rejection of mismeasured QCD events can be achieved

using the ∆φ correlation between the leading and second leading jet.

Figure 34 shows the rates when a jet with ET above a given threshold is also required

as part of the trigger. To facilitate comparisons between different algorithms and

experiments we plot the rates as a function of the requirement that corresponds to

95% efficiency for a given generator-level E/T . The reference process used to define the

mapping between generator-level E/T and reconstructed E/T is Higgs production via

vector-boson fusion and decay in WW with a final state of two leptons and missing

energy. The rate plots depend on the signal sample that was used to perform this

mapping. Above generator-level E/T of about 50 GeV, the relationship between the cut

value and the generator-level E/T is approximately linear. Figure 35 shows these rates

at both low and high luminosity for Level-1 and HLT E/T . Studies of explicit physics

HLT selection with E/T are given in section 9.
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Figure 34. Event rates as function of E/T when requiring a jet above a threshold as marked

for (left) low luminosity and (right) high luminosity.

Figure 35. Rate versus the E/T requirement that gives 95% efficiency for a given generated

E/T at low (left) and high (right) luminosity. The reference sample used for the mapping of

the generated and the offline E/T is a Higgs sample with di-leptons plus missing energy in the

final state. The crosses correspond to the Level-1 rate, the circles to the HLT rate, and the

triangles to the rate for a corrected E/T algorithm applied at the HLT.
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Table 14. CPU requirements for jet and E/T reconstruction in the HLT. Times are in 1 GHz

CPU ms.

Data Sample A/H → ττ inclusive di-jets

MH=500 GeV/c2 50<pT
hard <80 GeV/c

Luminosity 2 × 1033 cm−2s−1 1034 cm−2s−1 2 × 1033 cm−2s−1 1034 cm−2s−1

tower-building 26 38 24 36

jet reconstruction 9 34 9 45

E/T calculation 5 7 5 7

total jet/E/T

reconstruction 14 42 14 43

6.2. CPU Timing Studies for Jet/E/T Reconstruction

The results of the CPU timing studies (using a 1 GHz CPU) on jet and missing transverse

energy reconstruction algorithms are shown on table 14. The CPU time needed to

reconstruct jets and E/T is about the same for the signal and background samples. At

low luminosity, tower-building takes about 75% of the reconstruction time, and jet and

E/T reconstruction about 25%. At high luminosity, tower-building and jet-finding each

take about 50% of the time, while the time required for the reconstruction of E/T is

negligible.

7. Identification of τ-jets

The HLT τ selection and identification algorithms are designed to select one or two

isolated τ -leptons such as those expected from the MSSM Higgs decays A0/H0 → ττ

and H+ → τν. For these benchmark channels the final-states considered are one τ -jet,

a lepton (e/µ) plus a τ -jet or two τ -jets. The algorithms are studied at both low and

high luminosity. In the former case two detector configurations are considered: the full

pixel system and the possible staged pixel system 3 (see also section 1). We assess the

performance of the algorithms by measuring the selection efficiencies of the benchmark

signal samples A0/H0 → ττ and H+ → τν and the corresponding efficiency of the

QCD di-jet background. Attention is paid in minimizing the CPU time required for

the selection. Both signal and QCD di-jet background samples are required to pass the

Level-1 trigger selections discussed in section 1.

The QCD di-jet event samples were generated with pythia 6.2.2 in several different

bins of pT
hard. Most of the contribution to the Level-1 τ -trigger rate (∼89-95%) results

from three momentum regions: 50 < pT
hard <80 GeV/c, 80 < pT

hard < 120 GeV/c

and 120 < pT
hard < 170 GeV/c. We use these bins to evaluate the QCD background

rejection at the HLT selection. We select signal events at the generator level with loose

The nominal pixel detector configuration with three barrel layers and two forward disks is referred to

as the full pixel detector whereas the start-up detector with only two barrel layers and one forward

disk is referred to as the staged pixel detector configuration.
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offline analysis requirements on leptons (e and µ) and τ -jets. [23, 24, 25]:

• A0/H0 → ττ → ℓ + τ -jet

– pT
ℓ > 14 GeV/c,

– pT
τ−jet > 30 GeV/c,

– |ηℓ| <2.4,

– |ητ−jet| <2.4

• A0/H0 → ττ → 2τ -jet :

– pT
τ−jet > 45 GeV/c,

– |ητ−jet| <2.4

• H+ → τν → τ -jet :

– pT
τ−jet > 80 GeV/c,

– |ητ−jet| <2.4

The identification of τ -jets involves information from both the calorimeter and tracking

detectors. In the analyses that follow “first (second) Level-1 τ -jet” is the first (second)

jet from the τ -jet list provided by the Global Calorimeter Trigger (section Appendix A).

Jets in this list are sorted in descending ordered in ET . Correspondingly “first (second)

Calo jet” is a jet reconstructed with the calorimeter in a region centered at the first

(second) Level-1 τ -jet.

7.1. Calorimeter-based τ selection

The τ -lepton decays hadronically 65% of the time, producing what we refer to as a

τ -jet. This is a jet-like cluster in the calorimeter containing a relatively small number

of charged and neutral hadrons. When the pT of the τ -jet is large compared to the τ

lepton mass, these hadrons have relatively small momentum in the plane transverse to

the τ -jet axis. In 77% of hadronic τ decays, the τ -jet consists of one charged hadron

and a number of π0’s (one prong decays). Because of these features hadronic τ decays

produce “narrow” jets in the calorimeter. About 90% of the τ -jet energy is contained in

a small cone of radius ∆R ≡
√

∆η2 + ∆φ2 0.15 to 0.20. In τ -jets with ET > 50 GeV 98%

of the transverse energy is contained in a cone of 0.4. Therefore we use as a selection

criterion the level of isolation of the τ -candidate jet in the electromagnetic calorimeter.

We define Pisol as:

Pisol =
∑

∆R<0.4

ET −
∑

∆R<0.13

ET

where the sums are over transverse energy deposits in the electromagnetic calorimeter,

and ∆R is the distance in η − φ space from the τ -jet axis. The identification of a τ -jet

at the HLT begins with the reconstruction of a jet in a region centered at the Level-1

τ -jet. The iterative cone algorithm ([26]) with a cone size of 0.6 is used. The algorithm

uses as input only the calorimeter towers located within a cone of radius 0.8 around the

Level-1 τ -jet direction. Restricting the number of towers considered by the jet finder
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Figure 36. Efficiency of the Calorimeter Tau trigger when applied to the first calorimeter

jet in A0/H0 → ττ → 2τ -jet and QCD di-jet events. MH= 200 and 500 GeV/c2 for low (left)

and high (right) luminosity.

Table 15. CPU time in ms of a 1 GHz CPU, for τ -jet identification with the calorimeter in

QCD di-jet events.

Time (ms)

Reconstruction step 2×1033 cm−2s−1 1034cm−2s−1

Build calorimeter towers 24 39

Regional finding of Calo jets and Pisol calculation 9 15

Total time 33 54

(“regional jet finding”) results in a considerable speed-up of the jet finding process. For

each jet found, the electromagnetic isolation parameter Pisol is calculated. Jets with

Pisol < P cut
isol are considered as τ candidates.

We refer to the identification of a τ -jet using the calorimeter as the “Calorimeter

Tau” trigger (also “Calo Tau”). The efficiency of the Calorimeter Tau trigger for

the A0/H0 → ττ → 2τ -jet and QCD di-jet background events for two values of the

Higgs mass when the value of the Pisol
cut is varied (between 1 GeV and 20 GeV in

0.2 GeV steps) is shown in figure 36 for low and high luminosity. In the analysis the

calorimeter τ identification is applied to the first calorimeter jet. The Calorimeter Tau

trigger optimization can be found in [27]. The efficiency of the Higgs selection is largely

independent of the Higgs mass when mhiggs > 200 GeV. The entire selection procedure

is very fast, as is shown in table 15 where the times required to build calorimeter towers,

for regional jet-finding and for the calculation of the isolation parameter Pisol are listed.
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7.2. Pixel-based τ selection

The identification of a τ -jet using charged particle tracks is also based on isolation

criteria. Calorimeter triggers provide a region in which isolated groups of tracks that

are well matched to the jet axis given by the calorimeter can be searched for. The

corresponding isolation criteria require the reconstruction of low-pT tracks with good

efficiency and an acceptably low fake rate. A precise measurement of the track pT is not

necessary. A fast track-finding algorithm using only pixel data meets these requirements.

Identification of τ -jets with the pixel detector will be referred to as the “Pixel track Tau”

trigger.

The principle of τ -jet identification using the pixel detector is shown in figure 37. The

direction of the τ -jet is defined by the axis of the calorimeter jet (denoted “Lvl-2 τ -jet

axis”). The track-finding algorithm first reconstructs all track candidates (“pixel lines”)

and then the interaction vertices from the tracks using a histogramming method. Track

candidates in a matching cone Rm around the jet direction and above a threshold pT
m

are considered in the search for the signal tracks. The leading signal track (tr1 in figure

37) is defined as the track with the highest pT . Similarly, the vertex from which the

leading signal track originates is considered to be the signal vertex (SV ). Any other

track from the SV which is within the narrow signal cone Rs around tr1 is assumed

to originate from the τ decay. Tracks consistent with the SV ( within 2 mm of the

SV ) and with transverse momentum above a threshold pT
i are then searched for inside

a larger cone of opening angle Ri. If no tracks are found in the Ri cone except for

the ones which are already in the Rs cone, the isolation criteria are fulfilled. The

optimal values of the cone size Rm, signal cone size Rs, and the thresholds pT
m and

pT
i for 1- and 3-prong τ -jets from A0/H0 → ττ decays and for Higgs mass MH ≥ 200

GeV/c2 are: Rs = 0.07, Rm = 0.10, pT
m = 3 GeV/c and pT

i = 1 GeV/c [28]. The

only remaining free parameter is the size of the isolation cone Ri. The efficiency of the

Pixel track Tau trigger, at both low and high luminosity is shown in figure 38 when

the size of the isolation cone is varied in the range of 0.20-0.50. Pixel τ identification

has been applied to the first calorimeter jet in A0/H0 → ττ → 2τ -jet and QCD di-

jet events. The degradation of the performance at high compared to low luminosity is

due to high pixel detector occupancy that results in readout inefficiency as well as the

contamination of charged-particle tracks from pileup in the isolation cone coming from

a vertex other than the hard collision vertex. The selection is independent of the Higgs

mass. Comparison between the full and staged pixel systems shows that at constant

QCD background rate, the signal efficiency is degraded by approximately 10% in the

staged configuration. The timing performance of the Pixel track Tau trigger algorithm

is shown in table 16. It includes the time to reconstruct clusters from the digitized pixel

data and the reconstruction time of the pixel lines and vertices. The time used by the

isolation algorithm itself is negligible.
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Figure 37. Sketch of the basic principle of τ -jet identification using charged particle tracks.
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Figure 38. Efficiency of Pixel track Tau Trigger for the first calorimeter jet in A0/H0 →

ττ → 2τ -jet, for two Higgs masses (MH = 200 and 500 GeV/c2) versus the efficiency for

QCD di-jet background events at (left) L = 2 × 1033 cm−2s−1 (results for both the full and

the staged pixel system configurations are shown) and (right) L = 1034 cm−2s−1.



CMS High Level Trigger 58

Table 16. CPU time, in ms of a 1 GHz CPU, for τ -jet identification with the pixel detector

for QCD di-jet events.

Time (ms)

Reconstruction step 2× 1033 cm−2s−1 1034cm−2s−1

Build clusters from pixel digitized data 44 100

Reconstruct pixel lines and vertices 34 262

Total time 78 362

7.3. Regional track finding τ selection

Identification and selection of τ -jets is also performed using information from tracks

reconstructed with the full Silicon Strip Tracker. This selection will be referred to as

the “Track Tau” trigger [29]. The Track Tau trigger performs the reconstruction of only

those tracks in restricted regions of interest (regional tracking), defined by the cones

around each jet direction given by the calorimeter jet reconstruction. The signal vertex

is first selected using the pixel detector, as the vertex with the maximum
∑ |~PT | of the

associated pixel lines. The regional tracking technique is applied at the seeding level

(regional seeding) in order to minimize the seed multiplicity, significantly reducing the

CPU time of the algorithm. A special track finder uses pixel lines in a cone of ∆R=

0.5 around the calorimeter jet direction as track seeds. After track reconstruction, only

tracks compatible with the signal vertex are taken into account. A further improvement

of the timing performance is obtained by stopping the track reconstruction when six

hits have been associated with the track helix. This gives an acceptable resolution on

the track parameters and a low fake rate. At the seeding level an option is adopted

which uses two pixel hits out of three pixel layers (“2-hit recovery”) since it increases

the seeding efficiency. The Track Tau trigger relies on an isolation requirement similar

to the one used in the Pixel Tau trigger. To reduce the contamination from soft tracks,

only tracks with pT > 1 GeV/c and z0 compatible with the z position of the signal vertex

(within 2 mm) are considered. The number of tracks within a signal cone and within

an isolation cone are counted. The cones are defined around the direction of the leading

track which is the highest-pT track found in the matching cone (Rm=0.1) around the

calorimeter jet direction. The isolation requirement is that there be no tracks in the

isolation cone except those contained within the inner, signal, cone. The cone sizes are

chosen to optimize the signal efficiency and background rejection and also to minimize

the dependence of the efficiency on the jet energy. Higher background reduction can be

obtained by requiring the transverse momentum of the leading track, pT
LT , to exceed a

few GeV/c. Due to the strong dependence of the track pT spectrum on the Higgs mass

and on the τ hadronic decay mode, the leading track transverse momentum requirement

is carefully optimized.

Figure 39 shows the Track Tau trigger performance when applied to the first calorimeter
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Figure 39. Track Tau trigger efficiency for the first calorimeter jet in A0/H0 → ττ →

2τ -jet versus the efficiency for QCD di-jet background events for MH = 200 and 500

GeV/c2. The results are shown both with the full and the staged pixel systems for (left)

L = 2 × 1033 cm−2s−1, and with the full pixel system for (right) L = 1034 cm−2s−1.

jet in A0/H0 → ττ → 2τ -jet signal events, and to QCD di-jet background events. The

different points correspond to different sizes of the isolation cone Ri which was varied

between 0.2 and 0.45. The performance at L = 2 × 1033 cm−2s−1 is studied for both

the full and staged pixel detector configurations. For the same QCD di-jet background

efficiency, the signal efficiency is reduced by about 15% in the staged pixel scenario.

Since the algorithm has to fulfill stringent CPU time limitations particular attention

has been paid to its optimization.

7.4. MSSM neutral Higgs 2τ -jet selection with Calorimeter and Pixel Tau Triggers

A complete HLT selection for A0/H0 → ττ → 2τ -jet events can be defined using the

Calorimeter Tau trigger selection applied to the first calorimeter jet, and the Pixel track

Tau trigger selection applied to both calorimeter jets. Table 17 gives the purity of the

selected jets in gg → bbA0/H0, A0/H0 → ττ → 2τ -jet events with MH = 500 GeV/c2,

defined as the fraction of calorimeter jets which correspond to a true τ -jet. To increase

the purity of the second jet the following search algorithm is applied: if a second Level-1

τ -jet does not exist in the list or if it exists but the ET of the second calorimeter jet

is less than 50 (70) GeV at low (high) luminosity, a new calorimeter jet in the region

centered on the first Level-1 central jet is reconstructed. The purity of the second jet

when chosen in such a way is increased to about 90% (the numbers in parentheses in

table 17 correspond to the purity of the selection when this re-definition algorithm is

not applied). Usage of the Calorimeter Tau trigger as a pre-selector before applying

the Pixel track Tau trigger allows considerable reduction of the total CPU time per



CMS High Level Trigger 60

Table 17. Purity of calorimeter jets in A0/H0 → ττ → 2τ -jet events at low and high

luminosity. Numbers for the second jet without (with) parentheses are the purity after (before)

re-definition of the second jet (see text).

L = 2 × 1033 cm−2s−1 L = 1034 cm−2s−1

1st jet 2nd jet 1st jet 2nd jet

0.98 0.90(0.63) 0.98 0.88(0.65)

Table 18. Efficiency for A0/H0 → ττ → 2τ -jet events, and total CPU time (Ttot), as a

function of the calorimeter isolation requirement (Pisol) and its background rejection factor

(Scalo) at L = 2 × 1033 cm−2s−1. An overall suppression factor 103 for background events is

maintained. The bolded column corresponds to the operating point.

Pisol GeV - 10.4 7.6 5.6 4.6 4.0 3.4 3.2 2.6

Scalo 1.0 1.5 2.0 3.0 4.0 5.0 6.2 7.5 10.0

Ttot (ms) 110 85 72 59 52 50 45 43 41

ǫcalo+pixel % 35 37 40 41 40 39 37 36 35

event. The requirements are optimized by examining the background rejection of the

Calorimeter Tau trigger step (Scalo), the efficiency for the signal, and the CPU time

usage, while keeping a suppression factor of the full HLT selection of ∼103. Results of

such a study for MH = 200 GeV/c2 are presented in table 18 for low luminosity running

conditions with the full pixel system. It has been found that for a total suppression

factor of 103, at both low and high luminosity, a calorimeter suppression factor of three

yields the highest signal efficiency. At this operating point (Pisol = 5.6 GeV) the total

time Ttot of the full path is 59 ms for low luminosity and 174 ms for high luminosity.

Figure 40 shows the efficiency of the Calorimeter+Pixel track Tau trigger selection for

the signal and for QCD di-jet background events at low and high luminosity. The size

of the isolation cone Ri is varied in the range between 0.20 and 0.50, and the optimal

suppression factor of 3 for the Calorimeter Tau trigger is used. For a total suppression

factor of about 103, there is little difference in the efficiency between the staged and full

pixel configurations at low luminosity.

7.5. MSSM neutral Higgs 2τ−jet selection with the Track Tau trigger.

This section presents the performance of a complete HLT selection for A0/H0 → ττ →
2τ -jet, when the Calorimeter Tau trigger selection, applied on the first calorimeter jet,

is followed by the Track Tau trigger on both calorimeter jets (Calo+Track Tau trigger

path). Figure 41 shows the signal versus background efficiency when the Track Tau

trigger selection is applied to both calorimeter jets, at low luminosity (left), for both the

complete and staged pixel detector, and at high luminosity (right). The different points
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Figure 40. Efficiency of the Calo+Pixel Tau trigger path for A0/H0 → ττ → 2τ -jet and

QCD 2-jet background events when the size of the isolation cone Ri is varied in the range

0.20-0.50. The optimal suppression factor of 3 for the Calo Tau trigger is taken. Results are

shown for two Higgs masses, MH =200 and 500 GeV/c2 , and for (left) L = 2 × 1033 cm−2s−1

with the full and staged pixel systems, and (right) L = 1034 cm−2s−1.

correspond to different sizes of the isolation cone, Ri, which is varied between 0.2 and

0.45. A 6 (7) GeV/c requirement on the pT of the leading track is applied at low (high)

luminosity to reach a background rejection factor of ∼103. At a QCD di-jet background

efficiency of ∼10−3 the signal efficiency with the staged pixel detector is reduced by

∼20%. Figure 42 shows the signal versus background efficiency when the Calorimeter

Tau trigger selection applied on the first calorimeter jet, is followed by the Track Tau

trigger on both calorimeter jets (Calo+Track Tau trigger path). Table 19 summarizes

the efficiency of the Track Tau trigger at the operating points where the background

rejection factor is ∼103. These points have been chosen taking into account the overall

performance and minimizing the τ -jet energy dependency of the signal efficiency. The

third and fifth rows of table 19 list the efficiency at low and high luminosity for the

full Calo+Track Tau trigger selection. The Track Tau trigger CPU time distribution is

shown in figure 43 for Higgs and QCD di-jet background events at low luminosity. The

time needed for a double tag is only slightly larger than the time needed for a single

tag, since the second calorimeter jet is analyzed only in the ∼ 6% of background events

which pass the single tag on the first calorimeter jet. Only 10% of the QCD events

require more than 400 ms to be analyzed. An important advantage of the Calo+Track

Tau trigger selection over the simple Track Tau trigger is its better time performance,

which is due to the fact that only those events which pass the calorimeter τ selection on

the first jet need to be analyzed by the Track Tau trigger. Following the same method

described in section 7.4 and using the numbers from table 18 (Scalo = 3, Tcalo ∼ 33 ms)

an average time of about 130 ms/event is expected at low luminosity.
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Figure 41. Efficiency of the Track Tau trigger applied to both Calo jets in A0/H0 → ττ → 2τ -

jet versus that in QCD di-jet events. Results are shown for two Higgs masses, MH =200 and

500 GeV/c2 , and for (left) L = 2 × 1033 cm−2s−1 with the full and staged pixel systems, and

(right)L = 1034 cm−2s−1.

Table 19. Summary of Track Tau trigger efficiency when two Calo jets are tagged in

A0/H0 → ττ → 2τ -jet events. The third and fifth rows show the results when the Calorimeter

Tau trigger selection applied on the first Calo jet is followed by the Track Tau trigger on both

Calo jets. A QCD di-jet background rejection (last column) of ∼103 is required. Due to the

limited Monte Carlo statistics some statistical errors for the QCD background are large.

Luminosity Configuration/ MH MH QCD

cm−2s−1 Trigger 200 GeV/c2 500 GeV/c2

2×1033 Staged pixels

Track Tau 0.355±0.006 0.375±0.005 (8.6±1.6)×10−4

2×1033 Full pixels

Track Tau 0.433±0.006 0.489±0.005 (8.3±1.6)×10−4

2×1033 Full pixels

Calo + Track Tau 0.446±0.006 0.486±0.005 (1.0±0.2)×10−3

1034 Track Tau 0.346±0.006 0.420±0.005 (1.1±0.4)×10−3

1034 Calo + Track Tau 0.361±0.006 0.427±0.005 (9.4±3.0)×10−4

The time required by the Track Tau trigger at high luminosity is much larger and is

currently estimated at ∼1 s/event. However, making use of the Calo+Track Tau Trigger

selection, this time will be reduced to less than 400 ms/event. A further improvement

is expected with the use of a regional pixel reconstruction.

To summarize, the Calo+Pixel track Tau trigger and the Calo+Track Tau trigger are

the two optimal HLT paths for the selection of MSSM A0 and H0 bosons produced in

the process gg → bbA0/H0, A0/H0 → ττ → 2τ -jet events (MH = 200 and 500 GeV/c2).
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Figure 42. Calo+Track Tau trigger efficiency for A0/H0 → ττ → 2τ -jet versus that in QCD

di-jet events. The Calo Tau trigger selection applied on the first Calo jet is followed by the

Track Tau trigger on both calorimeter jets. Results are shown for two Higgs masses MH =

200 and 500 GeV/c2 for low (high) luminosity on the left (right).

0
0.025
0.05

0.075
0.1

0.125
0.15

0.175
0.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Mean  0.290

QCD LOW LUMINOSITY

0

0.05

0.1

0.15

0.2

0.25

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Mean  0.250

Time (seconds)

M
H
 500 LOW LUMINOSITY

Figure 43. Track Tau trigger reconstruction time (in seconds) for double tagging at low

luminosity. (Upper) QCD di-jet events. (Lower) A0/H0 → ττ → 2τ -jet events.



CMS High Level Trigger 64

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.01 0.02 0.03 0.04 0.05 0.06 0.07

ε(QCD 50-170 GeV)

ε(
H

(2
0
0
,4

0
0
 G

e
V

)→
τν

,τ
→

1
,3

h
+

X
)

L=2x10
33

cm
-2

s
-1

, not staged Pxl

Trk Tau Trigger

PT
LT is varied 1.-30. GeV

RM = 0.1

RS = 0.065, RI=0.4

MH=400 GeV

MH=200 GeV

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.01 0.02 0.03 0.04 0.05 0.06 0.07

ε(QCD 50-170 GeV)

ε(
H

(2
0
0
,4

0
0
 G

e
V

)→
τν

,τ
→

1
,3

h
+

X
)

L=10
34

cm
-2

s
-1

, not staged Pxl

Trk Tau Trigger

PT
LT is varied 1.-30. GeV

RM = 0.1

RS = 0.06, RI=0.4

MH=400 GeV

MH=200 GeV

Figure 44. Track Tau trigger efficiency for H+ → τν → τ -jet events versus the QCD di-jet

background efficiency. The results are given for MH = 200 GeV/c2 and MH = 400 GeV/c2.

and for (left) L = 2 × 1033 cm−2s−1, with the full pixel system, and (right) L = 1034 cm−2s−1.

The Calo+Pixel track Tau trigger is approximately twice as fast as the Calo+Track Tau

trigger (59 versus 130 ms at low luminosity and 170 versus ∼400 ms at high luminosity),

but is ∼15% less efficient. The loss of Calo+Pixel track Tau trigger efficiency could be

compensated for by an increase of the Level-1 bandwidth allocated to the single and

double τ trigger.

7.6. MSSM charged Higgs τ -jet selection with the Track Tau trigger.

The Track Tau trigger will work as the final part of the selection MSSM charged Higgs

bosons in the process gb(g) → H+t(b), H+ → τν → τ -jet, t → bjj. The Level-1 single-

τ trigger followed by an HLT selection of events with E/T > 65 (95) GeV at low (high)

luminosity gives an output rate of about 30 (70) Hz. The selection must provide a

suppression factor of ∼30 to match the output bandwidth requirements. The Track Tau

Trigger selection is applied to the calorimeter jet reconstructed in the region of the first

Level-1 τ -jet. The purity of the calorimeter jet in the signal events is 85%. The isolation

criteria used in the Pixel or Track Tau triggers cannot provide the required suppression

factor. Additional background rejection is obtained by applying a cut on the pT of the

leading track in the Track Tau trigger. Figure 44 shows the Track Tau trigger efficiencies

for the signal and QCD background events passing the Level-1 single-τ trigger. Since

the cut on E/T and the Track Tau selection efficiency are uncorrelated [29], a cut on

E/T has not been applied due to limited Monte Carlo statistics. The different points in

figure 44 correspond to varying the leading track, pT requirement, pT
LT , from 1 to 30

GeV/c. The isolation parameters used are Rm = 0.1, Rs = 0.065 (0.060) for low (high)

luminosity, and Ri = 0.4. A rejection factor of 30 can be reached with a 20 (25) GeV/c
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Table 20. Track Tau Trigger efficiency for the process gb(g) → H+t(b), H+ → τν → τ -jet,

t → bjj and for the QCD background. The efficiencies for the signal are presented for a

background suppression factor of ∼30.

Signal and background samples Efficiency of Track Tau trigger

Low Luminosity High Luminosity

pT
LT > 20 GeV/c pT

LT > 25 GeV/c

Rs =0.065 Rs =0.06

H+ → τν MH = 200 GeV/c2 0.580 ± 0.004 0.534 ± 0.005

MH = 400 GeV/c2 0.579 ± 0.004 0.553 ± 0.006

QCD 50 < pT < 170 GeV/c 0.031 ± 0.002 0.028 ± 0.003

requirement on pT
LT at low (high) luminosity, which is well below the foreseen offline

analysis requirement [25]. Table 20 summarizes the efficiency of the Track Tau trigger

at this working point with a background rejection factor of 30.

7.7. MSSM neutral Higgs e+τ -jet HLT selection

The triggering scheme for gg → bbA0/H0, A0/H0 → ττ → e + τ -jet has been studied

for MH = 200 GeV/c2. The trigger accepts events which pass either a single-e or a

combined e + τ−jet (“eTau”) trigger. In what follows the combined trigger will be

referred to as the “e+eTau” trigger. The eTau trigger requires the presence of both an

electron and a τ -jet, with thresholds lower than those used in the single-e and single-

τ -jet triggers. The τ -jet candidate at Level-1 is defined as the most energetic τ -jet

that is not collinear with the electron candidate (∆R > 0.3). This condition avoids

misidentification in signal events (the τ purity in signal events increases from 61% to

99%) with negligible effect on the overall efficiency. Figure 45 shows the Level-1 e+eTau

trigger rate at L = 1034 cm−2s−1as a function of the electron and τ -jet thresholds used

in the eTau trigger. The dots with numbers on the e+eTau trigger iso-rate curves

indicate the Level-1 selection efficiency for the signal. For a given Level-1 trigger rate,

the efficiency increases when the electron threshold is reduced and the τ -jet threshold

is raised. This results from the steeply falling pT spectrum of the electron in the

signal channel. Figure 46 shows the increase in Level-1 efficiency obtained by using

the e+eTau trigger, as opposed to just the single electron trigger, as a function of the

extra bandwidth which one allocates to the eTau trigger. The curves are each obtained

by fixing the threshold for the electron in eTau trigger and varying the threshold on

τ -jet. The HLT selection is applied independently on the electron stream and the eTau

stream at Level-2.0 and Level-2.5. At Level-2.0, a threshold is applied only on the

electron candidate (section 3.4 ). At Level-2.5, pixel/super-cluster matching is used for

the electron candidate (section 3.5 ) and the τ -jet identification is applied as described

in section 7.2. Table 21 shows the details of the full selection for four scenarios. In all

cases, the eTau trigger uses a 20 GeV electron threshold (corresponding to 25.5 GeV on
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Figure 47. Electron pT in A0/H0 → ττ → e + τ -jet events at L = 1034 cm−2s−1. The filled

portion of the histogram corresponds to the gain observed at Level-2.5 by adding the Level-1

e + τ trigger, the remaining unfilled part corresponds to electrons passing the single electron

trigger.

the Level-1 95% efficiency scale) while the τ threshold is varied in such a way that the

rate added by the eTau trigger to the single-electron trigger rate is 0.14 kHz, 0.39 kHz,

0.85 kHz and 1.28 kHz respectively. Accepting an additional rate of 0.85 kHz at Level-1

leads to a relative improvement in efficiency at Level-2.5 of about 10%, at a price of

a 7 Hz rate increase. This is illustrated in figure 47 which shows the pT spectrum of

the electron that is recovered at Level-2.5 when the eTau trigger is added to the single

electron trigger at Level-1.

Since the single electron thresholds are lower in the low luminosity scenario, less is

gained by adding the combined eTau trigger. The HLT selection scheme is the same as

at high luminosity but the Level-1 thresholds are different. For a scenario where 0.82

kHz for the eTau trigger is added at Level-1, the relative gain in efficiency at Level-2.5

is ∼4%.

7.8. MSSM neutral Higgs µ+τ -jet HLT selection

The reconstruction efficiencies and online background rejection performance for

A0/H0 → ττ → µ + τ -jet have been studied for the case when the Higgs particle is

produced in association with b-quarks and the mass of Higgs particle is 200 GeV/c2.

The studies focus on high-luminosity running conditions where the event selection and

background reduction are more difficult. The quoted efficiencies are given with respect

to the baseline Monte Carlo sample generated with pT
µ > 14 GeV/c, pT

τ−jet > 30

GeV/c, |ηµ| < 2.4), |ητ | < 2.4)). This sample contains 45% of all generated H → µ+ τ -

jet decays. Due to the relatively low threshold of the Level-1 single-µ trigger (pT
cut = 20

GeV/c at high luminosity), about 66% of the baseline events are accepted by the Level-1
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Table 21. Evolution of the rate and the efficiency of the different trigger levels at high

luminosity. Results for four different τ thresholds in the eTau trigger are shown, as are results

obtained with no eTau trigger (just the single electron trigger).

e+eTau trigger e trigger

L1 eTau thresh (GeV) (20, 57) (20, 62) (20, 72) (20, 89) (28)

L1 Rate (Hz) 7819 7389 6933 6677 6535

L1 Additional Rate (Hz) 1284 854 398 142

L1 Efficiency 0.685 0.675 0.661 0.634 0.584

L1 Additional Efficiency 0.101 0.091 0.077 0.050

L2.0 Rate (Hz) 4219 3945 3631 3452 3364

L2.0 Additional Rate (Hz) 855 581 267 88

L2.0 Efficiency 0.614 0.605 0.590 0.562 0.5165

L2.0 Additional Efficiency 0.098 0.089 0.074 0.046

L2.5 Rate (Hz) 343 339 338 333 332

L2.5 Additional Rate (Hz) 11 7 6 1

L2.5 Efficiency 0.492 0.489 0.483 0.469 0.446

L2.5 Additional Efficiency 0.046 0.043 0.037 0.023
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Figure 48. The pT spectrum of generated muons (left) and the ET spectrum of generated τ -

jets (right). The fraction of Level-1 events accepted by single-µ or single-τ trigger is indicated.

The histogram marked as “L1 accepted” contains the additional 4% accepted by the µ − τ

Level-1 Trigger (with combined threshold pT≥ 14 GeV/c, ET≥ 45 GeV). The baseline sample

is marked as “useful” events.(L = 1034 cm−2s−1.)

single-µ or Level-1 single-τ triggers as shown in figure 48, while there is a additional 4%

acceptance when the combined µ+τ -jet selection is used. In figure 49, the efficiency of

the Level-1 µ trigger is shown as a function of the muon pT and the τ ET . Only events

where both the τ -jet and the µ are found by the trigger (irrespective of their pT and

ET ) contribute to the plot.
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Figure 49. Level-1 trigger efficiency as a function of the muon pT and τ -jet ET requirements

for high luminosity. µ−τ events accepted by the single-µ or single-τ trigger are included. The
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corresponding to the offline requirement selects ∼70% of the baseline events.
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Figure 50. Level-1 Trigger rate at high luminosity from µ− τ events. This rate is in addition

to the Level-1 single-µ and Level-1 single-τ trigger rates. The additional rate, for the Level-1

cut that corresponds to the offline cut, is 0.83 kHz.
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The additional rate taken by the Level-1 combined µ + τ -jet trigger over that of the

single-µ trigger (∼6 kHz) and single τ -jet trigger (∼2 kHz) is 0.83 kHz as shown in

figure 50. The full rate for events selected by the combined trigger (both Level-1 µ and

Level-1 τ found) passing the single-µ, single τ -jet or combined thresholds is 5.8 kHz.

The HLT analysis path for this channel proceeds as follows:

• identification of a Level-2 jet corresponding to the Level-1 τ -jet with an

ET requirement

• calorimeter isolation requirement for the τ

• Level-2 µ identification and pT requirement

• calorimeter isolation requirement for the µ

• Level-3 µ identification and pT requirement

• τ -jet identification and isolation requirement in the pixel detector

• µ isolation requirement with full tracker (or with pixel detector)

The resulting HLT efficiencies and rates are shown in figure 51 as the function of the

HLT requirements. Only events passing the proposed Level-1 thresholds are included.

Setting the HLT thresholds at the offline values preserves 32% of the baseline sample

events. The corresponding rate from the muon minimum-bias samples is about 1 Hz.

The detailed list of rejection factors and efficiencies for each HLT step is given in table

22 for the high luminosity case. The low luminosity case is simpler. The Level-1 single-µ

threshold of 12 GeV/c is below the offline requirement and there is no need to allocate

bandwidth to the µ+ τ -jet channel. The Level-1 single-µ and single-τ triggers (ET >93

GeV) select about 72% of the events in the sample. The µ and τ identification and

selection criteria in the HLT reduce this efficiency to 39% with a background rate of 0.2

Hz.

7.9. Summary of Level-1 and HLT selection for Higgs Channels with τ -leptons.

The Level-1 and HLT paths used to trigger on the MSSM A0/H0 and H+ Higgs bosons

with mass greater than 200 GeV/c2 are:

• A0/H0 → ττ → 2τ -jets.

– Level-1: single and double τ -jet.

– HLT: calorimeter + tracker isolation.

• H+ → τν → τ − jet+E/T .

– Level-1: single τ -jet.

– HLT: calorimeter E/T and tracker isolation on the τ -jet.

• A0/H0 → ττ → e + τ -jet.

– Level-1: single-e and combined e+τ -jet triggers.

– HLT: electron selection (section 3) and τ -jet isolation with the tracker.

• A0/H0 → ττ → µ + τ -jet.
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Figure 51. Full selection (Level-1+HLT) in A0/H0 → ττ → µ + τ -jet channel. The selection

efficiency (left) and corresponding background rate (right) are shown. The Level-1 combined

µ− τ requirement is at Level-1 pT
µ = 14 GeV/c and Level-1 τ -jet ET = 45 GeV. Events must

pass Level-1 and all HLT µ and τ selection requirements. The τ 95% efficiency scale is used

for the τ ET . The µ 90% efficiency scale is used for pT
µ .The efficiency and rate for the offline

threshold (pT = 15 GeV/c, ET = 40 GeV) are marked. L = 1034 cm−2s−1.

Table 22. Summary of Level-1 and HLT selection efficiencies and background rates in the

A0/H0 → ττ → µ + τ -jet channel for the thresholds corresponding to offline requirement of µ

pT = 15 GeV/c and τ -jet ET = 40 GeV. The efficiency is defined with respect to the baseline

sample.

Efficiency Rate [Hz]

Events passing Level-1 single µ single τ , or combined trigger 0.70 5.8×1033

Events passing Level-1 combined trigger∗ 0.04 830

L2 identification with ET and pT requirements 0.63 990

L2 and calo tau isolation 0.53 380

L2 and muon calo isolation 0.61 420

L2 combined 0.51 150

L3 identification with µ pT cut 0.49 59

L3 and tau isolation 0.33 3.4

L3 and muon isolation 0.48 25

L3 combined (HLT) 0.32 1.2
∗ not selected by single µ or single τ trigger
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Table 23. The efficiency of the Level-1 and HLT selections, the HLT output rates and CPU

time for low (high) luminosity for the MSSM Higgs decays with τ -leptons in the final state.

The CPU time is given only for the low luminosity study.

Level-1 ǫ HLT output HLT ǫ HLT CPU

Channel (%) (Hz) (%) (ms)

2τ -jet 78 (62) 3 (8) 45 (36) 130

τ -jet+E/T 81 (76) 1 (2) 58 (53) 38

µ + τ -jet 72 (70) 0.2 (1.2) 54 (46) 660

e + τ -jet 80 (69) 0.4 (1.8) 70 (71) 165

– Level-1: single- µ and combined µ +τ -jet triggers.

– HLT: muon selection (section 4) and τ -jet isolation with the calorimeter and

the tracker.

The HLT output rates, the signal efficiency (for MH=200 GeV/c2) of the Level-1 and

HLT selections as well as the CPU time at both low and high luminosity are listed in

table 23. The efficiency of the combined triggers used for A/H → ττ → ℓ + τ -jet chan-

nels is about 2-5 % higher than those of the single-lepton trigger and a function of the

Higgs mass. For Higgs masses around 120 GeV/c2, the combined triggers are expected

to contribute significantly to the efficiency of the fusion channel qq → qqH, H → ττ .

8. Identification of b-jets

Inclusive b-tagging of jet triggers can be used for the HLT selection of physics channels

with b-jets in the final state. The algorithms used for b-tagging rely on the b-hadron

proper life time (cτ ∼450 µm), which gives rise to tracks with large impact parameter

with respect to the production vertex.

8.1. b-tagging Algorithm

A wide range of algorithms have been developed within CMS to tag b-jets [30]. The

tagging method chosen for the studies presented here relies on the track impact

parameter.

The track impact parameter can be calculated either in the transverse view (2D impact

parameter) or in three dimensions (3D impact parameter). In the former case it is not

affected by the uncertainty on the z-component of the primary vertex position while in

the latter case a larger set of information can be used. In both cases the calculation

is performed starting from the trajectory parameters at the innermost measurement

point. In the 2D impact parameter case the estimate can be done analytically since

the trajectory is circular in the transverse view. In the three-dimensional case the
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Figure 52. Representation (not to scale) of the track three-dimensional impact parameter.

extrapolation is performed by iteration. Figure 52 shows the main ingredients of the

three-dimensional impact parameter calculation: first the point of closest approach of

the track to the jet direction, S, is found. This point approximates the decay point

of the B hadron. The tracks are then linearized and their three-dimensional impact

parameter is computed as the minimum distance from the primary vertex V . The V Q

segment in figure 52 is called the decay length and approximates the flight path of the

B hadron. The impact parameter is signed as positive if Q is upstream of V in the jet

direction (as in the example shown in figure 52), and negative otherwise. The tracks

from a B decay should have a positive impact parameter, while those coming from the

primary vertex have an impact parameter comparable to the experimental resolution.

The tag makes use of the track impact parameter significance, which is defined as the

ratio of the value of the impact parameter with its uncertainty. A jet is tagged as a b-jet

if there exist a minimum number of tracks with impact parameter significance above a

given threshold.

In order to speed up the reconstruction, only tracks within a jet cone are used. The

performance of the b-tagging algorithm (tagger) depends crucially on the quality of the

tracks and the jet direction.

Tracks resulting from secondary interactions with the material, K0
S and Λ0 decays are

reduced by requiring the 2D impact parameter be less than 2 mm and imposing a

maximum on the decay length V Q which depends on the jet energy and rapidity and

varies between 1.5 to 10 cm. Optimization of these requirements was performed to

maximize the b-tag signal efficiency at a fixed mis-tagging rate of 1%.

8.2. Tagging region

Tracks are reconstructed in a cone around the Level-1 calorimeter jet. The cone apex

is taken as the pixel reconstructed primary vertex with the algorithm presented in [32].

The optimal cone width depends on the reconstructed jet ET . The number of tracks

from b-decays inside the jet cone is largely a function of the cone size. The fraction of

tracks coming from b-decays reaches a plateau value [31] at a ∆R ∼ 0.25. Beyond this

point only tracks from the hadronization process are added. In the case of light flavour

jets the number of tracks increases almost linearly. At high luminosity the ratio of non-b

tracks to b-tracks increases, requiring a harder pT cut.
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Figure 53. Efficiency of the pixel algorithm to correctly determine the primary vertex of the

event within 100, 300 and 500 µm, at high luminosity, as a function of the minimum pT cut

on the pixel lines.

The primary vertex is taken as the vertex having associated to it pixel lines with the

largest summed pT . At low luminosity the algorithm has high efficiency. At high

luminosity the algorithm is modified so that only pixel lines above a high pT threshold

are used. The high efficiency is maintained with a small loss of precision. Figure 53

shows the efficiency of the pixel algorithm to correctly assign the primary vertex within

100, 300 and 500 µm, at high luminosity, as a function of the minimum pT cut on

the pixel lines. Primary vertex reconstruction requires about 50 msec on a 1 GHz

Pentium-III CPU for both the low and high luminosity cases.

8.3. Track Reconstruction

Track reconstruction is based on the partial reconstruction of tracks using the regional

approach (section Appendix A): starting from pixel seeds, additional hits compatible

with the track pT , are sought in a region around the jet axis. The reconstruction is

stopped after an adequate number of hits is found along the trajectory.

Two different regional seeding algorithms have been studied. The first (referred to as

“pixel selective seeds”) uses the pixel lines found by the pixel reconstruction which are

contained inside a cone of ∆R < 0.4 around the jet direction, and whose extrapolated

z-impact point along the beam line is within 1 mm from the primary vertex. The second

algorithm (referred to as the “combinatorial seed generator”) uses all combinations of

pixel hits which form an angle with respect to the jet direction of ∆φ < 0.2 and ∆η < 0.2,

centered in the primary vertex, with a tolerance of ±1 cm. The first method is faster.

The efficiency of the second is comparable with that obtained at offline reconstruction.



CMS High Level Trigger 75

0

5

10

15

-0.4 -0.2 0 0.2 0.4

L1 η resolution

0

5

10

15

20

-0.4 -0.2 0 0.2 0.4

L1 φ resolution

0

10

20

30

-0.4 -0.2 0 0.2 0.4

L2 η resolution

0

10

20

30

-0.4 -0.2 0 0.2 0.4

L2 φ resolution

0

20

40

60

-0.4 -0.2 0 0.2 0.4

L1+trk η resolution

0

20

40

60

-0.4 -0.2 0 0.2 0.4

L1+trk φ resolution

σ=0.111 rad σ=0.125 rad

σ=0.037 rad σ=0.034 rad

σ=0.024 rad σ=0.024 rad

Figure 54. Jet angular resolution with respect to the generator information, using Level-1

jet reconstruction, HLT jet reconstruction, and by adding tracking information.

Tracks which have been reconstructed within the jet cone can be used to refine the jet

direction measurement. Due to the coarse granularity of the calorimeter trigger cells,

the direction resolution of the Level-1 jets is rather poor. Reduced angular resolution on

the jet direction can cause a sign flip of the track impact parameter, deteriorating the

performance of the tagger. The re-computed direction is determined as the pT -weighted

sum of the track directions. Figure 54 shows the difference in direction of the jet found

at the generator level and of the jet reconstructed at Level-1, HLT and after including

the tracks.

8.4. Performance and Timing

We study HLT selections for two samples of events: back-to-back di-jets of different

transverse energies and an inclusive QCD sample. The di-jet sample was produced

in two different pT bins: |η| < 1.4 and 1.4 < |η| < 2.4, corresponding to the central

and forward regions of the tracker. Three bins with ET = 50, 100 and 200 GeV were

used. For ET = 50 GeV the track spectrum is softer, with multiple scattering limiting

the performance of the tag, while for ET = 200 GeV the performance is limited by the

high particle density. In the generation of these events, all the pp → qq processes

were included, but only events with jets within the |η| and ET range in question were

selected. For the QCD sample, events generated with pythia 6.152 [5] were retained

if 50 <pT
hard < 170 GeV/c. A total of about 50,000 events in each pT

hard bin were

analyzed. The performance of the selection is given in terms of the efficiency to tag

b-jets versus the efficiency for u-jets, as well as execution time.
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Figure 55. b-tagging efficiency versus mis-tagging rate for ET =100 GeV jets and for (left)

low and (right) high luminosity running conditions.

Tracks are reconstructed using a regional approach as explained in section 8.3, using

both seeding algorithms, with a cut on pT of 1 GeV/c (2 GeV/c) at low (high) luminosity.

Track reconstruction is stopped when up to seven hits along the track are found. The

primary vertex is reconstructed using the algorithm described in [32], with the only

exception being that the default cut on pixel lines is 1 GeV/c (5 GeV/c) for low (high)

luminosity. A jet is tagged as a b-jet if it has two tracks exceeding a threshold on

impact parameter significance. Tracks are required to have at least three (two) pixel

hits for the full (staged) pixel detector configuration. Figure 55 shows the performance

of the algorithm for 100 GeV ET jets and for two different η regions, at low and high

luminosity. The performance varies as a function of luminosity due to the different

track pT requirement and the increased pixel readout inefficiency at high luminosity

[33]. The performance is also compared with the one which could be obtained by using

fully reconstructed tracks. No degradation is visible, so the online selection does not

result in a reduced performance. A comparison of the performance with the staged and

full pixel detector is shown in figure 56. Figure 57 compares the tagging performance

in the different bins of jet ET . The higher performance of the tagging algorithm for

100 GeV ET jets (compared to the 50 GeV jets) is due to the reduction of the multiple

scattering component of the impact parameter uncertainty. The 200 GeV jets have

higher mis-tagging rate due to the increased track multiplicity. A better performance

can be achieved using the three-dimensional impact parameter, as demonstrated in the

performance comparison for the 100 GeV ET jets shown in figure 57. An inclusive

trigger capable of efficiently selecting b-jets originating for example from Higgs decays,

can be implemented by demanding the presence of one or two b-tagged jets within the

tracker acceptance. We have investigated the performance of a selection based on the

leading or the next-to-leading jet which has been tagged as having at least 2 tracks with
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Figure 56. b-tag performance: comparison of the staged and full pixel detector

configurations.
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Figure 57. Efficiency for b-tagging versus the mis-tagging rate for different jet energies (left)

and for 3D versus 2D impact parameter (right).



CMS High Level Trigger 78

Leading Jet Calibrated ET (GeV)

T
ri
g

g
e

r 
R

a
te

 (
H

z
)

L=2x10
33

 cm
-2

 s
-1

Next-to-Leading Jet Calibrated ET (GeV)

T
ri
g

g
e

r 
R

a
te

 (
H

z
)

L=2x10
33

 cm
-2

 s
-1

1

10

10
2

10
3

10
4

10
5

50 75 100 125 150 175 200 225 250 275 300

1

10

10
2

10
3

10
4

10
5

50 75 100 125 150 175 200 225 250 275 300

Leading Jet Calibrated ET (GeV)

T
ri
g

g
e

r 
R

a
te

 (
H

z
)

L=10
34

 cm
-2

 s
-1

Next-to-Leading Jet Calibrated ET (GeV)

T
ri
g

g
e

r 
R

a
te

 (
H

z
)

L=10
34

 cm
-2

 s
-1

1

10

10
2

10
3

10
4

50 75 100 125 150 175 200 225 250 275 300

1

10

10
2

10
3

10
4

10
5

50 75 100 125 150 175 200 225 250 275 300

Figure 58. Rate after the b-tag selections for low (left) and high (right) luminosity for the

leading (top) and next-to-leading (below) jets ordered in calibrated ET , within the tracker

acceptance. The upper curves indicate the trigger rate at Level-1. The middle curves refer

to the case where the leading jet is tagged (top) or the next-to-leading jet (below) is tagged,

while the lower curves refer to the case when both the two leading jets are tagged.

a transverse impact parameter significance larger than 2. Figure 58 shows the rate after

this selection as a function of the corrected jet ET for the first two leading jets in the

event. The execution time of the HLT algorithm is measured on a 1 GHz CPU and is

studied as a function of the number of hits along the track for 100 GeV ET jets at

low luminosity for the pixel selective seeds. The timing is measured for three different

stages:

• Pixel and primary vertex reconstruction

• Track seeding, building, cleaning and smoothing

• b-tagging

Track reconstruction is the most time consuming stage, and scales almost linearly with

the number of hits. The b-tagging part is negligible, suggesting that it might be possible

to use more sophisticated algorithms with increased performance. At high luminosity,

the larger number of seeds increases significantly the execution time. As a comparison,

for the same jet transverse energy and pseudorapidity bin, the number of seeds which

need to be considered increases from 7 to ∼44 in going from low to high luminosity, even

after taking into account the larger pT cut applied. The execution time also depends

strongly on the jet energy when using the combinatorial seeding method. The execution

time is considerably smaller if the pixel selective seeds algorithm is used.
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8.5. Summary

The HLT can benefit from efficient b-jet tagging with reasonable execution times at

both low and high luminosity. As an example, the requirements of a possible dedicated

b-tagged HLT selection with at least one jet inside the tracker acceptance and a b-tag

based on the 2D impact parameter significance s are:

• For jets with ET < 80 GeV: two tracks with s > 1.5.

• For jets at the ET range 80 < ET < 150 GeV: two tracks with s > 2.0.

• For jets with ET > 150 GeV: two tracks with s > 2.5.

At low luminosity running conditions such a selection is 55% efficient for b-jets with

a background rejection factor of about 10, almost independent of the jet ET . It

corresponds to a rate of 5 Hz for a cut on the leading jet ET of about 200 GeV or

160 GeV on the next-to-leading jet. This selection can be used in the case of SUSY

searches, where the number of b-jets in the final state is large (section 9).

9. HLT Selection and Performance Overview

This section summarizes the physics object selection, the total estimate for the CPU

requirements, and the physics performance of a prototype HLT table for the start–up

luminosity of 2 × 1033 cm−2s−1. The current set of thresholds and rates to storage for

each physics object, described in the preceding sections, is listed in table 24. The values

of the thresholds shown in table 24 are indicative of the type of event mixture that would

yield an output event rate of O(100) Hz. The CMS start–up HLT allocated total rate

is 150 Hz to allow for (i) trigger contingency (additional physics and back–up triggers)

and consequently (ii) meeting the goals of a rich physics program. A 1.5 MB/event

imposes a requirement on the data recording rate of ∼225 MB/s.

9.1. CPU Requirement

A key issue for the HLT is the CPU power required for the execution of the physics

objects selection algorithms. The algorithms were timed on a Pentium-III 1 GHz

processor, and the requirements varied from ∼ 50 ms for jet reconstruction, to ∼700 ms

for muon reconstruction.

The first step is to weight the CPU needs of the algorithms by the frequency of their

application, which is the Level-1 trigger rate of the corresponding channels. This is

shown in table 25 and yields a total of 4092 CPU seconds as the total need to cover the

15.1 kHz of events output from the Level-1 trigger for low luminosity conditions. In the

full Level-1 trigger rate budget of table 2 there is an additional 0.9 kHz of minimum

bias events that will be used for calibration and monitoring. These events are assumed

to require the same amount of CPU as the mean of the ∼15 kHz of events for which

CPU time estimates are available. The average processing time per event at Level-1 is

271 ms.
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Table 24. High-Level Trigger requirements at low luminosity. The thresholds correspond

to the values in ET or pT with 95% efficiency (90% efficiency for muons). There is no

actual threshold in the HLT selection for τ -jets, so the threshold shown is that of the

corresponding Level-1 Trigger requirement. (∗)Calibration percentage allocated corresponds

to well understood detector performance. At start-up, this can be as high as 30% of the total

rate.

Trigger Threshold Rate Cumulative Rate

(GeV or GeV/c) (Hz) (Hz)

inclusive electron 29 33 33

di-electron 17 1 34

inclusive photon 80 4 38

di-photon 40, 25 5 43

inclusive muon 19 25 68

di-muon 7 4 72

τ -jet * E/T 86 * 65 1 73

di-τ -jets 59 3 76

1-jet * E/T 180 * 123 5 81

1-jet OR 3-jets OR 4-jets 657, 247, 113 9 89

electron * τ -jet 19 * 45 0.4 89.4

muon * τ -jet 15 * 40 0.2 89.6

inclusive b-jet 237 5 94.6

calibration and other events (10%)∗ 10 105

TOTAL 105

Table 25. Summary of CPU time required for the selection of each physics objects in the

HLT. The CPU figures refer to a 1 GHz Intel Pentium-III CPU.

Physics Object CPU time per Level-1 Level-1 Trigger rate Total CPU time

event (ms) (kHz) (s)

electron/photon 160 4.3 688

muon 710 3.6 2556

tau 130 3.0 390

jets and E/T 50 3.4 170

electron + jet 165 0.8 132

b-jets 300 0.5 150
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We estimate the CPU power to carry out the physics program at the start-up of the

LHC, when the luminosity will not have reached its full value. The current scenario for

CMS is to provide a DAQ system capable of reading a maximum of 50 kHz of events

accepted by the Level-1 Trigger. The CPU requirement for this system is 15,000 CPUs

as in those available in a standard commercial Personal Computer (PC). Since these

timing measurements in 2002 the power per CPU has been increased by a factor 3-3.5

so in 2005 this corresponds to about 4500-5000 CPUs. To extrapolate these figures

from early 2005 to the year 2007 the basic thesis of Moore’s Law, i.e. that CPU power

increases by a factor two every 1.5 years, is used. This implies that a total of ∼ 2,000

CPUs will be needed for the system at the LHC start-up.

9.2. Efficiency of the HLT selection for Major Physics Channels

The discovery of the long-sought Higgs boson is the focus of the physics program of the

LHC. This section summarizes the studies of some of the expected Higgs signals, both

within the standard model and in the context of supersymmetry. The mass range to

discover the standard model Higgs at the LHC ranges from the upper limit of direct

searches at LEP, namely 114.4 GeV/c2 to approximately 1 TeV/c2. In the heavy mass

range (up to 800 GeV/c2) the channels with the best sensitivity for the Higgs is the

H → ZZ. In particular the H → ZZ → four leptons, e.g. µµµµ channel is referred to

as the “gold-plated” one, for masses above 180 GeV/c2. For lower values of the Higgs

mass the decay channels H → WW ∗ → llνν, H → γγ, WH → Wγγ, qqH → qqWW ∗,

and qqH → qqττ become important for the Higgs study. The channels tt̄H →tt̄γγ, and

tt̄H →tt̄bb can also be explored to discover and study the Higgs.

For the region around 120 GeV/c2 the most promising channels to date are the fusion

processes or the decays into two photons. The decay H → γγ will be triggered at the

HLT requiring two photons detected in the ECAL and validated by the tracker, using

the asymmetric cuts of ET >40 and 25 GeV for the photons. This requirement persists

in the final offline selection for this channel. It yields a final background rate to tape of 5

Hz. For low-luminosity running the combined Level-1/HLT trigger efficiency for a Higgs

with mass of 115 GeV/c2 is 77% for all the decays where both photons are within the

ECAL fiducial volume (|η| < 2.5). With respect to all events where the decay photons

have the offline minimum ET , the efficiency is 83.7%. The geometrical acceptance for

the two photons to be within the fiducial volume is 65%. The trigger efficiency for high

luminosity running is typically 5% lower.

The channel H → WW ∗ → µµνν has been studied for Higgs mass values of 120,

160 and 200 GeV/c2. The combined low-luminosity HLT trigger consists of a single

muon pT threshold of 19 GeV/c and a symmetric double muon threshold of 7 GeV/c

and has a total output event rate of 29 Hz. The total efficiency within the fiducial

acceptance is 92% at MH = 160 GeV/c2. The efficiency increases with increasing Higgs

mass. The efficiency for this trigger decreases by 10-15% at high luminosity, because

the thresholds have to be increased to 31 and 10 GeV/c for the single and double muon
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trigger respectively. The golden channel mentioned above H → ZZ → 4µ has near-full

efficiency since the efficiency for Z → µµ is about 92%. These efficiencies are relative to

having at least one muon within the geometric acceptance of the trigger, |η| < 2.1, and

all final state muons (two or four, depending on the channel) within the full acceptance

of the muon system (|η| < 2.4).

These examples show that working HLT trigger schemes with good efficiency have been

identified for the Higgs search. Note that a heavy standard model Higgs will be easier to

trigger on than a light one (∼120 GeV/c2). For the minimum sypersymmetric standard

model (MSSM) neutral high-mass Higgs particles, A/H, and the charged Higgs, the

“golden” decays to heavy gauge bosons are closed or strongly suppressed. Therefore

alternative decay channels have been studied, in particular the decay modes A/H → ττ

and H+ → τ+ν. The main background to these channels are QCD jets. The τ -jets are

identified as described in section 7. The identification can be performed by calorimeter τ -

jet candidates supplemented either by a fast track finding algorithm in the pixel detectors

or by using regional reconstructed track finding algorithm. For the low luminosity runs

the latter algorithm is found to be more efficient, giving an efficiency of about 45% (49%)

for MH = 200 GeV/c2 (MH = 500 GeV/c2), while achieving the required background

reduction of a factor ∼1000. Both τ -jets are required to pass the trigger criteria. The

corresponding efficiencies for high luminosity running are about 15% lower.

A similar trigger can be defined for the charged heavy Higgs decay H+ → τν, requiring

one τ -jet and missing ET at the HLT selection. The efficiencies are 58% (MH = 200-400

GeV/c2) for low luminosity and about 10% lower for high luminosity conditions.

For the neutral MSSM Higgs the combined electron/τ -jet trigger channels have been

studied for the decay A/H → ττ → e + τ -jet. The combined trigger has a reduced

threshold on the electron, compared to the single-electron trigger, and obtains an HLT

efficiency of 70% at both low and high luminosity. The overall efficiency of the combined

trigger is only about 2-5% higher than the one obtained by the single electron trigger, but

this is mostly due to the choice of a relatively high mass for the Higgs. For Higgs masses

around 120 GeV/c2, the fusion channel qqH → qqττ benefits from such a trigger. Similar

studies were performed for the channel A/H → µ + τ -jet and result in an efficiency of

54% (46%) at low (high) luminosity.

As a specific example of a more exotic Higgs study, we describe in detail the trigger

strategy for so called “invisible Higgs” detection. Some extensions of the Standard

Model (SM) contain Higgs bosons which can decay into stable neutral weakly interacting

particles, therefore giving rise to final states with large missing energy. In recent work

[39, 40], it was shown that the potential for discovering a Higgs boson decaying invisibly

at the LHC can be extended considerably by studying Higgs production via weak boson

fusion (WBF). The presence of the two forward-backward tagging jets that accompany

the Higgs production via weak boson fusion is a powerful tool for separating signal from

the very large backgrounds. The large rapidity gap between the two jets is used in the

trigger definition. The following offline cuts for an invisible Higgs analysis were proposed

in reference [39] and studied using a detailed simulation [40]:
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Table 26. Acceptance of the CMS HF calorimeter to tagging jets (ET > 30 GeV) in the

qq → qqH process

no jets in HF one jet in HF 2 jets in HF

no cut on |ηj1 − ηj2| 49% 45% 6%

|ηj1 − ηj2| >4.4 22% 65% 13%

(i) Ej
T > 40 GeV, |ηj| < 5.0, |ηj1 − ηj2| > 4.4, ηj1ηj2 < 0,

(ii) E/T > 100 GeV

(iii) Mjj > 1200 GeV/c2

(iv) ∆φjj < 1

The efficiencies of the Level-1 trigger and the HLT selections discussed below are the

efficiencies for events that pass the above offline selections. The HF calorimeters play a

crucial role in the selection of the invisible Higgs because of the two forward-backward

tagging jets. The relative acceptance in the HF calorimeter (3.0< |η| <5.0) for these

jets after requiring ET >30 GeV for each jet is shown in table 26 before and after the

cut on the rapidity gap between the jets. After the rapidity gap constraint, almost 80%

of the Higgs events will have at least one tagging jet in the HF. The Level-1 jet trigger

covers the entire calorimeter acceptance, including the HF calorimeter. At Level-1 a

jet+E/T trigger can therefore be used for the invisible Higgs selection. Figure 59 shows

the transverse energy of the highest ET jet (left) and calorimeter E/T (right) reconstructed

at the HLT and at Level-1 at L = 1034 cm−2s−1 for Higgs events passing the WBF

requirements and for a Higgs mass of 120 GeV/c2. The Level-1 trigger was optimized

by examining the trigger rate for a single jet plus E/T trigger versus the signal efficiency

by changing the E/T thresholds for the fixed set of single jet thresholds. Figure 60 shows

the Level-1 jet+E/T trigger rate and Higgs efficiency for single jet thresholds of 70(60),

90(70), 110(80) at high(low) luminosity when the E/T threshold is varied.

Table 27 lists the Level-1 jet+E/T trigger thresholds and the Higgs efficiency for Level-1

jet+E/T trigger rates of 0.2, 0.5 and 1.0 kHz at low and high luminosity. A rate of 0.5

kHz gives a high Higgs efficiency, namely 98% (80%) for low(high) luminosity.

For the HLT selection, the offline requirements Ej
T > 40 GeV, |ηj| < 5.0, and |ηj1−ηj2| >

4.4 are used along with the requirement of Mjj > 1 TeV/c2, and a E/T requirement.

Figure 61 (left plot) displays the rate for QCD multi-jet events as a function of the

E/T threshold with only the ET and η requirements applied and with the additional

Mjj requirement also applied. A rate of 0.1 Hz can be reached at low luminosity for

E/T >110 GeV without the Mjj cut. The signal efficiency in this case is close to 100%

since the offline cut on E/T is 100 GeV (figure 59). At high luminosity a rate of 0.2 Hz

can be reached with the Mjj cut and an ∼150 GeV threshold on E/T . The total Level-1

jet+E/T and HLT efficiency for Higgs at high luminosity is shown in figure 61 (right plot)

as a function of the E/T cutoff. For 0.2 Hz rate (E/T > 150 GeV and Mjj > 1 TeV/c2) the
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Figure 59. Higgs events in the process qq → qqH, with the Higgs decaying invisibly (MH

= 120 GeV/c2), that satisfy the WBF requirements. (Left) Transverse energy of the highest-

ET jet reconstructed in offline (solid histogram) and at Level-1 (dashed histogram). (Right)

E/T reconstructed offline (solid histogram) and at Level-1 (dashed histogram). (for )
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Table 27. Summary of the single-jet plus E/T Level-1 trigger thresholds for a total trigger

rate of 0.2, 0.5, and 1.0 kHz at low and high luminosity. Shown are the jet and E/T thresholds,

the efficiency for qq → qqH with the Higgs (MH = 120 GeV/c2) decaying invisibly for events

which pass the WBF cuts.

Rate for Level-1 jet+E/T trigger 0.2 kHz 0.5 kHz 1.0 kHz

low luminosity single-jet threshold 60 60 60

E/T threshold (GeV) 73 64 56

efficiency 0.96 0.98 0.99

high luminosity single-jet threshold, 70 70 70

E/T threshold (GeV) 122 112 73

efficiency 0.72 0.79 0.84

Figure 61. Left: QCD 2-jet background rate after topological WBF requirements as a func-

tion of the E/T cutoff for L = 1034 cm−2s−1(solid histogram) and L = 2 × 1033 cm−2s−1(dashed

histogram). Right: total Level-1 single jet plus E/T and HLT efficiency for qq → qqH, with

the Higgs decaying invisibly, MH = 120 GeV/c2, and for events which passed WBF cuts, as a

function of E/T cutoff for L = 1034 cm−2s−1.
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Higgs efficiency is 0.7.

9.3. Supersymmetry Searches

One of the main goals of the LHC is to search for evidence for supersymmetry (SUSY),

the most powerful extension of the standard model. If SUSY exists, large amounts of

supersymmetric particles (sparticle) are expected to be produced shortly after the LHC

turn-on. However, unless SUSY is discovered at the Tevatron before the LHC start-up,

the signature of SUSY will not be known in advance. The most popular SUSY models
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Table 28. Parameters used for the generation of the SUSY mSUGRA samples used in this

paper. For all points A0= 0, tanβ = 10, and µ > 0. Masses are in GeV/c2 and cross section

in pb.

Point M0 M1/2 σ mg̃ mũL mχ̃0
1 Mh

4 20 190 181 466 410 70 110

5 150 180 213 447 415 66 110

6 300 150 500 349 406 45 106

7 250 1050 0.017 2235 1986 445 122

8 900 930 0.022 2032 1962 391 121

9 1500 700 0.059 1625 1975 293 120

invoke the conservation of R-parity (RP), which makes the lightest Supersymmetric

particle stable and in some cases an excellent candidate for cold dark matter. In these

models, squark and gluino events, which are produced strongly and therefore have very

large production cross section, would appear in the detector as events with multiple jets

and large E/T . Due to cascade decays of charginos and neutralinos the final state usually

also contains a number of leptons. In some points of the parameter space the direct

chargino neutralino production provides striking tri-lepton signatures.

Supersymmetry models have a large number of free parameters. There have been several

studies to identify points in the SUSY parameter space that will in some way span

the range of signatures and predictions that apply to the start of the LHC. Reference

[41] was used to select the points studied here. These points all use the mSUGRA

parametrization of the SUSY parameter space. Other parametrizations have not been

considered, since the purpose of this study is not to provide an exhaustive study of

SUSY but to give examples of the prototype Level-1 anf HLT selection efficiency for

supersymmetric signatures.

At low luminosity, the greatest challenge comes from the points with the lowest sparticle

masses just above the reach of the Tevatron, because the transverse energies of the

jets and E/T are relatively low. At high luminosity, the challenge is to maximize the

acceptance for the highest mass points, since they have the smallest cross section.

Table 28 lists the parameters and the masses of some sparticles as well as the production

cross sections for the points used to exercise and test the appropriate HLT selection

paths. The SUSY mass spectra and branching ratios were calculated using ISAJET

7.51[42]. This information was imported into HERWIG 6.301[43], which was used to

generate the samples. The points were chosen to give a variety of potential SUSY

signatures. Point 4 has enhanced slepton (especially stau) production. Point 5 is a

“typical” SUSY point with squarks lighter than gluinos resulting in large E/T . At point

6 the gluinos are lighter than the squarks resulting in large jet multiplicity final states

with a smaller E/T than a typical point. At point 7 stau and sneutrino production is
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Figure 62. HLT rate versus efficiency for SUSY signals, for events that pass the Level-1

jet+E/T trigger. (Left) HLT rate-efficiency contours for each point and for a range of jet

thresholds using the 4-jet trigger path. (Right) HLT rate-efficiency contours for each point

and for a range of E/T thresholds using the jet+E/T trigger path.
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enhanced. Point 8 is characterized by an enhanced b-jet yield compared to point 7, due

to neutralino decays to higgs while the E/T is similar to that of point 7. For point 9,

the gluinos are lighter than all squarks, except for the lighter stop, thus allowing the

decay of gluino to the lightest stop which dominates and therefore events have many

jets and smaller E/T . While these exact points (points 4, 5, and 6 in particular) may be

excluded by LEP Higgs searches, Higgs production and the exact mass for the Higgs in

the decays does not play an important role in the observability or the characteristics of

these events. The same points are used to simulate SUSY with R-parity violation with

χ0
1 → jjj.

For the low-mass points, simple triggers with jets and E/T were considered. At low

luminosity a 3-jet trigger and a jet+E/T trigger are considered at Level-1. For the HLT,

the jet+E/T and the 4-jet channel are considered. Figure 62(left) shows the 4-jet HLT

trigger rate versus the signal efficiency for events that pass the Level-1 jet+E/T trigger

for the six SUSY points as the threshold on the leading jet is varied. Figure 62(right)

shows the rate versus efficiency for the jet+E/T trigger as the threshold on the E/T is varied.

The arrows on the plots indicate the thresholds chosen for the low luminosity trigger

table as a compromise between efficiency and bandwidth. Table 29 summarizes the

Level-1 and HLT thresholds values, the trigger rates and signal efficiencies for a set of

points and for low luminosity running. Points 4R, 5R and 6R are the corresponding

R-parity violating ones. The HLT efficiencies shown are with respect to events that pass

the Level-1 trigger. After the first few runs, and once the actual trigger conditions are

known, more triggers will be added to increase the efficiency for SUSY signals.

For the high luminosity case, the high mass SUSY points 7, 8, and 9 are considered (as
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Table 29. The Level-1 and HLT thresholds, rates and efficiencies for six supersymmetry

points at low luminosity. The HLT efficiencies are with respect to events that pass the Level-1

trigger. All thresholds refer to the values with 95% efficiency, with the exception of the Level-1

E/T which is the actual threshold value. For a definition of the SUSY points, see text.

Level-1 Trigger High-Level Trigger

SUSY point 1 jet >88 GeV+ 1 jet >180GeV+

E/T >46 GeV 3 jets, ET >86 GeV E/T >123 GeV 4 jets, ET >113 GeV

efficiency (%) efficiency (%) efficiency (%) efficiency (%)

(cumulative) (cumulative)

4 88 60 (92) 67 11 (69)

5 87 64 (92) 65 14 (68)

6 71 68 (85) 37 16 (44)

4R 67 89 (94) 27 28 (46)

5R 58 90 (93) 17 30 (41)

6R 47 84 (87) 9 20 (26)

Background rate (kHz) rate (kHz) rate (Hz) rate (Hz)

(cumulative rate) (cumulative rate)

2.3 0.98 (3.1) 5.1 Hz 6.8 (11.8)

Table 30. The Level-1 and High-Level Trigger threshold values, rates and efficiencies for six

supersymmetry points at high luminosity. The HLT efficiencies are with respect to events

that pass the Level-1 Trigger. All thresholds refer to the values with 95% efficiency, with the

exception of the Level-1 E/T which is the actual cut value. For a definition of the SUSY points,

see text.

Level-1 Trigger High-Level Trigger

SUSY point 1 Jet >113 GeV+ 3 jets, ET >111 GeV E/T >239 GeV 4 Jets, ET >185 GeV

E/T >70 GeV

efficiency (%) efficiency (%) efficiency (%) efficiency (%)

(cumulative) (cumulative)

7 90 62 (90) 85 18 (85)

8 97 76 (98) 90 28 (92)

9 91 67 (94) 72 28 (76)

7R 91 99 (100) 70 75 (90)

8R 86 100 (100) 58 78 (88)

9R 75 99 (100) 41 52 (64)

Background rate (kHz) rate (kHz) rate (Hz) rate (Hz)

(cumulative rate) (cumulative rate)

4.5 1.1 (5.4) 1.6 1.5(3.0)
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Table 31. Expected mass limits on new particles that decay to di-jets at LHC turn-on [45]

Particle Limit for 2 fb−1 Limit for 100 fb−1

(GeV/c2) (GeV/c2)

W′ 720 920

Z′ 720 940

E6 di-quarks 570 780

Axigluons 1160 1300

excited quarks 910 1180

well as the corresponding R-parity violating ones). It is straightforward to design highly

efficient triggers for these samples. Table 30 summarizes the optimized Level-1 and HLT

requirements and output rates. The Level-1 trigger used are the single jet+E/T and a

3-jet trigger, while the HLT uses a E/T and a 4-jet selection.

9.4. Other New Particle Searches

Many scenarios of new physics, such as technicolour, “Little Higgs” models [44], and

grand unified theories, predict new particles that decay to two jets. Table 31 lists some

of the expected limits on various particles at LHC turn-on [45].

Because the contribution to the measured width of a di-jet resonance from the

calorimeter resolution is large compared to the intrinsic width of most of these new

particles, the results for different particles scale according to their production cross

sections. The search for the Z ′ is used as an example here. The results for other

particles can be estimated by scaling these results.

The search for low-mass di-jet resonances at the LHC will be challenging due to the

large backgrounds from standard model processes. Significant amounts of data below

the resonance will be needed to be fitted to obtain the free parameters in the ansatz. A

very approximate estimate for the luminosity needed for a 5σ discovery can be obtained

by estimating the number of events due to the signal in a window with a width ±2σ of

the Gaussian part of the resonance and demanding a 5σ excess. This yields a lower limit

on the required luminosity because it does not take into account systematic uncertainties

and the problem of fitting for the free parameters.

The results are listed in the second column of table 32. The analysis assumes that data

will be needed down to an ET cutoff of at least at M/4. As an example, the discovery

of a Z ′ with mass 600 GeV/c2, will require data down to an ET cutoff of 150 GeV.

Table 32 lists the rate at ET = M/4, the prescaling factor and resulting rate that would

be needed to discover this particle in 1 year of low luminosity running (20 fb−1), and in

5 years of low luminosity running (100 fb−1).

One can also consider the time it takes to discover the Z ′ as a function of the Z ′ mass

for a constant rate to storage. The instantaneous luminosity in LHC is expected to
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Table 32. Minimum requirements to discover a Z ′ decaying to two jets. Listed are: the

integrated luminosity needed to have a 5σ Z ′ signal,the threshold on the jet trigger ET used

to determine the luminosity, the rate for the single jet trigger at that threshold, the rate

needed to acquire the events within 1 year (20 fb−1) (and also, in parenthesis, the prescale

factor required and the number of events), and the rate and prescale to acquire that number

of events in 5 years.

Z ′ mass Luminosity M/4 rate rate rate

(prescale) (events) (prescale)

1 year 5 years

(TeV/c2) fb−1 GeV Hz Hz Hz

0.6 1.4 150 800 56 (14.2) (40 · 106) 11(71)

0.8 2.3 200 200 23 (8.7) (26 · 106) 4.5 (443)

1.0 4.3 250 55 12 (4.7) (26 · 106) 2.3 (24)

1.2 7.3 300 25 9 (2.7) (33 · 106) 1.9 (13)

1.4 14 350 11 7.8 (1.4) (55 · 106) 1.6 (7)

1.6 20 400 6 6 (1) (60 · 106) 1.2 (5)

1.8 31 450 3.5 - 1.1 (3.2)

2.0 52 500 2 - 1.1 (1.9)

have an exponential decay, and therefore the rates at a given threshold also decrease

exponentially. Applying this model, and using dynamic prescaling to keep the rate to

storage constant, the prescaling factor also decreases exponentially with time.

Furthermore, one can assume several dynamic prescale scenarios

• an exponential luminosity decay with time constant of 10 hours, during a beam fill

of 10 hours, and a fixed rate to storage for the single jet trigger of 20 Hz;

• a fixed prescale, with a rate to tape for the single jet trigger of 20 Hz at

L = 2 × 1033 cm−2s−1;

• an exponential luminosity decay with a 10-hour lifetime, during a beam fill of 10

hours, a fixed rate to storage for all triggers of 100 Hz, taking an initial rate for the

single-jet triggers of 5 Hz.

All three scenarios assume 20 fb−1 per year for low luminosity running. Figure 63 shows

the time to discovery for these three options.

Further topics of new physics include for example extra dimensions and little Higgs

models. In general massive objects are produced in these scenarios, for which the CMS

trigger can perform efficiently. A few examples are given for illustration.

Extra dimensions may be an explanation, via geometry, for the large disparity between

the electroweak and Planck scale as well as the flavour structure we observe in

the standard model. The energy scale where the extra dimensions operate is not

theoretically known. The most likely scale is the GUT/Planck scale around 1015 -1019

GeV. There is no strong experimental constraints to date, that excludes the existence
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Figure 63. Time of obtaining 5 σ significance over the background for the 3 prescale schemes

described in the text as a function of the Z ′ mass.
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of large extra dimensions that have an effect in the physics at the TeV scale. Examples

of signatures of extra dimensions within the most popular models are:

• qq, gg → gG,ZG, γG (ADD models), where G is the graviton that escapes

detection. These signatures imply the presence of missing ET in the final state

as in the case of supersymmetry events in association with a jet or a boson. For

the most promising channel the signal may become visible over the standard model

backgrounds for E/T values of 500 GeV [47]. These events can be efficiently triggered

at Level-1 using the single jet plus E/T , or the single lepton triggers.

• qq, gg → G → WW,ZZ, γγ (ADD and RS models). These signatures use isolated

photons, electrons and muons and sometimes jets from weak boson decays. For

ADD models there is a continuum of graviton mass states over the whole energy

range, while in case of the RS models a series of resonances is expected with the

first one in the TeV mass range. The massive resonances will be easily triggered by

the lepton and jet triggers.

• qq, gg → γ1/Z1, G, ee, µµ, jet-jet ; qq → W → lν (ADD,RS and TeV−1 models).

Except for the ADD case again one expects resonances with masses larger than

about 1 TeV. The final states with leptons can be triggered with high efficiency by

the lepton triggers. For the ADD two fermion final states, the di-jet one is least

efficient and has the same acceptance as discussed for the di-jet Z ′ trigger above.

• In Universal Extra Dimensions models [48], the Kaluza-Klein (KK) particle spectra

resemble the supersymmetric spectra, with the special characteristic that in general

the mass differences between the KK particle states are small, leading to jets

and leptons produced in decays with relatively small ET , typically of the order
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of a few tens of GeV. In model variations that invoke KK-parity violation [49],

spectacular signatures with di-leptons, di-photons and di-jets plus missing energy

become important. These can be retained using the single or double lepton/photon

triggers as well as the jet plus E/T triggers.

Within Little Higgs models, new particles can be expected in the TeV range such as

heavy top quarks T and new gauge bosons. The T quarks will decay via channels

such as T → Zt → ZWb; T → Wb; T → ht → hWb. The new gauge bosons AH , ZH

and WH can decay in leptons or the SM gauge bosons. Most analyses [50] use lepton

channels either from the W ’s in the decays of the T , or standard model gauge bosons,

with ET cuts of typically O(100) for leptons produced with |η| < 2.5. The CMS lepton

triggers can efficiently trigger on the production of these new particles using the lepton

trigger paths.

9.4.1. Standard Model Physics The measurement of W and Z boson production

properties, and especially their couplings, will be one of the topics which will be studied

at the LHC. Deviations may hint at new physics. First manifestations of supersymmetry

may have to be discriminated against a background of W+jets and Z+jets events. The

same holds for heavy flavour physics and, in particular, studies of the top quark, where

couplings, rare decay modes, spin measurements and correlations have to be studied.

W , Z and top-quark production also provide key tests of QCD.

The main channels for analysis of W and Z bosons at LHC will be their leptonic decays.

The efficiencies for W and Z bosons have been determined in the previous sections of

this report for electrons and muons. The production rates for W → eν and Z → ee are

approximately 20 nb and 2 nb respectively and therefore lead to a rate of events of 40

and 4 Hz respectively at low luminosity.

About 60% of the produced W -bosons will have an electron in the fiducial volume of

the ECAL |η| < 2.5. Using the single electron trigger the overall efficiency is 67% (59%)

at low (high) luminosity.

Similar numbers are obtained for the muon decay channel. Here the geometrical fiducial

acceptance of |η| < 2.1 is about 50%, and the trigger acceptance using the single muon

trigger is 69% at low luminosity and 42% at high luminosity. For the channel Z → µµ

with muons in the fiducial volume, the trigger acceptance is larger and amounts to 92

% (86 %) at low (high) luminosity.

The efficiency for top quarks via the decay tt̄→ µ+X amounts to 72% at low luminosity.

Detailed studies of top production and decay properties will be among the main physics

topics of the first years of running. Top-quark production is often the main background

in various searches, foremost in SUSY searches, and for this reason it will have to be

understood thoroughly early on in the LHC physics program.
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9.5. Summary

A prototype trigger table for the Level-1 and the HLT selection at a start-up luminosity

of 2 × 1033cm−2s−1 has been presented and studied in detail. The assumption of this

table is a total DAQ bandwidth of 50 kHz. It has been shown that high efficiencies for

most physics objects are attainable with a selection that remains inclusive and avoids

topological or other biases on the event. The overall CPU requirement of this selection

is approximately 300 ms on an Intel 1 GHz Intel Pentium-III CPU.

Much more sophisticated trigger requirements can, and will be used. As an example,

at a minimum, as the instantaneous luminosity drops throughout a fill of the LHC

bandwidth will be freed from the triggers discussed here. This additional bandwidth

can be reallocated to the same triggers by decreasing the thresholds, as in the example

of the di-jet resonance dynamic prescale factors discussed in this chapter.

The additional bandwidth may also be used in introducing new triggers for example

non-top heavy flavour specific. Introduction of such triggers is then purely an issue

of whether there are adequate CPU resources for the selection of the relevant events.

The systematic optimization of the track reconstruction code and the extensive use of

regional and conditional track reconstruction allow for the very fast search and the full

reconstruction of B-meson decays. Furthermore, the optimization of the tracking code

indicates that it can be applied to the full Level-1 event rate at both low and high

luminosity. This would extend and complement the current Level-2 selections described

in this section. There is ongoing work in the area of optimization of the tracking code

and of its application in various parts of the selection.

The selection presented in this paper indicates that the CMS trigger system – which

has been designed and is presently being built– has sufficient level of sophistication and

flexibility to provide the HLT selection of 1:1000 in a single processor farm. Furthermore,

the full event record is available, and the software that implements all algorithms can

be changed and extended. The CMS HLT architecture allows the implementation of

further improved selection algorithms to be applied on the various physics channels, as

well as for adjusting to unforeseen circumstances resulting from the beam conditions,

high background levels or new physics channels not previously studied. With the robust

and reliable HLT architecture, CMS is looking forward to collecting the data from the

LHC collisions in 2007.

Appendix A. Level-1 Trigger at CMS

The CMS Level-1 trigger system is organized into three major subsystems: (i) the

Level-1 calorimeter trigger, (ii) the Level-1 muon trigger, and (iii) the Level-1 global

trigger. The muon trigger is further organized into subsystems representing the three

different muon detector systems, the Drift Tube trigger (DT) in the barrel, the Cathode

Strip Chamber (CSC) trigger in the endcap and the Resistive Plate Chamber (RPC)

trigger covering both barrel and endcap. The Level-1 muon trigger includes a global
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muon trigger that combines the trigger information from the DT, CSC and RPC trigger

systems, and sends this to the Level-1 global trigger.

The data used as input to the Level-1 trigger system as well as the input data to the

global muon trigger, global calorimeter trigger and the global trigger are transmitted

to the data acquisition system (DAQ) for storage along with the event readout data.

In addition, all trigger objects found, whether they were responsible for the Level-1

trigger accept decision or not, are also sent. The decision whether to trigger on a

specific crossing or to reject that crossing is transmitted to all of the detector subsystem

front-end and readout systems.

Appendix A.1. Level-1 Calorimeter Trigger

The CMS calorimeter trigger has 4176 trigger towers. Of these 2448 are in the barrel,

1584 in the end cap and 144 in the forward calorimeters (figure A1). Each ECAL half-

barrel is segmented in 17η×74φ-towers resulting in individual trigger towers of dimension

in η-φ of 0.087×0.087. A trigger tower in the barrel is formed by 5 × 5 crystals. The

ECAL trigger towers are divided in strips of 1η×5φ crystals (figure A2). The strip

information allows for a finer analysis of the lateral energy spread of the electromagnetic

showers. The strips are arranged along the bending plane in order to collect in one or

two adjacent strips almost all the energy of electrons with bremsstrahlung and converted

photons. In the ECAL endcap where the crystals are arranged in a x− y geometry, the

trigger towers do not follow exact (η, φ) boundaries. The trigger tower average (η, φ)

boundaries are 0.087×0.087 up to η ∼1.74. The trigger tower size in η is growing with η

as shown in figure (figure A1). The number of crystals per trigger tower varies between

25 at η ∼1.5 and 10 at η ∼2.8. Both in the barrel and in the endcap the boundaries

of ECAL and HCAL trigger towers follow each other. Each trigger tower in the barrel

corresponds to the η, φ size of an HCAL physical tower and the HCAL tower trigger

energy is the sum of the first two inner longitudinal segments.

In the end cap (η >1.479) two ECAL trigger towers correspond to one HCAL physical

tower in φ. In this region the HCAL energy of one tower is equally divided between the

two ECAL trigger towers that correspond to it. In the barrel-endcap transition region,

barrel and endcap segments are summed together.

The trigger segmentation of the forward hadron calorimeter (HF) does not have fine φ

binning because this detector does not participate in the electron or photon triggers.

However the coverage needs to be seamless for the jet and missing energy triggers. The

segmentation in the forward region matches the boundaries of the 4 × 4 trigger regions

in the rest of the calorimetry. The resulting HF trigger tower segmentation of 4η × 18φ

is used in the jet and missing energy triggers. The φ bins are exactly 20◦ (4× 0.087)

and the η divisions are approximately the size of the out end cap divisions. The jet

trigger extends seamlessly to |η| =5. The missing transverse energy is computed using

20◦ divisions for the entire η, φ plane.

The trigger towers are organized in calorimeter regions, each one formed by 4×4 trigger
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Figure A1. Layout of the calorimeter trigger towers in the r − z projection

Calorimeter Region

   4x4 trigger towers,  ∆η.∆φ=.35x.35

Trigger Tower

   5x5 crystals, ∆η.∆φ=.087x.087

Strip

 1x5 crystals, ∆η.∆φ=.017x.087 
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η=0. η=1.48

∆φ=0.35
ECAL Half-Barrel Supermodule

Figure A2. Calorimeter trigger tower layout in one ECAL half-barrel supermodule. The

trigger towers are organized in calorimeter regions of 4 × 4 towers.

towers. Each of the HF towers is treated as 4 × 4 region since it is segmented in 20◦

φ bins. The calorimeter 4 × 4 regions are the basis of the jet and energy triggers. The

η−φ indexes of the calorimeter regions are used to identify the location of L1 calorimeter

trigger objects (electron/photons and jets) in the upper stages of the trigger chain.

The transverse energy sum is computed for each calorimeter trigger tower. The ECAL

trigger cell ET is the sum of the ET of 5 × 5 crystals in the barrel and a variable

number of crystals in the endcap. The HCAL trigger cell ET is the sum of the ET of

the longitudinal compartments of the inner hadron calorimeter.

For every ECAL trigger tower the information that reflects the lateral extension of the

electromagnetic shower (referred to as “Fine Grain” or FG veto bit) is used to improve

the rejection of background in the electron trigger. The FG veto bit is active when the

highest energy adjacent strip pair has less than a programmable fraction R (typically

90%) of the tower energy. Electrons and photons (converted or non-converted), in

the presence of noise and high luminosity pileup, have R <0.9 in 2% of the cases. The

energy for the trigger tower is sent in ET scale rather than E scale so the trigger scale is



CMS High Level Trigger 96

Sliding window centered on all
ECAL/HCAL trigger tower pairs

Max E
t
 of 4

Neighbors

Hit + Max
E

t
 > Threshold

Hit

Max

Candidate Energy:

0.0175 η

φ

η

Hit

0.087 η

0.087 φ

Max

0.0175  φ
Had

EM

Figure A3. Electron/photon trigger algorithm.

not sensitive to minimum ionizing particle energy deposit in the HCAL. The fine grain

bit is used to identify minimum ionizing particles requiring the HCAL tower energy

to be inside a programmable energy range. The data is transmitted to the Regional

Calorimeter Trigger (RCT), which finds candidate electrons, photons, taus, and jets.

The RCT separately finds both isolated and non-isolated electron/photon candidates

and transmits them along with sums of transverse energy to the Global Calorimeter

Trigger (GCT). The GCT sorts by ET the candidate electrons, photons, taus, and jets

and forwards the top four of each type to the global trigger. The GCT also calculates the

total transverse energy and total missing energy vector. It transmits this information

to the global trigger. The RCT transmits an (η, φ) grid of “quiet” regions to the global

muon trigger for muon isolation cuts.

Appendix A.2. Level-1 Electron and Photon Triggers

The electron/photon trigger uses a 3 × 3 trigger tower sliding window technique

which spans the complete η, φ coverage of the CMS electromagnetic calorimeter.

Two independent streams are considered, non-isolated and isolated electrons/photons.

The isolated stream requires electromagnetic and hadronic energy isolation criteria.

The implementation of longitudinal and lateral shower profile selection cuts, as well

as electromagnetic and hadronic isolation programmable criteria provides safety and

flexibility for the calorimeter electron/photon trigger.

An overview of the electron/photon isolation algorithm is shown in figure A3. This

algorithm involves the eight nearest trigger tower neighbors around the central hit trigger

tower and is applied over the entire (η, φ) plane. The electron/photon candidate ET is

determined as follows: The ET of the “hit trigger tower” (electromagnetic plus hadronic,

indicated as HitMax in figure A3) is summed with the highest of the four broad side

neighbor towers (indicated as MaxEt in figure A3). The summed transverse energy of

the two towers provides a sharper efficiency turn-on with the true ET of the particles.

The non-isolated candidate requires passing of two shower profile vetoes, the first of

which is based on the fine-grain ECAL crystal energy profile (FG veto). The second is
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Figure A4. The efficiency of the Level-1 trigger for single electrons as a function of the

electron pT . On the right, the efficiency, as function of η, for electrons with pT =35 GeV/c.

based on the HCAL to ECAL energy comparison, e.g. Had/Em less than 5% (HAC

veto). The isolated candidate requires passing two additional vetoes the first of which is

based on passing the FG and HAC Vetoes on all eight nearest neighbors, and the second

on the existence of at least one quiet corner, i.e., one of the five-tower corners has all

crystals below a programmable threshold, e.g., 1.5 GeV. Each candidate is characterized

by the η, φ indices of the calorimeter region where the hit tower is located.

In each calorimeter region (4 × 4 trigger towers) the highest ET non-isolated and

isolated electron/photon candidates are separately found. The 16 candidates of both

streams found in a wider trigger region corresponding to 16 calorimeter regions (covering

η × φ=3.0×0.7) are further sorted by transverse energy. The four highest-ET candidates

of both categories are transferred to the Global Calorimeter Trigger (GCT) and retained

for processing by the CMS global trigger. The nominal electron/photon algorithm allows

both non-isolated and isolated streams. The non-isolated stream uses only the hit tower

information including any leakage energy from the maximum neighbor tower. This

stream will be used at low luminosity to provide the electron trigger from b semileptonic

decays. The isolation and shower shape trigger cuts are programmable and can be

adjusted to the running conditions. For example, at high luminosity the isolation

cuts could be relaxed to take into account higher pileup energies. The specification

of the electron/photon triggers also includes the definition of the η − φ region where

it is applicable. In particular, it is possible to define different trigger conditions (e.g.

energy thresholds and isolation cuts) in different rapidity regions. The efficiency of

the electron/photon algorithm, as a function of the electron transverse momentum,

for different thresholds applied at Level-1, is shown in Figure A4. Also shown is the

efficiency, as function of pseudorapidity for electrons with pT =35 GeV/c. To connect

the Level-1 threshold to an effective requirement on the electron transverse momentum,

the electron pT at which the Level-1 trigger is 95% efficient, is determined as function

of the Level-1 threshold. This is shown in Figure A5. From this result, the rate for

electron/photon triggers as a function of the effective cut on the ET , i.e. of the point
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Figure A6. The rate of the single electron/photon Level-1 trigger at low (left) and high

(right) luminosity. FG and HoE refer to the shower profile and hadronic over electromagnetic

energy isolation criteria.

at which the trigger is 95% efficient, can be computed. Figure A6 shows the rates for

single electrons as a function of the ET of the electron (95% point). Double–, triple–

and quad–electron/photon triggers can be defined. The requirements on the objects

of a multi-electron/photon trigger, namely the energy threshold, the cluster shape and

isolation cuts and the (η, φ) region, are set individually. Requirements on the (η, φ)

separation between objects can also be defined.
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Figure A7. Jet and τ trigger algorithms.

Appendix A.3. Jet and τ -jet triggers

The jet trigger uses the transverse energy sums (electromagnetic plus hadronic)
computed in calorimeter regions (4×4 trigger towers as shown if figure A7). In the
forward hadron calorimeter the region is the trigger tower itself. The jet trigger uses
a 3×3 calorimeter region sliding window technique which spans the complete (η, φ)
coverage of the CMS calorimeters seamlessly. The central region ET is required to be
higher than the eight neighbor region ET values. In addition, the central region ET is
required to be greater than a fixed value, to suppress noise.

The jets and τ–jets are characterized by the transverse energy ET in 3×3 calorimeter

regions. Therefore the summation spans 12×12 trigger towers in the barrel and the

endcap or 3×3 towers in the forward hadron calorimeter. The φ size of the jet window

is the same everywhere (60◦) while the η binning is increasing as a function of η according

to the calorimeter and trigger tower segmentation. The jets are labeled by their (η, φ)

indices.

Single and three–prong decays of τ–leptons form narrow clusters of energy deposits in

the calorimeter. Since the decays involve charged pions which deposit energies in the

hadron calorimeter, the electron/photon trigger does not capture them. Therefore, the

transverse profiles of active tower patterns are analyzed to tag narrow jets as potential

τ–lepton decays. An active tower is defined as a trigger tower with ECAL or HCAL

ET above a separately programmable threshold. The energy deposit in each trigger

tower, ECAL and HCAL separately, is compared to a programmable threshold to obtain

two 4×4 single-bit activity patterns. The energy deposit pattern in the 4×4 region is

examined and if the pattern does not match any of the 1-, 2-, 3- and 4-tower patterns

shown in figure A7, this region cannot include a τ -cadidate therefore, its ”tau-veto” bit

is set. At the next stage of processing, overlapping 3×3 regions, i.e., 1212 trigger towers,

is considered. These 1.044×1.044 η − φ sums define jets if the central region has more
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energy than its 8 neighbors. The logical OR of the tau-bits of these 9 regions constitute

the ultimate tau-veto for the jet. If this jet does not have tau-veto set, it is redefined

as a tau-jet and is sorted in pT separately. The τ -veto bits can be used both for τ -like

energy deposit identification and stringent isolation. Counters of the number of jets

above programmable thresholds in various η regions are provided to give the possibility

of triggering on events with a large number of low energy jets. Jets in the forward and

backward hadron calorimeters are sorted and counted separately (due to background η-

dependence) but the global trigger uses them seamlessly. The four highest energy central

and forward jets, and central taus in the calorimeter are selected. The selection of the

four highest energy central and forward jets and the four highest energy taus provides

enough flexibility for the definition of combined triggers. Single, double, triple and quad

jet (including τ -jet ) triggers are possible. The single jet (τ -jet ) trigger is defined by the

transverse energy threshold, the (η, φ) region and by a prescaling factor. Prescaling will

be used for low energy jet (τ -jet) triggers, necessary for efficiency measurements. The

multi-jet (τ -jet) triggers are defined by the jet multiplicity and the jet transverse energy

thresholds, by a minimum separation in (η − φ), and by a prescaling factor. The global

trigger accepts the definition, in parallel, of different multi-jet (τ -jet) trigger conditions.

Appendix A.4. Transverse Energy Triggers

The ET triggers use the transverse energy sums (Em+Had) computed in calorimeter

regions (4×4 trigger towers in barrel and endcap). Ex and Ey are computed from

ET using the coordinates of the calorimeter region center. The computation of missing

transverse energy from the energy in calorimeter regions does not affect significantly

the resolution for trigger purposes. The missing ET is computed from the sums of the

calorimeter regions Ex and Ey. The sum extends up to the end of forward hadronic

calorimeter, i.e., |η|=5. The missing ET (E/T ) triggers are defined by a threshold value

and by a prescaling factor. The global trigger accepts the definition, in parallel, of

different missing ET triggers conditions. The total ET is given by the sum of the

calorimeter regions ET . The sum extends up to the end of forward calorimeter. The

total ET triggers are defined by a threshold value and by a prescaling factor. The global

trigger accepts the definition, in parallel, of different total ET triggers conditions. The

total energy trigger is implemented with a number of thresholds which are used both for

trigger studies and for input to the luminosity monitor. Some of these thresholds are

used in combination with other triggers. Other thresholds are used with a prescale and

one threshold is used for a stand-alone trigger. The lower threshold ET trigger provides

a good calorimeter and trigger performance diagnostic.

The trigger is defined as the scalar sum of the ET of jets above a programmable

threshold with a typical value of jet ET > 10 GeV. This trigger is not as susceptible as

the total ET given by the sum of the calorimeter regions ET deposits to both noise and

pileup effects. Although the total ET is a necessary technical trigger, it has limited use

from the physics point of view. The trigger can capture high jet multiplicity events such
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as those from fully hadronic top decay, hadronic decays of squarks and gluinos. Although

these events have several hundred GeV/c2 energy, they may actually fail the jet triggers

because the ET of individual jets could be softer than the thresholds. In addition, the

trigger can use individually calibrated jet energies unlike the total ET trigger which

cannot be easily calibrated.

For each calorimeter region of 4×4 trigger towers a “Quiet” and “MIP” bit is computed.

The Quiet bit is “on” if the transverse energy in the calorimeter region is below a

programmable threshold. The MIP bit in a calorimeter region requires on top of the

Quiet bit condition, that at least one of the 16 trigger towers has the HCAL Fine Grain

bit “on”. The quiet and MIP bits are used in the Global Muon Trigger.

Appendix A.5. The Level-1 muon trigger

The muon measurement at CMS is performed by Drift Tubes (DT) located outside the

magnet coil in the barrel region and cathode Strip Chambers (CSC) in the endcap region.

The CMS muon system is also equipped with Resistive Plate Chambers (RPC) both in

the barrel and endcap regions used in triggering and reconstruction. The Drift Tube

system is comprised of four muon stations interleaved with the iron of the yoke to make

full use of the magnetic return flux. Each station in comprised of two or three superlayers

(SL). Each DT superlayer is split in four layers of staggered drift tubes, while each CSC

station is comprised of six layers of cathode strip chambers. The Drift Tube and Cathode

Strip Chamber triggers systems process the information from each chamber locally and

are refereed to as local triggers. They provide one vector (position and angle) per muon

per station. Track Finders (TF) collect these vectors from the different stations and

combine them to form muon tracks. The Track Finders play the role of a regional trigger.

Up to four best (highest pT and quality) muon candidates from each system are selected

and sent to the Global Muon Trigger. In the case of RPC there is no local processing

apart from synchronization and cluster reduction. Hits from all stations are collected

by the Pattern Comparator Trigger (PACT) which detects the muon candidates based

on the occurrence of predicted hit patterns. Muon Sorters select the top four muons

from the barrel and the top four from the endcaps and send them to the Global Muon

Trigger (GMT). The GMT compares the information from the TF (DT/CSC) and the

PACT (RPC) and attempts to correlate the CSC and DT tracks with RPC tracks. If

two candidates are matched their parameters are combined to give optimum precision.

The GMT correlates the muon candidate tracks with the corresponding calorimeter

towers, based on the position in η−−φ, to determine if these muons are isolated. Quiet

and MIP bits delivered by the Calorimeter Trigger are used to form an isolated muon

trigger and to confirm the muon trigger using the calorimeter information. The CSC

and Drift Tube Track Finders exchange track segment information in the region where

the chambers overlap. Coarse RPC data can be sent to the CSC trigger to help resolve

spatial and temporal ambiguities in multimuon events. The final ensemble of muons are

sorted based on their initial quality, correlation and pT and the four top candidates are
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sent to the Global Trigger. Transverse momentum thresholds are applied by the Global

Trigger for all trigger conditions.

Appendix A.5.1. Drift Tube (DT) Trigger The drift chambers deliver data for track

reconstruction and for triggering on different data paths at the local trigger level. The

trigger front-end (Bunch and Track Identifier or BTI), is used in φ and η to perform a

rough muon track fit. It uses the four layers of DTs in one superlayer to measure the

position and direction of trigger candidate tracks with at least three hits out of four.

The algorithm fits a straight line within programmable angular acceptance. The BTI

performs the bunch crossing assignment of every found muon track candidate.

Since this method must foresee alignment tolerances and needs to accept alignments of

only three hits, the algorithm can generate false triggers. Hence in the bending plane a

system composed of a Track Correlator (TRACO) and a chamber Trigger Server (TS) is

used to filter the information of the two φ superlayers of a chamber. The TRACO/TS

block selects, at every cycle among the trigger candidates, at most two track segments

with the smallest angular distances (i.e. higher pT ) with respect to the radial direction

to the vertex.

Track segments found in each station are then transmitted to a regional trigger system

called Drift Tube Track Finder (DTTF). The task of the Track Finder is to connect track

segments delivered by the stations into a full track and assign a transverse momentum

value to the finally resolved muon track. The system is comprised of sectors (72 in

total), each of them covering 30◦ in the φ angle, and five wheels in the z-direction. Each

Sector Processor is logically divided in three functional units - the Extrapolator Unit

(EU), the Track Assembler (TA) and the Assignment Units (AU).

The Extrapolator Unit attempts to match track segments pairs of distinct stations.

Using the spatial coordinate φ and the bending angle of the source segment, an

extrapolated hit coordinate is calculated. The two best extrapolations per each source

are forwarded to the Track Assembler. The Track Assembler attempts to find at most

two tracks in a detector sector with the highest rank, :i.e. exhibiting the highest

number of matching track segments and the highest extrapolation quality. Once the

track segment data are available to the Assignment Unit, memory-based look–up tables

are used to determine the transverse momentum and the φ. The η coordinates, are

assigned separately using hits in the η-superlayers of the three innermost station and

applying a pattern method.

Appendix A.5.2. CSC Trigger The CSC Local Trigger finds muon segments, also

referred to as Local Charged Tracks (LCTs), in the 6-layer endcap muon CSC chambers.

Muon segments are first found separately by anode and cathode electronics and then

time correlated, providing precision measurement of the bend coordinate position and

angle, approximate measurement of the non-bend angle coordinate, and identification

of the correct muon bunch crossing with high probability.

The primary purpose of the CSC cathode trigger electronics is to measure the φ



CMS High Level Trigger 103

coordinate precisely to allow a good muon momentum measurement up to high

momentum. The charge collected on an anode wire produces an opposite-sign signal

on several strips, and precision track measurement is obtained by charge digitization

and precise interpolation of the cathode strip charges. The six layers are then brought

into coincidence in LCT pattern circuitry to establish position of the muon to an RMS

accuracy of 0.15 strip widths. Strip widths range from 6-16 mm.

The primary purpose of the CSC anode trigger electronics is to determine the exact

muon bunch crossing with high efficiency. Since the drift time can be longer than 50 ns,

a multi-layer coincidence technique in the anode “Local Charged Track” (LCT) pattern

circuitry is used to identify a muon pattern and find the bunch crossing.

The task of the Cathode Strip Chamber Track-Finder is to reconstruct tracks in the CSC

endcap muon system and to measure the transverse momentum (pT ), pseudo-rapidity

(η), and azimuthal angle (φ) of each muon. The measurement of pT by the CSC trigger

uses spatial information from up to three stations to achieve a precision similar to that

of the DT Track-Finder despite the reduced magnetic bending in the endcap.

Cathode and anode segments are brought into coincidence and sent to the CSC Sector

Processor electronics which links the segments from the endcap muon stations. Each

Sector Processor unit finds muon tracks within 60◦. A single extrapolation unit forms

the core of the Sector Processor trigger logic. It takes the three dimensional spatial

information from two track segments in different stations, and tests if those two

segments are compatible with a muon originating from the nominal collision vertex

with a curvature consistent with the magnetic bending in that region. Each CSC Sector

Processor can find up to three muon candidates within 60◦. A CSC muon sorter module

selects the four best CSC muon candidates and sends them to the Global Muon Trigger.

Appendix A.5.3. RPC Trigger The RPC Pattern Trigger Logic (PACT) is based on

the spatial and time coincidence of hits in four RPC muon stations. Because of energy

loss fluctuations and multiple scattering there are many possible hit patterns in the RPC

muon stations for a muon track of defined transverse momentum emitted in a certain

direction. Therefore, the PACT should recognize many spatial patterns of hits for a

given transverse momentum muon. In order to trigger on a particular hit pattern left

by a muon in the RPCs, the PACT performs two functions: it requires time coincidence

of hits in patterns ranging from 3 out of 4 muon stations to 4 out of 6 muon stations

along a certain road and assigns a pT value. The coincidence gives the bunch crossing

assignment for a candidate track. The candidate track is formed by a pattern of hits

that matches with one of many possible pre-defined patterns for muons with defined

transverse momenta. The pre-defined patterns of hits have to be mutually exclusive

i.e. a pattern should have a unique transverse momentum assignment. The patterns

are divided into classes with a transverse momentum value assigned to each of them.

PACT is a threshold trigger; it gives a momentum code if an actual hit pattern is

straighter than any of pre-defined patterns with a lower momentum code. The patterns

will depend on the direction of a muon i.e. on its φ and η.
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Appendix A.5.4. Global Muon Trigger (GMT) The GMT receives the best four barrel

DT and the best four endcap CSC muons and combines them with 4+4 muons sent by

the RPC PACT. It performs a matching based on the proximity of the candidates in

(η−φ) space. If two muons are matched, their parameters are combined to give optimum

precision. The GMT also contains logic to cancel “ghost” tracks that arise when a

single muon is found by more than one muon system and is not otherwise matched,

such as at the boundary between the DT and CSC muon systems. The selected muon

candidates are ranked based on their transverse momentum, quality and to some extent

pseudorapidity and the best four muon candidates in the entire CMS detector are sent

to the Global Trigger.

The Global Muon Trigger also receives information from the calorimeters. The Regional

Calorimeter Trigger sends two bits based on energy measurements representing isolation

and compatibility with a minimum ionizing particle in ∆η × ∆φ=0.35×0.35 trigger

regions. The GMT extrapolates the muon tracks back to the calorimeter trigger towers

and the vertex and appends the corresponding isolation and minimum ionizing bits

(ISO and MIP) to the track data indicating isolation or confirmation of the muon by

the calorimeter. The muon track data sent to the GT are the , the sign of the charge,

the η and φ as well as the ISO and MIP bits.

Appendix A.6. The Level-1 Global Trigger

The Global Trigger accepts muon and calorimeter trigger information, synchronizes

matching sub-system data arriving at different times and computes up to 128 trigger

algorithms in parallel. The trigger decision is communicated to the Trigger and Control

System (TCS) for distribution to the sub-systems to initiate the readout. The global

trigger decision is made using logical combinations of the trigger data from the Global

Calorimeter and Global Muon Triggers. The Level-1 Trigger system sorts ranked trigger

objects, rather than histogramming objects over a fixed threshold. This allows all trigger

criteria to be applied and varied at the Global Trigger level rather than earlier in the

trigger processing. All trigger objects are accompanied by their coordinates in η − φ

space. For muon candidates the charge is also delivered. This allows the Global Trigger

to vary thresholds based on the location of the trigger objects. It also allows the Global

Trigger to require trigger objects to be close or opposite from each other. In addition,

the presence of the trigger object coordinate data in the trigger data (which is read

out first by the DAQ after a Level-1 accept decision) permits a quick determination

of the regions of interest where the more detailed HLT analysis should focus. Besides

handling physics triggers, the Global Trigger provides for test and calibration runs, not

necessarily in phase with the machine, and for prescaled triggers, as this is an essential

requirement for computing trigger efficiencies.

The Global Level-1 Trigger is responsible for deciding whether to accept or reject an

event and for generating the corresponding L1 Accept signal (L1A). The final L1A

decision is the logical OR of all algorithms used at L1. This decision is transmitted
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through the Trigger Control System (TCS) to the Timing Trigger and Control system

(TTC). The TCS automatically prescales or shuts off the L1A case the detector readout

buffers are at risk of overflow.
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[18] P. Billoir, R. Früwirth and M. Regler, Nucl Instr. Meth. A241 (1985) 115.

[19] V. Innocente, M. Maire, E. Nagy, GEANE, CERN program library long writeup W5013-E.

[20] G. Bruno et al., Local reconstruction in the muon detectors, CMS Note 2002/043.

[21] N. Amapane, M. Fierro, M. Konecki, High-Level Trigger Algorithms for Muon Isolation, CMS

Note 2002/040.

[22] D. Green et al., Energy Flow Objects and Usage of Tracks for Energy Measurement in CMS, CMS

Note 2002/036.

[23] R. Kinnunen and A. Nikitenko, Study of H(SUSY) → ττ → l + τJet+ E/T in CMS, CMS Note

1997/106.

[24] D. Denegri and R. Kinnunen, Study of H(SUSY) → ττ → h+ + h− + X in CMS, CMS Note

1999/037.

[25] R. Kinnunen, Study for Heavy Charged Higgs in pp → tH+ with H+τ + ν in CMS, CMS Note

2000/045.

[26] J. E. Huth et al., Proceeding of Research Directions for the decade, Snowmass 1990.

[27] S. Eno et al., A Study of a First and Second Level Tau Trigger, CMS Note 2000/055.

[28] D. Kotlinski, A. Nikitenko and R. Kinnunen, Study of a Level-3 Tau Trigger with the Pixel Detector,

CMS Note 2001/017.

[29] G. Bagliesi, S. Gennai and G. Sguazzoni, A L2 Trigger for Tau Hadronic Decays with Tracker

Isolation in the Low Luminosity Scenario, CMS Note 2002/018.

[30] G. Segneri and F. Palla, Lifetime-based b-tagging with CMS, CMS Note 2002/046.

[31] The LEP Heavy Flavour Group, “Input Parameters for the LEP/SLD Heavy Flavour Analyses”,



CMS High Level Trigger 107

LEPHF/2001-01, http://www.cern.ch/LEPEWWG/heavy/lephf0101.ps.gz.

[32] D. Kotlinski and A. Starodumov, High Level Tracker Triggers for CMS, Presented at: Vertex 2001,

Brunnen Switzerland, September 2000,CMS Conference Report 2002/003.

[33] D. Kotlinski, The CMS Pixel Detector, Nucl. Phys. Proc. Suppl. 120 (2003) 249.

[34] M. Winkler et al, Estimation of Alignment Parameters, Using the Kalman Filter with Annealing,

CMS Note 2002/008.

[35] A. Ostaptchouk et al, The Alignment System of the CMS Tracker, CMS Note 2001/053.

[36] D. Futyan and C. Seez, Intercalibration of ECAL Crystals in Phi Using Symmetry of Energy

Deposition, CMS Note 2002/031.

[37] CMS Coll., The Hadronic Calorimeter Project, Technical Design Report, CERN/LHCC 97-31,

CMS TDR 2, 20 June 1997.

[38] CMS Coll., The Muon Project, Technical Design Report, CERN/LHCC 97-32, CMS TDR 3, 15

December 1997.

[39] O.J.P. Eboli and D. Zeppenfeld, Phys. Lett. B495 (2000) 147.

[40] B. Di Girolamo et al., Experimental Observation of an Invisible Higgs Boson at the LHC, Workshop

on Physics at TeV Colliders, Les Houches, 2001, the Higgs Working Group: summary report,

hep-ph/0203056.

[41] H. Baer et al., Phys. Rev. D58 (1998) 075008.

[42] H. Baer, F.E. Paige, S.D. Protopopescu and X. Tata, hep-ph/0001086.

[43] G.Corcella, I.G.Knowles, G.Marchesini, S.Moretti, K.Odagiri, P.Richardson, M.H.Seymour and

B.R.Webber, JHEP 01 (2001) 010.

[44] N. Arkani-Hamed, A.G. Cohen, T. Gregoire, E. Katz, A.E. Nelson, J.G. Wacker, The Minimal

Moose for a Little Higgs, JHEP 0208 (2002) 021; M. Schmaltz, Introducing the Little Higgs,

hep-ph/0210415.

[45] D. Amidei and R. Brock, Future Electroweak Physics at the Fermilab Tevatron: Report of the

TeV 2000 Study Group, FERMILAB-PUB-96/08.

[46] CDF coll., F. Abe et al., Phys. Rev. Lett. 74 (1995) 3538.

[47] L. Vacavant, I Hinchliffe, Signals of Models with Large Extra Dimensions in ATLAS, J. Phys. G27

(2001) 1839.

[48] H. Cheng, K. Matchev and M. Schmalz, Bosonic Supersymmetry? Getting fooled at the LHC,

Phys. Rev. D66 (2002) 056006, hep-ph/0205314.

[49] C. Macesanu, C.D. McMullen, S. Nandi, New Signal for Universal Extra Dimensions, Phys.Lett.

B546 (2002) 253.

[50] G. Azuelos et al., Exploring Little Higgs models with ATLAS at the LHC, hep-ph/0402037.


